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Convergence of Least-Squares Learning in 
Environments with Hidden State Variables 
and Private Information 

Albert Marcet 
Carnegie-Mellon University 

Thomas J. Sargent 
Hoover Institution and Federal Reserve Bank of Minneapolis 

We study the convergence of recursive least-squares learning 
schemes in economic environments in which there is private infor- 
mation. The presence of private information leads to the presence of 
hidden state variables from the viewpoint of particular agents. By 
applying theorems of Ljung, we extend some of our earlier results to 
characterize conditions under which a system governed by least- 
squares learning will eventually converge to a rational expectations 
equilibrium. We apply insights from the learning results to formu- 
late and compute the equilibrium of a version of Townsend's model. 

I. Introduction 

This paper studies the convergence of least-squares learning mech- 
anisms to limited information rational expectations equilibria. We 
study linear models in which agents have access to information on 
only a subset of the relevant state variables. The models cover situa- 
tions in which there are distinct groups of differentially informed 
agents. We proceed by applying to our system the recently developed 
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"ordinary differential equations" approach of Ljung (1977).' This 
involves extending some earlier results of Marcet and Sargent (1989) 
to handle situations with private information and hidden state vari- 
ables. We give sufficient conditions for almost sure convergence to a 
limited information rational expectations equilibrium and describe 
necessary conditions for local convergence. 

Our conditions for convergence restrict an operator that maps a set 
of perceived vector autoregressions into a set of actual (or optimal) 
vector autoregressions. This operator is determined by the particular 
economic model in hand. The operator is related to but distinct from 
the operator governing convergence in the class of models studied in 
Marcet and Sargent (1989). The presence of private information and 
hidden state variables alters the relevant operator, in essence by com- 
posing the key operator in Marcet and Sargent with another "pro- 
jection" operator. 

Section II describes a class of models with limited and private infor- 
mation and asserts a convergence proposition for least-squares learn- 
ing mechanisms.2 Section III applies our framework in order to for- 
mulate and compute the equilibrium of a version of Townsend's 
(1983) model. In his model, firms with private information face signal 
extraction problems involving endogenous variables whose laws of 
motion are themselves determined by the solutions of those signal 
extraction problems. Models with structures like Townsend's (see also 
Lucas 1975) have proved to be difficult to formulate in ways that 
facilitate computing their equilibria. The purpose of Section III is to 
show how our results on convergence of least-squares learning can be 
used to help in formulating these models and to suggest alternative 
tractable algorithms for computing their equilibria. 

II. The Model and a Convergence Proposition 

There is an n X 1 state vector z,. Let z,, be any n, X 1 vector z,, = eiz, 

where 1 cni ' 71 and ei are selector matrices for i = a, b, c, and d. 

' The ordinary differential equations approach is described and applied by LjuLng 
and Sdderstr6m (1983) and Goodwin and Sin (1984). See also Kushner and Clark 
(1978). Woodf'ord (1986) applies some of' LjuLng's methods to a nonlinear dynamic 
model. 

2 Bray's (1982) model and a version of' Frydman's (1982) model are members of' the 
class of' models described in Sec. II. Analyses of' these models are contained in Marcet 
and Sargent (I 987). Papers about least-squares learning in models without hidden state 
variables include Bray and Savin (1986) and Fourgeauid, Gourieroux, and Pradel 
(1986). Marcet and Sargent (1988) present an informal interpretative survey of' the 
literature on least-squares learning. 

' The ability to compute the equilibria of' these models rapidly would contribute to 
their being econometrically tractable. It is probably true that the technical difficulties in 
computing the equilibria of' models of' the style of' Lucas (1975) and Townsend (1983) 
have impeded their adoption by other researchers. 
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There are two types of agents, types a and b, who observe z, = e,Cz, 
and Zbt = ebzt, respectively, possibly distinct subvectors of zt. Agents of 
type want to predict future values of possibly distinct subvectors Zk(,) 

= ek( ,)Z,, where k(a) = c and k(b) = d, and use the current observation 
on z( , in order to form those predictions. The selection matrices e, eb, 
en, and el are constant through time. There is an economic model that 
maps beliefs of agents a and b into actual outcomes in the following 
way. If the beliefs of agents of type a and type b were given by the 
time-invariant rules 

E*(z, lz,(t- I) = IPZat- 1, 

E*(zdt |Zl- l) = bZbt,- I for all t, 

then the actual law of motion zt would be given by 

Zt = T(O)z,- I + V(P)Et, (2) 

where Et is an m x 1 vector white noise with EEtE' = Q.,(I = (Isa, ib), 

and T and V are operators that map matrices into matrices conform- 
able to the objects they operate on. A particular economic model will 
determine the operators T and V. In the next section, we describe a 
version of Townsend's model and display the operators T and V that 
are associated with it. 

We are interested in regions of the parameter space P for which (2) 
implies that z, is a covariance stationary stochastic process. For this 
purpose, we define the following set: 

D, =P I{the operators T(13) and V(Pi) are 

well defined, and the eigenvalues of T(I) 

are less than unity in modulus}. 

For P E D,, (2) generates a covariance stationary stochastic process, 
for which the second-moment matrix Eztzt is well defined. The matrix 

Mz(P) = Ez,z satisfies the discrete Lyapunov equation 

Mz(P) = T(P)Mz(P)T(P)' + V(jB)QV(P)'. (3) 

A variety of algorithms are available for solving (3) for Mz(B). We use 
the following notation for some submatrices of Ezz,': 

Mz (PB) =Eztz', / a, b, 

MZj z(P) = Ez1zr, j a, b. 

In general, each of these moment matrices is a function of r. 
If the actual law of motion for z1 is (2), then it can be calculated that 

the linear least-squares projection of Zk(_j)t on z.,_ I is given by 

E(Z(zL ;s >Iz E.t O = S (BP z + . (4) 
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where 

S,(f) = ek(,)T(P)[Mz(I)-'Mzjz()]', for] = a, b. (5) 

The operators S,( a) map the perceptions If = (W, ib) into the pro- 
jection coefficients (S(,(P), Sb(P)). Let us define S(W) = (S,(P), Sb(1)). 

We now advance the following definition. 
DEFINITION. A rational expectations equilibrium with asymmetric 

private information is a matrix I (it, Iub) that satisfies " S(IB). 
Thus a rational expectations equilibrium is a fixed point of the 

mapping S. Let us denote such an equilibrium I _. Notice that this 
concept of a rational expectations equilibrium is relative to the fixed 
information sets zt- I and Zb- I specified by the model builder. 

We now describe the model of learning. ForJ = a, b, we let {?ltf} be a 
positive, nondecreasing sequence with limt. cyt = 1. Beliefs of 
agents of type j (= a, b) evolve according to the following scheme. 
Define Pt and Rft by 

jt = Fist- l + ( I' )R7. I{Zjt-2[Zk(j)t-I - Zt-2] }, 

R = Rjl + ( c - )(z1t lt 1 Rf l )- (6a) 

Let D2J C D1, C RlkjX(fl1 ) ,j a, b. The algorithm generating beliefs at 
t is then 

(Ii,,, R_ pit, R1.) if (13,t, R ,t) & (6b 
some value in D2j 

if( 
J., R,)5tD11. 

Two distinct sets, DI, and DC2 , are used in defining the projection 
facility in order to properly invoke some technical arguments made 
by Ljung (1977). In practice, we shall be free to choose D21 to be a set 
contained within but arbitrarily close to DI1. In the applications below, 
we shall always think of D2J as being arbitrarily close to D1J and shall 
thus focus our attention on specification of the set DI1.4 

If D2, = DI - R1k,)X(1/), then the "projection facility" on the sec- 
ond branch of (6b) is never invoked, and with suitable initial condi- 
tions, (6a)-(6b) simply become a recursive version of weighted least 
squares: 

In the special case that {a;,} = {1}, the formula above is just ordinary 

^ Ljung and S6derstr6m (1983) frequently proceed in this way, specifying a pro- 
jection facility in terms of' a single set. 
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least squares. In cases in which a nontrivial projection facility is speci- 
fied by choosing DI1 to be a proper subset of IR ?X(Ti), it is natural to 

set "some point in D2 " in (6b) equal to (I?t' R.,,), where t' is the last 
time that (Pi,, R11) E D21. With D21 set arbitrarily close to DI, (6) then 
amounts to least squares adjusted sequentially to ignore observations 
that threaten to drive (,( R-,) outside of the set DI_. When the se- 
quence {cyt} is chosen to be strictly increasing, it leads to adjusting the 
least-squares algorithm to weight more recent observations more 
heavily. (The restriction that limbo c=, 1 restricts the eventual rate 
of forgetting in a way sufficient to permit convergence of j within 
the system to be studied below.) 

The sets D1J and D21 will play important roles in one part of the 
proposition to be stated below. One role of the sets DI1 and D21 can be 
to force the learning algorithm to remain within the set D, defined 
above. 

We assume that when agents are learning according to (6), the 
actual law of motion is determined by substituting P, = (IL, PO) from 
(6) for IP on the right side of (2): 

Z. = T(Pt 1)ztI + V(Pt I)E,. (7) 

The system that we want to study is (6) and (7). 
Associated with the system of stochastic difference equations (6) 

and (7) is the following ordinary differential equation: 

I [R'M 
(~)[SbPj~ -8 dt R(, MR (P) - R (,8) 

dt -Rf Rl'MZb(I [Sb(I9) -ah~] (8 
[Rb L Mz,(P) - Rb 

Defining R = (R,1 R,,), we can represent (8) in the vector form 

d (col(I)) -g(P, R), 

where col(d) is a vector obtained by stacking columns of R on top of 
each other, and col(R) is a vector obtained by stacking columns of R 
on top of each other. For the purpose of studying the linear approxi- 
mations that govern the local behavior of (8), we define 

_d h (P R) dgolPco R R). 

Let {(P(t), )},e1, denote the trajectories of (8). We define the 
set DA to be the domain of attraction of the fixed point ( R) of (8), 
which we assume to be unique. That is, DA consists of the set of (P(O), 
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R(O)) such that when (0(0), R(O)) C DA, then (8) implies lima ((t), 
R(t)) = (W /, R/). 

We use a set of six assumptions about system (6)-(7), which are 
described in the Appendix. Among these, the first five are in the 
nature of regularity conditions that are easy to verify and are typically 
satisfied for the kinds of applications we have encountered. It bears 
mentioning that assumption 1, which states that S has a unique fixed 
point, could be relaxed to permit multiple fixed points. Then our 
propositions would transform to statements about each fixed point of 

Assumption 6 can be considerably more difficult to verify than 1-5. 
Assumption 6 is used in only the first part of our four-part proposi- 
tion. For this first part, we also use the following assumption. 

ASSUMPTION 7. For J = a, b, assume that D2J is closed, that DIJ is 
open and bounded, and that 0 C D, for all (0,r, R,, Ihb Rb) C DIa X 
Dlb. Assume that the trajectories of (8) with initial conditions (0,(O), 
Ra(O), Pb(O), Rb(O)) E D2 x D2X never leave a closed subset of DI, X 
Dlb. 

We now state proposition 1. 
PROPOSITION 1. Assume that (a,, R,, z,) are determined by (6) and 

(7). Assume that assumptions 1-5 are satisfied. 

i) Assume also that assumptions 6 and 7 are satisfied and that DI , x 
Dlb C DA, where DA is the domain of attraction of (a/, R/) in (8). 
Then P [0, W] 1. 

ii) Let 7 of, and assume that M, (0) is positive definite for j = a, b. 
Then P[, -r] 0. 

iii) If h(R1, Wt) has one or more eigenvalues with strictly positive real 
part, then P[, -* W] = 0. 

iv) h(1t, R/) has (n, )2 + (nb)2 repeated eigenvalues of negative one. 
The remaining eigenvalues are the same as those of the following 
derivative matrix: 

(a 0)col[Sa(I) - ]1 
V anJCOI[Sb(P) - Oh]d 13"=13, 

This concludes the proposition.5 
Statement i asserts that sufficient conditions for It, -f W almost 

surely as t -x are that the set DI, x Dlb generated in the projection 
facility be contained in DA and that at (and close to) the boundary of 
DI, X Dlb, the differential equation (8) have trajectories that point 

5 Proposition 1 can be proved by retracing the steps used to prove propositions 1, 2, 
and 3 of Marcet and Sargent (in press). We do not present that proof here. 
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toward the interior of Dil, X DIb. Statement ii asserts that the only 
possible limit points of the learning scheme are rational expectations 
equilibria. Statement iii asserts sufficient conditions for nonconver- 
gence of the learning scheme. Statement iv implies that everything 
can be learned about the local stability of the learning scheme by 
studying the differential equation 

dt ( be SI, (P) - he (b" 

Proposition 1 can be used to study convergence of least-squares 
learning in the context of a variety of models that have been pro- 
posed. Marcet and Sargent (1987, 1988) describe applications for 
several such models. In terms of the literature on least-squares learn- 
ing, we find proposition 1 of use for several purposes. First, it some- 
times makes it possible to strengthen results that have been obtained 
by other means (see, e.g., the analysis of Bray's [1982] model in Mar- 
cet and Sargent [1987]). Second, application of the proposition can 
markedly shorten the length of arguments needed to establish con- 
vergence results (again see Marcet and Sargent [1987]). Third, the 
proposition permits a unified interpretation in terms of the proper- 
ties of the S(P) operator for the apparently disparate conditions for 
convergence that previous papers have discovered. 

In the remainder of this paper we focus on another way that propo- 
sition 1 can be used, namely, to guide the computation of a rational 
expectations equilibrium. As a laboratory for our study, we use a 
model of Townsend for which the equilibrium has been difficult to 
formulate and to compute by means other than those suggested by 
proposition 1. 

III. A Model of Townsend 

This section uses an algorithm suggested by proposition 1 to compute 
the equilibrium of a version of Townsend's (1983) model. We adopt 
his formulation of the demand and cost structure but reformulate his 
way of modeling firms' forecasting problems. Townsend formulates 
that forecasting problem by imputing to firms more understanding of 
the economic structure than we do. He models each firm as knowing 
that the mean beliefs of firms in other industries are hidden state 
variables about whose laws of motion the firm itself forms beliefs. We 
model the firm as forecasting its own price by using a vector autore- 
gression that includes its own price, the price of the other industry, 
and all other variables in its information set. This transformation of 
Townsend's "forecasting the forecasts of others" into the problem of 
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"forecasting output price using vector autoregressions" turns out to 
be a reformulation that leaves the economic content of his equilib- 
rium concept unaltered. We shall return to this point later in this 
section. We now turn to describing our version of Townsend's model. 

There are two industries, indexed by j = a, b, consisting of N 
identical firms. The representative firm in industry j has objective 
function 

E)E bt Pj[fkjt - wujk,, - (2)(k ,+I - k/,)21 d > 0, 0 < b < 1, (10) 

where 

p, = -A/Kj, + uP, A > 0,() > 0, (11) 

K, = NkM, N > 0, (12) 

Uj, = 0, + Ej1, (13) 

Ot= p0t-I + V,, p < 1, (14) 

where (E, zl,) are mutually orthogonal white noises, pf, is the price of 
output in industry j at t, k,, is the capital stock of the representative 
firm, f. k,, is the firm's output, uJ, is a random shock to demand, 0, is a 
hidden conmmion component to the demand in industries a and b, and 
w1, is a serially uncorrelated rental rate on capital in industry j, as- 
sumed orthogonal to wi, for i 4 j and to all components of I-,, v,. We 
have omitted constant terms. Firms in industry a observe the history 

{P(, K,, pi); s ' t}. Firms in industry b observe the history {pi,, Kilo, pa; 
S t. The structure of demand described by (13)-(14) creates a 
situation in which price in the other market is a useful signal about 
future movements in price in one's own market. The only relation- 
ship between the two industries is this informational link. 

We assume that firms in each industry solve their optimization 
problem by positing that the variables in their information sets follow 
a vector autoregression. r They use this vector autoregression to solve 
the "prediction part" of the linear-quadratic control problem induced 
by (I(0).; In this section, we assume for convenience that firms in each 
industry fit a first-order vector autoregression to their observables.7 

ti Because ot the linear-(quadratic structure of this problem, it separates into "control 
and "prediction" parts (see Sargent 1987, chap. 14). 

[ This is a restriction and causes the e(luilit)rium that we compute to deviate from the 
one that Iownsenld wotild recover as he drives toward infinity in his calculations in sec. 
8. B1v modeling agents ats fitting tith-order vector autoregressions and driving n to 
infinity, we woolul recover precisely Townsend's j = x tloel. We shall return to this 
point at the end of this se(ction. 
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We now show how our version of Townsend's model can be 
mapped into the setup of Section II. The state and noise of the model 
at t are specified as 

Kat" Eat 

U~~~l,6~ht 
z, = Kb , =Et Vt 

Ubt Wat, I 

LOf Wbf- I 

Firms in industryj behave competitively. To maximize (10), firm 
needs to forecast p,. We set 

[Kat 1 Kbtl 
Zat = Zt = Uat 'Zt 

= Zdt = Ubt 

PhlPat] 
Thus firm a observes both Kt and pat (because pat is a linear combina- 
tion of K,, and u,,,), but only Pbi. The situation is reversed in industry b. 

Note that 

Ka[t 

Ka t 1 0 0 0 0 Uat 

Uat 0 1 0 0 0 Kbt, 

Pbt 1 0 0 - Af 1 0] Ubt 

Ot 
- 

which defines e, and eh via Zt = eazt and Zbt = ehZt. Note that pat = 

Caz, and Pbt = ChZht, where c, = Cb = [-Af 1 0]. 
The perceived law of motion of firm j is 

Z. = jZjt,,- + nb', (15) 

where mt is a vector white noise and i is a 3 x 3 matrix. The firm uses 
the perceived law of motion (15) to solve its Euler equation for a 
decision rule. Following Townsend and noting that the roots of the 
polynomial [1 + (1 + b- ')L + b- 'L2] are (1, b- 1), we can represent 
the Euler equation for firm j as 

kt + I= k1t + d'-f >3 b1Etpjt+1+ 
- - ldzwt. (16) 

i=o 

Using the perceived law of motion (15) to evaluate the expectations 
on the right side of (16) gives (see Sargent 1987) 

kt+I = 
kit 

+ d- 1f(b I,) lejzt -d- 
bWo 
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which simplifies to 

kjt+= kkt + d-1fbcjI1[I - b,1-1ezt-d-1wjt. (17) 

Multiplying both sides of (17) by N and using (12) gives 

Kjt+= Kjt + Nd-1fbcjI([I - b,9]-lejzt - d-'Nwjt. (18) 

Equations (15) and (18) permit us to define the mapping T(IP) in the 
setup of Section II. When the perceived laws of motion are given by 
ia and fib in (15), then the actual law of motion for zt is given by 

Kat -T II (0j,) T12(,), T13(0,(), T14 (P, 0 ~Kt I 
Uat 0, 0, 0, 0, P Uat-1 

Kbt T21(0b), T22(0b), T23(0b), T24(Ib), 0 Kbt-I 

Ubt 0, 0, 0, 0, p bt- I 

(19) 

0 , O. O. -d- IN, 0 eat 

i1, 0, I1, 0, 0 ENt 

+ 0, 0, 0, 0, -d- N, vt 
O, 0, 1, 0, 0 Wat- 
O. O. 1,I, O. 0 J LWbt- I 

where the mappings Thk(pl) are given by (18). Equation (19) can be 
written as 

Zt = T(O3)zt- 1 + V(Pl)Et, (20) 

which is equation (2). This model is a special case of the model studied 
in Section II. 

Because this is a big system-there are 18 free parameters in 1, and 
fib-we have not calculated analytically the eigenvalues associated 
with the right side of (9), which would govern local stability of a least- 
squares learning mechanism. For a system of this size, that is an im- 
possible task. Instead, a numerical analysis of the differential equa- 
tion (9) must be resorted to. To accomplish this, one needs formulas 
for T(Pil) and for the terms M,,,(P) -Mz, (I), which compose Sj(p). We 
use equation (18) and the solution of the discrete Lyapunov equation 
(3) to compute these. 

In the context of a model as complicated as Townsend's, proposi- 
tion 1 carries insights about alternative ways of computing a rational 
expectations equilibrium. We illustrate these by describing some cal- 
culations for Townsend's model. For several sets of parameter values, 
we computed a rational expectations equilibrium by numerically solv- 
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ing the "small" ordinary differential equation (9), which we represent 
here as 

d 6=S(6)- (21) 

We used a version of Euler's method to solve (21). In particular, we 
computed {I,} by solving 

Wt = Pit - + y[S (Pt - 1) - Pt - I ] (22) 

for a small value of 'y > 0. We then used a finite difference method to 
evaluate the derivative matrix of the right side of (21) at the fixed 
point P/1 of (21) and computed the eigenvalues of this matrix.8 For 
each set of parameter values that we studied, our calculations indicate 
that the real parts of all eigenvalues are negative, implying that for 
these parameter values, a least-squares learning scheme would be 
locally stable. 

Tables 1-5 report the results of our computations for Townsend's 
model with five settings of parameter values. common for all five 
tables are the following parameter values: N = A = f = b = = 1 
for j = a, b and E&/ = 2, Ew, E=Wb,. Remaining parameters are 
described in the tables. The parameter settings induce symmetry be- 
tween the two industries, so that Silf = P~f = Sa,(P,/, 0itbf) = S b(t,, 13bl 1) 

We report All as well as T(P1). The tables also report the eigenvalues 
of the 18 x 18 matrix 

- Col[S(,) - s] (23) 

For each set of parameter values, 12 eigenvalues of At equal - 1. The 
remaining six are always real and negative, so that the conditions for 
local stability of the learning mechanisms are satisfied. 

The tables reveal that the coefficient on KJ, - in the equilibrium law 
of motion for KJ, becomes large' when either (a) var(wp,) is small (com- 
pare table 1 with 2 and table 3 with 4), (b) p is large (compare table 1 
with 3 and table 2 with 4), or (c) d is large (compare table 2 with 5). 
Informally, the smaller is the variance of wj,, the less the variation of K 
comes from an idiosyncratic white noise, making K, more highly auto- 
correlated. Also, if p is large, there occurs more persistence in the 
demand shock, making K, more correlated with K,_ ,. Notice that the 

' We imposed accuracy levels of five significant digits in determining whether f, had 
converge(1 to S(IB,) and in computing successive difference quotients used to approxi- 
mate the derivative of S(P,). 

'The coefficient on K,, -- in the equilibrium law of motion for K,, is the element (1, 1) 
of fr1 and the elements (1, 1) and (3, 3) of T(P). 



TABLE 1 

EQUILIBRIUM OF TOWNSEND'S MODEL 

var(w,,) = 1, p = .8, d = 1 

PI at the Fixed Point of S 

.44556 .21912 .06645 

.10814 .45284 .12688 

.09530 .11556 .22658 

T-Mapping 

.44557 .21913 - .06645 .06645 .00000 

.00000 .00000 .00000 .(0000 .80000 
- .06645 .06645 .44557 .21913 .00000 

.00000 .00000 .00000 .00000 .80000 

.00000 .00000 .00000 .00000 .80000 

Eigenvalues of Ak 

-5.297 -4.748 - 3.936 - 2.807 -3.801 -2.987 -1.000 

NOTE. 

z, = [K,,, u,,, Kb,, Ub,, et,. 

zt = [K,,, U,,, ph,], 

Zbt = [Kbt, Ubt, P,11] 

TABLE 2 

EQUILIBRIUM OF TOWNSEND'S MODEL 

var(wit) = .1, p = .8, d = 1 

at the Fixed Point of S 

.61851 .17494 .11070 

.39798 .34513 .20993 

.04866 .10034 .15335 

7'-Mapping 

.61852 .17494 -.11070 .11070 ,.00000 

.00000 .00000 .00000 .00000 .80000 
-.11070 .11070 .61852 .17494 .00000 

.00000 .00000 .00000 .00000 .80000 

.00000 .00000 .00000 .00000 .80000 

Eigenvalues of At 

-16.336 -11.400 - 3.280 -2.939 - 2.528 -2.456 -1.000 

NOTE. 

zt = [K,,t, U,,, Kb,, Ubt, st]', 

Zat = [Ka,,, Ut,, Pbt]. 

zbt = [Kb,, Ubt, P,1,] 



TABLE 3 

EQUILIBRIUM OF TOWNSEND'S MODEL 

var(wj,) = 1, p = .95, d = 1 

01 at the Fixed Point of S 

.49988 .27533 .05471 

.19088 .53446 .09758 

.11550 .12323 .22575 

T-Mapping 

.49989 .27534 - .05472 .05472 .00000 

.00000 .00000 .00000 .00000 .95000 
- .05472 .05472 .49989 .27534 .00000 

.00000 .00000 .00000 .00000 .95000 

.00000 .00000 .00000 .00000 .95000 

Eigenvalues of At 

-8.352 -7.804 - 2.816 - 3.026 - 3.738 -3.795 -1.000 

NOTE. 

Z. = [Kat, ual, Kbt, Uht, Otl', 

zut = [K,t, uat, p,,, 

Zbt = [Kbt, Ubt, Pa] 

TABLE 4 

EQUILIBRIUM OF TOWNSEND'S MODEL 

var(wj,) = .1, p = .95, d = 1 

P,; at the Fixed Point of S 

.72979 .19071 .07714 

.54594 .35923 .13792 

.08717 .06766 .14128 

T-Mapping 

.72979 .19071 - .07714 .07714 .00000 

.00000 .00000 .00000 .00000 .95000 
- .07714 .07714 .72979 .19071 .00000 

.00000 .00000 .00000 .00000 .95000 

.00000 .00000 .00000 .00000 .95000 

Eigenvalues of At 

-63.531 -42.413 -3.291 -3.171 -2.712 -2.417 -1.000 

NOTE. 

zt = [Kt, uat, Kb,, Ubt, Ot], 

z, = [Kat, Uat, Pb] 

Zbt = [Kbt, Ubt, pat]- 
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TABLE 5 

EQUILIBRIUM OF TOWNSEND'S MODEL 

var(wj,) = . 1, p = .8, d = 2 

(a at the Fixed Point of S 

.67827 .12927 .08381 

.36737 .35693 .21510 

.05317 .12995 .20676 

T-Mapping 

.67828 .12927 - .08382 .08382 .00000 

.00000 .00000 .00000 .00000 .80000 
- .08382 .08382 .67828 .12927 .00000 

.00000 .00000 .00000 .00000 .80000 

.00000 .00000 .00000 .00000 .80000 

Eigenvalues of At 

-9.861 - 7.471 - 2.688 - 2.382 -1.921 - 1.940 -1.000 

NOTE. 

z = [Kau, Ua,, Kb,, Ubt, Ot] 

Zau = [Kai, Uut, Pbt], 

Zb= [Kb,, Ubt, Pau 

stronger is the dependence of Kjt on Kjt- l, the larger are the eigen- 
values in absolute value. 

Notice that 

a co S() = A + I, (24) 

where I is the identity matrix. Equation (24) implies that X is an 
eigenvalue of Al iff (X + 1) is an eigenvalue of the left side of (24). For 
the calculations reported in tables 1-5, several eigenvalues of Al + I 
are larger than one in absolute value. Therefore, S is not a contraction 
mapping (even locally about of). For such parameter values, itera- 
tions of the kind pursued by Townsend (1983) and Evans (1985), 
which set y = 1 in (21), would not converge for our model. More 
generally, in applications of Euler's method to (21) in order to find of, 
a good choice of y depends on the eigenvalues of A. Sometimes one 
accelerates convergence by choosing a large y. However, when the 
eigenvalues of Al are large in absolute value, unless we use a very small 
y, the sequence fit starts to oscillate explosively. In computing tables 
1-5, we varied the choice of y. In table 1, y = .15 worked, while for 
table 4 we needed to use a y = .01.10 

10 With such settings of -y, we started Euler's method at many different initial condi- 
tions. Provided that fi was required to stay in the set D, = $I T(p) has all eigenvalues 
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We close this section by returning to the point that by positing that 
agents fit only first-order vector autoregressions, we have restricted 
agents' perceived laws of motion relative to what Townsend had in 
mind (when he was drivingj toward infinity in his sec. 8 calculations). 
The first-order vector autoregressions are too short in the sense that 
in equilibrium, the prediction errors from these vector autoregres- 
sions will not be orthogonal to information lagged two or more pe- 
riods. In effect, Townsend had in mind permitting agents to run 
infinite-order vector autoregressions, so that agents are conditioning 
on infinite histories of zet and zi,. There are two ways that one can 
think of modifying the present setup to capture the idea that agents 
condition on longer histories than we have permitted them to. The 
first is simply to let agents fit nth-order vector autoregressions and to 
think of increasing n toward infinity.'' The second is to model agents 
as making forecasts by fitting finite-order vector autoregressive, mov- 
ing average (ARMA) processes. We conjecture that by adopting this 
second path, one could adapt the framework of this paper to compute 
exactly the equilibrium that Townsend would recover by driving j 
toward infinity. We also suspect that by specifying a recursive es- 
timator for learning the vector ARMA process (see Ljung and Sdder- 
strom 1983), a modified version of proposition 1 of this paper would 
apply and would support Townsend's equilibrium as a limit point. 

IV. Extensions 

From this paper, there naturally emerge several alternative methods 
for computing a rational expectations equilibrium for a linear model 
in which agents have limited information. Solving the differential 
equation (9) numerically is one such method since the limit point, if 
there is one, is a rational expectations equilibrium. Another method 
consists of simulating the least-squares learning model (6)-(7). Once 
the mappings T and V are known, the model with learning is very easy 
to simulate since these equations have a recursive structure. The 
method of simulating the learning model has the disadvantage that it 
requires computing a realization of a pseudo random process for a 
sufficiently long realization to assure convergence. In practice, it can 
be difficult to assure that a realization of the process has indeed con- 
verged. Against this difficulty is balanced the reward that simulations 

less than one}, 0, always converged to the sane rational expectations eqnilibri-mL11. 
Consequently, we suspect that, for Townsend's model, (9) is globally stable. 

' 
l For reasons related to the infinite regress problems of Townsend ( 1 983), it can be 

shown that there is no finite-order vector antoregression that is long enough to make 
the prediction errors orthogonal to the Hilbert space generated by the infinite past 
history of agents' information. 
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can be easier to implement than computing solutions to (9) because 
simulations can be executed without finding the moment matrices of 
Zt. Further, by expressing P, as a version of the Kalman filter, it is 
possible to compute De, without inverting any matrix, so that the com- 
puter can perform each iteration very efficiently. 2 

Appendix 

We state six assumptions that we make about system (6)-(7). 
AssuMPTION 1. The operator S has a unique fixed point I3f = S(111) that 

satisfies B1 E Ds, 
AssuMPTION 2. For IiE D.,, T is twice differentiable and V has one deriva- 

tive. 
AssuMPTION 3. The covariance matrices Mz (li1) are nonsingular fb;rj= a, 

b. 
AssuMPTION 4. Forj a, b and for all I, ot, > 0; ot, is increasing in 1; ot, 1 

as t - so; and 

lim sup tI(t, - (,ti -II= Ki < o, j = a, b. 

AssuMPrION 5. The vector a, consists of m stationary random variables; e, 
is serially independent. Further, E eI Et < xc for all p > 1, all i = 1., m. 

AssuMPTION 6. There exists a subset l(, of the sample space with P(flo) = 
1, four random variables C,,(w), Cb(w), G(,(w), Gb(w), and a subsequence {I;(w)} 

for which 

zit,(wt) I< C,((w), j = a, b, 

|RP, () I < GI(w), j = a, b, 

for all w E Q() and all / = 1, 2, .... 
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