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Abstract. We examine Hillas and Kohlberg’s conjecture that invariance to the addition
of payoff-redundant strategies implies that a backward induction outcome survives deletion
of strategies that are inferior replies to all equilibria with the same outcome. Although it
suffices in simple games to interpret backward induction as a subgame-perfect or sequential
equilibrium, to obtain general theorems we use a quasi-perfect equilibrium, i.e. a sequential
equilibrium in strategies that are admissible continuations from each information set. Using
this version of backward induction, we prove the Hillas-Kohlberg conjecture for two-player
extensive-form games with perfect recall. We also prove an analogous theorem for general
games by using the property of a proper equilibrium that it is equivalent to a quasi-perfect
equilibrium of every extensive form with the same normal form, provided beliefs are justified
by perturbations invariant to inessential transformations of the extensive form. For a two-
player game we prove that if a set of equilibria includes a proper equilibrium of every
game with the same reduced normal form then it satisfies forward induction, i.e. it includes
a proper equilibrium of the game after deleting strategies that are inferior replies to all
equilibria in the set. We invoke slightly stronger versions of invariance and properness to
handle nonlinearities in an N-player game.

1. Introduction

Our purpose is to address suggestions by Hillas [14] and Kohlberg [17] and the following

summary observation by Hillas and Kohlberg [16] in their survey of equilibrium refinements:

“... there appears to be a relationship between backward and forward induc-

tion. In many examples—in fact, in all of the examples we have examined—a

combination of the invariances we have discussed and backward induction

gives the results of forward induction arguments ... .” [16, §13.6]

Their examples and others in the literature are two-player games in extensive form with

perfect recall that are typically either outside-option games or signaling games. The usual

assumptions are that:

• Backward induction means that the outcome results from a subgame-perfect or se-

quential equilibrium.
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• Invariance means survival of the backward induction outcome when payoff-redundant

strategies are adjoined to the game.

• Forward induction means survival of the backward induction outcome after deletion

of strategies that are inferior replies to all equilibria with that outcome.

In §2 we review the motivation for forward induction and reprise two standard examples

using these same assumptions.

However, a sequential equilibrium is an insufficient representation of backward induction

in games more complicated than the usual motivating examples. Here we obtain general

theorems by using a quasi-perfect equilibrium. One can interpret van Damme’s [6] definition

of quasi-perfect equilibrium as the refinement of sequential equilibrium that requires each

player’s strategy to provide an admissible continuation from each information set. Using

this version of backward induction, Theorem 3.5 verifies the Hillas-Kohlberg conjecture for

two-player games in extensive form with perfect recall.

In §4 and §5 we develop formulations of backward and forward induction adapted to general

games, including games in normal form. In §6 and §7 we prove analogs of the Hillas-Kohlberg

conjecture for general two-player and N-player games.

The paper is divided into two parts that are largely independent and can be read separately.

In §2 and §3 we focus on games in extensive form, and in §4 – §7 on games in normal form. A

more stringent version of forward induction proposed by van Damme [8] is addressed briefly

in §8.

2. Forward Induction in Extensive-Form Games

In this section we review in §2.1 and §2.2 the motivation for forward induction in extensive-

form games. The main ideas are illustrated in §2.3 by two examples, one an outside-option

game and the other a signaling game.

2.1. Background. Kohlberg and Mertens [18] introduce forward induction as a criterion for

selecting among the Nash equilibria of a game. They do not provide an explicit definition,

relying instead on motivating examples and the cryptic label to their theorem that:

“(Forward Induction) A stable set contains a stable set of any game obtained

by deletion of a strategy which is an inferior response in all the equilibria of

the set.” [18, Proposition 6]
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This property—that a subset of a selected set of equilibria survives deletion of inferior

strategies—is seen by subsequent authors as the crucial test for forward induction. How-

ever, the relevance of this test is not immediately obvious from the motivation for forward

induction. The motivation is summarized by Hillas and Kohlberg [16]:

“... a self-enforcing assessment of the game must not only be consistent with

deductions based on the opponents’ rational behavior in the future (back-

ward induction) but it must also be consistent with deductions based on the

opponents’ rational behavior in the past (forward induction).” [16, §42.11]

“Forward induction involves an assumption that players assume, even if

they see something unexpected, that the other players chose rationally in the

past.” [16, §42.13.6]

In the next subsection we explain the motivation for forward induction in more detail and

show how one is led to test for forward induction by considering the effects of deleting inferior

strategies.

2.2. Motivation for Forward Induction in a Generic Extensive-Form Game. The

literature includes no formal definition of forward induction; e.g. Hillas and Kohlberg [16,

§42.11] say that, “A formal definition of forward induction has proved a little elusive.”

Here we review the basic ideas in the context of a game in extensive form with perfect

recall and generic payoffs, which includes the motivating examples in the literature. For

such a game, all Nash equilibria in a connected set induce the same outcome, viz. the same

probability distribution on terminal nodes of the game tree [10]. For simplicity in this

subsection and the next, we assume that backward induction is satisfied by a sequential

equilibrium of the extensive form, and by an outcome we shall mean an outcome resulting

from some sequential equilibrium. That is, within the components of Nash equilibria with

that outcome, some equilibria are sequential.1

Recall that a sequential equilibrium requires that, from each of his information sets, a

player’s strategy is an optimal continuation in reply to other players’ strategies. Optimality

is based on some consistent beliefs; i.e. for each information set, on conditional probabilities

of the histories that reach it, even for those information sets not reached with positive

probability by the equilibrium strategies. The sequential equilibria with the same outcome

differ only in their beliefs and behaviors at information sets not reached by equilibrium play.

1It is often the case that some non-sequential equilibria in such a component become sequential if sufficient
payoff-redundant strategies are adjoined to the extensive form—see the example in [12, §2.3]. However, to
address the Hillas-Kohlberg conjecture without confusing the issue it is preferable not to invoke invariance
to payoff-redundant strategies in the motivation or definition of forward induction. For the same reason we
defer consideration of van Damme’s [8] interpretation of forward induction to §8.
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The motive for forward induction is to enforce some discipline on beliefs and hence behav-

iors at unreached information sets, and thereby to select among the equilibrium outcomes.

The examples in the literature suggest two ways.

(1) Along the boundary of the set of equilibria inducing a given outcome there is often

some player who is indifferent between his equilibrium strategy and a particular

deviation. That is, for some equilibrium in the set the deviation is an optimal reply.

One can therefore require that, at another player’s information set that might have

been reached due to this deviation, his belief should assign a greater likelihood to this

deviation than to errors with no rational explanation—and therefore his continuation

strategy should be an optimal reply to this belief. Note that this approach stems from

consideration of sets of equilibria, a perspective that Kohlberg and Mertens [18] and

Hillas and Kohlberg [16] emphasize is intrinsic to forward induction. See Example 1

in §2.3 for an illustration.

(2) A more pragmatic perspective argues that other players’ beliefs should allow inter-

pretation of a player’s actions as credible signals of private information or future

intentions. That is, a player attempting to signal should not be stymied by others’

beliefs that are blind to the implications of observed actions. For instance, Kohlberg

and Mertens [18, p. 1013] assert that, “a subgame should not be treated as a separate

game, because it was preceded by a very specific form of preplay communication—the

play leading to the subgame.” Based on the motivating examples of sender-receiver

signaling games, the typical source of an intransigent belief at an information set off

the path of equilibrium play is the receiver’s insistence on ascribing positive condi-

tional probability to strategies of the sender that are dominated or otherwise inferior

when other strategies are more likely sources of deviant behavior by the sender. Again

the suggested discipline is to require beliefs to recognize the possible rational expla-

nations for deviations. A typical application of this approach to signaling games is

Cho and Kreps’ [4] ‘equilibrium dominance’ and ‘intuitive’ criteria, which restrict the

support of the receiver’s belief to those types of the signaler who might benefit from

deviating if they anticipate the receiver’s optimal reply to this belief. See Example 2

in §2.3 for an illustration.

Both (1) and (2) suggest a minimal test, the one used by Kohlberg and Mertens and again

by Hillas and Kohlberg in their analyses of examples. If some equilibrium with the given

outcome is sensitive to the presence of a deviant action, in the sense that its incentive

compatibility constraint is binding, then possibly there is a rational explanation for the

deviation. Conversely, if no rational explanation is possible then presumably this constraint is



ON FORWARD INDUCTION 5

nowhere binding. Therefore, the same outcome should survive when that action is excluded.

By ‘excluded’ one can mean restricting the action’s probability to be zero in the belief of any

other player or equivalently, as we do here, deleting the pure strategies that use that action.

One can interpret this test as implementing the following definition of forward induction

in the context of this section.

Definition 2.1 (Test for Forward Induction). An outcome satisfies the test for forward

induction if it remains an equilibrium outcome after deleting actions that are inferior replies

to every equilibrium with that outcome.

Here, an action at an information set is an inferior reply if every strategy that does not ex-

clude the information set and that chooses the action is an inferior reply in every equilibrium

having the specified outcome; and deleting an action entails deleting all paths that follow it

in the game tree.

If an outcome of a sequential equilibrium passes this test for forward induction then it can

be supported with beliefs that assign zero probability to inferior replies to all equilibria with

that outcome, and conversely. This test is consistent in major respects with the applications

of forward induction to outside-option games by van Damme [7] and Hauk and Hurkens [13];

weaker variants of forward induction to signaling games by Banks and Sobel [1], Cho and

Kreps [4], and Cho and Sobel [5]; and others reviewed in surveys by Fudenberg and Tirole [9,

§11], Hillas and Kohlberg [16], and Kreps and Sobel [19].

2.3. Examples. In this subsection we use two standard examples to illustrate how the test

for forward induction can reject some equilibria. We also use these examples to illustrate

that one obtains the same result when backward induction is complemented by invariance

to the addition of payoff-redundant strategies, which anticipates Theorem 3.5 below.

Example 1 — An Outside-Option Game. The top panel of Figure 1 displays the

extensive and normal forms of a two-player game consisting of a subgame with simultaneous

moves that is preceded by an outside option initially available to player I. As in case (1) the

component of equilibria in which player I chooses his outside option includes an equilibrium

in which player II’s strategy has probability 2/3 of his left column and therefore player

I is indifferent about deviating to his top row in the subgame, whereas there is no such

equilibrium justifying deviating to the bottom row. Or as in case (2) player I might anticipate

that player II will recognize rejection of the outside option as a signal that player I will

choose the top row and therefore II should respond with the left column. To apply the test

for forward induction one deletes the inferior strategy in which I’s rejection of the outside

option is followed by his choosing the bottom row in the subgame. In fact, this component
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Figure 1. Two versions of a game with an outside option

fails the test, since in the pruned subgame player II’s dominant strategy is to play left, and

anticipating this, player I rejects the outside option.

As in Hillas [14, Figure 2], one can invoke invariance and backward induction to obtain

this conclusion. The bottom panel of Figure 1 shows the extensive form after adjoining a re-

dundant strategy in which, after tentatively rejecting the outside option, player I randomizes

between the outside option and the top row of the subgame with probabilities 3/4 and 1/4.

Player II does not observe which strategy of player I led to rejection of the outside option.

In the unique subgame-perfect equilibrium of this equivalent game player I rejects both the

outside option and the randomization and then chooses the top row of the final subgame.

Example 2 — A Signaling Game. The top panel of Figure 2 displays the two-

player game Beer-Quiche studied by Cho and Kreps [4] and discussed further by Kohlberg

and Mertens [18, §3.6.B] and Fudenberg and Tirole [9, §11.2]. Consider the component of

sequential equilibria with the outcome Q-R; that is, both types W and S of player I choose

Q and player II responds with R. The equilibria in this component are sustained by player

II’s belief after observing B that I’s type W was as likely to have deviated as type S. In all

these equilibria, B is an inferior choice for type W. But in the equilibrium for which player

II assigns equal probabilities to W and S after observing B and mixes equally between F and

R, type S is indifferent between Q and B, as in case (1) above, and if II recognizes this as

the source of I’s deviation then he will infer after observing B that I’s type is S and therefore

choose R. Alternatively, as in case (2), if player I’s type is S then he might deviate to B in

hopes that this action will credibly signal his type, since his equilibrium payoff is 2 from Q

but he obtains 3 from player II’s optimal reply R if the signal is recognized, but type W has
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Figure 2. Two versions of the Beer-Quiche game

B: F F R R
W S Q: F R F R
B B 9,1 9,1 29,9 29,9
B Q 0,1 18,10 2,0 20,9
Q B 10,1 12,0 28,10 30,9
Q Q 1,1 21,9 1,1 21,9
Q X 2,1 20,8 4,2 22,9

Table 1. Normal form of the Beer-Quiche game with the redundant strategy QX

no comparable incentive to deviate. One can therefore apply the test for forward induction

by considering the ‘pruned’ game obtained by deleting player I’s action B when his type is

W, or in the normal form by deleting player I’s pure strategies that choose B when his type

is W. In fact, the sequential equilibria that choose Q do not survive in the pruned game,

since player II’s optimal response to B is then R, which makes it advantageous for player

I’s type S to deviate by choosing B. Thus the sequential equilibria with the outcome Q-R

do not satisfy the test for forward induction. This leaves only the component of sequential

equilibria with the outcome B-R in which both types of player I choose B.
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As in Example 1, one can obtain this same conclusion by invoking invariance and back-

ward induction. The bottom panel of Figure 2 shows the extensive form after adjoining a

redundant action X for type S of player I that produces a randomization between B and

Q with probabilities 1/9 and 8/9. Note that X is an optimal action for I’s type S at some

equilibria in the component. Denote by BQ player I’s pure strategy that chooses B if his type

is W and chooses Q if his type is S, and similarly for his other pure strategies. The normal

form of this expanded game is shown in Table 1 with all payoffs multiplied by 10. Now con-

sider the following extensive form that has the same normal form. Player I initially chooses

whether or not to use his pure strategy QQ, and if not then subsequently he chooses among

his other pure strategies BB, BQ, QB, and QX. After each of these five pure strategies, the

extensive form in the bottom panel ensues, but with I’s action dictated by his prior choice of

a strategy. That is, nature chooses I’s type to be W or S, the selected pure strategy dictates

the subsequent choice of B or Q, and then player II (still having observed only which one of

B or Q was chosen) chooses F or R. At player I’s information set where, after rejecting QQ,

he chooses among his other pure strategies, a sequential equilibrium requires that he assigns

zero probability to BQ, since it is strictly dominated by QX in the continuation. At player

II’s information set after observing B, a sequential equilibrium requires that his behavioral

strategy is an optimal reply to some consistent belief about those strategies and types of

player I that reach this information set. But every mixture of I’s pure strategies BB, QB, and

QX implies that, given his choice of B, the conditional probability that his type is S exceeds

9/10. Therefore, player II’s reply to B must be R in every sequential equilibrium of this

extensive form. Hence the component with outcome Q-R is inconsistent with invariance and

backward induction, in agreement with its failure to satisfy the test for forward induction.

In Examples 1 and 2 it is sufficient to interpret backward induction as requiring a se-

quential equilibrium. However, more complicated examples show that this interpretation is

insufficient in general extensive-form games, such as those in which the players alternative

moves repeatedly along a single path of play.

For the remainder of the paper we interpret backward induction as requiring a quasi-

perfect equilibrium. By enforcing admissibility of continuation strategies at each information

set, a quasi-perfect equilibrium enforces a more stringent version of rationality than does a

sequential equilibrium. Most relevant for forward induction, however, is that quasi-perfection

ensures that the beliefs that support a sequential equilibrium “respect preferences” as defined

by Blume, Brandenberger, and Dekel [2], as we elaborate in §4.2.
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3. A Version of the Hillas-Kohlberg Conjecture for Two-Player Games

In this section we prove a version of the Hillas-Kohlberg conjecture for any two-player game

in extensive form with perfect recall. In this context, by an outcome we mean a probability

distribution on the terminal nodes of the game tree induced by the players’ strategies in

some equilibrium. Because the game has perfect recall, Kuhn’s theorem implies that the

possible outcomes from mixed and behavioral strategies are the same.

3.1. Quasi-Perfection. As mentioned, by a backward induction outcome we mean one

induced by a quasi-perfect equilibrium. Van Damme [6] defines a quasi-perfect equilibrium

as a sequential equilibrium that satisfies a weak version of conditional admissibility of a

player’s continuation strategy from each information set; viz., at each of his information sets

a player’s action must initiate a continuation strategy that is optimal against a shrinking

sequence of perturbations of other players’ strategies.

Definition 3.1 (Quasi-Perfect). A quasi-perfect equilibrium is a limit point of a sequence of

ε-quasi-perfect profiles as ε ↓ 0, where a profile bε of completely mixed behavioral strategies

is ε-quasi-perfect if at each information set of a player n the probability of choosing an action

exceeds ε only if there is an optimal continuation strategy in reply to (bε
m)m6=n that chooses

that action.

3.2. Formulation. Next we establish the formulation used for Theorem 3.5 below.

For the remainder of this section, let Γ be a two-player game in extensive form with

perfect recall. Our notation for a generic player is n and we use m for his opponent. For

each player n let Sn, Σn, and Bn be his sets of pure, mixed, and behavioral strategies,

respectively, and let S, Σ, and B be the corresponding product sets of profiles of players’

strategies. If a strategy for player n excludes one of his information sets, his choice at that

information set is irrelevant. Therefore, the normal form of Γ we adopt in this section is the

simplified normal form obtained from the full normal form by treating two pure strategies

of a player as equivalent if they exclude the same information sets and prescribe the same

choices at information sets they do not exclude. For each n, each pure strategy in Sn is thus

an equivalence class of his pure strategies.2

Since we do not exclude the possibility that the payoffs in Γ are non-generic, in Defini-

tion 3.2 below we use a definition of forward induction that applies to sets of equilibrium

2The simplified normal form need not be the same as the reduced normal form in which one also deletes
payoff-redundant pure strategies when the payoffs are nongeneric. We use the simplified normal form only
to simplify exposition in this section. Our results remain valid if one uses the full normal form of Γ.
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outcomes—not just one outcome.3 Therefore, let P be a closed set of Nash equilibrium

outcomes and let B(P ) and Σ(P ) be the sets of equilibria in behavioral and mixed strategies

that induce outcomes in P .

Let Un be the collection of player n’s information sets. For each information set un ∈ Un

let An(un) be the set of n’s available actions at un. An action an ∈ An(un) is P -inferior (or

just inferior) if every pure strategy of player n that does not exclude un and that chooses an

is not an optimal reply to any equilibrium with an outcome in P . Clearly, each outcome in

P assigns zero probability to each terminal node that follows an inferior action. Let A0
n(un)

be the set of n’s inferior actions at un and use A1
n(un) ≡ An(un)\A0

n(un) to denote n’s non-

inferior actions at un. For i = 0, 1 let U i
n be the collection of information sets un for which

Ai
n(un) 6= ∅ and let Ai

n = ∪un∈U i
n
Ai

n(un), assuming all actions are labeled differently. (To

simplify notation we omit mention of the dependence of these sets on P .)

If un ∈ U0
n \ U1

n (i.e. all actions at un are inferior) then necessarily un has a predecessor

and the action a′n at its nearest predecessor u′n that leads to un is also inferior, so continuing

backward in the game tree one finds the unique last predecessor of un in U0
n ∩ U1

n.

Say that a pure strategy of player n is inferior if it chooses an inferior action at some

information set that it does not exclude. Let S0
n be the set of n’s inferior pure strategies.

By the previous paragraph, each sn ∈ S0
n chooses an inferior action at some un ∈ U0

n ∩ U1
n

that it does not exclude. Use S1
n = Sn \S◦n to denote n’s non-inferior strategies. No strategy

in S0
n is an optimal reply to any equilibrium in Σ(P ), and the support of an equilibrium in

Σ(P ) is contained in S1
1 × S1

2 .

3.3. Definition of Forward Induction in Extensive-Form Games. The pruned game

Γ(P ) is obtained from Γ by deleting every path that includes a P -inferior action, i.e. an

action in A0
1 ∪A0

2. Observe that Γ(P ) is well-defined, i.e. deleting paths that include inferior

actions yields a game tree. Indeed, as above, each information set un ∈ U0
n where an inferior

action is available is either in U1
n or has a unique last predecessor in U0

n∩U1
n. Therefore Γ(P )

is obtained by deleting the inferior continuations from each un ∈ U0
n ∩ U1

n. In particular,

the nodes of Γ(P ) are the nodes of Γ that are preceded only by non-inferior actions of both

players. Let Un(P ) be the subcollection of n’s information sets in Γ that contain at least one

of these nodes. Then Un(P ) is a subset of U1
n and it corresponds one-to-one to his collection

of information sets in Γ(P ), so we use the same notation for both games.

3If Γ has generic payoffs then all equilibria in any connected set of the Nash equilibria have the same
outcome [10, 18, 20]. In this case it suffices to consider the singleton set of the unique outcome from a
component of the Nash equilibria.
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Since an outcome in P assigns probability zero to terminal nodes that follow inferior

actions, its projection to the terminal nodes of the pruned game Γ(P ) is well defined. Use

proj(P ) to denote the set of projections of outcomes in P to the terminal nodes of Γ(P ).

One sees easily that proj(P ) is a set of Nash equilibrium outcomes of Γ(P ).

The following definition modifies Definition 2.1 to allow P to be a set of outcomes.

Definition 3.2 (Extensive-Form Forward Induction). The set P of outcomes of Γ satisfies

forward induction if proj(P ) includes a backward induction outcome of the pruned game

Γ(P ).

Later we use the following sufficient condition for forward induction.

Lemma 3.3. The set P of outcomes of Γ satisfies forward induction if there exists a sequence

bε of behavioral strategy profiles converging to an equilibrium b ∈ B(P ) and a sequence of

equivalent mixed strategies σε such that

(1) For each n and un ∈ Un(P ), b prescribes an optimal action against the sequence bε.

(2) Each strategy sn ∈ S1
n is in the support of σε

n for all ε and limε↓0 σε
n,s0

n
/σε

n,sn
= 0 for

all s0
n ∈ S0

n.

Proof. By Blume, Brandenberger, and Dekel [2, Proposition 2] we can replace σε with a

convergent subsequence to construct a lexicographic probability system [LPS] (σ0
n, . . . , σ

Kn
n )

for each player n and a corresponding sequence (λ1
n(ε), . . . , λKn

n (ε)) ∈ (0, 1)Kn converging

to the origin as ε ↓ 0 such that the sequence σε
n is expressible as the nested combination

(1− λ1
n(ε))σ0

n + λ1
n(ε)((1− λ2

n(ε))σ1
n + · · ·λKn

n (ε)σKn
n ). Obviously σ0

n is the limit of σε
n and it

is equivalent to bn. Let k∗n be the smallest integer k > −1 such that σk+1
n has some strategy

in S0
n in its support. Since σ0

n is equivalent to bn and b belongs to B(P ), k∗n > −1. Also, by

Assumption (2) of the lemma, every pure strategy in S1
n is assigned a positive probability by

some i 6 k∗n. Thus the union of the supports of σi
n, 0 6 i 6 k∗n, is S1

n.

For each n, let σ̄ε
n be the sequence d(ε)

∑k∗n
i=0 εiσi

n where d(ε) is the normalizing factor.

Let b̄ε
n be an equivalent sequence of behavioral strategies converging to some b̄n. As we saw

above, the support of σ̄ε
n is S1

n all along the sequence; therefore, at each information set in

U1
n (and hence also in Un(P )) b̄ε

n mixes completely over the actions in A1
n(un). Moreover, we

claim that b̄n and bn agree at each un ∈ Un(P ). Indeed, for each un ∈ Un(P ) the set S1
n(un)

of pure strategies in sn ∈ S1
n that choose all the actions preceding un is nonempty; therefore

the smallest integer 0 6 i 6 Kn such that σi
n contains a strategy in S1

n(un) in its support

is no more than k∗n. The mixture prescribed both b̄n and bn coincide with that prescribed a

behavioral strategy equivalent to σi
n, which proves our claim.
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All along the sequence, b̄ε
n mixes completely over actions in A1

n(un) for each un ∈ Un(P ),

and hence it induces a sequence b̂ε
n of completely mixed behavioral strategies in Γ(P ) whose

limit b̂n is induced b̄n (or equivalently bn). By passing to a subsequence we will assume that

for each n and each un ∈ Un(P ), the set of optimal actions against b̂ε
n is constant across the

sequence. To finish the proof it is sufficient to show that at each un ∈ Un(P ) the mixture

prescribed by b̂n is optimal against the sequence b̂ε
m. Suppose an is an optimal action at

an information set un ∈ Un(P ) against the sequence b̂ε
m and suppose a′n is another action

there that is not. There exists 0 6 i 6 k∗m such that: σi
m does not exclude un and an is a

better action than a′n against it and for each i′ < i, either σi′
m excludes un or both actions

are optimal continuations against it. Given this property, and given the nestedness property

of σε
m, which is equivalent to bε

m, an is a better action against bε
m for all small ε than a′n. By

Assumption (1) of the lemma, a′n is therefore assigned zero probability by bn. Hence in b̂n it

is assigned zero probability as well. Thus b̂n is optimal against the sequence b̂ε
m. ¤

Remark 3.4. Looking at the beliefs induced by the sequence bε, one sees that for each n

and each information set un ∈ Un(P ) the limit of the beliefs assigns zero probability to nodes

that follow inferior actions. Thus, the lemma shows the relation between deleting inferior

strategies and directly restricting beliefs in the original game, as discussed in the motivation

for the earlier Definition 2.1 of the test for forward induction in §2.

To invoke invariance in Theorem 3.5 below, we define two extensive-form games that are

equivalent to Γ in that they have the same reduced normal forms. The first is called the

splintered version of Γ, and the second, called a test game, adjoins payoff-redundant strategies

to the normal form. These are defined in the next two subsections.

3.4. The Splintered Version. Define the splintered version Γ̃ to be the same as Γ except

that each player n chooses an action at each information set un ∈ U0
n ∩ U1

n by first choosing

whether or not to play an inferior action and then choosing an action from the chosen subset

A0
n(un) or A1

n(un). Specifically, such a un is separated into three information sets ũn, u0
n, and

u1
n such that at ũn he decides between two actions α0(ũn) and α1(ũn) and then: (0) choosing

α0(ũn) leads to u0
n where only actions in A0

n(un) are available, or (1) choosing α1(ũn) leads

to u1
n where only actions in A1

n(un) are available. Let S̃n, B̃n, and Σ̃n be the sets of pure,

behavioral and mixed strategies for player n in the splintered version Γ̃.

As with Γ, we use the simplified normal form of Γ̃, i.e. a pure strategy is an equivalence

class of strategies that agree both on the information sets they exclude and on the actions

at those they do not. Under this assumption, the two extensive-form games Γ̃ and Γ have
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the same normal form. In order to make clear to which game we are referring, we use S̃n to

denote the set of pure strategies in Γ̃. Let S̃0
n be n’s set of pure strategies in S̃n that choose

the action α0(ũn) at some non-excluded ũn. And let S̃1
n = S̃n\S̃0

n. Then for i = 0, 1, S̃i
n

corresponds to the set Si
n in Γ.

3.5. Test Games. The gist of the Hillas-Kohlberg conjecture is that backward induction

outcomes that survive addition of redundant strategies (i.e. satisfy invariance) must also

survive deletion of inferior strategies. Theorem 3.5 below establishes that testing whether

the outcomes in P satisfy forward induction (i.e. some outcome in proj(P ) is a backward

induction outcome of the pruned game) is equivalent to checking whether some outcome in

P survives as a backward induction outcome of each game in a sequence of canonical test

games parameterized by δ ∈ (0, 1) as δ ↓ 0. Each test game adjoins payoff-redundant pure

strategies, so its normal form is larger, in contrast to the pruned game whose normal form

is smaller.

Each test game Γ̃(P, δ) treats some mixed strategies of Γ as additional pure strategies

in the resulting normal form. These payoff-redundant strategies are constructed as follows.

For each function πn : U1
n → A1

n such that πn(un) ∈ A1
n(un), and 0 < δ < 1, let bn(πn, δ)

be a behavioral strategy in Γ that at each un ∈ U1
n chooses πn(un) with probability 1 − δ

and with probability δ mixes uniformly over the actions in A1
n(un). Let σn(πn, δ) be an

equivalent mixed strategy. By construction, the support of σn(πn, δ) is S1
n. Let Tn(P, δ) be

the collection of these mixed strategies obtained from all possible functions πn. Similarly, in

the splintered version Γ̃, for each σn(πn, δ) ∈ Tn(P, δ) let σ̃n(πn, δ) be the equivalent mixed

strategy and let T̃n(P, δ) be the collection of these mixed strategies.

The following two facts about the strategies in Tn(P, δ) (and analogously in T̃n(P, δ))

are important to our construction. First, for every mixed strategy σn(πn, δ) ∈ Tn(P, δ) the

probability of each pure strategy sn ∈ S1
n is at least cδ|U

1
n|, where c is a positive constant

that is independent of πn and δ. Second, there exists δ > 0 such that if a pure strategy sn

is an optimal reply to an equilibrium with an outcome in P then for each δ′ < δ there exists

a strategy in Tn(P, δ′) that is a better reply against that equilibrium than each strategy in

S0
n; viz., this strategy puts greater weight on the optimal actions prescribed by sn at those

un ∈ U1
n.

A test game Γ̃(P, δ) is an extensive-form game played in two stages, constructed as follows.

Stage 1: The first stage consists of simultaneous moves by the two players in which each

player n chooses a strategy in S̃1
n ∪ S̃0

n ∪ T̃n(P, δ) using a two-step procedure. Player n

first chooses between two actions xn and yn. If he chooses xn then that completes the first



14 SRIHARI GOVINDAN AND ROBERT WILSON

stage for him. If he chooses yn then subsequently (at a second information set) he chooses

a strategy from the set S̃0
n ∪ T̃n(P, δ) to complete the first stage.

Thus for player n the first stage ends with a choice of either xn or (yn, s̃n) for some s̃n ∈
S̃0

n ∪ T̃n(P, δ). Player m does not learn which strategy n implemented in the first stage; viz.,

his information sets in the second stage reveal exactly the same information as in the original

game Γ and its splintered version Γ̃.

Stage 2: In the second stage, after each pair of choices by the two players in the first

stage, there follows a modified copy of the splintered game Γ̃. The modifications are as

follows. In each copy of Γ̃ that follows the choice xn in the first stage, nature automatically

chooses α1(ũn) for each un ∈ U0
n ∩ U1

n, leaving player n to make a choice at each of his

other information sets. In each copy that follows a choice (yn, s̃n) by player n in the first

stage, all his choices are implemented automatically by nature using the strategy s̃n.

In the test game Γ̃(P, δ) the set of n’s pure strategies that choose xn at the first stage

correspond exactly to the set S̃1
n in the splintered version. Thus, his pure strategy set is

S̃n(P, δ) ≡ S̃1
n ∪ S̃0

n ∪ T̃n(P, δ). Since T̃n(P, δ) consists of mixed strategies available in Γ̃,

Γ̃(P, δ) has the same reduced normal form as the splintered version Γ̃ and hence Γ itself.

Letting Σ̃n(P, δ) be n’s mixed strategies in the test game there is a well-defined linear map

f̃ δ
n : Σ̃n(P, δ) → Σ that sends each mixed strategy in Γ̃(P, δ) to the implied mixture over

strategies in Sn. Define P̃ (δ) as the outcomes of Γ̃(P, δ) resulting from the equilibria in

(f̃ δ)−1(Σ(P )).

3.6. Proof of the Conjecture. The following theorem verifies our version of the Hillas-

Kohlberg conjecture that invariance and backward induction imply forward induction. Recall

that we implement backward induction by a quasi-perfect equilibrium.

Theorem 3.5. P satisfies forward induction if, for each small δ > 0, P̃ (δ) contains a

backward induction outcome of the canonical test game Γ̃(P, δ) that has the same reduced

normal form as Γ.

Proof. For each small δ > 0 let b̃(δ, ε) be a sequence of ε-quasi-perfect profiles converg-

ing as ε ↓ 0 to a quasi-perfect equilibrium b̃(δ) of the test game Γ̃(P, δ) that induces an

outcome in P̃ (δ). Let σ̃(δ, ε) be a (sub)sequence of equivalent mixed strategies in Γ̃(P, δ)

converging to σ̃(δ). For each n, express σ̃n(δ, ε) as the convex combination pxn(δ, ε)τ̃ 1
n(δ, ε)+

pyn(δ, ε)[rn(δ, ε)τ̃ 0
n(δ, ε)+(1−rn(δ, ε))τ̃ 2

n(δ, ε)], where pxn(δ, ε) and pyn(δ, ε) are the probabili-

ties of the two actions xn, yn at player n’s first information set in Γ̃(P, δ) under b̃(δ, ε); and the
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supports of τ̃ 1
n(δ, ε), τ̃ 0

n(δ, ε), and τ̃ 2
n(δ, ε) are contained in S̃1

n, S̃0
n, and T̃n(P, δ) respectively,

which determines rn(δ, ε).

Translate these results to the original game Γ as follows. For i = 0, 1, 2 let τ i
n(δ, ε) =

f̃ δ
n(τ̃ i

n(δ, ε)) and let σn(δ, ε) = f̃ δ
n(σ̃(δ, ε)). By the linearity of f̃ δ

n, σn(δ, ε) = pxn(δ, ε)τ 1
n(δ, ε)+

pyn(δ, ε)[rn(δ, ε)τ 0
n(δ, ε)+ (1− rn(δ, ε))τ 2

n(δ, ε)]. Let τ i
n(δ) be the limit of τ i

n(δ, ε) as ε ↓ 0. Let

b(δ, ε) be a sequence of behavioral profiles equivalent to σ(δ, ε) and let b(δ) be its limit as

ε ↓ 0.

If δ is small enough then some strategy in Tn(P, δ) is a better reply against bm(δ) than

each strategy in S0
n; therefore, the corresponding strategy in T̃n(P, δ) is a better reply against

b̃m(δ). Optimal continuation from player n’s information set following the choice of yn

therefore requires that, for all small δ, rn(δ, ε) converges to zero as ε ↓ 0.

By the sequential rationality of player n’s decision following his choice of xn in the first

stage of the test games, τ̃ 1
n(δ) is at least as good a reply as any strategy in S̃1

n against the

sequence σ̃m(δ, ε). In Γ, therefore, for each un ∈ Un(P ), if un is not excluded by strategies in

a sequence τ 1
n(δ, ε) then the behavioral randomization implied by τ 1

n(δ) is optimal against the

sequence bm(δ, ε). By the sequential rationality of playing τ̃ 2
n(δ) at the node following yn the

total probability of actions that are not optimal against the sequence b̃m(δ, ε) under τ̃ 2
n(δ) is

at most δ. In Γ, therefore, the total probability under bn(δ) of actions that are suboptimal

at un ∈ Un(P ) against the sequence bm(δ, ε) is no more than δ. Choose now a sequence of

δ’s converging to zero such that b(δ) converges to an equilibrium b ∈ B(P ) of Γ. For each δ

in the sequence choose ε(δ) such that rn(δ, ε(δ)) 6 δ(|U1
n|+1) for n = 1, 2.

We now prove that the corresponding sequence b(δ, ε(δ)) in Γ satisfies the two conditions

of Lemma 3.3, which completes the proof of the theorem. Regarding condition (1), for

each n and each un ∈ Un(P ), if an action at un is not optimal against a subsequence of

bm(δ, ε(δ)) then as we saw above its probability under bn(δ) is at most δ and hence its

probability is zero in bn. Regarding condition (2), τ̃ 2
n(δ, ε(δ)) is a mixture over strategies in

T̃n(P, δ), each of which (as a mixed strategy in Γ) has support S1
n and assigns probability

at least cδ|U
1
n| to each strategy in S1

n. Therefore the probability of each strategy in S̃1
n

is at least pyn(δ, ε(δ))[1 − rn(δ, ε(δ))]cδ|U
1
n|. The probability of strategies in S̃0

n is at most

pyn(δ, ε(δ))cδ|U
1
n+1|. Hence the limit of the ratios of these probabilities is zero. In Γ, therefore,

the corresponding limit of the ratios of probabilities of strategies in S1
n and S0

n is also zero,

which is condition (2) of Lemma 3.3. ¤

In the following sections we extend the above result to general games, first for two players

in §6 and then for N players in §7.
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4. Forward Induction in General Games

In this section we first provide in §4.1 an overview of the assumptions and results obtained

in the remainder of the paper, and then in §4.2 we justify the formulation of backward

induction in terms of a proper equilibrium that we use for a game in normal form.

4.1. Summary of Assumptions and Results. We assume equivalence of the extensive

and normal forms of a game, and we invoke invariance with respect to payoff-redundant

strategies in the normal form. Thus we consider all games in normal or extensive form (with

perfect recall) having the same reduced normal form to be strategically equivalent.

We interpret backward induction as requiring a quasi-perfect equilibrium in every exten-

sive form with the same normal form. Backward induction is also required to be consistent

with invariance in the following sense. The quasi-perfect equilibria in extensive forms that

differ only by inessential transformations (i.e., have the same normal form) should be sup-

ported by beliefs generated by the same perturbations; that is, by the same perturbations

of strategies in the normal form. To represent this version of backward induction in the nor-

mal form of a game we rely on the characterization by Hillas [15] and Mailath, Samuelson,

and Swinkels [21]. They show that a proper equilibrium of a normal form is the limit of a

sequence of ε-proper profiles as ε ↓ 0 if and only if in every extensive form with that normal

form there is a quasi-perfect equilibrium that is the limit of this same sequence. Thus, a

proper equilibrium is precisely the right normal-form representation of backward induction

when it is required to induce a quasi-perfect equilibrium in every extensive form with that

normal form, and conversely. See §4.2 below for further discussion.

We therefore interpret forward induction as follows. A subset of the Nash equilibria of a

game satisfies forward induction if its projection contains a proper equilibrium of the game

obtained by deleting each player’s pure strategies that are inferior replies to every equilibrium

in the subset.

For a two-player game we prove in §6 that if a set of equilibria includes a proper equilibrium

for every equivalent game then this set satisfies forward induction. In §7 we use slightly

stronger versions of invariance and properness for a game with more than two players.

4.2. Forward Induction for a Game in Normal Form. The formulation of backward

and forward induction in terms of sequential equilibria of the extensive form used in §2 is not

directly usable here. Our aim is to verify a general version of the Hillas-Kohlberg conjecture

that invariances and backward induction imply forward induction. The invariances they

(and we) invoke are the equivalence of the extensive and normal forms of a game, and the

equivalence of all normal-form games having the same reduced normal form after deleting
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payoff-redundant pure strategies. Backward induction must therefore be formulated in terms

of equilibria of the normal form. We argue below that a proper equilibrium is the best

representation of backward induction in the normal form. Although the subsequent theorems

do not depend on this interpretation, we offer it to establish a connection to the analogous

Theorem 3.5 for games in extensive form.

The first step is to recognize that a sequential equilibrium is not generally an adequate

representation of backward induction in an extensive form. As observed by Kohlberg and

Mertens [18, §2.4], a sequential equilibrium can use inadmissible strategies and it need not

survive inessential transformations of the extensive form. At a minimum, therefore, the

formulation should avoid these deficiencies. The apparently weakest refinement of sequential

equilibrium that assures admissibility is a quasi-perfect equilibrium of the extensive form, as

defined by van Damme [6]. Regarding invariance to inessential transformations, our approach

is to enforce this property directly, as follows. Recall that a sequential or quasi-perfect

equilibrium specifies for each player a pair comprising a mixed (or behavioral) strategy and

a consistent belief that is the limit of the conditional probability system obtained from a

convergent sequence of perturbed strategies. We require similarly that a representation of

backward induction in the normal form specifies such pairs for every extensive form with

the same normal form. Because we assume invariance, moreover, we require that the same

sequence of perturbed strategies induces the beliefs in each equivalent extensive form.

To implement this requirement we imitate the proof in Hillas [15]. This uses the formu-

lation of equilibrium in terms of lexicographic probability systems, as defined by Blume,

Brandenberger, and Dekel [2]. Considering only a two-player game for simplicity, a lexico-

graphic equilibrium is specified by a lexicographic probability system [LPS] for each player

n that is a sequence of mixed strategies, say Ln = (σ0
n, . . . , σ

Kn
n ) such that each of his pure

strategies is assigned a positive probability by some level of Ln. A sequential equilibrium

has a lexicographic representation using a weak version of optimality, namely, at each of his

information sets player n’s equilibrium strategy σ0
n is an optimal reply to the first level of

the other’s LPS that does not exclude reaching that information set. A quasi-perfect equi-

librium requires further that his strategy is a lexicographically optimal reply to the ensuing

subsequence of the other’s LPS. Now suppose one insists further that the same LPS for

each player should provide a quasi-perfect equilibrium in every extensive form with the same

normal form. Then independently of the extensive form, each LPS respects preferences [2]:

for any two pure strategies sn, s′n of player n, if sn is a lexicographic better reply than s′n
against his opponent’s LPS then sn is infinitely more likely than s′n according to Ln, i.e.

if s′n is assigned a positive probability by σk
n then sn is assigned a positive probability by
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σj
n for some j < k. This is precisely Blume, Brandenberger, and Dekel’s [2, Proposition 8]

characterization of a proper equilibrium of the normal form.

This is essentially the result obtained by Hillas [15] and Mailath, Samuelson, and Swinkels [21].

They characterize a sequence of ε-proper profiles and the proper equilibrium that is its limit

as ε ↓ 0. The following summary version is stated by Hillas and Kohlberg [16, Theorem

7]: “An equilibrium σ of a normal-form game G is supported as a proper equilibrium by

a sequence of completely mixed strategies {σk} with limit σ if and only if {σk} induces a

quasi-perfect equilibrium in any extensive-form game having the normal form G.” Thus, a

proper equilibrium is precisely the right representation of backward induction in the normal

form when backward induction in any extensive form with that normal form is represented

by a quasi-perfect equilibrium, and the perturbations that justify beliefs are invariant across

all these extensive forms.4

In §7 we use a strengthened version of properness for games with more than two players.

That this is necessary can seen in Example 2, the Beer-Quiche game. Of the two components

of equilibria of this game, only the one in which both types of player I choose B contains

a proper equilibrium of every equivalent game. But if this game is interpreted as a game

with three players by treating the two types of player I as distinct players then both com-

ponents have such equilibria; e.g., both components have proper equilibria (Kohlberg and

Mertens [18, §3.6.B]). When there are more than two players, therefore, properness must

be strengthened to establish an analogous version of the Hillas-Kohlberg conjecture. The

stronger version we use is designed to handle the nonlinearities that occur in N-player games,

and in particular to control the relative magnitudes of the probabilities of inferior strategies

in the sequence of ε-proper profiles whose limit is a proper equilibrium.

The main tool in the two-player case is Blume, Brandenberger, and Dekel’s [2, Proposi-

tion 8] characterization of a proper equilibrium by a lexicographic probability system. The

analysis of the N-player case uses Lojasiewicz’s inequality [3, Corollary 2.6.7].

5. Definitions for Games in Normal Form

We consider a finite game G. The set of players is N = { 1, . . . , N }. For each player

n ∈ N , let Sn and Σn be his sets of pure and mixed strategies, respectively, and interpret

Sn as the vertices of the simplex Σn. Let Σ =
∏

n Σn.

4Van Damme [6] and Kohlberg and Mertens [18, Appendix A] prove that a proper equilibrium of the
normal form induces a sequential equilibrium in every extensive form with that normal form. But the
converse is false: Hillas and Kohlberg [16, Figure 23] provide an example of an improper equilibrium that
induces a sequential (in fact, quasi-perfect) equilibrium in each extensive-form representation with the same
normal form. This example does not contradict the results of Hillas [15] and Mailath, Samuelson, and
Swinkels [21] because beliefs are generated by perturbations that vary among equivalent extensive forms.
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Player n’s expected payoff from the profile σ ∈ Σ is Gn(σ), and Gn(σ−n, τn) is his expected

payoff if everyone else plays according to σ and he plays τn ∈ Σn.

For each n ∈ N , 0 < δ < 1, sn, and s′n ∈ Sn, let σn(sn, s′n, δ) denote the mixed strategy of

player n that randomizes between sn and s′n with probabilities δ and 1− δ.

5.1. Invariance. We invoke two invariance principles that exclude some presentation effects.

The first, equivalence of the extensive and normal forms of a game, is implemented by casting

our formulation entirely in the normal form. The second requires invariance to addition or

deletion of redundant pure strategies. Say that:

(1) A pure strategy is payoff-redundant if its payoffs (for all players, and all pure strate-

gies of other players) are replicated by the expected payoffs from some mixture of

the player’s other pure strategies.

(2) Two games are equivalent if they have the same reduced normal form (apart from

labeling of strategies) obtained by deleting payoff-redundant pure strategies, and

(3) Mixed strategies in equivalent games are equivalent if they induce the same mixed

strategy in the reduced normal form.

Specifically, let the columns of the matrix An represent player n’s pure strategies in game

G as mixed strategies in its reduced normal form G∗, and similarly Ãn represents his pure

strategies in an equivalent game G̃. Then his mixed strategies σn, σ̃n, and σ∗n in the games G,

G̃, and G∗ are equivalent if Anσn = Ãnσ̃n = σ∗n. Note that for each player n, Gn(σ) = G∗
n(σ∗)

since G differs from G∗ only by adjoining payoff-redundant strategies.

5.2. Proper Equilibrium. The definition of a proper equilibrium is due to Myerson [23].

Given 0 < ε < 1, a profile σ ∈ Σ, σ À 0, of completely mixed strategies is ε-proper if for

each n ∈ N and sn, tn ∈ Sn,

Gn(σ−n, sn) < Gn(σ−n, tn) only if σn,sn 6 εσn,tn .

A profile σ ∈ Σ is a proper equilibrium if there exists a sequence of positive ε’s converging

to zero and a corresponding sequence of ε-proper equilibria converging to σ.

5.3. Deletion of Never Weak Best Replies. Let Σ∗ be a subset of the Nash equilibria of

G. Suppose for each n, we are given a subset S◦n of Sn such that each tn ∈ S◦n is an inferior

reply against every equilibrium in Σ∗. That is,

(∀ n ∈ N , tn ∈ S◦n, σ ∈ Σ∗) Gn(σ−n, tn) < Gn(σ) .

Consider now the game Ĝ obtained by deleting the strategies in S◦n for each n. Since all the

equilibria in Σ∗ assign zero probability to the pure strategies in S◦n for each n, we can view
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Σ∗ as a subset of the equilibria of Ĝ by just dropping the coordinates corresponding to the

deleted strategies—that is, by projecting Σ∗ into the set Σ̂ of profiles of mixed strategies in

Ĝ. In Definition 5.1 below, and throughout, forward induction is applied in this way.

5.4. Forward Induction in Normal-Form Games. Our main results establish sufficient

conditions for the following version of forward induction.

Definition 5.1 (Forward Induction). A subset Σ∗ of the Nash equilibria satisfies forward

induction if it includes a proper equilibrium of the game obtained by deleting each player’s

pure strategies that are inferior replies to every equilibrium in Σ∗.

6. Two-Player Games in Normal Form

Recall that the Hillas-Kohlberg conjecture asks whether invariance and backward induc-

tion imply forward induction. The following theorem verifies this conjecture for our normal-

form versions of backward and forward induction.

Theorem 6.1. If a closed subset of the Nash equilibria of a two-player game includes for

every equivalent game an equilibrium equivalent to a proper equilibrium of that game then

it satisfies forward induction.

An extensive-form version is the following. If a subset of the Nash equilibria of a two-

player game induces a quasi-perfect equilibrium for every extensive form with the same

reduced normal form, with beliefs justified by perturbations invariant across extensive forms

with the same normal form, then also for the normal-form game obtained by deleting players’

strategies that are inferior replies to every equilibrium in the subset, an equilibrium in the

subset induces a quasi-perfect equilibrium for every extensive form with that normal form,

with beliefs justified by perturbations invariant across these extensive forms.

In outline, the following proof (1) invokes the hypothesized existence of a proper equi-

librium for the equivalent game obtained by adjoining redundant pure strategies that are

mixtures of used and non-inferior strategies, (2) observes that if the used strategies have

large probabilities in these mixtures then the inferior pure strategies have positive proba-

bility only in mixed strategies in the tail of the lexicographic probability system [LPS] that

characterizes this proper equilibrium, and then (3) chops off the tail to obtain a truncated

LPS that characterizes a proper equilibrium for the ‘pruned’ game obtained by deleting the

inferior strategies.

Proof of Theorem 6.1. Let Σ∗ be a closed subset of the Nash equilibria of G that satisfies the

hypothesis of the theorem. Suppose for each player n that S◦n is a subset of pure strategies
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that are inferior replies by player n against every equilibrium in Σ∗. Let Ĝ be the game

obtained from G by deleting the strategies in S◦n for each player n. We show that Σ∗

contains a proper equilibrium of Ĝ.

For n = 1, 2, let S∗n be the set of pure strategies that are in the support of some equilibrium

in Σ∗. From G construct the equivalent game Ḡ by adjoining the following mixed strategies

as pure strategies: for each sn ∈ S∗n and each s′n ∈ Sn \ S◦n, adjoin the mixed strategy

σn(sn, s
′
n, δ), where 0 < δ < 1 is sufficiently large that if sn is a best reply against a strategy

profile σ∗ ∈ Σ∗ then σn(sn, s
′
n, δ) is a better reply against σ∗ than each tn ∈ S◦n. The games

G and Ḡ are obviously equivalent.

By assumption, Σ∗ includes an equilibrium σ∗ that is equivalent to a proper equilibrium

σ̄∗ of Ḡ. As in Blume, Brandenberger, and Dekel [2, Proposition 5], there exists for each n

a lexicographical probability system [LPS] L̄n = (σ̄0
n, . . . , σ̄

Kn
n ) over his strategies in Ḡ such

that: (i) σ̄∗n = σ̄0
n; (ii) L̄n has full support in the sense that each pure strategy is assigned

a positive probability by some level of L̄n; and (iii) L̄n respects preferences: for any two

pure strategies s̄n, s̄
′
n of player n in the game Ḡ, if s̄n is a lexicographic better reply than s̄′n

against his opponent’s LPS in Ḡ, then s̄n is infinitely more likely than s̄′n according to L̄n,

i.e. if s̄′n is assigned a positive probability by σ̄k
n for some k, then s̄n is assigned a positive

probability by σ̄j
n for some j < k.

For each n let k∗n be smallest integer such that for each s′n ∈ Sn \ S◦n, either s′n or one

of the new “pure” strategies σn(sn, s′n, δ) for some sn ∈ S∗n has a positive probability under

σ̄k
n for some k 6 k∗n. We claim now that, for each k 6 k∗n, σ̄k

n assigns zero probability to

every strategy in S◦n. Indeed, choose sn in the support of σ∗n; then for each s′n ∈ Sn \ S◦n,

the mixed strategy σn(sn, s
′
n, δ) is a better reply against σ∗ than each tn ∈ S◦n; hence, in the

game Ḡ, the pure strategy σn(sn, s
′
n, δ) is a better reply than each such tn against σ̄∗, which

is equivalent to σ∗. Since L̄n respects preferences, σn(sn, s′n, δ) is infinitely more likely than

tn; therefore, by the definition of k∗n, tn is assigned zero probability by level k 6 k∗n of L̄n.

For each n and 0 6 k 6 k∗n, let σk be the mixed strategy in G that is equivalent to σ̄k
n and

let Ln be the LPS (σ0
n, . . . σ

k∗n
n ). Using our claim in the previous paragraph, we see that for

each k, the support of σk
n is contained in Sn \ S◦n. Therefore Ln can be viewed as an LPS in

the game Ĝ. Moreover, by the definition of k∗n, each strategy in Sn \S◦n is assigned a positive

probability by some level of Ln. Therefore, Ln has full support in Ĝ. We claim now that it

respects preferences as well. Indeed, suppose sn is a better reply than s′n against Ln, and s′n
is assigned a positive probability by some level k of Ln. Then sn is a better reply against

L̄n than s′n, and either: (a) s′n or (b) some σn(s
′′
n, s

′
n, δ) is assigned a positive probability by

level k of L̄n. Since L̄n respects preferences and sn is a better reply than s′n against L̄n as
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well, sn is assigned a positive probability by σ̄j
n for some j < k if (a) holds and σn(s

′′
n, sn, δ)

is assigned positive probability by σ̄j
n for some j < k if (b) holds. Either way, sn is assigned

a positive probability by σj
n for some j < k. Thus Ln respects preferences.

Since Ln has full support and respects preferences the projection of σ∗ is a proper equilib-

rium of Ĝ, using the characterization by Blume, Brandenberger, and Dekel [2, Proposition

8]. ¤

Observe that in the above proof, the set S0
n of strategies that were deleted for player n

could be a proper subset of the set of his strategies that are inferior replies against every

equilibrium in Σ∗. Thus the theorem shows that Σ∗ satisfies forward induction in a slightly

stronger form. The same is true of its N -player analog in the next section.

6.1. Existence. Kohlberg and Mertens [18, Proposition 5] prove that every game has a fully

stable set of equilibria, and each fully stable set satisfies invariance and includes a proper

equilibrium for every equivalent game. Hence the hypothesis of Theorem 6.1 is satisfied by

a fully stable set of equilibria. Stable sets as defined by Mertens [22] and metastable sets

[11] also satisfy the hypothesis.5

7. N-Player Games in Normal Form

In this section we strengthen the formulations of invariance and backward induction to

obtain an analog of Theorem 6.1 for games with more than two players. We mentioned in

§4.2 the necessity of a strengthened version of properness. In fact, the insufficiency of a

proper equilibrium stems from its definition as the limit of a sequence of ε-proper profiles

of mixed strategies for which no positive lower bounds are imposed on the probabilities of

pure strategies. Due to the nonlinearities that occur in an N-player game, our method of

proof requires positive lower bounds to control the relative magnitudes of the probabilities

of inferior strategies. The version used here, called ‘factorial properness,’ suffices because it

enforces lower bounds in the definition of the analogous version, called an ε!-proper profile.

7.1. Factorial Properness. A strategy profile is ε!-proper for 0 < ε < 1 if it is an equilib-

rium of the game Gε! obtained restricting each player’s set of mixed strategies to the polyhe-

dron whose vertices are the |Sn|! permutations of the mixed strategy (1, ε, . . . , ε|Sn|−1)/d(ε),

where d(ε) = [1 − ε|Sn|]/[1 − ε] normalizes the probabilities. Say that σ ∈ Σ is proper! if

there exists a positive sequence of ε’s converging to zero and a corresponding sequence of

5In [12] we show that invariance and a ‘truly perfect’ version of quasi-perfection imply that a set of
equilibria is stable as defined by Kohlberg and Mertens [18], and therefore satisfies forward induction in the
original sense of Kohlberg and Mertens [18, Proposition 6].
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equilibria of Gε! converging to σ. This stronger version of properness was first considered by

Kohlberg and Mertens [18, Proposition 5], although they did not employ this terminology.

7.2. Strong Invariance. For η > 0, say that a pure strategy s′n is an η-duplicate of sn if,

for all s−n, Gm(s−n, sn) = Gm(s−n, s
′
n) for all m 6= n, and Gn(s−n, sn) = Gn(s−n, s′n) + η.

Thus, s′n is an exact duplicate of sn from the viewpoint of n’s opponents, but for player n

himself s′n is a dominated strategy. Say that a pure strategy is a near-duplicate if it is either

payoff-redundant or is an η-duplicate of some other pure strategy for some η > 0. Requiring

that a game is equivalent to the game obtained by adjoining near-duplicate strategies is a

slight strengthening of invariance as defined in §5.1.

If Ḡ is a game obtained from G by adding near-duplicate strategies then there is a map π

from the strategy set Σ̄ of Ḡ to Σ that sends each σ̄ ∈ Σ̄ to the strategy profile σ ∈ Σ under

which for each n and sn ∈ Sn, the probability of sn is the total probability under σ̄ of the

subset of strategies in Ḡ that are near-duplicates of sn. Say that σ ∈ Σ is equivalent to σ̄ if

σ = π(σ̄) and for each n and sn, σ̄ assigns zero probability to strategies that are η-duplicates

of sn for some η.

7.3. An N-Player Version of the Hillas-Kohlberg Conjecture. We now prove a ver-

sion of the Hillas-Kohlberg conjecture for an N-player game, using still the formulation of

forward induction in Definition 5.1.

Theorem 7.1. If a closed subset of the Nash equilibria includes, for every game obtained

by adjoining near-duplicate strategies, an equilibrium equivalent to a proper! equilibrium of

that game, then it satisfies forward induction.

Proof. Let Σ∗ be a closed subset of the Nash equilibria of a game G that satisfies the hypoth-

esis. For each n, let S◦n be a subset of pure strategies that are inferior at each equilibrium in

Σ∗. Let Ĝ be the game obtained from G by deleting the strategies in S◦n for each n, and let

Ŝn and Σ̂n be n’s pure and mixed strategy spaces in Ĝ. We argue by contradiction that Σ∗

must include a proper equilibrium of Ĝ.

Suppose Σ∗ does not include a proper equilibrium of Ĝ. Then there exists a closed neigh-

borhood V of Σ∗ in Σ̂ and an ε̂ > 0 such that V does not contain an ε̂-proper equilibrium of

Ĝ. Take a sufficiently fine triangulation of Σ̂ such that the set U consisting of the simplices

of this triangulation that intersect Σ∗ are contained in V . U is then a closed semialgebraic

neighborhood of Σ∗ that is contained in V . Since U does not contain an ε̂-proper equilib-

rium of Ĝ, for every completely mixed strategy profile σ ∈ U there exist n and sn, s
′
n ∈ Ŝn

such that σn,s′n > ε̂σn,sn but s′n is an inferior reply against σ compared to sn. Therefore the
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function f : U → R+ given by

f(σ) = max
n

max
sn,s′n∈Ŝn

(Gn(σ−n, sn)−Gn(σ−n, s′n))
+ × (σn,s′n − ε̂σn,sn)+

is strictly positive on U \ ∂Σ̂. Define g : U → R by g(σ) = minn,sn σn,sn . Then f−1(0) ⊆
g−1(0) and, by Lojasiewicz’s inequality (Bochnak et al. [3, Corollary 2.6.7]), there exists a

positive real number c and a positive integer p such that f > cgp.

Construct a strongly equivalent game Ḡ by adding the following strategies for each player

n as pure strategies:

• For each sn ∈ Ŝn, kp−|Ŝn| copies of the η-duplicate sη
n of sn, where k ≡ maxn′(|Ŝ ′n|+

|Ŝ ′n|2) − 1 and η is sufficiently small such that if sn is an optimal reply against an

equilibrium in Σ∗ then sη
n is a better reply than each s◦n ∈ S◦n.

• For sn, s′n ∈ Ŝn, the strategy σn(sn, s′n, δ) where 0 < δ < 1 is sufficiently large that,

if sn is optimal against an equilibrium in Σ∗, σn(sn, s
′
n, δ) is a better reply than the

η-duplicate tηn for each tn ∈ Ŝn.

Suppose Ḡ has a proper! equilibrium equivalent to an equilibrium in Σ∗. Then there exists a

sequence of εt’s converging to zero and a corresponding sequence σ̄t of εt!-proper equilibria

converging to a point σ̄∗ that has an equivalent strategy profile σ∗ ∈ Σ∗ in the game G. By

replacing the sequence with an appropriate subsequence, we can assume that the preference

ordering over the pure strategies in Ḡ for each n when his opponents play according to σ̄t is

independent of t. For each n fix a pure strategy sn in the original game G that is optimal all

along the sequence σ̄t. For each s′n ∈ Ŝn now, the only strategies in Ḡ that are possibly at

least as good a reply as σn(sn, s′n, δ) against σ̄∗ are the strategies in Ŝn and those of the form

σn(tn, t′n, δ) for tn, t′n in Ŝn—and hence this property holds all along the sequence σ̄t as well.

The number of strategies that are possibly no worse replies against σ̄t than σn(sn, s′n, δ) is

therefore |Ŝn| + |Ŝn|2 − 1. Since σ̄t is a sequence of εt!-proper equilibria, we then have that

for each s′n ∈ Ŝn, εk
t = O(σt

n,σn(sn,s′n,δ)), i.e. there exists C > 0 such that εk
t 6 Cσt

n,σn(sn,s′n,δ)

for all t. The strategies that are better replies than the η-duplicate sη
n of sn include sn itself

and the strategies σn(sn, s′n, δ) for s′n ∈ Ŝn. Hence, σ̄t
n,sη

n
= O(ε

|Ŝn|+1
t ) for each copy of the

the η-duplicate sη
n. sη

n is a better reply than each s◦n ∈ S◦n against σ̄∗ and, hence, against the

sequence σ̄t. Since there are kp− |Ŝn| copies of sη
n, εt!-properness of σ̄t implies that for each

s◦n ∈ S◦n, σ̄t
n,s◦n = O(εkp+1

t ).

For each element of the sequence σ̄t and each player n, let τ̄ t
n be the conditional distribution

over S̄n \ S◦n, viewed as a strategy in Ḡ by letting the probability of strategies in S◦n be zero.
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For each n and s̄n ∈ S̄n, |σ̄t
n,s̄n

− τ̄ t
n,s̄n

| = O(εkp+1
t ) because σ̄t

n,s◦n = O(εkp+1
t ) for all s◦n ∈ S◦n.

Therefore, for each player n, if a pure strategy s̄n is at least as good a reply as another

s̄′n against the sequence σ̄t, then it either continues to be so against τ̄ t
n or Ḡn(τ̄ t

−n, s̄
′
n) −

Ḡn(τ̄ t
−n, s̄n) = O(εkp+1

t ).

Let σ̂t be the sequence in Σ that is the image of the sequence τ̄ t
n under the map π that

was defined in §4.2. The support of each element of the sequence is Ŝn and therefore it can

viewed as a sequence in Σ̂\∂Σ̂. In particular, the sequence is eventually in U\∂Σ̂. Replace

σ̂t with a subsequence that is contained in U and such that there exists n and sn, s
′
n ∈ Ŝn

such that f(σ̂t) = (Gn(σ̂t
−n, sn)−Gn(σ̂t

−n, s
′
n))(σ̂t

n,sn
− ε̂σ̂t

n,s′n
) all along the subsequence. We

finish the proof of the theorem by showing the following two facts about the sequence σ̂t: (1)

εk
t = O(g(σ̂t)); and (2) O(εkp+1

t ) = f(σ̂t). Points (1) and (2) contradict our earlier conclusion

that f > cgp and, therefore, indeed finishes the proof of the theorem.

Point (1) is true because εk
t = O(σ̄n,σn(sn,s′n,δ)) and |τ̄n,σn(sn,s′n,δ) − σ̄n,σn(sn,s′n,δ)| = O(εkp+1

t ).

We turn now to point (2). Since f(σ̂t) = (Gn(σ̂t
−n, sn) − Gn(σ̂t

−n, s′n))(σ̂t
n,sn

− ε̂σ̂t
n,s′n

) 6
Gn(σ̂t

−n, sn)−Gn(σ̂t
−n, s′n), it is sufficient to prove that Gn(σ̂t

−n, sn)−Gn(σ̂t
−n, s

′
n) = O(εkp+1

t ).

We argue by contradiction. Suppose Gn(σ̂t
−n, sn) − Gn(σ̂t

−n, s
′
n) 6= O(εkp+1

t ). Then 0 <

Gn(τ̄ t
−n, sn) − Gn(τ̄ t

−n, s′n) 6= O(εkp+1
t ). By what we saw earlier, this implies that sn is a

better reply than s′n against the sequence σ̄t. By εt!-properness of the sequence σ̂t, therefore:

(i) σ̂t
n,s′n

= O(εtσ̂
t
n,sn

); (ii) σ̂n,σn(s
′′
n ,s′nδ) = O(εtσ̂n,σn(s

′′
n ,sn,δ)) for each s

′′
n ∈ Ŝn; and (iii) σ̄t

n,s
′η
n

=

O(εtσ̄
t
n,sη

n
). These three properties continue to hold for the sequence τ̄ t

n. Hence, in the

sequence σ̂t
n, σ̂t

n,s′n
= O(εtσ̂

t
n,sn

). But that would imply that sufficiently far out in the

sequence f(σ̂t) = (Gn(σ̂t
−n, sn)−Gn(σ̂t

−n, s′n))(σ̂t
n,s′n

− ε̂σ̂t
n,sn

)+ = 0, which is impossible since

σ̂t is a sequence of completely mixed strategies in U and f is positive on the whole sequence.

This establishes the contradiction and proves point (2). ¤

8. Van Damme’s Interpretation of Forward Induction

The theorems in §3, §6, and §7 do not address the stronger version of forward induction

considered by van Damme [8]. Van Damme interprets forward induction as a property of a

solution concept (such as stability) rather than a set of equilibria:6

“Kohlberg and Mertens argue that a solution of a game should ... be inde-

pendent of irrelevant alternatives, ... [this] requirement states that strategies

which certainly will not be used by rational players can have no influence

6An explicit formulation in these terms is attributed to van Damme by Fudenberg and Tirole [9, Definition
11.8].
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on whether a solution is self-enforcing; it is the formalisation of the forward

induction requirement ... .” [8, §41.4 ]

That is, a solution concept maps each game into selected subsets of its equilibria, and van

Damme sees forward induction as requiring a certain consistency across games, akin to the

way independence of irrelevant alternatives is a property of an individual or social choice

function. Taking this approach, and supposing that a solution concept satisfies invariance,

one can establish analogous results for the following strengthening of forward induction:

A subset Σ∗ of equilibria satisfies strong forward induction if, for every game

G̃ equivalent to the game obtained by deleting each player’s pure strategies

that are inferior replies to every equilibrium in Σ∗, it includes an equilibrium

equivalent to a proper equilibrium of G̃.

That is, just as the hypothesis of Theorem 6.1 assumes that Σ∗ includes an equilibrium

equivalent to a proper equilibrium of every game equivalent to the given game, so too the

conclusion of the analogous theorem asks for a proper equilibrium of every game equivalent

to the pruned game. This analogous theorem has a similar proof that was included in a

previous version of this paper. It is omitted here to avoid tying backward induction to

invariance or tying forward induction to a particular solution concept the way Kohlberg and

Mertens [18, Proposition 6] tied it to stability.
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