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This paper is devoted to the question of whether traders can learn rational expec- 
tations from repeated observations of market data in a stationary environment with 
finitely many exogenous states of the world. The learning problem is placed in the 
context of an iterative adjustment process which achieves equilibrium if traders 
have rational expectations. The main result is that even if traders begin with no 
knowledge of their environment, there exists an estimation procedure which con- 
verges to rational expectations when the environment satisfies a certain regularity 
condition. The regularity condition is shown to be generic. Journal of Economic 
Literature Classification Numbers: 021, 022, 026, 213. :e 1985 Academic Press. inc. 

1. INTRODUCTION 

The rational expectations hypothesis requires traders to anticipate the 
future according to the objective probability distribution of future events 
conditioned on all of their current information. This information consists of 
private information, which differs across traders and is usually taken to be 
exogenous, and market information, such as prices. Since prices are sen- 
sitive to the private information of all traders, prices may reveal to each 
trader some or all of the decision-relevant private information of others. 
However, forming the correct conditional distribution of future events 
requires some knowledge of the relation between private information and 
prices, which in turn depends on the characteristics of the various traders. 
Such knowledge is not likely to be directly available to each trader, so it 
must be gained by experience. Hence the plausibility of the rational expec- 
tations hypothesis hinges on the ability of traders to learn the correct con- 
ditional distributions from repeated observations of market data. 

The problem of learning rational expectations is greatly complicated by 
the well-known dependence of the “correct” conditional distribution on 
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trader’s beliefs. Indeed, a rational expectations equilibrium is essentially a 
fixed point in a space of conditional distributions. Thus the problem of 
learning rational expectations is partly a problem of consistent estimation 
and partly a problem of the stability of equilibrium. Because of the latter 
difficulty one might expect any positive results to be of limited generality. 

This expectation is borne out by the results in the literature thus far. 
Possibly the most favorable result has been obtained by Bray [4] for a 
market for a financial asset with an uncertain future value. All traders are 
assumed to have constant absolute risk aversion and all random variables 
are assumed normal. In [4, Proposition 51 Bray demonstrates that for a 
large region in the space of parameters which specify the market, the linear 
regression of eventual asset values on previous prices converges to rational 
expectations. A more limited result in a more general model has been 
obtained by Blume and Easely [3]. They study a general class of stochastic 
exchange environments with finitely many “states of information.” Each 
trader tries to infer the current state of information, which describes the 
private information of every trader, from the current price. Blume and 
Easely specify a family of learning processes by which traders adjust their 
beliefs about the relation between prices and states of information in 
response to their observations as the environment is repeated over time. 
Under certain assumptions, rational expectations are shown to be “locally 
stable” under learning [3, Corollary 11, but non rational expectations may 
also be locally stable [3, Corollary 2 and Sect. 41. Studies previous to these 
two papers are surveyed in [2].’ 

The papers mentioned above use the conventional model of rational 
expectations equilibrium in which each trader’s expectations are con- 
ditioned on his own private information and the equilibrium price. As the 
environment is repeated over time, each trader revises his estimate of the 
correct probability distribution conditioned on private information and 
prices. In the opinion of the present writer this approach severely and 
unnecessarily restricts the study of the learning problem. First, the model 
must be restricted to exclude the well-known examples of the nonexistence 
of rational expectations equilibrium. Second, trader’s beliefs must be 
restricted to ensure that a market clearing price will exist in each sample 
period, and the learning process must preserve these restrictions on beliefs. 
These limitations prevent a general convergence theorem from being stated 
much less proved. 

The present paper uses a different model of rational expectations 
equilibrium to obtain a fairly general convergence theorem. We place the 

I I have of course omitted to mention those learning models, termed “rational learning” by 
Bray and Kreps [S], in which the learning process is itself essentially a rational expectations 
equilibrium in a larger space of conditional distributions. 
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learning problem in the context of the dynamic adjustment process con- 
structed in [lo] to implement rational expectations equilibria. To give a 
brief description of this process we will suppose for the moment that the 
learning problem has been solved, so that traders know the correct con- 
ditional distributions conditioned on any random variables they observe, 
Initially, each trader conditions his expectations only on his own private 
information, which is represented by a signal 2~ This results in a market 
clearing price fi(s) for each joint-signal (state of information) s = (s’)y= i. 
However, before the trades (y;(s)), associated with the price fi(s) are con- 
summated, each trader i revises his expectations by conditioning on fi(s) as 
well as 8, leading to a new market clearing price J;(s). Again, before the 
new trades are consummated, each trader revises his expectations by con- 
ditioning on si, fi(s), and f2(s), leading to a new price &(s), and so on. 
This adjustment process continues, with traders retaining the information 
they acquire at each step, until it reaches a pricef,(s) which reveals no new 
information to any trader. We will assume there are only finitely many 
joint-signals s, so the process will terminate in a finite number of steps. The 
terminal price function fA is called a dynamic equilibrium price function. 

A dynamic equilibrium fA is a rational expectations equilibrium in that 
markets clear and traders condition their expectations on all of the infor- 
mation available to them, including previous prices. If the earlier prices 
reveal decision-relevant information which is not revealed by the dynamic 
equilibrium prices, then fA may not satisfy the more common dehnition of 
rational expectations equilibrium which would require expectations to be 
conditioned on only private information and the final price fA(s) in each 
state s. In fact, a conventional rational expectations equilibrium may fail to 
exist, while a dynamic equilibrium always exists. 

This process was suggested to the present author by Weiter [13], who 
formulated it for general informationally decentralized message processes, 
and was developed independently by Kobayashi [ll] for a financial asset 
market with normality and constant absolute risk aversion. Kobayashi per- 
mits the preequilibrium trades (v~(,Y))~ to be consummated but assumes 
that treaders do not anticipate the resulting capital gains and losses during 
the adjustment process. It is shown in [ 10, Sect. 4] that if preequili 
trades are consummated and capital gains and losses are rationally 
anticipated, the preequilibrium market clearing prices f,(s) may fail to 
exist. 

Placing the learning problem in this context has the immediate effect of 
giving traders more to learn. Traders must learn the correct distribution of 
future events conditioned on private information and a sequence of prices 
rather than a single price. However, this difficulty is offset by the fact that 
the adjustment process removes the simultaneous determination of prices 
and expectations. The price f,(s) influences traders’ expectations at stage 



260 J. S. JORDAN 

a + 1 of the process, but not at stage a. This feature of the process leads to 
the general existence of dynamic equilibria2 and also brings the learning 
problem much closer to the problem of consistent statistical estimation. 

Section 2_ below gives the formal definitions of the adjustment process 
and the learning problem. We suppose that the environment is repeated 
over time, and in each sample period t the adjustment process takes place, 
giving trader i the data sf, par for each iteration a 3 1, and the realized 
future state gr, For each adjustment stage a, the ith trader must use the 
data (sf; pit,..., pat; o,)T= 1 to form, in sample period T + 1, an estimate of 
the distribution of the future state 0 conditioned on (sk+r ; ~~(~+i),..., 
P~(~+~)). These estimates for all traders determine ~~~+i)(~+~). A rule for 
estimating this conditional distribution is called an estimation procedure, 
and the entire array of estimation procedures for all traders and all 
adjustment stages is an estimation scheme. An estimation scheme is suc- 
cessful (U.S.) if, for almost every infinite sample, the estimates converge to 
the conditional distributions mentioned in our initial description of the 
adjustment process given above. 

In Section 4 we construct an estimation scheme which is successful for all 
stochastic environments satisfying a regularity condition we call Axiom L. 
Put somewhat loosely, Axiom L requires that for each iteration a, the 
market clearing price p, is a Lipschitzian function of traders’ conditional 
distributions when the latter lie in some neighborhood of the correct con- 
ditional distributions. Our result is based on the following reasoning. At 
the first stage of the price adjustment process, the learning problem is 
trivial. Trader i conditions his expectations of r~ on the exogenous infor- 
mation si alone, so the conditional frequency distribution provides a con- 
vergent estimation procedure. Moreover, the law of the iterated logarithm 
provides a rate of convergence, which, under Axiom L, extends to a rate of 
convergence on the joint distribution of sf, (TV, and the first stage price pit. 
At the second stage we have a nontrivial learning problem because trader i 
conditions his expectations of CJ on s’ and pl, and the true joint distribution 
of sf, plr, and gr is changing over time due to learning at the first stage. 
However, we have a rate of convergence for this distribution, which we use 
to construct an appropriate modification of the conditional frequency dis- 
tribution of CJ~ given si and pit. Again, the law of the iterated logarithm 
gives a rate of convergence for the second stage estimation procedure; and 
so on. 

The recursive nature of the price adjustment process is critical to this 
argument. At each stage, learning affects the joint distribution being lear- 

* If  there are infinitely many joint-signals, the process will generally not terminate after 
finitely many iterations. However, there is a natural alternative definition of equilibrium for 
this case, and a general existence theorem is obtained in [ 10, Sect. 51. 



LEARNING RATIONAL EXPECTATIONS 261 

ned at the next stage, but there is no feedback from later to earlier stages 
For this reason, the learning problem can be solved sequentially beginning 
with the trivial first stage problem. Indeed this recursive structure may be 
the only crucial feature of the model. At the present level of generality, no 
qualitative restrictions apply to the map from expectations to market-clear- 
ing prices, except the Lipschitz condition which we impose by assumption. 
Therefore, the reasoning used in this paper may apply to other models of 
endogenous expectations in which the informational variables are 
generated recursively. 

In Section 3, the estimation scheme is introduced in the context of a class 
of two-trader, two-state stochastic environments. The general result, in Sec- 
tion 4, is a fairly straightforward extension of the example in Section 3. 
Axiom L is interpreted in Section 4.2 and further motivated by 
Proposition 5.5, which states that Axiom L is, in a certain precise sense, a 
typical property of smooth stochastic environments. It may be worthwhile 
to emphasize that Section 5 serves only to motivate Axiom L, and is not 
otherwise related to the learning problem. Some remaining open questions 
are mentioned in Section 6. 

2. THE MODEL 

2.1. DEFINITIONS. There are N traders, indexed by superscript i, and M 
commodities. For each i, let S’ be a finite set with generic element si= 
(2, u’), where wi is an endowment bundle in Ry+ ,3 and zi is an abstract 
signal. The set s’ is trader i’s private information set, and elements si will be 
called signals. Let C be a finite set of future states, with generic element G> 
and for each i let v’: Ry x C + R be Ph trader’s state-dependent utility 
function We will assume that for each i and each cr E E‘, 

(A.1 ) vi( ., CT) is continuous, strictly increasing, and strictly concave. 

Let 5= lTiSi, with generic element s = (s’)~, and let E be a probability 
measure on S x C. We will assume for convenience that X(S, g) > 0 for all 
(s, B) E Sx C, so that the phrases “every (s, g)” and “almost every (s, a)” 
are identical, A stochastic environment is completely described by z and an 
.N-tuple of utility functions (v’)~. For convenience in exp~s~t~~~ we will keep 
the number of traders and the set S x C fixed. The set of stochastic environ- 
ments is the set Y of pairs (n, (v~)~) with ~(s. a) > 0 for all (s, CJ) E S x Z and 
L)~ satisfying (A. 1) for each i. 

2.2. Remarks. In modelling the ith trader’s private information as a 
signal si we are departing slightly from the model in [lo]. In [lOI] each 

3 Ry+ = j.usR": x,>O for allj}, and Ry= {.uER~: x,>O for allj). 
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trader’s private information is modelled as a partition or subfield of a com- 
mon probability space on which all random variables, present and future, 
are defined. Formally the above representation is a special case of the 
model in [lo]. We have used the present definition to support the inter- 
pretation that the future state CJ is eventually observed by all traders, but 
the private signal si is not observed by trader j at any time. Hence in the 
present model, the learning problem is complicated by the presence of 
unobservable variables. 

We now define the sequence of informational temporary equilibria and 
the dynamic equilibrium which would result if traders could form the 
correct expectations conditional on all random variables they observe. 

2.3. DEFINITIONS. Let sZ= {(c~I’)~E(R~+)~: for some (z’~, CLI’~)~ES, 
w” = III’ for all i}, and let @ denote the set of probability distributions on 
C. Let A denote the strictly positive price simplex, A = {p E R”: pi > 0 for 
all j and .Cjpj= l}. Given a stochastic environment (n, (u’),), let w: 
Q x QN -+ A be a function such that for each ((o’)~, (#i)i) E 52 x QN, w((w’)~, 
(@)i) is a Walrasian equilibrium price for the (nonstochastic) exchange 
economy with endowments (o~)~ and utility functions (C,&(o) u’(., a)),. 

For each SE S and each i, let &,(s) E @ denote the conditional dis- 
tribution on Z determined by rc given si. That is, 

&)(s)(o) = C{ 71(s’, 0): ii = S’}/z{7c{S’, 0’): di = s’}. 

Define fr : S + A by fr(s) = w((cI?)~, (c&(s))~), where the endowment N- 
tuple (oifi is of course specified by s = (z’, u~)~. For a > 1, we will define 
(#1-1(s)) and f,(s) b y induction. For each i, let ~~56~ 1(s) denote the con- 
ditional distribution on C given si and fr(s),..., f,- r(s). Let f,(s) = w((w’),, 
(&-,(z))~). Finally, let A =min {a: fa+ r =f,>. The function fA is a 
dynamic equilibrium price function, and the functions f, for a < A are infor- 
mational temporary equilibria. 

2.4. Remarks. We use the subscript a to denote “adjustment time.” The 
index t will be used below for sampling time. The function w  depends on 
the utility N-tuple and so will vary with the environment. Unfortunately 
the definition of w  is arbitrary to the extent that a nonstochastic exchange 
environment may have multiple equilibrium prices. To define conditional 
expectations it is necessary to assume that a particular equilibrium price is 
consistently selected. We could of course permit a randomized selection, 
but only by imposing a particular randomization. The definition of w  is 
intended to represent the outcome of the equilibrating forces of the market, 
and implicitly assumes the market to be sufficiently systematic that a single 
equilibrium price is selected. The definition of the informational temporary 
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equilibrium f, embodies the assumption, mentioned in the ~~trod~ctio~, 
that the trades at stage a - 1 were not consummate 

A dynamic equilibrium fA is a ‘rational expectations equ~librium’~ 
provided that traders condition their expectations on their dynamic 
equilibrium trades as well asfA. More precisely, let (z, (v~)~) be a stochastic 
environment with the dynamic equilibrium fA, and for each i and each s, 
let V,(S) maximize C,$L(s)(a) v’(w’+ y, G) subject to fA(s) y d 0. For each 
i, let d’,(s) denote the conditional distribution on C given s’, fA(sf, and 
y’(s) (or merely fA(s) and y’(s)). Then it is proved in [IO, Theorem 3.61 
that (fats), yl(s),..., v”(s)) is a Walrasian equilibrium for the exchange 
economy with endowments (w~)~ (given by s) and utility functions 
cc, &J4d 4.3 @)I,. 

2.5. Esrimation Procedures 

For each trader i, let Xi = S’x C and for a > 0 let X0 = S’ x d” x 2‘. An 
estimation procedure for trader i and adjustment stage a is a sequence of 
functions {e;,> ,“= z with, for each t, 

and 

e~,,:X~‘~~‘x(S’xA”)~~ jar each a > 0. 

The entire array of estimation procedures (e~r}r~z,U:o,lLYL is called an 
estimation sclzeme. 

2.6. Remarks. The estimator ell associates with a sample (sl; pI1-,..., 
P . c~)::: a function on S’x A” to Q, which acts as a conditional expec- 0-c Y 
tation. Hence e:, might be constructed as an estimator of the joint dis- 
tribution on S’ x A” x C which is then conditioned on S’ x d”. However, the 
estimation scheme constructed in Sections 3 and 4 will estimate the %5n- 

ditional distributions” directly, without regard to the joint distr~b~tior~ 
from which they might be derived. 

The definition of eir also embodies the assumption that trader i never 
observes So, even after the future state (T is realized. It might appear from 
the definitions in Section 2.3 that learning the conditional expectation &, 
requires learning f, for each CI < a, which is impossible since (s j)l+ i is unob- 
servable. However it will be shown in Sections 3 and 4 that the conditional 
expectations can be estimated directly. 

Given a stochastic environment and an estimation scheme we can now 
describe how the data for estimation are generated. Essentially ah that 
needs to be specified is that in each sampling period, a pair (s, g) is drawn 
independently from the distribution rc. Then at each stage of the adjustment 
process, a traders’ expectations are determined by his estimation procedure 
and the data generated in previous sampling periods. 
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2.7. The Generation of the Data 

Let (71, (u~)~) be a stochastic environment and let {ei,),,i be an 
estimation scheme. In each sample period t, a pair (s, a) is drawn indepen- 
dently from the distribution rc on S x C. For each a, the first period ath 
stage price pnl is chosen arbitrarily in A. For each t > 1, the first stage price 
plr is defined by 

Similarly for each t > 1 and a > 1, 

These definitions determine a probability distribution 7~; on the infinite 
sample space ny= i(S x C) and, for each a > 0, a distribution rcn,” on nT= i 
(S x A” x Z). Of course, IZ~ is simply the product distribution induced by rc. 
For each a> 0, the distribution 7~: depends on 71, on (v’)~ (through the 
definition of w), the arbitrarily selected prices pII ,..., pcu- i), , and the 
estimation procedures {e:,} p”= r for each i and each CY < a. 

Given a stochastic environment (71, (v’),), an estimation scheme { ei,},,.; 
is said to be successful almost surely (a.s.) if for each i, each a, and almost 
every infinite sample (s,; pit,..., par; a,)?! 1, 

lim Ilel,C{C.$; p17,..., pa,; %)):A (4 PltY? Pa,)1 -dl(s,)ll =o, (*I t+us 
where “almost every” refers to the distribution z,“, and 11~~5 - 4’11 = sup 
i Id(o) - d’(o)l: c E C} for each &d’ E Z. Recall that CJ~:(. ) denotes trader i’s 
“rational expectations” at stage a. 

2.8. Remarks. The above definitions do not require the adjustment 
process to terminate at any stage in any sample period. Loosely speaking, 
we are permitting time to be doubly infinite, with an infinite number of 
adjustment stages occurring within each sample period. It is apparent from 
the definition of the dynamic equilibrium fA in Section 2.3 that A < N#S 
for every stochastic environment in Y. This follows from the fact that the 
conditional expectations { &}a a ,, are obtained by conditioning on suc- 
cessively finer partitions of the finite set S. Iff,, i =f,, no trader’s partition 
is refined by observing pU + 1, so 46+i=4hfor all i, andf,=f,for all a>a. 
However, we have placed no restrictions on the estimators (e6,}.b0 to 
ensure that the estimated conditional distributions share this successive 
refinement property. Hence there is no guarantee that in any sample period 
t there will exist some adjustment stage a with pa+1 = pa. It might be 
natural to require the adjustment process to terminate with the first stage 
in sample period one, the second stage in period two, and so on. That is, 
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traders stop revising their (estimated) conditional expectations when the 
adjustment process reaches a stage they have not previously encountered. 
However this convention would considerably complicate the notation since 
the first sample point for the estimation of 4: would not occur until sample 
period a. None of the succeeding results would be otherwise affected by 
imposing this convention. 

As noted above, the estimation scheme influences the true price dis- 
tribution, which makes the estimation problem conceptually more complex 
than conventional econometric problems. Prices at stage a are influenced 
by the estimated expectations at earlier stages, but are nat influenced by the 
stage a estimation procedures {ei, > r,i, which estimate expectations con- 
ditioned on stage a prices. The recursive nature of our dynamic model 
enables us to break the estimation problem into stages so that, at each 
stage, estimation itself does not influence the data. 

3. AN EXAMPLE 

This section is devoted to a simple example illustrating the estimation 
scheme which is proved to be successful as. in Section 4. The set of 
stochastic environments is drawn from the traditional example of rational 
expectations theory. There are two traders, i = 1,2, and two future states, 
C = (c~, cp >. Trader l’s private information set contains two signals, S1 = 
(s,, s,}, and trader 2 receives no private information, that is, S2 is a one- 
point set, so we will mildly abuse the notation of Section 2 above to let 
S = S’. We assume, in this example, that each trader’s endowment o’ is 
nonstochastic. As above, each trader i has a state-dependent utility function 
IJ? Ry x C -+ R. The space of stochastic environments is thus the set Y of 
pairs (z, (CO’, vi):= 1), where 71 is a probability distribution on the four- 
set SxC. Recall that d={p~R~:p~>Qfor alljandXjpj=l), and that 
CD is the set of probability distributions on the two point set .E As in 
lion 2, given (coi, d)f= 1, let w: Q2 --t A be a function such that for 
($I, d*) E @‘, w(d’, 4’) is a Walrasian equilibrium price for the two person 
economy (09; c$‘(cJ.,) u’(., 0,) + #(oa) v’(., CJ~))~= 1. 

Since S is a two-point set, the dynamic process described in Section 2.3 
above, when traders form the correct conditional expectations, will require 
only two iterations. Given n, let @A(s,) and dA(sb) E @ denote the con- 
ditional distribution on C given s, and sg, respectively. Also, Bet 4; denote 
the unconditional distribution on Z: determined by z. Initially, trader I 
observes s and trader 2 observes nothing, so the initial expectations of the 
two traders are given by 4:(s) and &, respectively. The first stage price will 
be given by w(#~(s), &), so define fi : S 4 A by fl(s) = w(qS~(s), 42). At the 
second stage, trader 2 conditions his expectations on the first stage price, so 
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let d:(s) denote the conditional distribution on .Z givenf,(s), for each s E S. 
Trader 1 already knows s, so let 4:( .) = &(. ). Finally, define f2: S -+ d by 
f2(s) = w(d:(.s), d:(s)), which is the second and final stage price function. 

Iffi(.s,) #fi(sb), then trader 2 infers the signal, so both traders know the 
signal in equilibrium. If fi(s,) =fi(s,), then trader 2 remains uninformed 
and fi( .) =fi(. ). Note that, according to the conventional definition, a 
rational expectations equilibrium fails to exist if fr(s,) #fi(s6) and 
f2(s,) =f2(sb). However, the price function f2 is a dynamic equilibrium 
because we assume that trader 2 does not forget the information he inferred 
from fi even when that information is not also revealed by f2. 

Now suppose that trader 1 knows only S x C and (w’, v’), and trader 2 
knows only (w’, u’). Neither trader knows rc or the characteristics of the 
other trader. Trader 1 needs to learn c&(. ), and trader 2 needs to learn 4; 
and #( .). (Note that d;(s) can be expressed as a function of the first stage 
price fi(s),) In each sample period t, (st, e,) is drawn independently 
according to 71. The traders estimate their initial expectations, and these 
estimates determine the first stage pricef,,(s,). Since the initial expectations 
are not conditioned on any endogenous variables, their estimation is 
statistically trivial. For each t, define e&: Xi- ’ -+ @ as the frequency dis- 
tribution determined by each sample (pi,..., g’tP 1) of previously drawn 
states. Define e;,: (Sx,Z)-’ x S-+ @ by setting e&(s,, (rr,..., s,-i, crPl; 
s,)(cr), the estimated probability of C, equal to the conditional frequency 
# (z < t: s, = s, and @‘r = c}/# {z < t: s, = s,}. These estimators clearly con- 
verge a.s. to & and c$;(. ), respectively. 

Trader 2’s estimation of #(.), the conditional distribution on Z given 
the first-stage price, is much more involved. In each sample period t, the 
first-stage price, which we will denote pI, is generated as 

pz = Ne&(s,, gl,..., s,- ,, c,- 1; s,), e&(o,,..., gt- l)). 

Hence the true conditional distribution of cr given pt is changing over time, 
and of course pt will generally differ from the “correct” price, fl(s,). 
However, the arguments of w  approximate (dh(s,), 4;) as t --, co, so if w  is 
well behaved, pr will be near fl(s,) for large t. We will assume that the 
function w, which is in the nature of a selection from the Walrasian 
equilibrium correspondence, is Lipschitzian near (4%~~)~ 43 and 
(c$:(s~), 4;). This is essentially an assumption on the class of stochastic 
environments, and is discussed at more length in Sections 4.2 and 5. For 
example, w  can be chosen to satisfy the assumption if the two exchange 
economies determined by the expectations (&(s,), 4;) and (iA( &), 
respectively, are “regular” in the sense of Debreu [7]. Under this 
assumption, pZ approximates fl(s,) sufficiently closely to permit the con- 
struction of a convergent estimator of @(. ). 
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In sample Period t, trader 2 observes the first stage price pr and must 
estimate the conditional distribution of or from the data (pr, gI,..., 
ptP I ) cr, _ I ). The construction of a conditional frequency requires a 
criterion for deciding whether a previous price pT is close enough to pr to 
include the succeeding state Go. The law of the iterated Logarithm implies 
the existence of a constant K> 0 such that 

K[(log log t)/t]“2 < 1 as. 

Therefore, by the Lipschitzian property of W, there is some I. > 0 such that, 
for almost every sample sequence (sf, rrt),“= 1, 

for large t. For each t, let E, = [(log log t)/t] ‘j3~ Note that E, --+ 0 an 
any 3. and K, E, > AK[(log log t)/t] ‘I2 for large t. Given ((p,, a,):~:~ p,), 
construct the estimated conditional probability of a state cr given pr as a 
conditional frequency, counting the previous observation of rsI if and only 
if lip, - pJ <E,. More explicitly, 

4[I(Pr, g,)iz:, p,l(a) 
= # (~<t: lJpr-p,JI <s,and a,=cs)/# {z <t: l/p,-pPtll ~6,). 

If the denominator is zero, the estimate is defined arbitrarily. The fact that 
E, does not depend on A or K is essential, since these constants are not 
known by the traders. For large r and t > Z, Ijp,-fi(s,)jl cc,/2 and 
11~~ -fIb,fll < ~,/2 < 42 so HP, - pIll <E, if f,b,) =.fiis,). Ah Il.fii~,~ - 
~Xd/l < ll~,-f~~~,)ll + lI~,-f~hI + lip,-p,ll, ~0 for large 4 ‘c9 if 
j/pi - pill < E, then i/f,(s,) -fi(s,)ll < 28,. Since S is a finite set and E, --+ 0, 
the last inequality will be satisfied for large z, t only iff,(s,) =f,(s,). Hence, 
for large z, t, (jp*- ptjj <F, if and only if fi(s,)=fi(s,). Therefore this 
estimator behaves asumptotically like the true conditional frequency of ~b 
givenf,(s,), and thus converges to #:(s,) a.s. 

Since the estimator of #(. ) is asymptotically a conditional frequency, it 
converges at the same rate as the estimators of (c&(. )t 4;). Therefore, in the 
general model where S is an arbitrary finite set and the price adjustment 
process requires more than two stages, the estimators of &(a), &(.); etc., 
can be constructed in the same way. This is done in the next section. 
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4. THE MAIN RESULT 

This section generalizes the estimation scheme constructed in the 
previous example. We first formalize a general version of the Lipschitz con- 
dition used above. 

4.1. Axiom L 

Let (n, (ui)J E 9 and let B(rc, (u~)~) = { ((o’)~, (&)J E (Ry+)v x QN: for 
some s = (z’, o’~)~E S and some a > 0, (o”)~ = (o’)~ and (d:(s)) = (&)i}. A 
stochastic environment (rc, (v’)J satisfies Axiom L if for each ((w’), (@)J E 
B(rr, (vJ~)~) there is a neighborhood N of (&)i in ON and a constant 1> 0 
with 

y:;$Ti)j~M, where /l(&)i-(&i)ill =max {l#‘(o)--&‘(o)l: OEC and 
1, . 
Let YL denote the set of stochastic environments satisfying Axiom L. 

4.2. Remarks. The interpretation of Axiom L may be clarified 
somewhat by the following example. Suppose that for each i and each 
GEL’, u’(., CT) has the form 

d(x, CT) = d(0) x + g $(o) In xj, 
j=l 

where a’(o) E Ry and p;(o) > 0 for each j. Then ui( ., 0) belongs to a convex 
family of utility functions which yield excess demand functions with the 
gross substitutes property (we can overlook the fact that these utility 
functions are not defined on the boundary of Ry, since they lead to 
interior equilibria). Hence for every (@)i E QN, the nonstochastic exchange 
environment ((w’)~, (E,@(a) u’(., a)),) has a unique equilibrium, and the 
function w: D x QN -+ A is uniquely defined. Also w  is C”, since the gross 
substitutes property implies that the aggregate excess demand function has 
a nonsingular derivative. Hence (rc, (19)~) satisfies Axiom L for any rc. This 
example indicates that Axiom L can be interpreted as a regularity con- 
dition on the nonstochastic environments determined by a stochastic 
environment over the course of the adjustment process. More specifically, 
let (n, (I?)~) E Y and for each SE S and each a 2 0, let U:(S) denote the 
utility function Z,&(s)(o) vi( ., a). Suppose that for each a, s, the non- 
stochastic environment ((w’)~, (u~(s))~), where. (w~)~ is specified by s, is 
smooth and regular in the sense that the aggregate excess demand function 
has a nonsingular derivative at each of the Walrasian equilibrium prices. It 

may be worthwhile to emphasize that prices enter this excess demand 
function only in the usual way, through each trader’s budget constraint. 
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Then it would be natural to expect the function w  to be differentiable on a 
neighborhood of ((o’)~, (42(s));) f or each a and s. This amounts to assum- 
ing that w  is as smooth a selection from the Walrasian equihbrium 
correspondence as this correspondence permits. We will show in Section 5 
below that the regularity of ((o’)~, (z&s))J for each a and s is generic for 
reasonable topologies on the set of smooth stochastic environments. 

The conditions mentioned in the preceding paragraph lead to a property 
somewhat stronger than Axiom L, namely the continuous differentiability 
of w((o’)~, a) on M. Axiom L is more in the nature of a Lipschitz con- 
dition, although slightly weaker than a conventional Lipschitz condition in 
that the inequality is not required for all pairs of IV-tuples (@)i, ($“‘)i E JV. 

4.3. PROPOSITION. There exists an estimation scheme which is successful 
a.s. -for every stochastic environment in YL. 

ProoJ For each i, t define ebf to be a conditional frequency distribution. 
That is, for any event E c C, 

e;t[((s:, a,)};+;](E)= #{(A$, o,):r<t,s:=s;, 

~r~E)/#{(s:,q):z<t, and 3; zz $3.” 

For a > 0, we define ea, as follows: For each t, let E, = [(log log t)/t]li3 

and for any event E c C, let 

e:,CIbsl; Plr,-., pas; 4):2:> (4; PltY-3 P,,IlW 

= #Us:; Plr,..., PUTi g,): z < 6 s: = Sf, II P,, - P,J < E, 

for each l,(cz<a, and c,cGE)/#(($; plr,..., par; 07): T-C& s:=sj, and 
l~pXt - pzrjl <a, for each 1 < c1 d a}. This defines an estimation scheme 
KJ r,a,i- 

Let (n, (v~)~)E~?L and for each i let nd be the marginal distribution on 
S’ x 2’. The law of the iterated logarithm (e.g., [6, . 641) implies that for 
each (2, f~) E S’ x C, 

lim sup I # {(s,, o?): z d t and (~3, oT) 
f-m 

= (sl, o))/t - 7c@, cr)j/K,[(log log t)/cy < 1 

as. with respect to IIF, where K, > [27c6(s’, c)( 1 - zi(s’, a))] ‘I2 for ail 
(s’, a). It follows that for some Kb depending on 7c, 

(i) rcF{(.sr, B,);O=~: there is some 7’ such that for all i and all 

t > T, lie&( (sS, a,)].:=:, si)-&)(sJl <KQ[(log log t)/p] = 1. 

4 We maintain the convention that the estimated conditional distribution is arbitrary whez 
the denominator is zero. 
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In particular, (e&),00=, satisfies the convergence condition 2.7( *) as. with 
respect to rcr for each i. Axiom L, together with (i), implies that 

(ii) T{(st, pity ~J100, i: there is some T such that for all t > T, 

IIP1t-f1(~,)l/ <@1 = 1. 

Hence 

(iii) ${(s,, h a,)?= 1: there is some T such that if r, t > T, then 

IIPlT - hll < E* if and only if fi(s,) =fi(s,)} = 1. 

For each i, let rcf denote the distribution on S’ x d x 2 determined by 71 and 
fi. That is, 

rri(s’, pl, a)=C{rc(s’, cr): ~“=.r~andf(s’)=p,}. 

By the law of the interated logarithm, for each B E Z, 

(iv) limsup,+, I#{(L plz, 07): 7 < t, 3: =sf, fi(&) =f1(s,), 
oz = cJ}/(t - 1) - 7c#, fl(S,), a)l/K,[(log log t)yt]l’* < 1 

as. with respect to YE;“, since the probability of (iv) is actually given by 7~; 
which is the marginal distribution of $” on II?= ,(Sx C). Then (iii) and 
(iv) imply that for each CJEZ, 

cr = a}/(t - 1) - 7cf(sf, f,(s,), a)l/K,[(log log t)/t]“2 < 1 

as. with respect to ET. Hence there is some K; with 

(VI qw,> P1t, a,)?= 1: there is some T such that for all i and all 
t> T, 

lIeL({($, pls, a,))Zi, $, P1,)-4l(s,)ll <GC(h2 1% tYt1”2) = 1. 

In particular, {e~t}~C2 satisfies the convergence condition 2.7( *) a.s. with 
respect to ny for each i. Since (v) is analogous to (i), one can again apply 
Axiom L to obtain an expression analogous to (ii) involving 7~7, and so on 
to complete the proof. 

4.4. Remarks. Axiom L plays a crucial role in the construction of the 
estimation scheme {e:,} t,a,i. The law of the iterated logarithm determines a 
sequence E, converging to zero with the property that for almost every 
infinite sample (sl, cr)(> 1 there is some T with 
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for all t > T and all i. Axiom L then implies the existence of some /1> 0 an 
some T’ > T with 

llP1,-f1(~,)ll < J”b (11 

for all t > T’. This enables the stage 1 conditional expectations 4; to be 
estimated in a straightforward manner. l[n the absence of Axiom L, the dis- 
tance llplt -fi(s,)lj need not converge to zero, and if Axiom L is weakened 
to the continuity of w((w’)~, .) at (46(s)) for each s, then the distance 
lIpI -,fi(s,)il may converge to zero arbitrarily slowly. 

The inequality (1) depends on every trader i using the estimation 
procedure {ebtjra2. If some trader departs from this procedure, the 
estimation procedures {ei,,},, 2 may fail to converge. 

5. THE GENERICITV OF AXIOM L 

The purpose of this section is to motivate Axiom L by demonstrating a 
sense in which it can be regarded as a typical rather than an exceptional 
property of stochastic environments. We will do this by choosing a 
topology for stochastic environments and showing that the regularity 
property mentioned in Section 4.2 above is satisfied on an open and dense 
set of environments. Unfortunately there is no single most natural topology 
for finite-state stochastic environments. Some topologies fix the support of 
n, as we have done above, or at least fix the cardinahty of the support, and 
topologize other characteristics of the environment in a natural way. This 
approach yields results such as the well-known theorem of Radner [3 4 j 
that fully revealing rational expectations equilibria exist generically (see 
also [ 11). However, if the topology is weakened to permit perturbations 
which add to the support of 71 a “nearby” point with small probability, the 
result is lost [9]. 

In order to avoid such ambiguities we will use a topology which does not 
fix the cardinality of the support of rc. Unfortunately this requires abandon- 
ing the convenience of the fixed support S x C we have employed above. 
Several other natural modifications will also be made. The space of joint 
signals S becomes the product I7,(Z’ x Ry + ), where Z’ is no longer 
required to be finite. Since the set of future states .X is used merely to 
parameterize the dependence of trader’s utilities on the future, we will 
define C to be the space of IV-tuples of utility functions themselves. 

5.1. DEFINITIONS. Let U denote the space of utility functions 
ZI: WY, -+ R satisfying 

(1) u is C2 and for each x E Ry , , Du(x) E Ry , , and D*u(.t-) is 
negative definite; and 

642.36/Z-6 
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(2) for each XE Ry,, cl {x’g Ry+ : u(x’) 3 u(x)} c Ry,, where cl 
denotes closure in R”. 

Let U have the topology of uniform C2 convergence on compact subsets 
of R!y!, , and let C = UN. For each i, define vi: Ry, x Z--f R by vi(x, G) = 
v’(x; d,..., UN) = 22(x). 

For each i, let z’ be a separable metric space, and let S’= 2’ x Ry+ . Let 
S = ITi,!?, and let JzZ~(S x Z’) denote the set of probability measures on 
S x Z: with finite support. Each z E J#~(S x ,Z’), together with the N-tuple of 
state-dependent utilities (v’)~ defined above, determines a stochastic 
environment (71, @I[)~) which conforms closely enough to the definition of a 
stochastic environment in Section 2.1, that all results in the preceding sec- 
tions apply. The principal distinction is that the support of 7c is no longer 
equal to Sx C, which is now an infinite set, but this merely requires replac- 
ing the term “every (s, 0)” with “almost every (s, a)” where necessary. Also, 
the utility functions v’ defined above do not satisfy assumption (A.l) of 2.1 
since v’(., G) is not defined on the boundary of Ry, but condition (2) 
above ensures that all equilibria are interior, so this difference can be 
ignored. 

By identifying each 71 E J&‘~(S x C) with (71, (v’)~) as defined above, we will 
refer to elements of J&‘~(S x .Z) as stochastic environments. Let H denote 
the space of all compact subsets of Sx C with the Hausdorff metric, and 
define h: &AS x 2) + H by h(n) = supp X, where supp z denotes the sup- 
port of 71. The topology on JZZ~(S x C), which we need not specify com- 
pletely, is assumed to satisfy 

(3) h is a continuous open map. 

5.2. Remarks. Statement (3) requires the topology on J@~(S x C) to be 
weak enough to allow small perturbations of supp 7~;, and strong enough so 
that small perturbations of 71 lead to small perturbations of supp 7~ That is, 
h behaves like a projection map. An example is the metric space obtained 
by defining the metric 

d(7c, 71’) = dw(7c, d) + d,(supp 71, supp 7L’), 

where d, is a metric for the topology of weak convergence and d, is the 
Hausdorff metric. This topology has appeared in the core convergence 
literature, of course without the finite support requirement (e.g., [S, 
Theorem 2, p. 1921). 

With the above definition of C, it is no longer reasonable to suppose that 
the ifh trader observes the complete description of the realized state 
G = (u’)~ in each sample period. Rather, it becomes more natural to assume 
that in each sample period t, the ith trader observes only the ith coordinate 
D: = u:. However, this modification requires only the obvious notational 
changes in the proof of Proposition 4.3. 
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We now give a precise definition of the regularity condition described in 
Section 4.2. 

5.3. Regular Stochastic Environments 

A (nonstochastic) exchange environment (CO’, ui)yZ I E (Ry, x i7)N is 
regular if for each Walrasian equilibrium price p, the Jacobian of the 
aggregate demand function is nonzero at p [ 141.’ For each 7e E J&.(S x C), 
let nJIs denote the marginal distribution on S. For each s~supp n3, 9et 
Q(s) = (($qiE QN: f or each i there is some subset E’ c S satisfying 

(I) s E E’ and for each s’ E I?, s’j = s’; and 

(2) for each event Fc C, 4’(F) = z(E’x F)/z(E’x C)]. 

A stochastic environment 71 E AF(Sx C) is regular if for each s= 
(2, oi){ E supp ns and each (cJV)~ E D(s), the exchange environment 

Cd C,qqo) v’(., 0)); 

is regular. Let 9” denote the set of regular stochastic environments in 
JzxF( s x C). 

5.4. Remarks. Given a stochastic environment II, the N-tuple of con- 
ditional distributions (&(s));~, , defined in Section 2.3 above, is in @s(s) for 
each a. This fact implies directly that if z is regular, the function w  can be 
chosen so that Axiom L is satisfied. 

5.5. PROPOSITION. YR contains an open and dense subset of A!F(S x 2). 

ProoJ We will construct an 
G, = {nEJ@F(SXz): 

open dense set G c YE” Let 

(I) if (s, 0) = ((z’, o’)~, a) and (s’, 0’) = ((s”, CO”);, a’) are distinct 
elements of supp TC then 09 #CO” for all i; and 

(2) for each ((z’, co’), (u’)~)Esu~~ n’, the exchange environment 
(wi u’)~ is regular). 

It follows directly from [14, Theorem 21 that G, is dense. Also, (1) 
implies that for each (s, CT) E supp T-C, Q(s) contains only the N-tuple (@)i, 
where di is the degenerate distribution at CJ for eat ence the regularity 
of 71 follows from (2). 

Let n E G, and for each (s, a) = (s, (u’)~) E supp 71, let -Qi(s 
(II#i,(s, CJ)) be a neighborhood of (s, (u~)~) in S x UN = Sx C wit 
properties that 

(3) M;(s, c) is convex for each i; 

5 That is, the matrix representing the derivative of the aggregate demand for the first M-l 
commodities with respect to the first M-l prices has a ncmzero determinant. This definition is 
equivalent to [ 14, Definition, p. 71. 
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(4) for each (u”)<E niML(,, a) and each (zri, cJ~)~E .A’&, a), 
(Cd- ~4’~)~ is a regular exchange environment; and 

(5) if (s, g) # (s’, Q’), then for each (zf , o’,)~E AC&, a), (zi, o!Jje 
Ju;(s’, (T’), Of #CD: for all i. 

Let 7~’ E AF(S x 2) with supp rc’ c U (S,B)ESuppn4(S~ fJ) x (niJ-:(S> 0)). 
Then (3) and (5) imply that for each (s’, o’) E supp rc’ and each (c$‘)~E @(s’), 
there is some (s*, a*) E supp n such that s’E&&s*, CJ*), and the utility 
function C,&(o) v’(., rr) E N~(s*, rr*) for each i. The regularity of n’ now 
follows from (4). 

Hence each ‘II E G, has an open neighborhood in yX. The proof is com- 
pleted by defining G as the union of these neighborhoods. 

5.6. Remarks. Topologies which satisfy (3) of 5.1 may be considered 
too weak in that small perturbations in supp X~ do not preserve the 
exogenous information structure. In particular they can lead to drastic 
changes in the initial conditional distributions (&,)i. The simplest way to 
counter this effect is to fix supp 7ts and to use the relative topology on the 
set R = { rc’ E AF(S x C): supp rck = supp rrs>. This topology leads directly 
to the generic existence of fully revealing rational expectations equilibria. It 
seems likely that by further relining this relative topology by permitting 
only small perturbations in the probabilities of joint signals as well, that is, 
by requiring the continuity of the function z’ -+ max { Irc’Js) - all: 
s E supp zs} on R, the analogue of Proposition 5.5 could be obtained.6 

The principal reason for using topologies satisfying (3) is that they per- 
mit, in certain open regions of A’JS x Z), dense sets of stochastic environ- 
ments which have no rational expectations equilibria (when traders con- 
dition expectations on private information and equilibrium prices alone). 
This can be shown as follows. Let 71 E A!JSx C). Since we are 
demonstrating density, we can choose rc to satisfy 5.5 (1). That is, each 
trader’s endowment identifies the future state. Let (s, (r) = ((z’, cJ)~, (u~)~) E 
supp n and let A= rc(s, c). We will assume that 

the exchange environment (oi, ui)i is regular and has a unique 
Walrasian equilibrium. (*I 

Choose a nearby point (s’, a’) = ((z”, o’~)~, (u”)~) and a small number E > 0 
with the properties that 

(1) w’i#wl and o ” is distinct from trader l’s endowment at all 
other points in supp 7~; 

6 In a fully revealing rational expectations equilibrium the probabilities of the joint-signals 
in the support of nS are irrelevant. Since these probabilities may influence the conditional dis- 
tributions (&(s))~ even if fr , say, is a l-l function, the topology must restrict the extent to 
which they can be perturbed. 
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(2) cd1 =d for all i> 1; 

(3) the exchange environments 

(a) (09, u’)~ 

(b) (u’j, u”)i 

(c) ((cd, u’), (co’, (A(1 -&)+&)-l(A(l -&) Ui+EU’i))i>l) 

Cd) ((u’“, zf”), (cd, (A(1 -&)+E)-l(i(l-E) Ui+EU’i))i>I) 

all have unique Walrasian equilibria (for (a) this is just (*)); and 

(4) the equilibrium prices for (a) and (b) are identical, an 
equilibrium prices for (c) and (d) are distinct. 

Let K’ be the stochastic environment described by 

.‘(d’, a”) = (1 - E) n(s”, G”) if (s”, a”) E supp 71; 

& if (s”, G”) = (s’, (T’); and 

=o otherwise. 

Then conditions (l)-(4) directly contradict the existence of a rational 
expectations equilibrium. Condition (*), which makes possible the satisfac- 
tion of (3), confines the demonstration of density to open sets of stochastic 
environments which have such a point in their support. 

Proposition 5.5 and the above remarks indicate that a large class of 
stochastic environments are sufficiently regular to permit w  to be chosen to 
satisfy Axiom L. Furthermore, this class is not dependent, in its elements or 
the measure of its size, on the existence of rational expectations equilibria. 

6. CONCLUDING REMARKS 

Our main result, Proposition 4.3, strengthens the intuitive plausibility of 
expectations equilibrium theory. It asserts that traders who begin with no 
knowledge of the characteristics of other traders, and no knowledge of the 
probability distribution governing the uncertainty they face, can learn to 
form correct expectations from repeated observations of prices and realized 
states. Also, even though traders use prices to infer the private information 
of others, a trader’s learning procedure does not require any data involving 
other traders’ private signals. Such a result appears to be possible only in 
recursive dynamic models of expectations equilibrium, such as the one 
developed in [lo] and used in the present paper. Under the conventional 
definition of price-conditional rational expectations equilibrium, the 
existence problem, and the discontinuity which causes it preclude any 
general convergence results. 
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Proposition 4.3 is stated as an existence result to emphasize that we have 
not attempted any qualitative comparisons among alternative successful 
estimation schemes. One especially troublesome feature of the scheme we 
have constructed is that the convergence of a trader’s estimated expec- 
tations depends on the use of the same estimation procedure by other 
traders. This raises the possibility that convergence could be impaired if 
traders seek to somehow tailor their estimation procedures more closely to 
their own characteristics. 

More work is also needed to enlarge the scope of the existence result. 
The most immediate question is whether or not the Lipschitz condition, 
Axiom L can be dropped. The extension to stochastic environments with 
an infinite joint-signal space S also remains problematic. 
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