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INTRODUCTION

In recent years, noncooperative game theory, and especially Nash equilib-
rium analysis, has been used in the study of many economic situations. Along
with the many and varied applications has come persistent criticism: Why (or
when) is equilibrium analysis appropriate? Where do equilibria come from? How
does one choose among many equilibria in making predictions? In this mono-
graph, we begin to develop one sort of answer to these questions. We develop
a model where equilibrium analysis is appropriate because players hold fairly
strong and approximately consistent beliefs about each others’ actions. We sup-
pose that those beliefs come from past experiences in similar situations. And we
see how the ways in which players will “experiment”, to test their beliefs, can
influence equilibrium selection.

The formal literature on the foundations of Nash equilibrium (Aumann, 1987;
Brandenburger and Dekel, 1987) interprets equilibrium as a situation in which
the players have identical beliefs about how each will play. This literature, taken
literally, may not justify applying equilibrium analysis to the study of economic
problems, becuase the requirement of exactly identical beliefs is very strong.

This raises two questions. First, in what ways can the assumption of identical
beliefs be relaxed? Second, how might the players come to have identical or
almost identical beliefs? Satisfactory answers to both of these questions seem
necessary in order to trust in the use of equilibrium analysis. And since we have
both contributed to the flood of papers that use equilibrium analysis to study
economic phenomena, we are particularly interested in looking for answers.

Of course, the best reason for trust, or the clearest reason to dismiss this form
of analysis, must come from empirical and experimental evidence. Experimental
economists have not been slow to test some of the game theoretic models that
populate the journals, and we would assert that the evidence, while mixed, is
not completely discouraging. (To be entirely self-serving, we direct the reader to
Camerer and Weigelt, 1988, and to Banks, Camerer and Porter, 1988.) Empirical
evidence is coming in more slowly, but what there is is also not damning. (See,
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for example, Bresnahan, 1988.)

But, to supplement these empirical/experimental studies, one would like
some theoretical reason to think that Nash equilibrium "analysis is appropriate
even when the common knowledge structures that formally justify it are absent,
and even when players behave in less than perfectly and completely rational
fashion.

There has long been a verbal tradition that gives such a reason. Suppose
that, in a game with finitely many strategies for each player, we are studying
a particular strict equilibrium.! Then, of course, it is not necessary that every
player is certain of the strategies of his opponents, in order to find that his part is
optimal. For each player to be choosing according to the equilibrium, it will be
sufficient that each player attaches high probability to his opponents following
their parts of the equilibrium. There is no need that beliefs are identical; simply
that each player, viewing the problem as a single-person decision problem, has
come to have beliefs about his fellow players that are close to the equilibrium.
Following this observation, one can tell a story about why such “roughly con-
sistent” beliefs might persist — if the players have engaged in this game in the
past, and if they have any empirical sense at all, then they will use the data
derived from past experiences to predict how their opponents will act in the fu-
ture. If beliefs somehow settle down “close to” the equilibrium, a reinforcement
feedback occurs — players play their part in the equilibrium, which will lead
others to expect with even greater certainty that the equilibrium predicts what
their opponents will do. ?

Moreover, this suggests a further story as to how beliefs might come to be
approximately consistent, namely through the same learning process. To take
a very simple example, imagine that the game being played is a simple two
person, two-by-two coordination game. If the players play up-right or down-
left, each gets $1. If they play up-left or down-right, each gets nothing. If the
players play this game once, we would be surprised to find them coordinating

1 By a strict equilibrium, we mean one in which each player’s strategy is
uniquely a best response to the strategies of others.

? A formal criterion for this sort of local stability will be given in section 4. We
will, however, take this opportunity to note that we do not regard it as sufficient
to show that if beliefs are “close” to a strict equilibrium, then behavior next period
will probably conform to the equilibrium. We ask for a bit more, namely that
once beliefs are “close” to an equilibrium, then with probability approaching one
they stay close forever after.
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their actions. But if they play it over and over, we expect that they will learn
how to coordinate. Note well, in this case it may well be as likely that they will
“learn” to coordinate in one way as in another. But we do expect that, eventually,
they will figure out how to coordinate. Of course, this is a very simple example,
and it is far from clear that in every game a simple process of learning will
lead to an equilibrium. (That is to say, in our analysis, we will not be able to
provide the reader with a general global convergence result.) But learning models
give us a reason to think that roughly consistent beliefs might emerge; and our
formal analysis of learning models will suggest situations in which this can be
guaranteed. > While we neither show nor believe that equilibrium analysis is
appropriate for all situations, we think that are results suggest when it might be.

Note that these stories about learning, even told this informally, suggest
some problems in cases where the equilibrium is not strict. Mixed strategies
would seem to cause problems. Perhaps ‘more importantly from the point of
view of many of the applications that we see is that problems would arise with
equilibria that are not strict because they arise from an extensive form game. Put
somewhat differently, repeated play of an extensive form game might not tell
players much about how each other would act “out of equilibrium,” and so there
is less reason to suppose that beliefs about out of equilibrium actions are roughly
consistent.

Note also that this story is very different in spirit from the introspective anal-
ysis justification for Nash equilibrium that one sometimes finds in the literature.
That is, game theory is traditionally distinguished from choice theory by the no-
tion that each player is able to put himself in the situation of his opponents, to
see what their motivations are and what actions they might take. It would seem
that no allowance is made for this type of analysis in the informal story. We
shall return to this point, but for now we offer the following elaboration of the
story: Introspective analysis may well be used by players in forming their “prior”
beliefs as to what will happen when the game is played. This, of course, gives
us a first answer to the question: Where do these almost-consistent beliefs come
from? But players are not so sure about their powers of analysis that they will be
certain of their conclusions, nor will they hold onio beliefs based on introspection
in the face of overwhelming evidence to the contrary. The informal story, then,
suggests why such beliefs derived of introspective analysis might be reinforced

* For a different approach to learning in pure coordination games, an approach
which uses standard equilibrium analysis, see Crawford and Haller (1987).
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in repeated play. Finally, note that this informal story depends on the situation
in question being repeated. There are many contexts to which Nash equilibrium
analysis has been applied in which the game played is quite different from any
other game players have encountered. In such contexts, the story above gives
little comfort. 4

There have been a few formal analyses of this verbal story. Huang (1985)
shows how, in such a story applied to extensive form games (and non-strict equi-
libria), beliefs might never move from a non-Nash point. This analysis suggests
an important point of departure for this study: In extensive form games, if Nash
equilibrium (or some refinement of Nash equilibrium) is to be the solution con-
cept, then it becomes necessary that players receive evidence about what will
happen out of equilibrium. Otherwise, radically divergent out-of-equilibrium
conjectures might persist, giving rise to non-Nash equilibria as stable points. ®
Game theorists who stress evolutionary approaches also analyze this sort of story
— see, for example, Canning (1987) and Friedman (1988).

In this monograph, we will add to the formal treatment of this sort of story,
stressing two particular and related points: bounded rationality and experimenta-
tion. Our analysis makes use of players who are boundedly or limitedly rational.
In our models, players are somewhat rational in that they learn by their experi-
ences and, given what they think they know, they nearly always optimize in the
near term. When they don’t choose what looks like near-term optimal actions,
they do so in order to experiment with other options they may have; moreover
these experiments are chosen somewhat sensibly. But players are not completely
rational: They do not work out a grand, dynamically optimal strategy. In other
words, within a small scale, they act (nearly) optimally. Within the larger scale,
they act “sensibly”. ®

The notion that players experiment with (seemingly) suboptimal actions is
~ crucial to the models that we build. We should stress that “suboptimality” in
the previous sentence means suboptimal in the short-run — the motive for these

4 When we speak later of “similar games and inference across information
sets”, we will attempt to brighten this rather bleak picture.

S This point may be a bit opaque without an example. We will return to it,
with an example, in section 5.

6 The distinction here is familiar from werk on learning and rational expecta-
tions literature. In that literature, there are models of rational learning, such as
Bray and Kreps (1987), and models of boundedly rational, sensible learning, as

in Bray (1982). This paper, then, is in the tradition of the second sort of model.
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experiments is to see if one’s current conjectures about the actions of opponents
out-of-equilibrium are in fact correct. But, on grounds of bounded rationality,
these experiments are not truly optimal in the long-run — players do not solve the
fantastically complex problem (more complex than a multi-armed bandit prob-
lem, since the arms of the bandit are simultaneously solving a similar problem) of
finding the best experimentation procedure. Indeed, if players discounted pay-
offs between periods, the theory of the multi-armed bandit would suggest that,
at some point, experiments would cease. In our models of behavior, we assume
that this does not happen. The rate of experimentation is presumed to vanish if
there is a strategy which seems clearly optimal, based on the evidence from play.
But the rate of experimentation does not vanish too quickly: If given the oppor-
tunity to do so, each player will try every possible action infinitely often over the
course of infinitely many repetitions of play. These experiments then generate
enough information about out-of-equilibrium play so that non-Nash profiles are
not stable.

Besides enabling us to justify, at least in part, the informal story supporting
equilibrium analysis, our model provides a few further insights that the pure
theory of Nash equilibrium does not provide. For one thing, we will see that
a certain level of dispersion in beliefs about what players are doing is not in-
consistent with Nash equilbirium. For another thing, our study of local stability
will suggest that certain classes of Nash equilibria are, from our perspective,
not very likely to persist. At one level, we are led to question the reasonable-
ness of mixed strategy equilibria, at least insofar as our story is the motive story
for equilibrium.” More interestingly, we will be able to relate broad classes of
experimentation procedures to various equilibrium refinements.

Our analysis is particularly germane to refinements of the sort given in Banks
and Sobel (1987) and Cho and Kreps (1987). The stories that surround those
refinements concern deviations that are accompanied by unmodelled “speeches.”
These stories about speeches suffer from the weakness that they are not fully
consistent or complete: Players make out-of-equilibrium inferences, but there
is no formal story about why there would be any out-of-equilibrium actions to
observe. Without such a formal story, it is difficult to evaluate an equilibrium
refinement. One would like to know if there is a plausible, internally consistent

” While mixed equilibria are locally stable for very specially selected behavior,
it seems unlikely to us that the requirements on behavior would ever be met. But,
as we shall see, the purification theorems suggest a way around this difficulty.
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story of (infrequent) deviations that justifies only the allowed inferences.

An example of a complete theory is one in which deviations are the result
of mistakes or trembles. Here allowed inferences are those which can be justified
by mistakes, with the further condition (perhaps) that each player is assumed to
tremble independently of others. Another complete theory is implicit in Fuden-
berg, Kreps and Levine (1988), which concerns games with a small amount of
payoff uncertainty. Here deviations occur when a player’s payoffs are different
than had been supposed to be likely.

The experiments aspect of our model yiclds a third kind of complete theory
of equilibrium refinements: Out-of-equilibrium actions are interpreted as exper-
iments, and by imposing conditions on the likelihood of various experiments,
we can obtain different sorts of refinements. More specifically, when players
are learning from past experience, they will have more observations about, and
thus be more certain of, play along the prevailing “equilibrium path” than about
play that is only (rarely) observed when someone experiments. These differences
in degree-of-certainty suggest that certain types of experiments are more likely
than others: Players have relatively little incentive to experiment with actions
that cannot yield a higher payoff than the equilibrium for any response by their
opponents. This Jeads to the definition of “equilibrium domination” and “condi-
tional domination.” Briefly, a strategy is equilibrium dominated if it yields strictly
less than the equilibrium payoff for all strategies of the opponents; and condi-
tional dominance extends this idea to players who are off of the equilibrium path.
Our learning-and-experimentation model provides a justification for restricting
attention to those sequential equilibria where beliefs assign probability zero to
actions that are conditionally dominated. In signaling games, these equilibria are
closely related to those that satisfy the intuitive criterion of Cho and Kreps (1987).
But when applying our model to signaling games, it seems natural to go beyond
the intuitive criterion to a more restrictive refinement that we call “co-divinity.”
Co-divinity is very close in spirit to Banks and Sobel’s (1987) notion of divinity.
As we will see, however, the discipline imposed by working with a complete
theory leads to a refinement that is a bit different from divinity.

A fourth dividend from our approach is that it suggests a somewhat natural
framework for thinking about inferences across different games. That is to say,
in the basic story we will tell, players infer what their opponents will do at a
particular information set from what has happened at that exact information set
in previous play of the game. If the game in question is indeed repeated over
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and over, then this might well provide players with the sort of rich data base
needed to have substantial confidence in their predictions about their opponents.
But it seems unreasonable to expect the exact same gafne to be repeated over
and over; put another way, if we could only justify the use of Nash analysis
in such situations, we would not have provided much reason to have faith in
the many widespread applications that are found in the literature. Faith can be
greater if, as seems reasonable, players infer about how their opponents will act
in one situation from how opponents acted in other, similar situations. One is
led naturally to model cases in which players make such cross-information set
and cross-game inferences, and one can then look formally both at questions of
stability and effectiveness of a supposed “similarity” that players think they see.

Indeed, it is here that we think we can connect our approach to the story of
introspective analysis. What is going on in such analysis, it seems clear, is that
players are using their experience from other games to infer what will happen in
the current situation. The grounds for calling situations “similar” are extremely
complex and are buttressed by involved logical analysis, but no one would trust
to such analysis or to the “similarities” that this analysis suggests without some
reinforcement from observations.® We will not, in our simple models, provide
anything are complex as the similarities that are suggested by the logic of game
theory. But, in principle, we believe that the logical application of game theory
is of a kind with the simple similarities that we do model.

Our approach has some substantial drawbacks. Because it is based on mod-
els of limitedly rational behavior, it is open to the criticism of being ad hoc. In
-our view this criticism is entirely valid. We will, as much as possible, attempt
to give results for large classes of behavior, moving beyond a single paramet-
ric specification for inference or for experimentation. Even so, all members of
our “broad classes” will have some very restrictive qualitative features built in;
features which, if changed, could change dramatically the results obtained. We
think that the class of behaviors that we study is interesting, but our interest in
this class should not be taken to mean that we believe all other classes to be unin-
teresting. In fact, quite the reverse is true. We have picked this class of behavior
because it is rich enough to give us a number of preliminary insights, and also to
allow us to suggest which of these insights might not survive in different looking
specifications. But it does not give us everything we might want. {For example,

8 Another way to say the same thing is to repeat that the real test of whether
game theory is useful as a tool of analysis is empirical.
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our classes of behavior are not very good on justifying mixed equilibria. Com-
pare with the independent work of Canning (1987), in which mixed equilibria can
arise entirely naturally, because Canning builds a source 6f “within-equilibrium”
variability into his model.) We will try throughout to mention some alternative
specifications and how they might change our results. But, in the end, our anal-
ysis is almost entirely based on a particular sort of model, which is only one of
the many that might be contemplated.

In fact, in many places our specifications of rules for behavior are driven by a
desire to place standard equilibrium notions within our framework of experimen-
tation and learning. Because of this, the assumptions we make about behavior
sometimes have unappealing aspects. We hope that the reader will draw from
this the same conclusions that we do: Insofar as we must take forms of behavior
with unappealing aspects in order to “justify” standard equilibrium concepts, the
appeal of the standard concepts is called into question. We conclude this study
convinced that, at least within our general framework, standard equilibrium con-
cepts are less than the best reduced form solution concepts. The reader will, we
expect, be similarly convinced.

Secondly, our formal analysis is restricted to a small class of games, in order
to keep the analysis from getting in the way of any insights that might be derived.
We excuse ourselves from the task of giving a theory for general games because,
it seems to us, a theory that is general in terms of the games it encompasses but
rather special in the class of behavior it allows would not be worth the cost of
the generality.

To conclude this introduction, we now outline what we will do. Part I gives
our basic analysis for the concept of Nash equilibrium. A basic model is pre-
sented, and general classes of “reasonable” behavior are identified. We then
connect those general classes of behavior with the concept of Nash equilibrium,
showing that outcomes will be locally stable for these classes of behavior (in a
sense to be made precise) if and only if the outcomes correspond to Nash equilib-
rium. We say what little we know about global stability and about models where
players are randomly matched. Part I investigates the consequences of assuming
that players are sensitive to small ex anfe differences in payoff if those differences
are large ex post. We are led to redo much of the analysis of Part I at a higher level
— in place of outcomes, the basic object of study becomes full behavior strategies,
and in place of Nash equilibrium we find that sequential equilibria emerge as
the candidate “outcomes” of our behavioral models. Part III treats two sorts of
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rfinements based on extensions of equilibrium dominance: P-perfection, which
we develop for general games; and codivinity, which is concerned with the class
of signaling games studied in Cho and Kreps (1987) and Banks and Sobel (1987).
In Part IV, we move on to the notion of inference across “similar” situations in
different games... In a brief epilogue, we offer some concluding remarks.



PART I — NASH EQUILIBRIUM

I.L1. FORMULATION

Consider a finite N -player extensive form game. The game tree (collection
of nodes) will be denoted by T (assumed to be a finite set), = will denote
precedence in the game tree, X the subset of nodes where a player is called
upon to take an action, Z the subset of terminal nodes, n(z) (for z € X') the
player whose turn it is to move at node z, H the set of all information sets (a
partition of X), n(h) the player who moves at information set h € H, H" the
set of information sets belonging to player n, A(h) the set of actions available to
player n(h) atinformation set h, and u"(z) the payoff to player n at terminal
node z. We will follow the practice of putting all of nature’s moves at the start
of the tree, with W denoting the possible initial nodes (moves by nature) and p
the probability distribution over W that gives the distribution of nature’s moves.
(For more detail about this type of extensive form representation, see Kreps and
Wilson, 1982.)

We make one important and nontrivial assumption about the extensive form:
For each player n = 1,...,N, no node z € h € H™ precedes another node
z' € k' € H", where this condition includes the case h = h'. This guarantees
that the game has perfect recall, of course, but it does an enormous amount
more — it guarantees that, in any course of play, no player can ever be called
upon to move twice. As we shall see, this assumption simplifies our analysis in
very substantial ways; we will say later a few things about doing away with this
assumption. Given this assumption, the strategy space of player i is fairly trivial:
A pure strategy is an element s" of S™ =II,eynA(h). For mixed strategies, all
that is important to the computation of outcomes are the marginal distributions
over actions at each information set (that is, the behaviorally mixed strategies),
and we write A(A(h)) for the set of probability mixtures on A(k), so that the
set of (behaviorally) mixed strategies for player n is £" = ey~ A(A(R)). We
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will assume that players’ randomizations are independent — correlated mixed
strategies are ruled out.®

We imagine that our N players play this particular game over and over
again, against each other. (We will consider in a later section the more complex
situation where there is a large population of players who are randomly matched
each round.) A “play” of the game results in a particular terminal node Z, so
that a history of k plays of the game is an element of Z*. We write (; for
such a k-length history. We assume that each player, at the end of each round,
knows what happened (what was the outcome z), so that players begin stage
k +1 knowing (k.

We assume that our N players, in round k+1 of the game, play according
to some behavioral rules that may depend on the history (i of past play. 10 We
write ¢(k +1,(x) for the N vector (o' (k + 1,(1),---¢™N (k + 1,¢)) of behavior
strategies for the N players in round & +1. We write ¢"(k + 1,(k,a) for the
probability that player n takes action a € he H® inround k+1 athistory (i,
if h is reached. And we write ¢ = (q&’,...,q&”) for a specification of behavior
rules of play for our N players for every round k= 1,2,... of the game.

We will assume that our N players, in deciding what to do in any given
round, do so on the basis of conjectures they have about the actions of the other
players. We write o~"(k + 1, (k) for the conjectures of player n about the ac-
tions of the other players at date k41 as a function of past history (i ; formally
o~ "(k +1,(k) is an element of Myey-»A(A(R)), where H™" = Unign H™ . We
assume that no player ever assigns zero probability to some action by his oppo-
nents, so that o="(k+1,(}) is strictly positive. We also assume that each player
maintains the hypothesis that his opponents choose their actions independently,
so that the joint probability assessed by player n of any sequence of actions by
his opponents is the product of the probabilities of each individual action.

Every specification of behavior rules ¢ determines in obvious fashion a “law
of (stochastic) motion” for the repeated game: ¢(1) determines a probability dis-
tribution over the first outcome of the game (;, and then #(2,(;) determines
transition probabilities to (2, etc. (Note that the independence of different play-

9 If one wants a theory for correlated equilibria to emerge, one should build
into the extensive form the correlating device. That is, rely on the observation that
a correlated equilibrium is a Nash equilibrium for the game with the correlating
device made explicit.

10 For k = 0, the usual convention that Z° is some convenient singleton set
is followed.
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ers’ mixed strategies will play a role in computing these transition probabilities.)
At a very formal level, the program for this first part of the monograph is: By
imposing restrictions on the behavior rules ¢ that players use, what can be said
about the dynamics of play in the repeated game? Will play eventually settle
down to a Nash equilibrium? If play gets close to looking like a Nash equilib-
rium, will it stay there? Can play settle down to something that doesn’t look like
a Nash equilibrium? !

11 We should stress: Because the game is repeated, there can be many equilibri
of the repeated game. We use the term “Nash equilibrium” here to mean an
equilibrium of the single-stage game. It will become apparent shortly why it is
that we are able to restrict attention to static equilibria.
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1.2. AN EXAMPLE

Part I concerns behavior rules that lead to a theory of Nash equilibrium.
To obtain this theory, we study rules that have three properties: (i) Players end
up with ”ehough" observations of their opponents’ play to learn enough about
their opponents’ strategies. (ii) Players draw the “appropriate” inferences from
their observations. (iii) Players, in their choose of action, eventually relect the
information they gather, in the sense that they choose best responses to what
they assess as their opponents’ play. In order to understand some of the issues
that are involved, we turn to an example. Consider the game depicted in figure
L1

; A 2 A 1
o) —® 1
1
D D
3
3 0 3 0
0 3 0 3
0 0 0 0
Figure L.1.

In this game, player 1 begins, and gives the move either to player 2 or to 3. If 2
gets the move, then 2 can either end the game or give the move to 3. If called on
to move, 3 is unaware of whether 1 gave him the move directly, or if 1 moved
to 2, who then gave 3 the move.

The reader will note that in no Nash equilibrium of the game does 1 give
the move to 2 who then ends the game. For whatever player 3 does (either as a
pure or a mixed strategy), either 1 or 2 (or both) strictly prefer that 3 be given
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the move.

We will now describe dynamic behavior rules for the three players. For
player 3, things are simple — he always chooses to move to the left, given the
chance. For 1 and 2 things are a bit more complex. Player 1 has beliefs about
what both 2 and 3 will do if put on the move. At any point in time, those
beliefs are given by a Dirichlet posterior distribution. That is, player 1, at any
time t, assigns positive integers to the two actions (across and down) of player
2 and to the two actions (left and right) of player 3, and the respective ratios of
those pairs of integers give the ratios of the probabilities that 1 assesses about
2 and 3, respectively. Suppose that player 1 assigns, in round k, the numbers
100 to A and 1 to D, and 200 to R and 1 to L. Then player 1, at time {,
assesses probability 100/(100 + 1) that 2 will move 4, 1/101 that 2 will move
D, 200/201 that 3 will move R, and 1/201 that 3 will move L. Player 1
then chooses whichever action (across to 2 or down to 3) gives him the higher
expected value, given those beliefs: Choosing D will net 3 x (1/201) and A
will net 1 x (100/101) 4+ 3 x (1/101)(1/201) (or so 1 believes, given his beliefs
about the behavior of players 2 and 3 described above). Thus player 1 chooses
A in this instance. "

For player 2 the same is true, although he only really needs beliefs about
player 3. (Still, we will give 2 beliefs about 1, for purposes of later discussion.)
Suppose that in round k 2 assigns integers 300 to A for1and 1 to D, and
400 to L for 3 and 1 for R. Then 2’s cx anfe expected payoff if he elects to
choose A is (1/301)(1/401) x 3+ (300/301) x 1, while D nets (1/301)(1/401) x
34 (300/301)(1/401) x 3. Note well that we did ex ante calculations for 2's payoff,
so we had a need of 2’s assessment concerning 1’s action, those assessments are
irrelevant to a relative comparison of the two expected payoffs. '* In any event,
2 nets more moving A than D given his beliefs about 1 and 3, and so we can
imagine that 2 will choose A.

This gives the behavior in round & of players 1 and 2 as a function of their
beliefs. We will now describe the evolution of those beliefs, and (therefore) the
dynamic law of motion of behavior in repeated play of this game with these three
players. Player 1 began the game (at time zero) assigning integers 10 to A for 2

12 Although it may be a trifle mysterious at this point, we cannot resist fore-
shadowing later developments: The difference between Partland Part Il is that
in Part I we will use this sort of ex ante calculation and in Part II we will use
ex post or conditional calculations. In the final paragraph of this section, we will
say why this can make a difference.
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and 1 to D,and 200 to R for3 and 1 to L. After each round of play, player
1 increases by one the integer assigned to any action that he sees chosen. So if,
in the first round, player 1 chooses A as does player 2, then in his computations
for the second round, player 1 assigns integers 11 to A for2 and 1 to D, and
(since he got no information in the first round about player 3) the same 200 to
R and 1 to L as before.

Player 2 updates his beliefs similarly; and he starts with 20 for A for 1 and
1 for D,and 400 to L for3 and 1 for R.

It isn’t hard to see where this behavior will lead. Players 1 and 2 each choose
A in'the first round, because each believes (given their Dirichlet priors — those
initial assignments of integers) that 3 is going to take an action they won't like.
Accordingly, they get no evidence about what 3 would actually do (which, recall,
is to choose L), and in the second round each will again choose A. And so on.
Neither chooses to move D, because each fears what 3 will do. Of course, it is
crucial here (to get both to choose A) that their fears are based on inconsistent
priors about 3. But neither ever gets any evidence that their fear is misguided,
and so each continues with A. Of course, each becomes more convinced, as
evidence accumulates, that the other will move A. But this evidence doesn’t
cause either to change from A. Only evidence about 3 could do that, and no
such evidence is being accumulated.

So we see that if the players’ behavior is to be such that non-Nash outcomes
are not “stable,” then their play must involve experimentation with actions that
are not currently perceived as optimal.

The motivation for this experimentation is that the players are not certain that
their predictions are correct. Accordingly, if evidence accumulates that confirms
their predictions, they will experiment less and less. However, if we are to avoid
getting stuck at non-Nash outcomes, we must assume that players experiment
“enough” so that, given their inference procedures, they come in the end to
sufficiently consistent beliefs.

A major focus of our analysis is in making precise the qualifier “enough”
in the previous sentence. To show why some precision is necessary, consider
the following modification to behavior in the example. In round k, player 1
chooses (based on his beliefs) whichever action maximizes his expected payoff
with probability (k¥ — 1)/k, and he chooses the other action with probability
1/k. Note that the rate of experimentation is assumed to fall off. But we have
picked a rate of falling off which guarantees that, with probability one, player
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1 will each of his options infinitely often. (We imagine that player 2 does a
similar amount of experimenting, although we won’t need to worry about that
for this example.) This means that player 3 will be given the opportunity to move
infinitely often. And if, as we have supposed, player 3 always moves L, then
as player 1 digests this information (that is, updates his Dirichlet assessments),
player 1 will eventually decide that D is better than A after all, at which point he
will mostly move D, and we will be at a Nash equilibrium. Note well, if player
3 played some other strategy than always L it wouldn’t matter — whatever 3
does, after 3 has been given a large number of opportunities to move, the evidence
accumulated by 1 and 2 will overwhelm their initial, inconsistent priors. They
will come to have almost identical beliefs about what 3 will do, and if their
beliefs are close together, then one or the other or both will think that D is a
better option than A.

Note as well what might happen if plzlyer 1 experimented with the sub-
optimal action with probability 1/k? in round k (and 2 did likewise). Then,
although there is some experimentation going on, and there is always the chance
of another experiment, the number of experiments is almost surely going to be
finite. Given the priors we assumed for 1 and 2, there is positive probability in
this case that the last experiment will come before enough evidence has accu-
mulated to get one of the first two players to choose across, and we might get
“stuck” at the outcome A, A.

This is only an illustrative example, and there is one point in particular
where it may mislead the reader. We assumed that players 1 and 2 each played
whatever strategy gave them the highest ex anfe expected payoff (given their
personal beliefs) with high probability. We will, in the sequel, not insist on this.
Instead, we will insist that a player (eventually) decrease the chances of using
a strategy is that strategy seems to be suboptimal by an amount bounded away
~ from zero. But if a player has two options, and if, as time passes, they seem
~ ever closer together in terms of the expected payoff they will engender, then we
allow the player to pyick either one with high probability, as long as the player
experiments with the other sufficiently often. Our reasons for this will become
clear as we continue our development. Meanwhile, the astute reader will see
why, given this, it makes a difference whether we think of players computing
expected payoffs ex anfe (as we do for the rest of Part I).or ex post (in Part II).

18



1.3. TWO PRINCIPLES OF BEHAVIOR

We will look at behavior that conforms in spirit to two general principles
that the example above illustrates: (i) Players experiment infinitely often with
every option they have if given the opportunity. (ii) Given more and more data
upon which to base their conjectures, players play more and more often those
actions which a “naive empiricist” would suggest look (nearly) best in the short
run, based on ex ante calculations.

1.3.1. Experiment if given the chance

To understand the first principle and one of the issues that it raises, it will
help to begin a simple example. Consider the extensive form game depicted in

figure 1.2.
3 2
1, A 2 A 3, 4 2
0
D D D
1 0 2
0 1 0
0 0 1
Figure 1.2.

Player 1 moves first; if player 1 chooses A, then player 2 moves; if player 2
chooses A, then player 3 moves. Note that the payoffs make (D,D,D) the
perfect equilibrium. Imagine that players 1 and 2 begin believing that 2 and 3
are likely to play D, and so 1 and 2 both believe that D is likely to be the better
action for themselves. But, in line with discussion of the previous section, both
1 and 2 will sometimes experiment with A, just to see what happens.

The question that we wish to pose here is: Should player 2’s rate of experi-
mentation depend on calendar time or on the number of times that he is able to
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experiment? The spirit of the first principle, it seems to us, is that player 2’s rate
of experimentation should be determined by the number of chances he gets to
experiment. That is, suppose we imagined that player 1 Wwill experiment with A
on round k with probability 1/k, unless some evidence arrives that disconfirms
his initial hypothesis about player 2. Then the number of times that player 2 will
be given the chance to experiment will (almost surely) rise to infinity, but the
rate of increase will be very slow. Player 2, it seems to us, will “reasonably” wait
for those opportunities to build up (and evidence to build up about 3’s behavior)
before he reduces markedly his rate of experimentation.

With this in mind, we make the following definitions. For every information
set h and k length history (i, we let x(h,(x) be the number of components
of (i that are successors of h. In other words, «(h,(x) records the number
of previous instances (according to history (i) that h was hit. And, for fixed
behaviors ¢, define for each information set h and for x = 1,2, ...

7(h, &) = min{¢"M(k +1,(x,a) : a € A(R); (x € Z* such that x(h, (i) < &).

This monster needs some explanation: It is the smallest probability of any action
at the information set h if that information set has been hit « or fewer times
previously. Our formalization of the first principle becomes:

Assumption 1.1. Behaviors are such that, for each h € H,

o0

> w(hyx) = co.

K=1]

From this assumption and the structure of the game, we obtain the following by
applying the Borel-Cantelli lemma:

' Lemma L.1. For behaviors that conform to assumption 1.1, at every information set that
occurs infinitely often (with probability one), every action is taken infinitely often (with
probability one).

The proof is straightforward. We proceed to a few remarks about the assumption
and the lemma.

(1) If we imagined that a player evaluated his overall welfare by a discounted
sum of his payoffs, and if he somehow came to regard his decision problem as a
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multi-armed bandit problem, then there might well come a time when he gives
up on one or more of his options. The classes of behavior we are considering
here are definitely not of this sort; our players do not dct as if they think they
are solving a multi-armed bandit problem with a discounted payoff criterion.

(2) Note that the assumption is a good deal stronger than: “each player, in choos-
ing his normal form strategy, experiments infinitely often”. Vicarious experimen-
tation doesn’t count. By this we mean: In terms of figure 1.2, it isn’t enough
for player 2 to say: “On round k

probability 1/k, so I experiment infinitely often.” Experiments only count when
they really take place. Put differently, if we supposed that player 1 chooses A
in round k with probability 1/k and if player 2 does likewise, then player 2
will only actually play A a finite number of times (almost surely) and so player
3 will only be called upon to move a finite number of times. In terms of the
formal requirement, if h' denotes player 2’s information set, then for every «
there are histories (x for arbitrarily large K such that x(h',(x) = «, and hence
w(h',x) = 0. (All this is just saying again what we said to motivate the formal-
ization, although it may be clearer why we were saying all that now.)

(3) In the case of the game in figure 1.2, and more generally in any game of
complete and perfect information, the lemma can be strengthened to read: Every
outcome z occurs infinitely often with probability one. But, in general, this
strengthening is unwarranted. To see this, consider the variation on figure 1.2
given as figure 1.3. Now player 2 moves regardless of whether player 1 chooses
A or D, and player 2 moves without knowing what player 1 did. In this case,
behavior by player 1 which takes action A with probability 1/k in round k and
by player 2 which does exactly the same thing does conform to assumption L1.
(This is so because now, for k' the information set of player 2, «(h,(x) =k, and
hence =(h',x) = 1/x.) But then in round k there is only probability 1/k* that
player 3 is called upon to move; since this series has a finite sum, Borel-Cantelli
tells us that player 3 moves only a finite number of times, almost surely.

Note that we have made player 2’s move if player 1 chooses D irrelevant.
This assignment of payoffs will come into the story more fully later, although it
is worth observing now that, as normal form games, figures 1.2 and 1.3 are strate-
gically equivalent. If they are strategicaily equivalent, why do we differentiate
between them? We do so because they are not strategically equivalent from the
spirit of experimentation. Suppose player 2 wishes to experiment infrequently,
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O A ;. 4 ® 2
P 0
//A 1
g 0
0 0 2
D 1 0
0 1
1
0
0
Figure 1.3.

but frequently enough so that player 3 is given infinitely many opportunities to
move. Moreover, player 2 knows that player 1 will usually choose D, but player
1 will choose A infinitely often. It is harder for player 2 to put player 3 on the
move infinitely often in the game in figure 1.3 than in the game in figure 1.2, since
in figure 1.2, player 2 can time his experiments to coincide with those of player
1. In the game of figure 1.3, player 2 is unable to tell whether player 1 is experi-
menting until it is “too late” to take advantage of the opportunity this presents.
Now it can be objected: Player 2, in the case of the game in figure 1.3, ought to
be a bit more sophisticated: If he wants player 3 to be given the move infinitely
often, and if he believes that player 1 is mostly choosing D, they he might as
well always try to give 3 the opportunity (unless and until his hypothesis about
player 1 is disconfirmed). This is so because, as long as player 1 does play D,
it doesn’t matter to 2 whether he (2) experiments or not. We will return to this
objection later.

(4) In the analysis to follow, life would be much simpler if we could conclude, in
place of lemma 1.1, that every information set occurs infinitely often almost surely. '3
What sort of assumption would guarantee this? Suppose that we defined =(k) =
min{¢"(k + 1,(x,a) : n;(x;a}. Thatis, w(k) is the minimum probability of
any action at all in round k 4 1. Suppose as well that L is the maximum

13 This is one degree weaker than saying that every outcome occurs infinitely
often, but, as will become apparent, the weaker statement would be enough for
our purposes.
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length (in terms of numbers of actions) of any path through the tree. Then if
S e, m(k)E™! = oo, Borel-Cantelli tells us immediately that every information set
occurs infinitely often, almost surely. (Hence for two-player games, assumption
1.1 is sufficient for this conclusion.) One could tell a story for this assumption:
Players wish to see what each other will do at every information set (which is
why they are experimenting in the first place), and they realize the problems
inherent in coordinating their experiments, hence they experiment at rates that
moot the coordination problem. But this, it seems to us, introduces a little too
much cooperation into what is meant to be a noncooperative story. In particular,
player 1 could say to player 2 in the context of figure 1.3: “You experiment
in round k with probability (1/k)'/?°°, and I'll experiment with probability
(1/k)°9/1°° and we'll get to see what 3 is going to do.” If experimentation is
perceived to be costly, then this sort of bargaining is not inconceivable. '* So we
will proceed without assumptions strong enough to get for us the stronger (and
very much more convenient) conclusion. The reader will see that we pay quite
a price for this.

(5) Suppose that, in the game in figure 1.2, player 1 thinks that A is better than
D . Since the consequences of D are known, why should player 1 experiment
at this point? Similarly, why, in figure 1.3, would we ever assume that player 3
would experiment at all? We could imagine a story where players aren’t sure
about what payoffs they get from their actions, even actions that lead to terminal
nodes. Or we could modify assumption 1.1, so that it doesn’t apply in such

14 Consider this sort of objection in the context of figure 1.1, however. If experi-
mentation is perceived to be costly, and if player 2 is going to experiment with D
infinitely often, then mightn’t player 1 wish to keep on with A (unless and until
the evidence accumulated by virtue of 2's experiments convinces 1 that D is bet-
ter than 4)? Or suppose the payoffs to 1 were different depending on whether
1 or 2 gave the move to 3; suppose in particular that they were a bit bigger (con-
tingent on 3’s move) if 2 gives the move to 3 than if 1 does. Then shouldn’t 1
foreswear experimentation, and let 2 do all the work, realizing that the evidence
will accumulate anyway? We will assume that thoughts this sophisticated do
not trouble 1 in his deliberations — we certainly are not constructing an equi-
librium in the “experimentation game.” Given that this is so, the argument just
given against assuming the condition 3 ;o , #(k)L~! = oo is a bit less convincing
than it may seem at first. Nonetheless, we see a significant difference between
assuming that each player, on his own, experiments infinitely often given the
opportunity to do so, and an assumption that experimentation rules are chosen
individually in a manner that satisfies a socially derived constraint, and we will
therefore stick with assumption L.1.
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circumstances. The latter would not change our results, but would be costly in
terms of notation and exposition, and so we don’t do that. The former, on the
other hand, is consistent with our basic story, although wé would have to increase
the notational requirements of assumption 1.3 below. We will return to this first
story in section III

1.3.2. Naive empiricism, at least asymptotically

Our first principle of behavior says roughly that everything happens occa-
sionally. Our second principle says that only things that “look” optimal based
on history happen often. We present this second principle in two parts; we also
give a consistency test that is suggested by the first part of the principle. All of
this requires some additional notation:

Recall that ¢~ "(k+1,(x) is the conjectures of player n about the actions of
his opponents at date k + 1, given history (. We will write o7 "(k + 1,(x, h)
for those conjectures at the information set h € H™".

For any information set h and k-length history (x such that x(h,(x) 21,
let n(h,(x) € A(A(R)) be given by n(h,(e)(a) = «&((h,a),(x)/x(h,(x), where
by #((h,a),(x) we mean the number of components of (i that passed through
h and then had action a taken. Thatis, n(h,(x) is the unweighted empirical
distribution at h based on (.

For any two probability distributions p,¢ on any finite dimensional proba-
bility simplex A(X), let d(p,q) = max ex |p(z) — g(z)]-

Let ( denote a typical sample path or entire history of play, an element
(21, 22,...) € Z°°, with (i standing for the k-long partial history. Given a (, let
H'O(¢) be the set of all information sets that are hit infinitely often along the
sample path (.

With all this, we can now state the first part of the second principle of
behavior:

Assumption 1.2. For given ( and for each player n and information set h € H'°(()
with n(h) #n,
klimoo d(e™"(k +1,¢k, h),n(k, (k) = 0.

. Assumption 1.2 says that player n’s hypothesis is asymptotically the hy-
pothesis that is formed from a naive count of how often various actions were
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taken, as (and if) evidence at a particular information set builds up. Note that
for any fixed integer K, assumption 1.2 can be satisfied in a way that imposes
no restriction for n’s hypothesis as to what happens at any information set h
that is reached K times or fewer.

Most “reasonable” statistical procedures that are based on a hypothesis that
the sequence of observations of actions at a particular information set is an ex-
changeable sequence would have this property. We saw in one example in sec-
tion 1.2, an example which is important for later development, as it will be used
constructively. In this statistical procedure, players use Dirichlet priors and pos-
teriors. That is, each player n begins with a prior on how his opponents act,
given by an assignment of strictly positive integers to all actions available to the
others. We let j(a,n) be the integer assigned by player n to action a € A(h) for
h € H~=". Note that there is no requircment of consistency of these priors. The
prior probability hypothesized by player n in the first round that action a will
be taken is then simply j(a,n)/3 . ca)J(a’,n), where h is the information
set to which a belongs. These priors are updated very simply: In any round, if
information set h is reached and then action a is taken, then j(a,n) is increased
by precisely one by all players n. And then hypotheses in the following round
are computed just as is the prior, for the new integers. The reader will quickly
verify that hypotheses computed in this fashion satisfy assumption I1.2.

Now it should be noted that this particular “reasonable” statistical procedure
may not be properly specified for the actual situation, since players’ behavior in
our model is highly nonstationary. It should also be noted that this is just an
example. We don’t restrict players to a model of exchangeable observations;
indeed, they need not use any formal statistical procedure at all. We do insist
with assumption 1.2, however, that if and when evidence builds up, players’
hypotheses are close to what our Dirichlet-using statistician would hypothesize,
and their otherwise diverse hypotheses are (therefore) close together.

We do not mean to imply that every reasonable statistical procedure will
have this property. For one thing, we haven’t the slightest idea whether a prop-
erly specified statistical procedure for some parametric uncertainty in the model,
which we haven’t introduced, would have this property. More to the point, it
seems unlikely that anyone could ever work out the properly specified model
for our dynamic system. And there are quite sensible heuristic procedures which
our assumption rules out. For example, exponentially weighted moving averages
would fail this assumption. Statistical procedures such as this would seem rea-
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sonable in environments where the population of players changes slowly through
time, as this sort of procedure puts more weight on the recent than on the distant
past. Hence we imagine that our players do not consider themselves to be in such
an environment. (We will return to this sort of environment and exponentially
weighted moving averages later.)

It should also be noted that our players, while perhaps somewhat naive in
their statistical procedures, do have some “game theory” behind their hypothe-
ses. More precisely, we assume that players build up their hypotheses about
how their opponents play out of independently implemented behavior strategies
for each opponent. The data could conceivably reveal some correlation in op-
ponents’ behavior. (Imagine, for example, that players 1 and 2 start the game
with a simultaneous selection of actions, and they alternate between two pairs
of strategies in even and odd numbered periods. A third player, according to
assumption 1.2, seemingly doesn’t perceive the periodicity. And, not seeing the
periodicity, he also doesn’t look at the data and see the correlation that the (un-
seen) periodicity builds in. Or, rather, if he sees that correlation, he disregards it
in forming his hypothesis about the joint actions of players 1 and 2.

This is far from satisfactory. We do not imagine that players would maintain
their belief in an asymptotic environment of stationary and independently chosen
behavior strategies if the evidence that players accumulate manifestly disconfirms
this hypothesis. That is to say, assumption 1.2 should be modified to read: “For
each history (, unless evidence accumulates along the path ( that contravenes the
model of the world that is implicit in players’ (asympototic) usc of the data,...”

It is, however, quite difficult to see what players would do if accumulated
evidence did contravene this sort of model of the world. So in the development
to follow, we take a less than satisfactory middle course between ignoring this
problem and dealing fully with it. We will pose a weak consistency test that the
accumulated evidence ought to pass, and we restrict attention to cases where this
test is in fact passed.!®

The test we pose is quite weak. Fix a player n, an information set h €
H", and an action a € A(h). Let o™ denote the (strictly positive) hypothesis
held by player n about what his opponents wiil do as a function of date and

15 The reader is entitled to be somewhat mystified by this plan of action. Things
will, we hope, become clear in due course, but it may take until the second
example after the proof of theorem 1.1 in section 5 before this happens. For now,
the reader should bear with us.
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partial history. Write Z(h,a) for the subset of Z consisting of all successors of
(h,a). For given (x and z € Z(h,a), use Bayes’ rule to compute the conditional
probability of reaching 2z in Z(h,a), given that h is reached, n chooses a at
h, and others play according to ¢™", which we will denote by o™"[z|(h,a), (x].
Fix a function 7:(0,00) x {0,1,...} — (0,00) such that lims_., 7(r; k) = co for
all » > 0.

Definition. History ( passes the consistency test (for the given function ) if for every
player n , information set h € H" , action a € A(h), and z € Z(h,a),

K(z,Ce) > T{oT"[z](h, a), () x((h, @), ()}

Interpret this test as follows: If player n holds hypothesis o~ "(k + 1,(x) and
if K((h,a),(x) times in the past h was reached and a was the action chosen,
then player n “expects” that outcome z € Z(h,a) should have been reached
approximately &((h,a),(x)o™"[z|(h,a),(i] times. If &((h,a), (k) goes to infinity,
player n would probably become suspicious if the (conditional) fraction of times
that z is seen is in the limit anything other than the fraction that is expected.
Even if player n is not that suspicious, if «((h,a),(x) goes to infinity and the
expected (conditional) fraction of zs stays bounded away from zero, and yet the
observed conditional fraction of zs goes to zero, then player n might begin to
suspect that something is awry. The test we have posed is weaker than even
this — the (conditional) fraction of times that z is seen may vanish, as long as
it doesn’t vanish too quickly. It is hard to imagine any “test” of any model that
is based on asymptotically independent and stationary strategy choices by one’s
opponents that would not reject the model if the test just posed is not passed for
some function 7.

Remarks. (1) Owing to assumption 1.2, we know that o™"(k+1, () will converge
to the empirical distribution at information sets that are reached infinitely often. It
takes a bit of writing down, but from this one can show that the consistency check
could have been formulated with conditional hypotheses that are computed from
n(-, (k) instead of from o~", without changing the test, as long as assumption
1.2 is maintained. We chose to formulate with o~" because it is notationally a
bit easier (we assume o~ " is strictly positive), and because the interpretation of
the test is a bit more direct.



(2) This test, being so weak, is certainly only one test of this sort that we might
pose. We use this test for necessary conditions, so its weakness is a virtue. (See
theorem 1.1.) Later, when we get to sufficiency conditions, we would want very
much stronger tests than this — we will comment about this when the time

comes.

Now we turn to the second half of second principle for behavior. Based on
his conjecture o~ "(k + 1,(x), player n can evaluate the ex ante payoff he will
receive for every strategy he might adopt. Since we are working with behav-
ior strategies, it is convenient to decouple the evaluation of different actions at
different information sets, and so we proceed as follows: Fix player n, an infor-
mation set h € H™, an action a € A(h), and strictly positive conjectures o~" for
the behavior strategies of others. Since o~ " is strictly positive, it is straightfor-
ward to compute the probability that information set & will be reached, denoted
o~"(h), the conditional or cx post payoff to n if n takes action a at h, condi-
tional on reaching h, denoted E"[alh;o~"], and the ex ante payoff to n of using
action a at h, denoted E"[a,h;o~"] = ¢~ "(h) x E"[alh;07"]. For fixed h, let
E"[+, h;0~"] be the maximum of the E"[a,h;o~"], maximized over a € A(h),
and let

L"[a,h;0™ ") = E"[*,h;6™ "] — E"[a,h;07"].

It is straightforward to see that L™ measures the ex anfe loss that n incurs by
using a at h in place of the optimal action at h (given his beliefs about what
others do).

Assumption 13. For each player n and information set h € H™ there is a function
a:(0,00) x {1,2,...} = [0,1] such that the bchavior of player n at information set h
satisfies

¢"(k+1,(r,a) < a(L™a, hyo ™" (k + 1, ¢)), 5(R, C)),

where « is such that, for every A € (0,00),limg .o @(A, k) =0.

Remarks. (1) One way of paraphrasing this assumption is that, asymptotically,
players are almost certain to play actions that almost maximize their expected
payoffs based on their conjectures. This assumption allows a player to continue
to select weakly dominated strategies, as long as the probability the player as-
sesses that this will be costly goes to zero. One can explain or excuse this as a
manifestation of inattention, in the spirit of Radner’s (1980) e-equilibrium. We
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are not completely happy with this assumption, but it is important to our devel-
opment of a theory of Nash equilibrium. Later we will use our unhappiness to
justify tightening the assumption in various ways, to restrict the set of behaviors
permitted and, accordingly, the behavior that can be observed in the long run.

(2) In particular, because we compute the loss functions using ex anfe payoffs, the
behavior of a player is virtually unconstrained at information sets that are reached
with vanishingly small probability. (We will make this exact with some examples
in section 1.5.) But when a player is called upon to move, even if that move was
thought to have small prior probability, it seems as if the player would “reopti-
mize”, using conditional expected payoff calculations. This sort of consideration
suggests that assumption 1.3 might be changed so that (at least) conditional ex-
pected losses are used in place of ex anfc expected losses, a suggestion that we
will follow out in great detail in Part II.

(3) Since there are finitely many players and finitely many information sets, we
could take a single function «(A,«) for all n and k. To simplify later notation,
we assume that this has been done.

(4) We have made both players’ behavior (given by ¢) and their conjectures
(given by the ¢~") part of our basic formulation, with assumptions 1.2 and 1.3
tying the two pieces together. We could alternatively have had only behavior in
the formulation, by computing the function L using directly the naive empirical
hypothesis n. Then 1.2 can be dropped, and assumption I.3 assumed directly.
(Also, it would be necessary to pose the consistency test in terms of 7.)

(5) Implicit in this assumption (and in our entire treatment) is the assumption that
each player acts as if his opponents’ actions in the future are unaffected by his
current action, so that the cost of an experiment is properly measured by a short-
run calculation. The astute reader might anticipate that a sophisticated player
could take advantage of his opponent(s) in such a case: By acting in each period
as a “Stackelberg leader”, one’s opponents will eventually act (mostly) according
to their own short-run optimal reaction, hence a sophisticated player, knowing
that his opponent(s) conformed to the second principle, would wish to deviate
from this principle. Along the same lines, folk-theorem style equilibria, based
on trigger strategies or something similar, are preciuded by this principle’s ad-
herence to short-run optimization. For both these reasons, behavior conforming
to the second principle requires either fairly unsophisticated players or random
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matching of players from a large population. We will proceed for now with
the first interpretation, and return later to the difficulties encountered with the

.

second.
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[.4. LOCAL STABILITY

To recapitulate where we are: We imagine players playing a particular game
repeatedly, using behavior rules that conform to the two principles given above
in assumptions 1.1, 1.2 and 1.3. This generates a stochastic law of motion for
play.\ We want to know what are the “steady states” or “stationary points” of
this process, and we will want a definition in the general spirit of local (and
also global) stability to such a steady state. In this section we will discuss these
notions.

The first choice to make concerns the space in which one looks for stationary
points. One way to proceed would be to look in the space of beliefs ¢~" for
each player n. A second would be to look in the space of behavior strategies o™
for each player. Yet a third is to look at the space of “outcomes”, or probability
distributions over the set of terminal nodes Z. We proceed in the third manner
for now, and we will return to the second way of proceeding in Part II.

Accordingly, we set the following notation. Let A(Z) be the simplex of
probability distributions on Z. We will use é to denote a typical element of
A(Z). For ¢(k+1,(x) the vector of behavior strategies of the players at date
k + 1 given history (r, we denote by é(¢(k + 1,(x)) the resulting probability
distribution over outcomes. Also, we denote by 6((x) the empirical distribution
of outcomes in (i ; thatis, 8((x)(z) = x(z,(x)/k, the fraction of times that z is
a component of (. Recall that d(-,-) denotes the sup norm metric on any finite
dimensional probability simplex. Finally, for any outcome §, we use Supp(é)
to denote the “extended support” of the outcome. That is, a node z € Z is in
Supp(é) if z is in the support of § in the usual sense. But also z € X isin
Supp(é) if some terminal successor of z is in the supportof §; (z,a) € Supp(é)
if a is a feasible action from z and some terminal successor of (z,a) is in the
support; h € H is in Supp(é) if some z € h is in Supp(é), and similarly for
(h,a); and even n € N is said to be in Supp(é) if for some information set
n € H*, h € 5upp(d). (That is to say, € Supp(é) is rough shorthand for the
expression “...is along the path of play, if the outcome is §.)

Then consider the following notion of local stability.
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Definition. An outcome 6 € A(Z) is said to be locally stable with respect to the
behavior rules ¢ if, for every € > 0, there is some history (i such that there is
conditional probability greater than 1 — €, conditional on starting at date k + 1 with
history (x, that the following two conditions hold jointly:

(1) Il.mkr..‘oo d(é((f)(k’ + 1,(;3),5) =0.

(ii) The consistency test of section 1.3.2 is passed for some fixed function 7.

Remarks. (1) We measure the distance between the outcome é and the distribu-
tion of outcomes induced by planned behavior in periods subsequent to period
k. Of course, the observed outcomes in any single period won’t necessarily be
close to 6 if players are randomizing.

Since we are dealing with the distance between the outcome 6 and the out-
come induced by planned behavior, we are dealing to some extent in unobserv-
ables. We can deal with the observed outcomes if we average observations over
periods. That is, suppose that, at date k', we compared é with the observed
empirical distribution over terminal notes, 6(¢;). In the spirit of the strong law
of large numbers, the following proposition seems likely:

Proposition 1.1. If § is a locally stable outcome, then for every € > 0 we can find a
history (x such that, conditional on starting from (i, there is probability greater than
1 — € that Iimkf__.oo d(5, (5((;:')) = (.

In fact, this proposition is true, and we provide a proof in appendix 1. Note that
this proposition differs from the usual formulation of the strong law because the
history-dependent behaviors ¢(k+1,(;) are not independent or even exchange-
able. We will discuss this point further when we get to lemma 1.3. Also note that
the condition in the proposition is implied by our definition of weak stability.
~ They are certainly not equivalent, a point to which we will return in a bit.

(2) The conclusion is that there is small probability of ever seeing behavior that
induces a distribution on outcomes that is distant from §, and the distance from
§ vanishes as time passes. Because of the strength of this conclusion, we cannot
require that, with probability one, behavior subsequent to (; gives outcomes
that approach &§. Given that our players are experimenting as they are, there
is always some small chance that (bad) luck will take behavior away from any
stable point. ‘
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(3) The definition by itself doesn’t say too much about the “starting points”
¢x from which the outcome is locally stable. When we get to the sufficiency
results of section 7, we will want to prove results such as: Outcome § is locally
stable starting from all outcomes from a (to be) specified class. Typically, the
specification will be that the (i givea lot of evidence about play both on and off
the path of the outcome.

(4) The second condition, that the consistency test is passed, is not entirely natural.
It is put here because we don’t imagine that players would stick to the sort
of asymptotic naive empirical procedure that we have postulated if this test is
failed, and then, since we don’t know quite what players would do, we cannot
comfortably claim that the outcome is locally stable. Of course, we would, and
we will, want to strengthen the test that players are assumed to use, if we do
wish to be comfortable in the claim of local stability.

In the next section we will look for necessary conditions for local stability.
In order to make clear the nature of the results we will obtain, it is useful to give
a variation on the above definition.

Definition. An outcome 6 € A(Z) is said fo be unstable with respect to the behavior
rules ¢ if there exists an € > 0 such that for cvery history (x and K > k, there is zero
probability that, starting at date k with history (x, the ensuing behaviors ¢(k'+1, k)
and sample path ¢ satisfy:

(i) d(8((k' +1,Cu),8) <€ forall k' >K.

(i) The consistency test of section 1.3.2 is passed for some fixed function .

Remarks. (1) Note that all that is required here is that, with probability one,
for each date K there is some subsequent K' where either behavior gives rise
to an outcome that is uniformly different from § or the consistency test fails.
In the first alternative, we do not require that outcomes induced by behavior
leave a neighborhood of § and never return. Indeed, in the spirit of proposition
1.1, we might wish to define an unstable outcome as one in which there is zero
probability that, from any starting point, d(§,6((;)) goes to zero (or stays within a
neighborhood of zero). This, however, is a good deal stronger than the definition
given above, and we are unable to give our necessity results (e.g., theorem 1.1
following) for this stronger definition.
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(2) An outcome §é could fail to be locally stable and, at the same time, not be
unstable, according to our two definitions. In the definition of local stability, it
was required that, with probability approaching one, behavior would converge
in terms of induced outcomes to the outcome §. Here we insist that for some
sufficiently small ¢, behavior leaves the e neighborhood of é infinitely often, no
matter what is the starting point. So, for example, behavior that “cycled” around
§ in cycles which depended on the starting point (the closer the starting point,
the tighter the cycle) would fail to be locally stable but would not be unstable.

(3) A second apparent difference between the definition of an unstable outcome
and the negation of local stability is that here we require zero probability of stay-
ing in a neighborhood of . Seemingly, the negation of the previous definition
would only require that, for some p < 1, there is probability less than p of
staying forever in the neighborhood of é. But this difference is less real than
apparent. If there were ever a starting point (x from which one stayed within
¢ of the outcome with positive probability, then continuity of probability would
ensure that starting from some successor to (; there would be probability arbi-
trarily close to one of staying within e of the outcome. (Lemma L6 gives insight
into the details of the proof.)

(4) Again, condition (ii) is here because we have no clear conception of what
players would do if evidence accumulated that clearly disaffirmed the model
that we imagine they are using. So one should paraphrase this definition as: An
outcome is unstable if, from any starting point, with probability one either the
outcome cannot be sustained (in terms of the set plans of players in each period)
or some player is led to reject the type of model we have posed here.
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1.5. NECESSARY CONDITIONS

We begin with a statement of the the main proposition of this section. The
full proof of this result, however, will take some time to come.

Theorem 1.1. If an outcome 6 is not a Nash equilibrium outcome, then it is unstable
with respect to all behavior satisfying Assumptions 1.1, 1.2, and 1.3.

First step of the proof. It is immediate that, for a given 6, there is a unique
assignment of probabilities to pairs (z,a) € Supp(é) which gives rise to the
outcome é. It has nowhere been assumed that this assignment of probabilities
respects the informational constraints of the game. For example, imagine a two-
by-two simultaneous move game, and an outcome that puts probability one-
half on each of the two off-diagonal elements. The necessary assignment of
probabilities to moves would require a correlation in the strategies of the two
players which is inconsistent with the game form. Accordingly, we say that an
outcome & respects the game form if there is some assignment of (independent)
behavior strategies to players that gives rise to the outcome §. And, as a first
step, we have to show that if § doesn’t respect the game form it is necessarily
unstable.

This is a simple matter of definitions. If § doesn’t respect the game form,
then there is some ¢ > 0 such that every outcome ¢’ such that d(6',6) < e,
6' doesn’t respect the game form. (The set of all outcomes which do respect
the game form is compact, since it is the continuous image of a compact set.
Minimize the distance in the sup norm between é and this set, and let ¢ be
half that minimum distance.) Then we could never satisfy the definition of local
stability.

Accordingly, we hereafter assume that the outcome 6 respects the game
form.

The rest of the proof of this theorem is delayed because, in order to prove
this result, we must state a simple result of independent interest: How much of
what one player will do out of equilibrium must be commonly hypothesized by
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other players in order to justify restricting to Nash equilibria? We can explain this
somewhat cryptic question with two examples. Consider first the game in figure
I.1. As we noted earlier, if players 1 and 2 have a commonly held hypothesis
of what player 3 will do at his information set, or even if their hypotheses are
fairly close together, then the outcome where both 1 and 2 choose A is not a
Nash equilibrium. However if player 1 believes that 3 will choose R with high
probability, and if player 2 believes that 3 will choose R with low probability,
then A, A is an “equilibrium outcome”. We see here that an important part of
the Nash assumption is that players must hold roughly similar hypotheses about
the out of equilibrium actions of others.

] A A 1
(o] //. }
v
D 22 b
S
1,7 A 1
®
1
D
' 3 |

— . S S i

-
\Q'
%

Figure 14.

But now consider figure 1.4. This is very much like the game in figure L1,
except that player 2, when called upon to move, is unaware of what player 1 has
done. And, most importantly, player 1 can no longer ensure that player 3 is given
the move. Now A, A is a Nash equilibrium outcome. And we can see that at this
outcome, players 1 and 2 can have divergent opinions about player 3’s actions.
In particular, player 1is “isolated” from player 3 by the strategy of player 2. That
is, given that player 2 will choose A, player 1 cannot give the move to player 3.
Hence player 1, when evaluating his expected uiility from any strategy he might
attempt, fixing player 2’s strategy at A, is completely indifferent to what player
3 might be doing. Thus his conjectures about what player 3 might be doing are
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irrelevant to the optimality of his equilibrium action, and his conjectures about
player 3’s actions can vary from the actual “equilibrium” strategy of player 3.
This example motivates the following concepts and result.

n .

For the given extensive form game, consider an array of conjectures {o~
n=172..,N} and a strategy vector ¢ = (61,...,6™), where o~" is the conjec-
ture of player n concerning the strategy choices of his opponents. If for each
player n, 6" isa best response given the conjecture o~ ", we say that this array
of conjectures and strategies forms an equilibrium in conjectures and actions.

Consider a strategy vector & for the game. For each player n, we say that
information set h is irrelevant to n under & if for every strategy o™ for player
n, the strategy vector (67, ..,g""1 & 6"*1 M) does not cause the information
set h to be reached with positive probability. If an information set h is not
irrelevant, we say that it is relcvant to player n.

Lemma 1.2. The strategy vector & is a Nash equilibrium if and only if there is an array
of conjectures {o™" : n = 1,2,...,N} such that (i) the conjectures and the strategy
vector form an equilibrium in conjectures and actions, and (ii) for each player n, the
conjectures of player n at relevant information scts agree with the prescriptions given
by the strategy ¢ .

The proof is very nearly immediate. If, for any player n, we change his con-
jectures at irrelevant information sets, we do not change the optimality of his
strategy in response to his conjectures. So we can modify each player’s conjec-
tures so that the conjectures all agree with the strategy & at all information sets,
and we still have an equilibrium in conjectures and actions. But then, by the

definition of a Nash equilibrium, we also have a Nash equilibrium.

Next we proceed to a few lemmas needed for the proof of theorem 1.1. For
the most part, we only sketch the proofs of these lemmas.

The first of these lemmas is a general lemma from probability theory, which
extends the strong law of large numbers in a particularly useful way. The motiva-
tion for it is as follows. Imagine that a particular outcome is stable with positive
probability. That is, behavior doesn’t ever leave a given neighborhood of this
outcome with positive probability. We would imagine, then, that since observed
outcomes are (with positive probability) drawn from distributions in this neigh-
borhood, with this same positive probability the long-run empirical distribution
of outcomes should lie in this (or some related) neighborhood.
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Lemma 1.3. Consider a sequence of random variables {z,,z,,....}, each of which has
range on some finite set Z of size M . For each k,let Ay bean event that depends only
on {z1,...,2x},and let A = US| Ax. Suppose that there is>some distribution § over
Z ,an € >0, and a positive integer K such that the distribution of zy4y conditional
on Ay is within € of § (in the sup norm) for all k > K . Then the probability of A is
identical to the probability of A intersected with the event that the empirical distribution
functions of outcomes are, for all large enough k, within 2Me of 6.

Roughly put, conditional on the event that each z; has conditional distribution
‘within ¢ of ¢ for all large k, there is conditional probability one that the empir-
ical distribution functions of outcomes are, for all large enough k, within 2Me
of 6. The proof is left to Appendix 1.

Lemma 1.4. Suppose the o™" and 6~" are two conjectures by player n about the
actions of his opponents such that =™ = =" af any information sct h that is relcvant
to player n under o~". Then the sct of information sets relcvant to player n under
o~" coincides with the sct of information sets relcvant to n under 67"

Proof. Call a node z with n(z) # n relevant to player n under o~ " if, for
some strategy by player n combined with ¢7", there is positive probability
of reaching node z. Then if a node is relevant to n under o~", so is the
information set it belongs to (but not vice versa). Moreover, h is relevant to n
under ¢~ " if and only if some node z € h is relevant to n under ¢~ ". Thus
it will be sufficient to show that the set of nodes relevant to n under the two
conjectures ¢~ " and 67" coincide.

Take any node z that is relevant to n under ¢~" but not under ™.
Then every precedessor of z is relevant to n under ¢~ ". The condition in the
lemma implies that o™" = ™" at every node z' that is relevant to n under
o~" and that doesn’t belong to player n. Since z is relevant under o~", every
step along the path to z has positive probability under ¢~" (or belongs to n,
and so can be taken to have positive probability), hence has positive probability
under 67 ". Thus z is relevant under ¢~ ".

For the converse, suppose there is some node z that is relevant to n under
67" but not under ¢7". Then there is some earliest node z (in terms of prece-
dence in the game tree) with this property, and, without loss of generality, we can

.

assume that z is that nede.!® The condition in the lemma implies that every
4

¢ We either assume that n’s conjectures about moves by nature are the same
under the two conjectures, or, at least, they have the same support.
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node z' thatis relevantto n under ¢™", 0~ " and 67" agree. Thus they agree
at all predecessors of z that don’t belong to n (since all predecessors of z are
relevant under o~ " by assumption, which immediately-gives a contradiction.

Now we give a “contrapositive” to lemma 1.2. We first require a definition:
We say that information set h € H™" is e-relevant to player n under 67" if the
maximum probability that h is hit under strategy (¢°,...,6"7%,",6"*,6")

maximized over 6", is € or more.

’

Lemma 5. If § is not a Nash equilibrium outcome, then there is an € > 0 such that, for
any set of behavior strategics & = (6,...,6") € Hn=1,...NInenn A(A(R)) that give
outcome within € of §, there is a player n and an information sct h* € H™ N Supp(8)
such that, for any conjecturcs o~" for n that arc within e of 6=" in the sup norm
at every information sct h that is e-rclevant to player n under o~", 6" is at least
e away (in ex ante payoff) from being a best response fo o™ ™.

Proof. Suppose that for every integer i there is a strategy vector 6; and conjec-
tures for the players o; " such that (i) 6; gives an outcome within 1/i of §, (ii)
for each n € Supp(6), &; is within 1/i (in the sup norm) of o " at all informa-
tion sets that are 1/i relevant to n under o7 ", and (iii) for each n € Supp($),
&P is within 1/i (in ex ante payoff) of being a best response by. n to ;" at
every information set h € H™ N Supp(é). Then, looking along a subsequence,
we can assume that &; converges to some 6 and each ¢;" convergesto o7 ".
By virtue of (i) and continuity, & induces the outcome §. By virtue of (ii) and
continuity, for every n € Supp(é), behavior at every information set h that is
relevant to player n under ¢~ " is the same under & and o™". Thus by the
previous lemma, behavior at every information set h that is relevant to player
n under & is the same under ¢ and o~ ". From (iii) and continuity, 6" is a
best response to ¢~ " for all n € Supp(é). Since the play of players at infor-
mation sets h ¢ Supp(é) does not affect their ex ante payoffs, {&,{c™"}} is an
equilibrium in conjectures and actions. Lemma 1.2 then implies that § is a Nash

outcome, which is the desired contradiction.

Let us paraphase this: For any outcome that is not a Nash equilibrium out-
come, and for any strategy array that gives an outcome sufficiently close to this
outcome, there is some player and on-the-path-of-the-cutcome information set

such that, if the player’s conjectures are sufficiently close to the strategy array at
all information sets that are sufficiently relevant to this player, this player will
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find that his part of the strategy array at this information set is suboptimal by an
amount bounded away from zero.

Proof of theorem 1.1. Our paraphrase of lemma L5 presumably suggests to the
reader what is the main line of the proof. Suppose an outcome §é that is not
Nash is locally stable with nonzero probability. Then with positive probability
all subsequent behavior will eventually be close to that outcome, and the em-
pirical evidence will build up (per lemma 1.3) so that (per assumption 1.2) every
player will come to have conjectures “close” to the outcome, at least at infor-
mation sets in Supp(é). We still must worry about conjectures at information
sets not in Supp(6), and we will two sorts of worries: First, the definition of
a stable outcome does not require that behavior off of Supp(é) converges. We
will finesse this problem by looking along a subsequence along which empiri-
cally based conjectures do converge. Denoting by & the accumulation point of
the convergent subsequence, we can then use lemma 1.5 to find a player whose
behavior at an information set in Supp(6), once sufficient evidence has been ac-
cumulated, will not conform (by assumption 1.3) to the outcome 6. Or rather, we
can use lemma 1.5 to derive this contradiction if we know that every information
set that is sufficiently relevant in the sense of lemma L5 is in fact visited infintely
often, so that our player’s conjectures about the behavior of others is close to &
where it matters. Establishing this last part is the key to our argument. It fol-
lows from assumption 1.1 and the requirement that a stable outcome must pass
the consistency test of section 1.3.2.

Now for the details. Fix an outcome § which is not a Nash equilibrium
outcome. Recall that we are already assuming that é respects the game form.
Because ¢ is not a Nash equilibrium outcome we can find an ¢; > 0 such that
the statement of lemma 1.5 holds for this ¢; and §. We can moreover take ¢
to be less than or equal to the probability of every outcome z € Supp(é). Now
let e; equal one-third of ¢ .

Assume that é is not unstable with respect to behavior ¢ (in order to derive
a contradiction). Then for every ¢ > 0 we can find a starting point (; and a K
such that, with positive probability, the distribution of outcomes subsequent to
(i is, after round K, always within ¢ of 6§ and the consistency test is passed.

Letting M be the cardinality of Z, let (f be a starting point such that

there is positive probability, starting at (;, that the subsequent distribution of
outcomes after K is always within e;/2M of § and the consistency test is

passed.



Apply lemma 1.3. The event just named has form required in lemma 1.3 —
the event is the intersection of events A that are (y» measurable.’” There is,
therefore, the same positive probability that, starting at (;, the subsequent distri-
bution of outcomes is (after date K') within €2 /2M of &, the consistency test is
passed, and the empirically based conjectures concerning the outcome eventually
conforms to a distribution within ¢, of §. Moreover, we can apply lemma L.1.
It is stated there in unconditional form, but it is clear that the conclusion of the
lemma is also true conditional on any starting point: There is probability one
that, starting from (x, at every information set that occurs infinitely often, every
action is taken infinitely often. From now on, restrict attention to sample paths
(beginning at (i) along which this statement is correct. Hence we are guaran-
teed that there is (conditionally) positive probability for the set of sample paths
¢ along which the following four things hold: |

(1) At every information set that is visited infinitely often, every action is taken
infinitely often.

(2) The consistency test is passed.

(3) The empirically based conjectures concerning the outcome are eventually
within e; of 6.

(4) The distribution of outcomes is closer than €;/2M < ¢, /3 to § after date K.

We proceed to show that for every sample path such that (1) through (4) hold, a
contradiction is derived.

Fix a sample path such that (1) through (4) hold, and let n(h,(x) be as
before — the empirical distribution over behavior at information set h, based
on history up to (. Since the various probability simplicies are compact, we
can look along a subsequence in k' such that 5(h,(r) converges to some given
& . (For information sets that are never reached at all, let n(h,(x) be defined
arbitrarily, as long as the arbitrary choice is held constant.) By construction, the
continuity of outcomes in strategies, and (4), & gives an outcome that is within
€1/3 of §.

Now according to lemma L5 there is a player n and information set h* €
H™ N Supp(6) such that: If this player’s conjectures ¢~" are within ¢ of ¢7"
in the sup norm at every information set h thatis e, -relevant to player n under
G, then &" is at least ¢; away from being a best response to those conjectures.

17 The form of the consistency test was chosen with this in mind.

41



We claim that every information set h that is ¢, -relevant to this player n
under o~" is reached infinitely often. Take any such k. Since it is ¢, -relevant,
there is some a € A(h*) such thatif n takes a at h* and others play according
to o~", h is reached with probability at least ¢;. Since h* € Supp(é), by
virtue of (4) h* is reached infinitely often, and by virtue of (1), action a is taken
infinitely often. The consistency test then applies immediately.

So for large enough k', n’s assessments o~ "(k' + 1,{x) at all ¢ -relevant
information sets are within ¢ of &. Accordingly, the action at h* prescribed
by 6" is more than ¢ away from optimal. By going far enough along the
subsequence, assumption 1.3 ensures that the probability of following the worst
of the actions prescribed with positive probability by ¢" must be less than e;.
But then the probability of any terminal node which follows this choice must
then be less than e,. Since we chose ¢ so‘that the least likely terminal node
which has positive probability under é has probability at least e, = 3¢z, the
difference between the outcome induced by behavior and § must be at least ¢,,
which gives the desired contradiction.

Remark. For purposes of later discussion (in Part II), the reader should note
carefully just how much of assumptions 1.1 and the consistency test we used in
the proof. We only invoked assumption L1 at the information set h* and we
only invoked the consistency test there. Hence, for purposes of this proof and,
indeed, for all of Part I, we can weaken assumption L1 to read: At information
sets that are reached a nonvanishing fraction of the time, every action is taken
infinitely often. And we need only insist that the consistency test is passed at
such information sets.

We turn now to two examples which illustrate some of the ideas in the results
just derived.

The first example is one already given in figure L1. As we saw in section
1.3, while 4, A4 is not a Nash equilibrium outcome, it is possible to get “stuck”
there with positive probability for behavior which satisfies assumptions 1.2 and
1.3, as long as L1 is violated, even if there is always positive probability that,
in an given round, players will experiment. We saw this by supposing that
players experimented in round k (or, for player 2, at his k th opportunity) with
probability 1/4%. Then there wiil be a finite number of e xperiments taken almost
surely, and a finite number of experiments may be insufficient to overcome 1's
and 2’s initial divergent hypotheses about how 3 will act. But if experimentation
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takes place infinitely often, then at some point, whatever player 3 is doing, there
will be enough evidence so that 1 and 2, if they conform to assumption 1.2, will
come close to agreement about what 3 is doing. And, whatever that is, one of
the two of them will play D instead of A.

This is not to say that player 3's actions in this game will converge to anything
at all. For the (very nongeneric) payoffs that are given, player 3 is indifferent
between L and R no matter what he conjectures, and so he can contemplate,
for example, playing L the first one hundred chances he gets, then R the next
thousand, then L the next ten thousand, and so on. If he does this, the behavior
of players 1 and 2 will shift around quite a bit, and no stable outcome will emerge
at all. In other words, we see very quickly from this example that a general theory
of global stability is too much to hope for, although we see this based on a highly
nongeneric example, and so one still might hope for a theory of global stability
for games with generically chosen payoffs.. (We will see later that this is too much
to hope for as well.)

Our second example is intended to show why the consistency check is re-
quired. We will not attempt to draw the game in question, but simply describe
it. Imagine the following modification of the game in figure L1: If either player 1
chooses D or 1 chooses A and 2 chooses D, three players, called 4, 5 and 6 play
a two-by-two-by-two simultaneous move game. They play this game unaware of
whether they are given the move because of the action D by 1 or the sequence
A,D by 1 and 2. In this game, the moves of each of these three players will be
called X and Y. If all three choose X, then player 3 is called upon to choose
between L and R. If any one or more of the three chooses Y, then player 3
does not move. The payoffs to 1 and 2 are as follows: As before, each gets 1 if
1 and 2 choose 4, A. If either 1 or 2 moves D and any of 4, 5 and 6 choose Y,
then 1 and 2 get payoffs drawn from the interval [1.05,1.1].1% If either 1 or 2
moves D and 4, 5 and 6 all choose X, then: If 3 chooses L, 1 gets 1003 and 2
gets —1000. And if 3 chooses R, 1 gets —1000 and 2 gets 1003. Players 3, 4, 5
and 6 can be given any payoffs at all.

Consider the following rough description of behavior. Players 1 and 2 play
whichever action has the highest expected payoff with probability (k—1)/k on
the kth opportunity to move, and experiment with the other with probability
1/k. Player’s 3 play will be irrelevant; have him randomize with probability

'* We will work at making this a generic example, so the reader will see that
nongenericies are not what makes this work.

43



1/2 on each action, say. Players 4, 5 and 6 participate in the following elaborate

dance:

On the k th opportunity, if k is evenly divisible by 3, players 4 and 5
choose X with probability 1/k and Y with probability (k—1)/k, and
player 6 chooses X with probability (k—1)/k and Y with probability
1/k. If k is of the form 3; 41 for some integer i, then interchange the
roles of players 4 and 6 in the case just described. And if k is of the
form 3i + 2 for some integer i, then interchange the roles of players 5
and 6 in the first case.

The description just given of what 4, 5 and 6 will do can’t possibly satisfy assump-
tion 1.3 for any assignment of payoffs for these three players and at all partial
histories, because it is made completely independent of those payoffs. Noncthe-
less, we claim that this behavior will satisfy the assumptions as long as players 1 and 2
find A supcrior fo D and as long as the ratio of the number of experiments by 1 or 2 to
the number of rounds goes to zero, which (if 1 and 2 always find A superior to D)
it will do almost surely. This is so because we are using ex ante opportunity loss
calculations for the players, and so actions taken at information sets that are hit
with vanishing frequency are completely unconstrained. This isn’t quite precise,
but it will be made precise in the next section. For now, accept it as “correct in
spirit,” subject to later verification (and minor amendment). For the same reason,
player 3's actions, whatever they are, satisfy the assumptiéns, as long as 3 does
enough experimenting, and the proportion of rounds with experiments by 1 or
by 2 goes to zero.

Setting aside the question of whether 1 and 2 are playing according to the
principles of behavior we have set down, what is the affect of this dance by
4,5 and 6? On the kth time that either 1 or 2 plays D, which will happen
with certainty, there is probability (k — 1)/k* of reaching 3. Hence player 3
will be reached only finitely many times almost surely. If players 1 and 2 begin
with beliefs about player 3 that are pessimistic (1 believes that 3 will play R
with high probability and 2 believes in L with high probability), then there is
positive probability that these beliefs will not be disconfirmed. That is, by giving
1 and 2 Dirichlet priors, where 1 initially puts weight M, say,on R and 1 on
L,and2puts 1 on R and M on L, by taking M- sufficiently large, we can
have positive probability (actually, probability as close to 1 as we like) that 1 will,
in the end, assess probability .9 or more that 3 will choose R given the chance,
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and 2 will assess probability .9 or more that 3 will choose L.

Now what will 1 and 2 assess for the actions of 4, 5 and 6? There will
almost surely be infinitely many opportunities to see these three players act,
and each will pick X around 1/3 of the time and Y 2/3 of the time. Hence, by
assumption 1.2, the conjectures of players 1 and 2 converge to the mixed strategy:
3, 4 and 5 each play X with probability 1/3 and Y with probability 2/3. Since
mixed strategies are presumed to be independent, players 1 and 2 will each assess
probability 1/27 that player 3 will move. And we have selected the payoffs for
1 and 2 so that, with this assessment that 3 will get the move and with their
diverse conjectures on what 3 will do, both 1 and 2 will prefer 4 to D. So
(A, A) would be a locally stable outcome if we ignored the consistency test.

This is so even though (A4, A) can never be a Nash equilibrium outcome,
for just the reasons that applied to the game in figure 1. What has gone wrong?
Simply that 1 and 2 come to believe there is probability 1/27 that, if either of
them tries D, player 3 will be called upon to move. That is, 3’s information
set is 1/27 relevant to them both, asymptotically. But this relevant information
set is reached only a finite number of times, despite the fact that both 1 and 2
experiment infinitely often. Of course, this means that the consistency test fails.

The way that this came about should be clear. The elaborate dance among
players 4, 5 and 6 puts into their actions a lot of correlation that 1 and 2 ig-
nore because, by assumption, their models are based on the premise that players
act independently, and 1 and 2 (asymptotically) use statistical procedures that
implicitly assume that others’ behavior is stationary. Thus 1 and 2 act as if no
such correlation exists. When it does, they are badly “fooled”. The point of the
consistency check is to insure that players are not so badly fooled as to admit as
locally stable a non-Nash equilibrium outcome.

Rather than build in the consistency check, we could have modelled things
very differently. We could have supposed that the conjectures of player n about
the actions of others, given by ¢~", did not necessarily take the form of indepen-
dent strategy choices by each opponent. Think in terms of the following sort of
formalism: For each player n, information set h € H and action a € A(h), o™"
might prescribe a subprobability distribution over Z(h,a) — a subprobability
distribution because there might be nonzero probability that & is not reached at
all — where we impose the constraints that the total mass assigned to Z(,a)
by this distribution doesn’t depend on «, and the sum of these total masses,
summed over all h € H", must be less or equal to one. (If there are moves by
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nature in the game, some further restrictions would be built in.) The point is that
the distribution over Z(h,a) needn’t take the form of a distribution that ensues
from independent strategies by opponents. Given this sort of starting formalism,
we could:

(1) Continue to assume assumption L1.

(2) Replace assumption 1.2 by an assumption that these subprobability distribu-
tions asymptotically agree with the empirically observed distributions. Formally,
the distribution over Z(h,a) at stage k with partial history (x should assign
probability to z € Z(h,a) which s close to [k(z, Ck)r(h, Ce))/[K((h, a),(k)k] . Note
the renormalization; reflecting the idea that, while what others do may depend
on the choice of a, the choice of action by n at h is a matter of n’s free will.

(3) Compute opportunity losses using the subprobability distributions directly,
and keep assumption 1.3 exactly as before.

The effect of this, together with our definition of local stability, will be to
permit as locally stable outcomes that are not Nash equilibrium outcomes in that
they allow for correlated behavior out-of-equilibrium. Note that the definition
of local stability, together with the strong law (lemma 1.3) and assumption 1.2
will guarantee that, almost surely, players will assess that their opponents play
independently along the path of play at any locally stable outcome. But consider
a game with the following form: Player 3 moves first, choosing one of A, U
or D. If A is chosen, the game ends. If either U or D are chosen, then
players 1 and 2 each choose between two options, doing so independently and
without knowledge of whether U or D was chosen. It is easy to assign payoffs
to player 3 so that: As long as 3 believes that 1 and 2 are picking their actions
independently, either U or D (or both) is the best choice. But if 3 believes
that 1’s and 2’s choices are correlated, then 3 opts for A. (See figure 10 of
" Fudenberg, Kreps and Levine, 1988. The funny numbering system on players is
to facilitate comparison with this figure.) Now if player 3 picks A with frequency
approaching one, 1 and 2, using ex ante opportunity loss calculations, are free to
do whatever they want, no matter what are their payoffs, and so they can use
calendar time to correlate their actions. With the formalism above, 3 will perceive
the correlation, but not its tie to calendar time, and this will keep 3 playing A.
Hence the non-Nash outcome A can be locally stable. -

Given our earlier work with Levine, the reader will not find it surprising
that we are ambivalent about this. In some situations, there are stories that one
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can tell that make plausible correlation in out-of-equilibrium behavior. (See the
discussion surrounding figure 10 in Fudenberg, Kreps and Levine, and also Sec-
tion 5 of Kreps, 1988.) But here these story are at least one degree less plausible
than before, since it is player 3 himself who, by the selection of U or D, moves
the game to an out-of-equilibrium position. That is, we previously invoked sto-
ries that ran: If player n sees an out-of-equilibrium action, n supposes that
he has the wrong theory about the game, and if others play according to some
different and unknown theory, the marginal distribution on what they do can
exhibit correlations. In this setting, the same story would run: Even if the out-
of-equilibrium action observed by player n is his own action, then he concludes
that he has the wrong theory, and so... For this reason, and because we wished to
provide the foundations for Nash equilibrium in our type of story, we have stuck
to an assumption that players base their conjectures on models that involve inde-
pendent strategy choices by their opponents. But it is interesting to contemplate
alternatives that look more like the formalism we have just sketched.

47



1.6. SUFFICIENT CONDITIONS '

In this section, we turn to the question: What are sufficient conditions for

an outcome to be locally stable?

Theorem 1.2. If an outcome is a Nash equilibrium outcome, then it is locally stable for
some behavior that satisfies assumptions 1.1, 1.2 and 13.

(The proof will come in a bit.) The weakness in this result is that it gives no idea
about the range of partial histories (; from which the Nash equilibrium outcome
is locally stable. That is, it says little about how special must be the starting
point that leads one to converge into the equilibrium outcome (with probabil-
ity approaching one). After proving theorem 1.2, we will say something about
the those partial histories from which one gets to the given outcome: Roughly
speaking, the partial history must contains lots of evidence consistent with the
equilibrium at all information sets that are relevant to players who move along
the path of the equilibrium. Moreover, in general the degree to which the evi-
dence must be consistent with the equilibrium increases the longer is the history.
This, however, is not true for strict equilibria.?° If é is the outcome of a strict
equilibrium, then there is an € > 0 such that if {(x;k = 1,2, ...} is any sequence
of initial histories with d(6(¢x),8) < € for all k, then the probability that play
after (; coverges to 6 goes to one.

An example will demonstrate the method of proof of theorem 1.2. Consider
the game depicted in figure 5. This is the standard first example of a game with a
Nash equilibrium which is not subgame perfect, namely D, D . If theorem 1.2 is
correct, then it will have to be possible, in particular, to describe behavior and that
will make the outcome D locally stable. In fact, we will do better than this: We

19 To the reader of version 0.11: From here on through the remainder of Part I,
things are increasingly sketchy. The basic ideas of this section will be given by
example, although the details of the proof of the main results will have to await
another day.

20 Recall that a strict equilibrium is a strategy profile such that each ¢" is a strict
best response to o~ " in the reduced normal form of the game.

49



O ®
1
D D
1 0
2 0
Figure 15.

will describe behavior where, for well chosen starting points, there is probability
arbitrarily close to one that both players intend, given the opportunity, to choose
action D with probability that approaches one as time passes.

This is done as follows. Both players use Dirichlet priors and posteriors in
forming their beliefs about the actions of their fellow player. Player 1 begins with
a prior that is based on the assignment of 1to A for 2 and 1000 to D. Player 2
begins with precisely the same prior. Now for each player, the following rule is
used:

On the k th opportunity to move, evaluate (using currently held beliefs)
the a priori expected value from choosing D and from choosing A.
Call these vp and vy, respectively. If vp + 100/ In(k + 1) > v4, then
choose D with probability (k —1)/k and choose A with probability
1/k. Otherwise, choose A with probability (k — 1)/k and D with
probability 1/k.

The claim is that these behavior rules, with the standard procedure for com-
puting Dirichlet posteriors, give behavior which satisfies assumptions 1.1, 1.2 and
1.3. Assumption L1 is automatic, since there is probability 1/k of experimenting
~on the k th opportunity. Assumption 1.2, as we've already noted, is true for the
Dirichlet inference scheme. And as for assumption 1.3, the rule for picking the
action will, in the end, pick an action if that action has expected payoff that is
clearly better than the other. It will take some time for A to be selected with
high probability if A does in fact give clearly better payoff, since Ink takes a
while to get up to 100. But, in the long run, if v4 —vp is positive and bounded
away from zero, A will be picked most of the time.

But it should be fairly clear that things have been arranged so v4 —vp never
gets to a value that is bounded away from zero. For player 1 this is clear — as
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time passes, with high probability player 1 sees many D’s from player 2, which
only confirms the optimality of D. For player 2 things are a bit more delicate. It
is always the case that v4 > vp, butif 1 mostly plays D, the difference vanishes,
since both v4 and vp are computed ex ante. What we need to show is that,
with probability approaching one, as we take sufficiently “good” starting points
(x , the decrease in the difference v4 —vp is faster than the decrease in the factor
100/ Ink (where k here refers to the number of opportunities that 2 has had to
move). The details of this will be given in a moment in the proof of the theorem,
and so we will not repeat them here except to point the reader in the direction
that we will use: Let xix be 1 if player 1 plays the action assigned probability
1/k in round k and zero otherwise. Since the x; are independent and the
probability of xx =1 is 1/k. It is a straightforward exercise to show that the
series {x1/k'/?} is almost surely summable (use the Three Series Theorem), and
so (1/n'/%)¥"p_; xx converges to zero almost surely. Hence (1/n) Y7 ; x&.
which is the probability that 2’s choice is at all relevant, goes to zero almost
surely at a rate faster than 1/n!/?, which is faster than does 1/Inn. We can
be sure then that there is positive probability that both players always see A4 as
the “better” choice (given the 100/Ink that is added to the expected value of
A). And, as we will see in lemma 1.8, if there is positive probability of this, then
we can make the probability as high as we wish, by taking as the starting point
longer and longer initial histories.

Although the details may not be clear until we give the proof of the the-
orem, the idea should be clear. We might worry that players moving out-of-
equilibrium, according to the equilibrium we are trying to sustain, will not con-
form to the actions prescribed in the equilibrium. After all, in the equilibrium,
out-of-equilibrium actions are unconstrained because there is zero probability
that the action will matter. But in our story, players always think there is some
chance that their actions will be of consequence. The trick, then, is to give a slight
advantage (in terms of finding the best action) to the action desired to support the
equilibrium. This advantage must vanish with time, so that assumption 1.3 holds.
But things can be arranged so that, for players who move out-of-equilibrium, the
‘advantage- vanishes more slowly that does the degree to which these players
think their action is of consequence.

At the risk of saying too much about this, let us sketch another example.
Consider a two-by-two simultaneous move game, in which both players get pay-
off 1 in the upper left-hand cell, and both get 0 in the other three cells. The
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bottom right-hand cell is a Nash equilibrium, and the reader may worry that we
could never get these players to continue to choose bottom and right. But the
same sort of trick will work. For the player selecting the row, have this player
evaluate the consequences of choosing the top row and the bottom using his
assessment of how likely it is that column player will choose the left or the right
column. Call the two values v, and vy. In round k, have this player play
¢t with probability (k—1)/k if ve > 100/Ink + ve; otherwise he plays b with
probability (k—1)/k. And do the same thing for the column player. Then if the
two start off playing bottom and right, respectively, while top and left always
look better in the sense that v, > vy (and v > v, ) the extent to which top beats
bottom (and left beats right) vanishes more quickly than 1/Ink, with positive
probability. That, it will turn out, is sufficient.

We begin the proof of the theorem by formalizing a remark made in section
5: In the definition of a locally stable outcome, the part about “with probability
arbitrarily close to one” is something of a red herring.

Lemma 1.8. Suppose that for a given outcome §, we can find a partial history
¢+ and a sequence of positive numbers {ex} with lime—c ¢, = 0 such that,
starting from (, there is positive probability that the following two properties
both hold:

() For all k' >k, d(8,6(¢(K +1,(;)) < €.
(i) For a given function 7, the consistency test is passed.

Then the outcome is locally stable.

Proof. The proof relies on the “continuity of probability.” Let A be the event
described by (i) and (ii), and let A be its converse, so that we know that A has
probability less than one. We can write A as Uklzkf\;;' , where Ay is the event
that k' is the first time (at k or after) that either (i) is violated or the consistency
test fails. Moreover, the Ay are disjoint, so that, for any € > 0, there is some
j where Uw>;Ap has probability less than €. Thus, conditional on the union
of Uklzjf\k: with A, we can make the probability of A as close to one as we
wish. Taking any ¢; in the support of this union (which is (; measurable), this
gives us probability as close to one as we wish of convergence of the outcomes
induced by behavior to delta and satisfaction of the consistency test, which is the

52



desired condition. !

Proof of theorem 1.2. (This will have to wait for a subsequent draft. We hope
that the sketch of the examples and the lemma just stated give the general idea.
We do note that mixed strategy equilibria makes things slightly complicated, but
judicious use of the strong law of large numbers will suffice.)

Now we turn to the question: To get local stability of a given outcome, how
specia’l must be the starting point (x ? Fix behavior and ¢ > 0. Suppose that we
can show that é is approached and the consistency test passed, with probability
1 —e, starting from some given (x . Now imagine that we begin from a “ m-fold
replication” (mix of (x — a mk-length history that has the same proportion
of outcomes as does (. Can we conclude that, starting from (,,x, there is
probability at least 1 — e of approaching 6 and satisfying the consistency test?

The answer is yes for strict equilibria, at least if ¢ is sufficiently small and m
is sufficiently large. If o is strict, then ¢ is a strict best response to =" for all
6~ " in some e neighborhood of o. Thus as m — oo, the players become more
certain that o" is the optimal choice, and so they will play o™ will probability
approaching one so long as their conjectures remain in this e-neighborhood.

However in other games the answer can be no. In particular, consider the
second example discussed above, a two-by-two simultaneous move game, with
payoffs (1,1) in the upper-left corner and (0,0) in all other cells. And take the
sort of behavior sketched out above for this game. If we replicate the proportions
of a given history (i from which we approach the equilibrium lower-left with
positive probability, and if those proportions give any weight to either the upper
row or the left-hand column, then for a long enough replication, the other player
will be moved to choose left or up. Assumption L3 guarantees that this is so.
The longer is the history, the more, in general, must the starting point “look like”
the equilibrium, at least if there are any weakly dominated strategies being used
in the equilibrium.

Another question that is suggested by theorem 1.2 is: Given a particular
‘Nash equilibrium, what is the range of behavior for which it is locally stable?
In the proof of the theorem (and in the two examples), we use behavior that is
tailor-made for the particular Nash equilibrium. It would be nice to know that

1 To be very precise, we would have to worry about versions of conditional
probability, but the details are fairly standard.
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we can vary the behavior a little and obtain the same conclusion. Once again,
strict equilibria are a well-behaved special case:

Proposition 1.2. Let & be the outcome of a strict Nash equilibrium. Then for every
behavior rule that conforms to assumptions 1.1, 2 and 3, & is locally stable. Moreover,
thereisa € > O such that: For cvcry bchavior rule that conforms assumptions 1.1, 2 and
3, if {Ck} is any sequence of increasingly longer initial histories such that d(6,6((x)) <
¢ for all k, then as k — infty, the probability, conditional on starting from (i, of
converging to & and satisfying the consisiency test goes to one.

(We have not yet written out the details of the proof of this proposition,
so it should be considered something of a conjecture. But we are fairly sure
it is true. Since a strict Nash equilibrium is one in which every choice by every
player is strictly best in the reduced normal form of the game, only pure strategy
equilibria can be strict, and, in a game in extensive form with the restriction on

“information sets that we have imposed, only equilibria that hit every information
set in the tree (with positive probability) can be strict. So if § is the outcome of a
strict equilibrium, every h € Supp(6), and so § completely determines behavior
strategies at all information sets.)

To the reader of version 0.11:

We hope, in this section, to provide some further results along these lines.
In particular, we wish to investigate equilibrium outcomes for equilibria that are
strict along the equilibrium path. The first example given above would be one
such. We cannot hope that such equilibria will be locally stable for all behavior
rules — it is easy to see that if player 2 in the example always selects the better
action, which is A, with high probability, then eventually player 1 will choose
- A. But we may be able to sharpen (broaden?) the set of starting points (i
from which such an outcome is locally stable. In particular, in the example,
if we replicated history enough, things might be okay, because, while out-of-
equilibrium players become ready to do the wrong thing for a large enough
replication, they don’t get a chance to do so for a while, and this delay in the
opportunity to “correct” the perceptions of in-equilibrium players may be delayed
so long that out-of-equilibrium players go back to being content with the action
that supports the equilibrium.

Following this section, the rest of Part I will consist of:
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(1) Some minor results on global convergence. We saw already that there is
no hope of a general result on global convergence, but our previous example
was based on nongenericies. We hope to show that gloBal convergence will not
hold even for some generically chosen games. In particular, we believe (at some
level of belief less than complete) that in games such as matching pennies, we
can produce behavior rules that give “cycles”, where we put the term in quotes
because our dynamics are not stationary — successive trips around the cycle
will necessarily take longer and longer. In a more positive vein, we can give
some global convergence results for some very simple classes of games — e.g.,
two-by-two pure coordination games. (Our investigations into this are still very
preliminary.)

(2) The myopia of our players is quite hard to swallow. Things would be easier to
take if we imagined that these encounters resulted from random and anonymous
matchings in a large population. This sort of model seems relatively easy to
handle if one takes a large but finite population of players from which random
matchings are drawn; in this setting, while myopia is not quite fully rational,
it does make sense as a nearly-optimal heuristic. With a continuum of players,
some mathematical complications arise, however. We will certainly undertake the
extension to a finite population of players, showing that our results go through
without too much difficulty. We currently doubt that we will attempt to deal
with the mathematical issues raised by a continuum of players.

(3) In a concluding section, we will remark on how our restriction on the game
form has helped us, and we will give some conjectures/results on what happens
when that assumption goes away. As of the time of writing this, we have little
idea what will be said here.
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PART Il — CONDITIONAL PAYOFFS AND
SEQUENTIAL EQUILIBRIUM

11.1. CONDITIONAL PAYOFFS

In Part I, we assumed that players evaluate their loss from experimentation
on an cx anie basis, so that players are not very concerned about their choice
of action at information sets that they think are unlikely to be reached. This
corresponds to a situation where players must choose their strategies at the be-
ginning of the game and are unwilling to give much thought to optimizing over
unlikely events. In this case we saw that our theory led to a justification of
Nash equilibrium outcomes if the rate of experimentation is as high as required
by Assumption L1, and if players’ hypotheses about their opponents’ strategies
converged to the prediction given by the empirical distribution function.

Now we turn to the case where players evaluate their losses on a sequential
or a conditional basis. Recall that E"[a|h;o™"] is the conditional expected payoff
to n of taking action a at information set h, conditional on reaching k, and
based on the conjecture that n’s opponents play according to the strategies o=".
Let E"[x|h;o~"] be the maximum of the Em"[alh;o™"], maximized over a €
A(R), and let L*[alh;0™ "] = E"[x|h;0™"] — E™[a|h; 07 "]; that is, L™ gives the
conditional loss from using action a at information set k, conditional on reaching
h. If players measure losses on a conditional basis, then Assumption 1.3 should

be replaced by:

-Assumption II.1. For each player n and information set h € H™ there is a function
a:(0,00) x {1,2,...} — [0,1] such that the behavior of player n at information set h
satisfies

6"k +1,0x,0) < oL Malhy o™ (k + 1,00, w(h, (1)),

where « is nonincreasing in its first argument and, for every A >0, limg—oo (X, k) =
0.
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Remarks. (1) Because « here is assumed to be nonincreasing and because condi-
tional losses always exceed ex ante losses, it is clear that this assumption implies
assumption 1.3. The motivation behind the monotonicity assumption should be
clear: A larger loss should result in a lower probability of taking the action. The
assumption, of course, doesn’t say this. It says that the upper bound on the
probability of taking the action is lower. The reader who finds the first statement
compelling should consider the counterarguments we will present in Part III.

(2) As with assumption 1.3, there is no loss in generality in assuming that a single
function « works uniformly at all information sets, and we will proceed on this

basis.

(3) Assumption L.1 required that at every information set, the player moving
experiments infinitely often. No distinction was made there between informa-
tion scts that are reached a nonvanishing fraction of the time and those that are
reached with vanishing frequency. So assumption 1.1 has a flavor of conditional
evaluation. If, in the spirit of assumption 1.3, players that move at “unlikely”
information sets are unconcerned about their actions, they would presumably
also be indifferent to how often they experiment. It is therefore worth remaking
the point made at the end of the proof of theorem 1.1: We did not use the full
strength of assumption L1 in Part I, but could have made do with an assump-
tion that every action is tried infinitely often at information sets that are hit a
nonvanishing fraction of the time. A similar remark applies to the consistency
test of section 1.3. The test as posed is meant to apply to all information sets,
including those that might be reached only a vanishing fraction of the time. But
we only used the consistency test for information sets along the path of the given
outcome in Part I, so for purposes of Part I we could have posed a less stringent
test. In the development of this part of the monograph, however, more of the
strength of the consistency test and more of the strength of assumption .1 will
be used.

(4) As with assumption L1, an unpalatable feature of assumption II.1 is that it
permits a player to continue to choose an action that is weakly dominated, as
long as the player assesses vanishing probability that doing so will harm him.
This is necessary here to get a theory of sequential equilibrium, just as it was
needed before for a theory of Nash equilibrium — from our perspeciive, this is
a weakness in those two concepts, at least in the sort of framework that we are
exploring here.
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The strengthening of Assumption 1.3 to assumption II.1 does not on its own
lead to a theory of sequential equilibrium. We will soon investigate the additional
conditions required for sequential equilibrium to obtain. But first it is interest-
ing to note that, for some games at least, assumption II.1, in conjunction with
assumptions I.1 and 1.2, is quite powerful.

Proposition II1.1. In games of perfect information, the only locally stable outcome(s)
for behavior that satisfies assumptions 1.1, 1.2, and 11.1 are those outcomes given by
backwards induction.

Proof. As noted in section 1.2, in games of perfect information assumption 1.1
implies that all information sets are reached infinitely often. Thus all players’
conjectures about any opponent will converge if that opponent’s behavior strategy
converges. The strategies of the last players to move along any branch of the tree
must converge to actions that are optimal for this player; eventually the next-to-
last players will learn this, and they will then play actions given by backwards
induction; and eventually the players just before them will learn this, and so on.
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I1.2. SEQUENTIAL EQUILIBRIUM — PRELIMINARIES

In general games, however, assumption IL1 is not enough to ensure that
only sequential equilibrium outcomes are stable. To make this point, we briefly
recapitulate some basic notions from Kreps and Wilson (1982):

Beliefs o are given as a map from information sets to probability distribu-
tions over the nodes of each information set. An assessment is a pair (u,0) of
beliefs and a strategy. An assessment is consistent if there is a sequence of totally
mixed behavior strategies oy — ¢ such that the assessments i obtained from
or by Bayes’ rule converge to pu. An assessment (y,0) is sequentially rational
if, for each player n, o" is a best response to o~™ at every information set
h € H", where the payoff conditional on reaching h is computed from the as-
sessment p over the nodes of h and the strategies o~ " . Finally, an assessment
(1, o) is a sequential equilibrium if it is consistent and sequentially rational.

Because we have required that player n’s conjectures o~ "(k 4+ 1,(x) about
the joint distribution of his opponents’ strategies are based on the assumption
that his opponents randomize independently, we have already gone a long way
towards assuming that assessments will be consistent in the sense above. The
requirement that each player treats his opponents’ play as independent is stronger
here than in Part I, because now, in considering the conditional maximization of
payoffs, a player’s behavior would be different if the player thought that there
was only a small probability that his opponents could correlate their play. (f
players entertained the possibility of such small probabilities of correlation, we
~ would be led to the concept of c-perfect equilibrium of Fudenberg, Kreps and
Levine, 1988). Given the built-in independence assumption, we need only ensure
that the players’ assessments all converge to the same limit and that this limit is
consistent with their conjectures about each others’ strategies.

The assumptions of Part I are not strong enough to guarantee that this is
the case, however. One problem is illustrated by the game in figure II.1. Here
player 1 plays L, which ends the game, with probability 1 — 2/k, and he plays
M and R each with probability 1/k. Assumption 1.2 ensures that the beliefs
of players 2 and 3 about player 1’s strategy are both close to (1,0,0) for large
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k. However the conditionally optimal actions for players 2 and 3 depend on
the relative probabilities that they assess for actions M and R, and assumption
1.2 does not imply that the relative probabilities assessed by the two players are
similar. In the game depicted, any common assessment will lead at least one of
the two of them to play A, which will in turn induce player 1 to deviate from
L. However if player 2 believes that M is more than twice as likely as R, and
player 3 believes that R is more than twice as likely as A, then both 2 and 3
choose B, and player 1 is correct to choose L. Hence L is a stable outcome,
even with assumption II.1 in place of 1.3.

(It might be of interest to characterize the set of stable outcomes correspond-
ing to assumptions I.1, 1.2 and I1.1, but we will leave this question for a later draft.
Instead, we will go on to pursue more restrictive formulations of our model that
will lead us towards sequential equilibrium.)

The natural response to the above example is to strengthen Assumption 1.2
to require that the players’ beliefs about the relative weights that their opponents
give to different actions converge to the empirically observed ratios. (Because
the conjectures ¢~" are totally mixed, these ratios are all well-defined.)

To do this, we need to take a few preliminary steps. For r,r' € [0,c0),
let d'(r,r') = |r/(1+r)—r'/(1+')]. Thatis, d' is a metric on [0,00) which
compactifies [0,00) at co. In other words, if {r,} and {r.} are two sequences
of nonnegative numbers, and if d'(r,r') — 0, then, roughly put, either r, — r!,
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goes to zero, or both r, and r, tend to infinity.

Next, recall that n(h,(x)(a) for a € A(h) is the empirically based estimate
of n(h)’s strategy at information set h given partial history (i ; that is, the ratio
of the number of times that n(h) took action a to the number of the times
that h was visited. We will write o~ "(k + 1,(s, h)(a) for player n’s subjective
assessment of this probability, for n # n(h).

Finally, recall that H’9(() is the set of information sets that are visited
infinitely often along the history (.

Assumption I1.2. For all historics (, players n, information sets h' and h" both
from H~"n H'O((), and actions o' € A(h') and a" € A(L"),

(g~n(k+1,(k,h')(a') n(h',Ck)(a')) I

lim d
i o= (k+1,Ck, h)(a") (", Ce)(a")

k— oo

This, of course, is much stronger than assumption 1.2, as can be seen immediately
in the example of figure II.1. As we noted before, assumption 1.2 only requires
that 2 and 3 agree asymptotically that player 1 is playing strategy (1,0,0). There
is no requirement that they agree on the relative frequency with which player 1
plays M vs. R. In assumption II.2, precisely this is required. Players 2 and
3 must asymptotically agree on these relative frequencies, and they must agree
that the relative frequencies are whatever is given by history to date. ;

The reader should note, moreover, that assumption I1.2 does even more than
this. In the assumption, the information sets h' and h" can differ, and they
can belong to different players. Assumption 1.2 requires that players agree with
history on the relative rates of one player’s propensity to experiment with one
action over a second player’s propensity to experiment with another, at least at
pairs of information sets where a lot of data is accumulated. Of course, precisely
this sort of agreement is required in a sequential equilibrium, so this sort of
assumption will be needed to provide foundations for sequential equilibrium.
Still, this assumption seems to us to be very strong, and we wonder what would
happen if it were replaced by something weaker.

At this point, we would like to be able to say whether, for behavior that
satisfies assumptions L.1, IL.1 and II.2, the only locally stable outcomes are the
outcomes of sequential equilibria. We suspect that the answer is no, but we can
provide neither counterexample nor proof. The difficulty in providing a proof
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(and, although we have not found it, the likely route to a counterexample) is
that, at a locally stable outcome, behavior at out-of-equilibrium information sets
needn’t converge. In Part I, an outcome that is not a Nash equilibrium outcome
fails the “optimality test” along the path of the outcome, and local stability of the
outcome implies that behavior converges at information sets along the outcome’s
path. But the optimality test for a sequential equilibrium can be failed either on
or off the path of the outcome, so only knowing that behavior along the path
converges doesn’t give us much to go on for off-the-path behavior.

Accordingly, in order to get a theory of sequential equilibrium, we have to
speak not of stable outcomes but of stable strategy profiles. The following pair
of definitions replace the definitions of section 4:

Dcfinition. A profile o = (o7, ...,0™) of behavior strategics is locally stable with respect
to bchavior rule ¢ if, for cvery € > 0, there is a history (. such that conditional on
starting at date k with history (i, there is probability greater than 1 — e for the sct of
histories ( such that:

(i) limys oo d(¢" W (K’ + 1, Go, h), 0" M (R)) = 0 for all ke H'O(().

(i1) The consistency test of section 4.2 is passed at ( for some fixed test function .

Definition. A profile o of behavior strategies is unstable with respect to behavior rule ¢
if there exists an € > 0 such that for every history (x and integer K >k, there is zero
probability that, starting at date k with history (x, the ensuing bchaviors ¢(k'+1, ()
and sample path ( satisfy: :

(1) d(¢"M(k' +1,Cur, h), 0" B(R)) <€ forall h and k' such that x(h,() > K.
(ii) The consistency test of section 4.2 is passed at { for some fixed test function .
Remarks. (1) As noted previously, we use the same consistency test as in Part

I, although we will now use it at information sets that are off the path of the
outcome.

(2) Note that if o is unstable, then it is not locally stable. But, for the same sort
of reasons as in Part I, the converse is not true.

Roughly put, our next objective is to show that if a strategy profile o is not
a sequential equilibrium profile, then it is unstable for any behavior that satisfies
assumptions 1.1, IL.1 and II.2. But this is still not quite correct. The problem is
that ¢ may prescribe behavior that is far from sequentially rational at information
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sets that are so far off the path of conceivable play that they are irrelevant, even
given the experimentation probabilities we are imposing. Imagine, for example,
a three player game of the following form. Players 1 and 2 move simultaneously.
Each can either have 100 (by moving, say, Left) or 0 (by moving Right). If both
move Right, then player 3 is allowed to move, and player 3 can either take 100
or 0. Moves by any player do not affect the payoffs of another player, except
insofar as player 3 may not get to move at all. (Suppose he gets 0 if either
1 or 2 select Left) Now the strategy profile Left for 1, Left for 2, and Right
for 3 is not a sequential equilibrium profile. But it is locally stable, even with
conditional payoff calculations: If players 1 and 2 choose Right with probability
1/k inround k, then player 3 will move only finitely many times. We can select
the bound function a in assumption IL1 so that player 3 will pick Right the first,
say, thirty times he has the chance. We can then make the probability that player
3 gets fewer than thirty chances as close t6 one as we like, by starting at histories
(x for large k where 3's first chance has yet to come.

The problem of irrational play at “irrelevant” information sets also arose
in Part 1. Lemma 1.2 showed that this did not create any difficulties, as play at
irrelevant information sets did not influence the set of best responses along the
equilibrium path. When players maximize their conditional payoffs, the notion
of relevance must be extended to players who are not on the equilibrium path
but who would have a chance to move if there were a unilateral deviation from
a “relevant” information set. This consideration leads us to introduce the notion
of sequential relevance, which we will use to prove a result analogous to Lemma
1.2,

As a first step, we define what is meant for an information set k' € H™"
to be conditionally relevant to player n at information set h € H™ under assessment
(u,m). For every action a € A(h) we can compute the conditional probability
~ that information set h' is reached if action a is taken at h, conditional on

reaching h, if the conditional probability of nodes in k is given by p and if all
players subsequently play in accordance with 7. If the maximum conditional
probability of reaching A', maximized over a € A(h), exceeds €, we say that R
is e-conditionally relevant at h under (g, 7). If h' is e-conditionally relevant
at h for some ¢ > 0, we say that k' is conditionally relevant at h for given

(1, 7)-
Next, at an assessment (u,7), we say that an information set h is e-
sequentially relevant if (i) the probability of reaching h if players play according
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to = exceeds e, or (ii) h is e-conditionally relevant at some h' under (u,m),
for an h' which itself is e-sequentially relevant. If an information set k is
¢ -sequentially relevant for some e > 0, then it is said to be sequentially relevant.

Definition. An sequential r-equilibrium is a consistent assessment (j1,0) where the
actions of each player at cvery scquentially relevant information set are sequentially

rational.

The “r” in the definition is meant to be a mnemonic for “relevant.” This new
definition squares with the old one according to the following lemma.

Lemma IL1. If (p,0) is an r-sequential equilibrium, then there is a sequential equilib-
rium (p',0') such that = ' and o = o' at all sequentially relevant information sets
(under either assessment). In particular, (u,0) and (;', o') give the same distribution
over terminal nodes.

Proof. We sketch the proof: Let {(un,0,)} be the sequence of strictly positive
strategies and accompanying beliefs which have as limit (y,0). We claim that
if we change o, at information sets that are sequentially irrelevant, compute
corresponding beliefs, and then pass to the limit, the limit beliefs at sequentially
relevant information sets will continue to be given by . Also, changing actions
at sequentially irrelevant information sets does not change the sequential ratio-
nality of = given u at sequentially relevant information sets. Thus actions at
sequentionally irrelevant information sets are irrelevant, from the point of view
of both consistency and sequential rationality, to what goes on at sequentially
relevant information sets. The converse to this isn’t necessarily true: actions at
sequentially relevant information sets can affect beliefs at sequentially irrelevant
information sets. But consider: for n = 1,2, ..., imagine that players at sequen-
tially irrelevant information sets play the “game”, taking as given that actions
at sequentially relevant information sets are given by o,. For each n, find a
sequential equilibrium for the sequentially irrelevant information sets, and then
extract a convergent subsequence. This will give the required (u',o').
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]1.3. NECESSARY CONDITIONS

Now we can state the necessity result.

Theorem I1.1. If a strategy profile o is not an sequential r-equilibrium profile, then it
is is unstable with respect to all behavior satisfying assumptions 1.1, 1.1, and 11.2.

Sketch of proof. The proof is something of a replica of the proof of theorem L1,
and so we first provide the reader with a sketch. If this sketch makes fairly good
sense, there will be little loss in skipping.ahead to the Remarks following the
proof itself (page xxx).

In the proof of theorem 1.1, we supposed that, on a set of positive probability,
the consistency test was passed and outcomes eventually were within a close
neighborhood of the supposedly not unstable outcome. We were able to use
lemma 1.1 and Jemma 1.3 to ensure that, with the same positive probability, those
things happened, every experiment was tried infinitely often at information sets
that were reached infinitely often, and the empirical distribution of outcomes
was close to that of the given outcome. Then we looked along a subsequence
where empirically based behavior strategies converged, and supposing that the
outcome was not an equilibrium outcome, we derived a contradiction: Some
player along the path of the outcome would have conjectures about the strategies
of his opponents which, at “relevant” information sets, are approximately the
same as those derived empirically. And then this player would wish to deviate.

Here we start in much the same way. Fixing a supposedly not unstable
strategy profile, we have a set of positive probability where the consistency test
is passed and behavior is eventually close to the fixed profile. Using lemmas I.1
and 1.3, we can moreover assume that, on this set, empirically based assessments
of behavior strategies at information sets that are hit infinitely often are close
to those in the fixed profile, and at every information set that is hit infinitely
often, every experiment is tried infinitely often. Taking any realization from
the positive probability event, we look along a subsequence where empirically
. based beliefs converge. If the originally fixed strategy profile is nota sequential r-
equilibrium profile, then at some sequentially relevant information set, the player
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who is moving is uniformly far from being sequentially rational, if the player’s
assessments are close to the limit beliefs at all information sets that are sufficiently
conditionally relcvant to the player. We will show that all ihformation sets that are
conditionally relevant to this player are hit infinitely often, and assumption II.1
will ensure that this player has an assessment that is close to empirically based
beliefs. So we conclude that the player will deviate eventually, which means
that the fixed profile wasn't stable after all. Roughly put (and there are a few
differences), we follow the proof of theorem L1, using strategy profile in place
of outcome, beliefs in place of the strategy profile, sequentially relevant information
sets in place of information sets that lie along the path of play, and information sets
conditionally relevant at a scquentially relevant information set in place of information
sels that are relevant at information sefs along the path of play.
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PART III — EQUILIBRIUM REFINEMENTS
AND SOPHISTICATED EXPERIMENTS

HI.1. INTRODUCTION:
COMPLETE THEORIES OF PLAY

In Part ], we focused on the link between the frequency with which the play-
ers experimented and the information they obtained about each other’s strategies.
We required in assumption I.1 that, at every information set that occurs infinitely
often, every action is taken infinitely often, but we did not restrict the way that
players experimented, that is, the relative frequency of the various experiments.
Now we will study some more “sophisticated” experimentation rules, which
assign greater relative probability to experiments that are (heuristically) “more
likely” to provide valuable information. Given the results of Part II, most of
our conclusions here will be straightforward consequences of the restrictions we
place on the experiments, and both the restrictions and their implications in terms
of the corresponding sets of locally stable equilibria are closely related to ideas
that have already been developed in the literature. Our purpose here is not to
propose radically new equilibrium refinements, but rather to use the learning-
and-experimentation model as a way to motivate the restrictions we impose and
to examine their effects in the context of a “complete theory.” This terminology is
our shorthand for a methodological point which motivates our work but is also
‘of more general applicability.

In any game, when a player observes another play differently than he had an-
ticipated, his own response will depend on how his explanation for the deviation.
(This is an extensive-form description of the idea, but normal-form advocates will
note that the same argument can be made ex ante.) Thus, one way of thinking
about equilibrium refinements is as a combination of sequential rationality and
restrictions on player’s beliefs at out-of-equilibrium information sets, that is, on
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the kinds of stories the player tells himself to explain deviations.

A number of authors (for example, Basu, 1985, Binmnore, 1985, Reny, 1987,
and Rosenthal, 1981) have noted a fundamental logical puzzle with refinements
such as subgame perfection. In these refinements, we maintain the hypothesis
that players are “rational” and that certain actions will never be taken by them.
And then, when those actions are taken, the theory typically proceeds to assume
that players are rational and will not take similar actions. Having been presented
with a conterfactual to the theory, the theorist plows ahead blithely with the
theory. We interpret these authors as complaining about the lack of a formal
theoretical explanation for the observed deviations, without which it is difficult
to make sense of the theory. What is needed, it seems, is a formal theoretical
explanation, within the model, for any possible observation. This is what we
will call a “complete theory” of play in the game.

There do exist complete theories in the literature. Foremost among them
is Selten’s (1975) notion of a perfect equilibrium, where deviations result from
accidental “trembles,” with the restriction that the probabilities of trembles at
different information sets are independent and commonly known. Perfection in
the normal form weakens this complete theory by requiring only independence
of trembles between players, but allows each player’s trembles at different infor-
mation sets to be correlated. The notion of c-perfection (Fudenberg, Kreps and
Levine, 1988) allows even more correlation in the trembles and also allows differ-
ent players to have different beliefs about the trembles of a common opponent.
Myerson’s (1978) notion of properness requires that certain types of mistakes are
more likely than others. These refinements are all “complete theories” in our
sense because they not only place restrictions on the allowed beliefs at off-the-
path information sets, they do so by providing an explanation of why deviations
occur. Thus beliefs that are allowed by the theory are those that can be justified
by an appropriate choice of tremble probabilities, and disallowed beliefs are those
that cannot be so justified.

Other refinements such as the “intuitive criterion” (Cho and Kreps, 1987)
and divinity (Banks and Sobel, 1987) have been motivated by the idea that play-
ers will interpret deviations as conscious signals which are intended to change
the opponent’s (receiver’s) beliefs about the deviator’s type. The style of these
refinements is to reject equilibria which would be vulnerable to certain types of
. conscious signals. While this latter group of refinements often gives answers that
we find appealing, they are incomplete in that certain ways of interpreting devi-
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ations are disallowed, but we are not told what story the players use to generate
the interpretations that are allowed. This makes it difficult to know whether or
not the implied model of deviations in internally consistent: Is there a convincing
way of justifying the allowed interpretations without simultaneously justifying
the interpretations that have been ruled out?

We propose that the best methodology for studying equilibrium refinements
is to develop complete theories, ones that provide an explanation for all devia-
tions, and then allow and disallow beliefs accordingly. This is not to say that all
complete theories are useful or incomplete theories useless, simply that incom-
plete theories are difficult to evaluate.

As we have already observed, one class of complete theories is based on
deviations being accidental mistakes. A second class, developed in Fudenberg,
Kreps, and Levine (1988) is based on the assumption that deviations are the re-
sults of the deviator’s payoffs being different than had originally been supposed.
Just which explanations for deviations are reasonable then depends on what the
players’ ex ante doubts are about each others’ payoffs. Although the connection
is not made formally explicitly, McLennan’s (1985) justifiable equilibria is sug-
gested by a semi-complete theory of the form: Deviations are the manifestation
of a player who is confused about the equilibrium that is in force. It is as if there
might be two or more populations, playing different equilibria, and with some
small probability, individuals from one population are mixed in with the other.
(A problem with this story is that there are some deviations which it cannot
explain at all, so it is, in a sense, only partially complete.)

This part of the monograph develops a new class of complete theories, one
in which deviations are the result of experimentation by the players. In Parts
I and II, we placed no restrictions on the relative likelihood of the different ex-
periments, and thus (in Part II) we obtained sequential equlibria as the “stable
set” when coupled with the assumptions of conditional payoff maximization and
asymptotically correct assessments. Now we wish to assume that the players use
somewhat sophisticated experimentation rules. As before, the players follow ad
hoc rules of behavior and do not do full blown dynamic maximizations, so the
increased sophistication of the experimentation rules we develop is not meant to
take us anywhere close to full rationality. But we do think that there are “rea-
sonabie” heuristics one can impose on experiments, which lead to interesting
refinements.

The restrictions that we impose on experimentation probabilities are based
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on two general ideas. The first idea is that players should evaluate the relative
attractiveness of different experiments by some measure of their option value. By
this we mean that, as the reason that players experiment is to guard against the
possibility that the experimental action might yield a higher expected utility than
the action which currently looks to be the best, the attractiveness of an experiment
should be related to an ad hoc estimate of the probability that the experimental
action will turn out to be better than the current optimum. (As before, we will
assume that the players’ beliefs are derived from naive empiricism, as opposed
to a “correct” statistical procedure.) One implication of this is that dominated
strategies are unattractive experiments.

The second idea is that, in assessing the likelihood that an experiment is
preferred to the myopically best choice, players asymptotically have infinitely
less uncertainty about behavior at information sets that have occurred infinitely
more often. Thus, if o is locally stable, a- player on the equilibrium path (one
whose information set is in Supp(6(c)) should give infinitely less weight to
the possibility that play will be different than that suggested by his conjectures
o=" if he takes an action in Supp(6(¢)) than to the possibility that play will
be different than o~ if the player chooses an action outside of Supp(é(a)).
We therefore require that the players are aymptotically infinitely more likely to
experiment with actions that would be optimal if off-path play differed from
expectations than to actions which are only optimal if an opponent deviates along
the path. These latter actions are equilibrium dominated in the sense of Cho and
Kreps (1988), and thus our learning and experimentation model provides a way
to justify equilibrium domination in the context of a complete theory.

We begin our development of these ideas in the next section with a simple
and well-known arena; that of signaling games. As just noted, we come rather
quickly to equilibrium domination. But our theory suggests that one should go
beyond equilibrium domination and impose additional constraints in the spirit
of Banks and Sobel’s (1987) notion of universal divinity. We are lead by the
form of our theory to a concept that is slightly different from university divinity,
which we call co-divinity. The difference is the following: Universal divinity
suggests that deviations are caused by a sender’s misperception that the receiver
might play a particular mixed-strategy that is a best response for some possible
beliefs about the sender’s type. In contrast to these point misperceptions, our
model implies that it is equally natural for the receiver to anticipate a probability
mixture over the receiver’s pure strategy best responses, even if that mixture is
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not itself ever a best response. (Most readers will find this point a bit obscure; we
will explain it in detail later on.) The set of co-divine equilibria is always included
in the set of equilibria that satisfy the so-called intuitive criterion; it is neither
contained in nor contained by the divine equilibria. To illustrate the difference
between universal divinity and co-divinity, we show that, while divinity suffices
to select a unique equilibrium in the Spence signalling model (cf. Cho and Kreps,
1988) and in general monotonic signalling games with the Spence single crossing
property (Cho and Sobel, 1987), co-divinity will not do so without additional
assumptions on the risk preferences of the senders. The reason is that in these
games it is never optimal for the receiver to play a mixed strategy, so that if all
deviations are caused by point misperceptions, risk preferences are irrelevant.
However, if as in co-divinity, a p'ayer is uncertain which of two undominated
responses the receiver might tal , then risk preferences do play a role.

We then turn in section II1.3 to a development of these ideas in the context
of general games (subject to the restrictions on information sets that we have
imposed throughout). Our model suggests that if play converges both on and
off the path, then the ranking of the frequency of experiments that we see in
section IIl.2 should be imposed at all of the information sets that are reached
infinitely often. This leads to an extension of equilibrium domination that we
call conditional domination.

In summary, then, if observed deviations from equilibrium are explained
as the result of uncertainty about the strategies being played, then plausible
restrictions on the nature of that uncertainty lead to fairly strong equilibrium
refinements. In our model, strategic uncertainty and experimentation explains
all of the observed deviations. This assumption is meant to model situations in
which the strategic uncertainty is large relative to the competing explanations for
deviations. Thus we should conclude with an emphatic caveat: We think that
there are many situations where strategic uncertainty predominates, and where,
in consequence, the refinements that we develop are natural and relevant. But
there are other situations where “deviations” are at least partially attributable to
other factors and, in those situations, other refinements will be more relevant.





