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We investigate strategic information transmission with communication error, or
noise. Our main finding is that adding noise can improve welfare. With quadratic
preferences and a uniform type distribution, welfare can be raised for almost ev-
ery bias level by introducing a sufficiently small amount of noise. Furthermore,
there exists a level of noise that makes it possible to achieve the best payoff that
can be obtained by means of any communication device. As in the model without
noise, equilibria are interval partitional; with noise, however, coding (the measure
of the message space used by each interval of the equilibrium partition of the type
space) becomes critically important.
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1. I

In many situations of economic interest, decision makers seek advice from better-
informed experts. Examples include lobbying, management consulting, and financial
advice. In these situations frequently the interests of experts and decision makers do
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not coincide. This creates an incentive for the expert to use her information strategically,
and for the decision maker to interpret advice in light of the expert’s bias. The seminal
analysis of strategic information transmission between a biased expert and an unin-
formed decision maker was provided by Crawford and Sobel (1982) (henceforth CS). In
their model a privately informed sender sends a costless message to a receiver who takes
an action that affects the payoff of both parties.

In this paper we investigate strategic information transmission when there is com-
munication error, which we refer to as noise. With some probability, independent of the
message sent, observed messages are drawn from a fixed error distribution; otherwise
messages go through as sent. Our main finding is that adding noise can improve welfare.
In the uniform–quadratic model, i.e. with quadratic preferences and a uniform type dis-
tribution, welfare can be raised for almost every bias level by introducing a sufficiently
small amount of noise. In addition there exists a level of noise that makes it possible to
achieve the best possible payoff that can be obtained by means of any communication
device.

As is the case in the CS model, all equilibria of the noise model are interval parti-
tional: the sender’s message reveals only in which of a number of intervals of the state
space the true state lies. But unlike in the CS model, in the noise model there may be
infinitely many actions (countable or uncountable) induced in equilibrium. Even re-
stricting to equilibria with a fixed number of intervals, once noise is introduced there
is generally a continuum of equilibria, each of which induces a different outcome. This
multiplicity is a consequence of the fact that, unlike in the CS model, coding, the mea-
sure of the message space used by each interval of the equilibrium partition of the type
space, matters when there is noise. Our welfare results are achieved with equilibria that
induce a finite partition and with a front-loading coding scheme: types in the lowest in-
terval of the equilibrium partition randomize over almost all of the available messages;
each other interval is identified with a single distinct message, sent by all types in that
interval. This front-loading construction and consequently our welfare results extend to
an environment in which noise levels are correlated with messages, provided the func-
tion that maps messages into noise levels has a sufficiently large range. Interestingly, in
this environment the best payoff that can be obtained by means of any communication
device can be approximated to any desired degree without manipulating the noise level,
which is determined endogenously in equilibrium.

Communication errors have been studied in information theory, pioneered by Shan-
non (1948). There the problem is faithful transmission of messages in the presence of
some fundamental source of noise, abstracting from strategic considerations. In Shan-
non’s original model, the only source of noise lies in the channel through which signals
(translated messages) are passed from sender to receiver, but in a broader context we
may think of errors as arising also in the translation process. Suppose, for example, that
Alice is trying to pass on some information to Bob by means of verbal communication.
Three sources of error are possible: she may fail to choose appropriate words to express
her thoughts; he may not hear correctly what she says; or he may misunderstand the
meaning of her words.1

1This final source of potential error is particularly important when the words used are vague. Vagueness
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The paper is structured as follows. In Section 2, we describe the formal details of the
model and provide a partial characterization of the equilibrium set. Section 3 provides
a closer examination of the set of equilibria in the uniform–quadratic case. In Section 4
we consider the welfare properties of noise equilibria, again in the uniform–quadratic
case. Section 5 examines some extensions of the model, and Section 6 concludes.

1.1 Related literature

To our knowledge, the idea that noisy communication channels can improve informa-
tion transmission is first discussed by Myerson (1991, pages 285–288). He considers a
two-state, three-action cheap talk game; if player 1 is able to send a message to player 2
by means of a carrier pigeon that arrives only half the time, then communication is pos-
sible when it would have been impossible with direct, reliable messages. In the commu-
nicative equilibrium, player 1 sends a message in only one of the two states. If the pigeon
arrives, player 2 knows that he is in that state; if not, he cannot determine whether the
pigeon got lost or was never sent. In this way, an outcome is achieved that is better for
both players than would have been possible in the absence of noise.

Also related to the current project is the extensive literature on general communi-
cation devices (see e.g. Forges 1986 and Myerson 1986). Such a device (often thought
of as an impartial mediator) receives inputs (messages) from each player and transmits
outputs according to a matrix of transition probabilities. Forges and Myerson show that
allowing the players to use these devices can expand the set of equilibrium outcomes
in games. Clearly, a communication device could be used to replicate the noise mecha-
nism considered here, or to reproduce the effects of Myerson’s unreliable carrier pigeon.
But communications devices are much more general than noise mechanisms.

More recently, Goltsman et al. (2007) investigate optimal communication devices
(which they call mediators) in the context of the uniform–quadratic version of the CS
model. They derive an upper bound on the receiver’s payoff in any equilibrium; we
show in Section 4.2.1 that if the level of noise can be chosen appropriately, our front-
loading equilibrium construction achieves this upper bound. They also show that if
the receiver is able to commit to using an arbitrator to make decisions for him on the
basis of messages received from the sender, he can obtain a strictly higher expected
payoff. (In a related paper, Kováč and Mylovanov (2006) study arbitration in a more
general framework.) Ganguly and Ray (2007) also analyze communication devices in
the uniform–quadratic version of the CS model. Their main result concerns devices that
are N -simple: they receive N messages and submit N recommendations. Such devices
cannot improve on the N -step CS equilibrium if the bias lies below some bound which
depends on N .

A paper by Krishna and Morgan (2004) shows that allowing multiple rounds of (two-
way) communication in the CS framework can also result in equilibria that Pareto dom-
inate those of the original model.2 They consider a first round of communication, a

is a pervasive phenomenon in natural language—consider the use of terms such as “tall,” “red,” and “good.”
2Aumann and Hart (2003) also examine games with multiple rounds of pre-play communication, and

provide a complete characterization of the set of equilibrium outcomes. Since they consider games with a
finite set of states, their results do not apply to the CS model.
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meeting, in which the sender and receiver exchange messages simultaneously, followed
by a single transmission from sender to receiver. During the meeting, the sender reveals
in which of two elements of the state space the true state lies, and the two agents also
send random messages to determine whether the meeting should be deemed a “suc-
cess” or a “failure.” These random messages effectively induce a lottery over outcomes
such that neither agent can affect the probability of success or failure. If the meeting was
a success, then the sender reveals more information about the true state during the sec-
ond round of communication; otherwise no more information is revealed. (Clearly this
kind of communication could also be replicated using a communication device: Gan-
guly and Ray show this formally.) Krishna and Morgan establish the remarkable result
that it is almost always possible to construct equilibria in which, relative to the best CS
equilibrium, the information gain when the meeting is a success outweighs the informa-
tion loss when it is a failure, leading to a Pareto improvement. This kind of equilibrium is
able to improve on the CS equilibria by leveraging the risk aversion of the sender; in the
face of risk about whether or not additional information will be conveyed in the second
round, she is willing to give up more information in the first round. In the uniform–
quadratic case most commonly used in applications of the CS model, the welfare results
of Krishna and Morgan are similar to our own, although we show that the probability of
error can lead to welfare improvements for more extreme values of the sender’s bias. But
the underlying source of the welfare gain is very different.

Three recent papers introduce different kinds of perturbations into the CS model.
First, Kartik et al. (2007) (henceforth KOS) study strategic information transmission
when messages directly affect payoffs, either because the sender faces a cost of lying
or receivers are credulous. They show that if the state space is unbounded there are fully
revealing equilibria. Unlike in their environment, in the noise model analyzed here mes-
sages do not have an intrinsic meaning and therefore the notions of deception and lan-
guage inflation that play an important role in KOS have no content. On the other hand,
the issue of coding, i.e. how the message space is used by the various sender types, that
plays a crucial role in our analysis does not arise for KOS. Further, in our model there
are no fully revealing equilibria, regardless of whether we choose the state space to be
bounded or not. One parallel between the two papers is that in both there is a sense in
which sender types who separate themselves achieve their ideal points, on average in
the KOS model with heterogeneously sophisticated receivers and in the no-noise event
in the noise model.

Kartik (2007) looks at a perturbation of the CS model in which the sender has an
explicit convex cost of misreporting. He finds that only the most informative CS equilib-
ria can arise as limits of monotonic equilibria as the cost of misreporting converges to
zero. Finally, in a closely related paper, Chen (2006) modifies the CS model by including
a small proportion of behavioral types, honest senders and naive receivers. Using an
additional monotonicity restriction, she shows that there is a unique equilibrium. This
equilibrium approaches the maximally-informative CS equilibrium in the limit as the
proportions of honest senders and naive receivers converge to zero. In contrast, in the
noise model messages have no exogenous meaning and so it is hard to make sense of the
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notion of honesty. From a technical standpoint, in the noise model we obtain welfare
results for a range of strictly positive noise levels, not only in the limit as noise tends to
zero; monotonicity of equilibrium is not a significant constraint on the equilibrium set;
and monotonicity in conjunction with the fact that the message space is a continuum
does not pose existence problems (unlike in Chen’s model).

We conclude this review section by mentioning two more variants of the CS model.
Olszewski (2004) examines a model in which the receiver has private information, there
is positive probability that the sender is a behavioral type who always tells the truth
rather than being strategic, and the strategic sender prefers to be perceived as the hon-
est type. If the latter concern is sufficiently strong, there is a unique equilibrium which
is fully revealing. In Olszewski’s model the receiver can ask for more or less informa-
tion; when the sender cares about the receiver’s action, in addition to being perceived
as honest, asking for more information may create an incentive for lying. Both of these
results are predicated on having behavioral types and messages with intrinsic mean-
ings. In our model, as already discussed, messages acquire meaning only endogenously
from the sender’s equilibrium strategy, and there are no behavioral types. In Morgan and
Stocken’s (2003) variation of the CS model the receiver is uncertain about the sender’s
bias. They find equilibria in which there is full separation on a portion of the type space:
sender types whose preferences are perfectly aligned with those of the receiver are able
to perfectly reveal sufficiently low states of the world. In contrast, in the noise model the
possibility of an error in information transmission ensures that the receiver never learns
the sender’s type for certain, even in equilibria that involve separation on a portion of
the type space.

2. T 

2.1 Setup

We investigate communication between a privately informed sender, S, and a receiver,
R . The agents’ payoffs depend on the sender’s information or type, θ ∈ T = [0, 1], and
the receiver’s action, a ∈ R. We assume that θ is drawn from a common-knowledge
distribution F with an everywhere positive density f on the support T . The payoff of a
sender of type θ when the receiver takes action a is US(a ,θ ,b ), where b is a parameter
measuring her bias relative to the receiver. The payoff of a receiver who takes action a is
U R (a ,θ )when the sender’s type is θ . The functions US and U R are assumed to be twice
continuously differentiable. We assume that U R (a ,θ ) ≡ US(a ,θ , 0) for all (a ,θ ).3 We
use subscripts to denote partial derivatives; e.g., US

12(a ,θ ,b ) stands for the cross-partial
derivative of US with respect to its first and second argument, evaluated at (a ,θ ,b ). We
assume that for each realization of θ and each value of b there exists an action a such
that US

1 (a ,θ ,b ) = 0 and for each θ there exists an action a ′ such that U R
1 (a

′,θ ) = 0;
US

11(a ,θ ,b ) < 0 <US
12(a ,θ ,b ) for all a , θ , and b ; and U R

11(a ,θ ) < 0 <U R
12(a ,θ ) for all a

and θ . Thus, given the sender’s private information θ and her bias b , a unique action,

3We make this assumption to maintain consistency with the Crawford and Sobel framework. Since we
are interested only in values of b 6= 0, there is no loss of generality.
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called her “ideal action” and denoted aS(θ ,b ), maximizes her payoff; similarly, given θ ,
the receiver has a unique ideal action, denoted a R (θ ).4 Note that each player’s ideal ac-
tion is increasing in θ . Finally, we assume that US

13(a ,θ ,b ) > 0 everywhere, so that an
increase in b shifts the sender’s preferences further away from the receiver’s. Hence-
forth we disregard the case where the sender and receiver have identical preferences,
assuming without loss of generality that b > 0, so that a R (θ )< aS(θ ,b ) for all θ .

The timing of the game is as follows. The sender observes the value of θ and then
sends a message m ∈M = [0, 1]. The sender’s message is subject to error: with proba-
bility ε, the receiver observes a message m ′ that is a draw from the error distribution G
on the message space M ; otherwise, the receiver observes the message m sent by the
sender. We assume that he cannot distinguish between received messages that are the
result of an error and messages that were sent intentionally. The error distribution G is
independent of the sender’s type and of the message sent, and has a density g that is
everywhere positive on M . Finally, the receiver takes some action a ∈ R. We consider
values of ε ∈ (0, 1), and refer to this game as the noise model. In the degenerate case
when ε= 0, the game collapses to that of Crawford and Sobel—the CS model.

2.2 Equilibrium

A behavior strategy for the sender σ : T → ∆(M ) specifies the distribution of messages
she sends for each value of θ ; for the receiver, given the strict concavity of U R in a , it is
without loss of generality to restrict attention to pure strategies ρ : M →R that describe
the action he chooses for each message he might receive.

In a perfect Bayesian equilibrium (henceforth equilibrium) strategies are optimal
given players’ beliefs and beliefs are derived from Bayes’ rule whenever possible. For a
sender of type θ , this means that every message m that she sends must maximize the
weighted average of her expected payoff if the message is received as intended and her
expected payoff if there is an error, i.e.

m ∈ arg max
m ′

�
(1−ε)US(ρ(m ′),θ ,b )+ε

∫ 1

0

US(ρ(m ′′),θ ,b )g (m ′′)d m ′′
�

= arg max
m ′

US(ρ(m ′),θ ,b ).

(The simplification is possible because the probability of an error, ε, and the error
distribution, g , are independent of the message actually sent.5) Now consider the re-
ceiver. Let µ(θ | m ) denote his beliefs about θ conditional on receiving message m .
Since ε> 0 and g is everywhere positive, Bayes’ rule is always well-defined and gives us

µ(θ |m ) = ((1−ε)σ(m | θ )+εg (m )) f (θ )∫ 1

0
((1−ε)σ(m | θ ′)+εg (m )) f (θ ′)dθ ′

.

4That is, aS (θ ,b ) = arg maxa US (a ,θ ,b ) and a R (θ ) = arg maxa U R (a ,θ ).
5We relax the first assumption in Section 5.1.
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On receiving message m , the receiver chooses the (unique) action that maximizes his
expected payoff given these beliefs:

ρ(m ) = arg max
a ′

∫ 1

0

U R (a ′,θ )dµ(θ |m ).

D 1. A perfect Bayesian equilibrium of the noise model is a strategy for the
sender, σ : T → ∆(M ), a strategy for the receiver, ρ : M → R, and a set of beliefs for
the receiver, µ : M →∆(T ), such that

1. for all θ ∈ T : m ∈ arg maxm ′US(ρ(m ′),θ ,b ), for all m ∈ supp(σ(· | θ )),

2. for all m ∈M : ρ(m ) = arg maxa ′
∫ 1

0
U R (a ′,θ )dµ(θ |m ), and

3. µ(θ |m ) = ((1−ε)σ(m | θ )+εg (m )) f (θ )∫ 1

0
((1−ε)σ(m | θ ′)+εg (m )) f (θ ′)dθ ′

.

For given parameter values, the set of equilibria is very large, and it is difficult to
provide a complete characterization. In this section we derive a number of results about
the nature of the equilibrium set; in the next section, we provide more results in the
context of a specific example (an extension of the well-known uniform–quadratic case
of Crawford and Sobel).

We start by introducing some new notation and terminology. Since the sender can
influence the receiver’s actions only in the no-noise event, it is useful to defineω(σ,ρ,θ )
as the distribution of actions that is induced by type θ in the no-noise event when the
sender uses strategyσ and the receiver uses strategyρ. We call two equilibria with corre-
sponding strategy pairs (σ,ρ) and (σ′,ρ′) outcome equivalent if for every sender type θ ,
ω(σ,ρ,θ ) = ω(σ′,ρ′,θ ), and essentially outcome equivalent if ω(σ,ρ,θ ) = ω(σ′,ρ′,θ )
for all but a set of types θ that is at most countable. We can now state our first result.

P 1. In every equilibrium (σ,ρ,µ), the set of types θ for whom any given ac-
tion a is in the support of ω(σ,ρ,θ ) is a (possibly empty) interval. If the interior of the
interval corresponding to the action a is nonempty, then for every θ in the interior of
the interval ω(σ,ρ,θ ) is the degenerate distribution that assigns probability 1 to a . Fur-
thermore, every equilibrium is essentially outcome equivalent to an equilibrium in which
each type θ induces a single action.

The proof of all results in this section can be found in the Appendix. According to
Proposition 1 almost every type induces precisely one action, and the set of types that
induce any given action is an interval of the type space. The types in this interval may,
however, use different strategies. If we are concerned only with outcomes, Proposition 2
shows that it is without loss of generality to confine attention to equilibria in which these
types behave identically.
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P 2. Consider an equilibrium in which the type space is partitioned into in-
tervals, with types in any given interval inducing the same action and types in distinct
intervals inducing distinct actions. There is an outcome-equivalent equilibrium in which
for any non-degenerate intervals I and I ′ (I 6= I ′) that are elements of this partition

(i) all types in I use the same distribution over messages, and

(ii) this distribution is equal to the error distribution, G , restricted to a subset M I of the
message space, with M I ∩M I ′ =∅.

We say that a message is unused if it is not in the support of any type’s distribution
over messages. Our next result shows that we can, without loss of generality, assume
that the entire message space is used.

P 3. Every equilibrium is outcome equivalent to an equilibrium in which there
are no unused messages.

There is a close connection between Propositions 1–3 and Theorem 1 of Crawford
and Sobel (1982), but there are also several differences. Their Theorem 1 states that ev-
ery equilibrium of the CS model is outcome equivalent to an equilibrium in which types
in the interior of a given element I of the equilibrium partition, (θi−1,θi ), randomize
uniformly over messages in [θi−1,θi ]; but the mixing distribution used is not important,
nor is the set of messages used, as long as each partition element uses a distinct set of
messages. More precisely, one could construct an outcome-equivalent equilibrium in
which types in (θi−1,θi ) randomize over messages in some arbitrary set M I ⊆M , accord-
ing to some arbitrary distribution h I , as long as the message sets used by each interval
are disjoint. On the other hand, Proposition 2 describes an equilibrium in which types
in a given partition element I randomize according to the error distribution restricted
to message set M I ; in this case (as is evident from the proof) it is crucial that this partic-
ular distribution is used. Intuitively, if a different distribution is used, then the receiver’s
posterior probability of an error, and hence his action, will depend on which message in
M I is observed. Additionally, the size of the set M I is important, in a sense that is made
precise in Proposition 4 below.

LetM denote a finite ordered N -tuple (M 1, . . . , M N ) of measurable sets that partition
the message space and let λG be the measure that the error distribution G induces on
M . Define ΛG (M )≡ (λG (M 1), . . . ,λG (M N )) as the ordered N -tuple of probabilities of the
components ofM . We refer toM as a message-set vector and say that two message-set
vectorsM andM ′ are G -distinguished if ΛG (M ) 6=ΛG (M ′). An equilibrium is adapted
to M if there is a partition of the type space into N intervals T1, . . . , TN such that for
i = 1, . . . , N the mixed strategy of each type in Ti is G restricted to M i . Denote by O(M )
the set of equilibrium outcomes (joint distributions over types and actions) of equilibria
that are adapted toM . The following result highlights the importance of coding, which
determines the measures of the sets of messages M i used by each element Ti of the
equilibrium partition of the type space.
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P 4. If M andM ′ are G –distinguished, then O(M )∩O(M ′) =∅. Otherwise,
O(M ) =O(M ′).

Our next result concerns the relationship between the set of equilibria of the CS
model and the set of equilibria of the noise model when the level of noise is low. This
proposition requires an additional assumption, Crawford and Sobel’s monotonicity con-
dition (M) (see page 1444 of their paper).6 This condition is satisfied by all standard ver-
sions of their model used in applications, such as the uniform–quadratic case; a precise
definition can be found in the Appendix. We call an equilibrium in which N actions are
induced an N -step equilibrium; if each action is induced by a set of types with positive
measure, we refer to a non-degenerate N -step equilibrium. For any non-degenerate N -
step equilibrium with sender strategyσ, P(σ) denotes the boundary points between the
intervals of the corresponding partition viewed as a point in RN−1.

P 5. Assume, in the CS model, that condition (M) holds and that there exists a
non-degenerate N -step equilibrium with sender strategy σ. Then for all δ> 0 there exists
ε̃ > 0 such that for all noise levels ε ∈ (0, ε̃) and for any N -element partition M of the
message space, there exists an equilibrium of the noise model with sender strategy σε that
is adapted toM and satisfies |P(σε)−P(σ)|<δ.

Proposition 4 tells us that, for fixed ε, ifM andM ′ are distinct, they cannot produce
the same equilibrium outcome. Together with Proposition 5, this implies that near any
non-degenerate N -step CS equilibrium there is an N − 1-dimensional set of equilibria
of the noise model all of which induce different equilibrium outcomes.

The final result of this section says that full separation of types is not possible in a
noise equilibrium. More precisely, consider a given noise equilibrium in which each
type induces precisely one action (by Proposition 1, every noise equilibrium is essen-
tially outcome equivalent to an equilibrium of this kind). Slightly abusing notation, let
ω : T → R be the outcome function, where ω(θ ) is the action induced by type θ . Then
we say that this equilibrium is separating ifω is one-to-one.

P 6. The noise model has no separating equilibrium.

It is worth noting that this result holds even if the state space is not bounded.

3. E   – 

As noted earlier, it is difficult to give a complete characterization of the equilibrium set.
In this section we take a small step in that direction, concentrating on the well-known
uniform–quadratic case introduced by Crawford and Sobel (1982). The remainder of the

6In the CS model, the boundary types that separate elements of the equilibrium partition solve a differ-
ence equation with appropriate initial conditions. Condition (M) ensures that the solutions of this differ-
ence equation vary monotonically with initial conditions. The proof strategy is to use condition (M) to find
one solution to the CS-difference equation in which the length of the first interval [0,θ1) is too small and
another where it is too large for an equilibrium. By continuity, the same will be true for the corresponding
difference equation in the noise model. The intermediate-value theorem then ensures that the noise model
has a nearby equilibrium.
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paper focuses on this case, except where explicitly indicated otherwise. In the uniform–
quadratic case, the sender’s type θ is drawn from the uniform distribution on the unit
interval; the sender’s and receiver’s payoff functions are given by

US(a ,θ ,b ) =−(θ +b −a )2

U R (a ,θ ) =−(θ −a )2.

Notice that the ideal actions of the sender and the receiver are θ +b and θ respectively.
We also assume that the message space M = [0, 1], and the error distribution G is uni-
form on [0, 1].

In this section, we restrict attention to values of bias 0<b < 1
2 , since for larger values

no communication is possible and every equilibrium is therefore outcome equivalent
to pooling. There are two key differences between the equilibria of the models with and
without noise. First, in the noisy case there can be a continuum of equilibrium outcomes
of a given number of steps (see Section 3.1 below), while in the CS case, Crawford and
Sobel show that every N -step equilibrium (if any exist) yields the same outcome. Sec-
ond, we show in Sections 3.2 and 3.3 that, as long as the level of noise is high enough,
there are equilibria with an infinite and even an uncountable number of steps; in the CS
case, on the other hand, every equilibrium has a finite number of steps.

3.1 Two-step equilibria

As a starting point, we provide a characterization of the set of two-step equilibrium out-
comes. In a two-step equilibrium, two distinct actions a 1 and a 2 are induced; assume
without loss of generality that a 1 < a 2. By Proposition 1, the set of types inducing action
a i is an interval of the state space, I i (i = 1, 2). Let θ1 ∈ (0, 1) denote the boundary type
between the two intervals,7 so I1 = [0,θ1) and I2 = [θ1, 1].8 Since we are interested only
in outcomes, it follows from Proposition 2 that we can restrict attention to equilibria in
which types in I1 randomize uniformly over messages in M 1 and types in I2 randomize
uniformly over messages in M 2, for some M 1, M 2 ⊆ [0, 1] with M 1 ∩M 2 = ∅; further, by
Proposition 3 we can assume that M 1∪M 2 = [0, 1]. Finally, Proposition 4 tells us that the
outcome is affected only by the measure of M 1 and M 2 (with respect to the error distri-
bution), and not the exact composition of these sets. Let λ1 denote the measure of M 1,
so that 1−λ1 is the measure of M 2. Then the actions chosen by the receiver on receiving
messages in M 1 and M 2 are respectively

a 1 =
(1−ε)θ1

θ1
2 +ελ1

1
2

(1−ε)θ1+ελ1

a 2 =
(1−ε)(1−θ1)θ1+1

2 +ε(1−λ1) 12
(1−ε)(1−θ1)+ε(1−λ1)

.

7If θ1 = 0 or θ1 = 1, then each interval induces the same action (see expressions for a 1 and a 2 below),
and we have a one-step equilibrium.

8Or I1 = [0,θ1] and I2 = (θ1, 1]; or I1 = [0,θ1] and I2 = [θ1, 1]. The boundary type could belong to either
or both intervals, though by Proposition 1 all types in the interior of each interval induce only one action.
Henceforth we assume that the boundary type belongs only to the second interval; this assumption does
not affect the outcome for any other type.
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F 1. Two-step equilibrium partitions, b = 1
10

.

Since a 1 < a 2, a necessary and sufficient condition for equilibrium is that the sender of
type θ1 is indifferent between a 1 and a 2, or

θ1+b = 1
2 (a 1+a 2). (1)

Let θ ∗1 (b ,ε,λ1) denote the relevant solution9 to this equation (and therefore the equi-
librium boundary type), when it exists.

Case 1: b < 1
4 . A two-step equilibrium exists for all λ1 ∈ [0, 1]. The lower and upper

bounds on θ ∗1 (b ,ε,λ1) are realized when λ1 = 0 and λ1 = 1 respectively, and are given
by10

θ 1 =
3−4b +4bε−

p
(3−4b +4bε)2−8(1−4b )(1−ε)

4(1−ε) = θ ∗1 (b ,ε, 0)

θ 1 =
1−4b (1−ε)−4ε+

p
1+8b (2b (1−ε)−1)(1−ε)+8ε

4(1−ε) = θ ∗1 (b ,ε, 1).

(Notice that when ε = 0, both of these expressions are equal to 1
2 (1− 4b ), the unique

boundary value for a two-step equilibrium in the CS model.) It can be shown that
θ ∗1 (b ,ε, 0) < θ ∗1 (b ,ε, 1), and furthermore, θ ∗1 (b ,ε,λ1) is continuous and strictly increas-
ing in λ1. Thus any value between these two bounds is attainable as an equilibrium
boundary type for appropriate choice ofλ1, and allowing the first step of the equilibrium
partition to use a larger proportion of the message space shifts the boundary between
the two steps to the right.

Figure 1 illustrates the lower bound (dotted line) and upper bound (solid line) as a
function of the noise level when b = 1

10 .

9That is, θ ∗1 (b ,ε,λ1) denotes the solution to equation (1) that lies strictly between 0 and 1.
10The derivation of this and all other results in this section can be found in the Appendix.
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Case 2: b ≥ 1
4 . A two-step equilibrium exists as long as λ1 6= 0. In this case the lower

bound on the set of equilibrium boundary values is 0, and θ ∗1 (b ,ε,λ1) approaches this
value as λ1 tends to 0. The upper bound on θ ∗1 (b ,ε,λ1) is given by the same expression
as before, and is again attained when λ1 = 1. As before, θ ∗1 (b ,ε,λ1) (when defined) is
continuous and strictly increasing in λ1.

3.2 An infinite partition

We now show that the noise model, unlike the CS model, has equilibria with infinitely
many steps.11 Such equilibria exist as long as the level of noise is high enough.

P 7. If ε ≥ 2b/(1+
p

2b )2, then the noise model has an equilibrium with in-
finitely many steps.

Note that the level of noise required is increasing in b , and tends to 0 as b tends to 0.
The proof of Proposition 7 (in the Appendix) is constructive. To give some flavor of the
construction, here we describe the sender’s strategy. Consider the following (infinite)
partition of the type space:

{{0}, . . . , [θ−3,θ−2), [θ−2,θ−1), [θ−1, 1]},

where boundary types θ−1,θ−2, . . . form a (descending) geometric progression; since
θi → 0 as i →−∞, the set does indeed partition [0, 1]. Types in each partition element,
except the final one [θ−1, 1], randomize uniformly over a set of messages that is propor-
tional to the size of the element, while types in [θ−1, 1] randomize uniformly over the
leftover messages.

3.3 Uncountable partitions

Proposition 7 states that, as long as the level of noise is at least some threshold value,
the noise model has an equilibrium with a countably infinite number of steps. If ε is
strictly larger than this value, we can find an equilibrium of the noise model with un-
countably many steps. This can be shown using a construction similar to that used to
prove Proposition 7, except that at the left-hand end of the type space (i.e. for low values
of θ ) the sender adopts a fully-revealing strategy, with every type sending a distinct mes-
sage. For the sake of exposition, however, we here present a weaker result (with a tighter
constraint on the value ε) that can be proved by means of a simpler construction.

11A recent paper by Gordon (2007) also demonstrates the existence of equilibria with infinitely many
steps in a framework that is based on the CS model. Gordon adopts a reduced-form approach in which
the receiver’s preferences are represented indirectly by a mapping from sets of types to actions; intuitively,
this mapping gives the receiver’s ideal action if the sender’s message indicates that her type is in a given
set. (Note that in the noise model (unlike the CS model), this mapping would depend on the coding of
messages, and thus could not be treated as exogenous.) Gordon’s Theorem 4 states that equilibria with
infinitely many steps exist as long as preferences satisfy a moderate audience condition, which says that
the lowest sender type has a negative bias while the highest sender type has a positive bias. To establish
their finiteness result, Crawford and Sobel impose restrictions on preferences that rule out the moderate
audience condition.
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P 8. If ε > 2b , then the noise model has an equilibrium with uncountably
many steps.

Again we relegate the details of the equilibrium construction to the Appendix, de-
scribing only the sender’s strategy here. Consider the following (uncountably infinite)
partition of the type space:

�{{θ }}θ∈[0,θ ∗], . . . , (θ−3,θ−2], (θ−2,θ−1], (θ−1, 1]
	

,

where boundary types θ−1,θ−2, . . . form a descending sequence that tends to θ ∗. The
sender strategy is given by:

• if θ ∈ [0,θ ∗], send message m = s (θ ) where s is a strictly increasing differentiable
function with s (0) = 0;

• if θ ∈ (θi−1,θi ] (i ≤ 0), randomize uniformly over messages in (ζ(θi−1 − θ ∗) +
s (θ ∗),ζ(θi −θ ∗)+ s (θ ∗)], where ζ(1−θ ∗)+ s (θ ∗) = 1.

Each of the singleton elements of the partition, then, sends a single message, while
each nondegenerate-interval element randomizes over some nondegenerate interval of
the message space. It is worth noting that each sender type in the fully revealing region,
[0,θ ∗], induces her ideal action.

4. W    – 

The results of the previous section suggest a sense in which, if the information trans-
mission process is noisy, more communication is possible—we found noise equilibria
in which the sender’s messages partition the state space more evenly and into more el-
ements than is possible in any equilibrium of the CS model; furthermore, introducing
noise allows us to construct communicative equilibria for values of b that are so high
that the only equilibrium of the CS model is totally uninformative (specifically, b ∈ � 1

4 , 1
2

�
in the uniform–quadratic case).

We call any changes in the agents’ payoff resulting from changes in the equilibrium
partition the strategic effect of noise. What is the source of this effect? Recall that in a
equilibrium of the CS model communication is imperfect because the sender and the
receiver do not agree on the action that should be chosen for any type. In the presence
of noise, the receiver has to take into account the possibility that a given message was
received in error; his expectation of the sender’s type is a weighted average of the expec-
tation given that the message was transmitted faithfully and the expectation given that
there was an error. Compared with the noiseless case, the receiver’s expectations are dis-
torted towards the ex ante mean. In particular, the meaning of a message that signals a
low type is distorted upwards; this implies that the receiver’s action will also be distorted
upwards, and hence closer to the ideal action of the sender (given positive bias). For low
types, then, noise brings the effective preferences of the sender and receiver into closer
alignment. Even though the opposite is true for high types, this allows us to construct
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more informative equilibrium partitions—either with more elements or with elements
that are more evenly spaced—than is possible in the CS model.

We are some way from concluding that noise facilitates information transmission,
however. There are two negative effects of noise, which mitigate the strategic effect.
First, when errors actually occur, there is a clear loss of information (the direct effect);
second, since the receiver does not observe whether a given message was sent in error,
he has to trade off the losses in each contingency (the distortion effect).

To analyze the trade-off between these three effects, we need a precise measure of
the informativeness of an equilibrium: we follow Crawford and Sobel in using the (ex
ante) expected payoff of the receiver for this purpose. In the uniform–quadratic case, on
which we continue to focus in this section, this is equal to the negative of the residual
variance of θ that the receiver expects to face after receiving his message. Further, it can
be shown that (in equilibrium) EUS = EU R −b 2, so this measure also gives us a Pareto
ranking of equilibria—one equilibrium is more informative than another if and only if it
Pareto dominates it. In Example 1 below, we show how much of the receiver’s change in
payoff once noise is introduced is due to each of the three effects described above.

Two questions naturally arise regarding the welfare properties of noise equilibria.
First, what does the most informative equilibrium of the noise model look like? And
second, does noise increase or reduce informativeness? We consider the second ques-
tion first, and prove two key results: (1) a small amount of noise is (almost) always a
good thing; and (2) if the bias is large, any amount of noise is a good thing. The first
result is expressed formally in Proposition 9.

4.1 The welfare effects of noise

4.1.1 Low noise

P 9. If b < 1
2 and b 6= 1/(2N 2) for all integers N > 1, there exists ε > 0 such

that for all ε ∈ (0,ε) there is an equilibrium of the noise model that is Pareto superior to
all equilibria of the CS model.

The proof of this proposition can be found in the Appendix. We construct an equi-
librium of the noise model and show that it is more informative than every equilibrium
of the CS model for small values of ε. In this equilibrium, the sender adopts a front-
loading strategy, using up almost all of the messages in the first partition element.12

The following example provides an illustration.

E 1. Suppose that b = 1
10 . We compare the receiver’s expected payoff in the

Pareto optimal equilibrium of the CS model and a three-step equilibrium of the noise
model, with noise ε= 1

126 .

12The reader may recall from the characterization of two-step equilibrium in Section 3.1 above that front-
loading (i.e. setting m1 = 1) maximizes the size of the first partition element. As long as the level of noise
is small, the first partition element is the smallest; increasing its size thus makes the equilibrium more
informative, ceteris paribus.
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CS model The Pareto optimal equilibrium of the CS model has two steps, with partition
elements

�
0, 3

10

�
and

� 3
10 , 1

�
, and resulting EU R =− 37

1200 =−0.0308.

Noise model, ε= 1
126 Consider the partition

��
0, 1

25

�
,
� 1

25 , 8
25

�
,
� 8

25 , 1
�	

. Suppose that the
sender obeys the following strategy:

if θ ∈ �0, 1
25

�
, randomize uniformly on [0, 1] \ {m2, m3};

if θ ∈ � 1
25 , 8

25

�
, send message m2;

if θ ∈ � 8
25 , 1

�
, send message m3.

Given the sender’s strategy, if there is an error in message transmission, then with
probability one the message received coincides with one of the messages sent by
that first partition element. The receiver’s best response is to choose actions ac-
cording to the following strategy:

if m ∈ [0, 1] \ {m2, m3} is received, choose a 1 = 1
10 ;

if m =m2 is received, choose a 2 = 9
50 ;

if m =m3 is received, choose a 3 = 33
50 .

In each case, the action chosen is equal to the receiver’s expectation of θ given
his information. Notice that for the second and third partitions elements, this is
simply the midpoint of the interval. This is because messages m2 and m3 are sent
by error with probability zero, so the receiver can be certain that the sender’s type
is in the relevant interval. This eliminates the distortion effect except for the first
(and smallest) partition element.

To check that we have an equilibrium, we need to verify that the sender’s strategy
is also a best response. This amounts to checking that the boundary types θ1 = 1

25

and θ2 = 8
25 satisfy the indifference conditions:

θ1 : 1
25 =

a 1+a 2

2
−b =

1
10 +

9
50

2
− 1

10 =
1

25 Ø

θ2 : 8
25 =

a 2+a 3

2
−b =

9
50 +

33
50

2
− 1

10 =
8

25 Ø

The resulting expected payoff for the receiver is EU R =− 36
1200 (see the Appendix for

the calculation). As we can see, the additional information conveyed by the sender
more than compensates for the loss of information through noise, resulting in a
Pareto improvement compared to the equilibrium of the CS model.

Figure 2 provides a graphical illustration of these equilibria. The boundary points
are shown above the unit interval, and the actions chosen in each case are given below.

How much of this overall change in EU R is due to the three effects discussed above?
To calculate the strategic effect, we compute the receiver’s expected payoff if there is no
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CS equilibrium
0 0.3 1

︸ ︷︷ ︸︸ ︷︷ ︸
a 1 = 0.15 a 2 = 0.65

EU R =− 37
1200

Three-step partition
�
ε= 1

126

�
0 0.04 0.32 1

� ︸ ︷︷ ︸︸ ︷︷ ︸
a 1 = 0.1 a 2 = 0.18 a 3 = 0.66

EU R =− 36
1200

F 2. Equilibria with b = 1
10

.

noise but his information partition is the same as in the equilibrium of the noise model���
0, 1

25

�
,
� 1

25 , 8
25

�
,
� 8

25 , 1
�	

; of course, this is not an equilibrium
�

. For the direct effect,
we take this value from his payoff if he had this information partition in the no-noise
event, and no information in the noise event (so we are effectively assuming that he
knows whether a given message was sent in error). The remaining change is due to the
distortionary effect, which isolates the payoff loss resulting because the receiver cannot
in fact distinguish messages sent in error from correct ones. The size of each of these
effects is given as follows:

Decomposition of change in EU R when noise is introduced

−0.0308 −→ −0.0280 −→ −0.0285 −→ −0.0300
strategic effect direct effect distortionary effect
(+0.0028) (−0.0004) (−0.0015) ◊

The threshold level of noise, ε, below which the front-loading equilibrium generates
a Pareto improvement over the best equilibrium of the CS model is shown in Figure 3.
High values of b are omitted for the sake of clarity; ε rises from 0 to 1 as b goes from 1

8 to
1
4 , and ε= 1 for b ∈ � 1

4 , 1
2

�
(see also Observation 1 below). Clearly, ε is a non-monotonic

function of b . It turns out that whenever b = 1/(2N 2) (N = 2, 3, . . .), the most informative
equilibrium of the CS model is Pareto optimal in a very general class of communica-
tion protocols,13 which includes noisy talk. When the bias is equal to these values, then,
noise cannot generate a Pareto improvement, and ε= 0. For other values of b , however,
a small amount of noise can be beneficial. The further b is from these critical values,
the more potential there is for a Pareto improvement, and hence the larger the value of
ε. The peaks of the graph are at b = 1/(2N (N − 1)) (N = 2, 3, . . .).As already mentioned,
the technique used to construct the equilibrium of the noise model in Example 1 is to

13This result is implied by Lemma 1 of Goltsman et al. (2007), discussed in more detail in Section 4.2.1
below.
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F 3. Maximum level of noise for a Pareto improvement.

have the sender employ a front-loading strategy, where the first partition element uses
almost all of the message space (a generalization of this construction is used in the proof
of Proposition 9 in the Appendix). This strategy is effective because if the sender’s type
lies in any of the other partition elements and her message is relayed faithfully, the re-
ceiver can be certain that there was no error. An identical result could be achieved in
a framework where messages are simply lost (rather than garbled) with small proba-
bility. To see how, suppose that types in the lowest partition element do not send any
messages, and all types in the other partition elements send distinct messages. If the re-
ceiver observes a message, he can be certain which partition element it came from, just
as if he receives message m2 or m3 in Example 1; on the other hand, if he receives no
message, he has to balance the probability that no message was sent (and therefore the
sender’s type is in the lowest partition element) against the probability that a message
was sent but got lost (and so her type is higher).

The role of risk aversion We have just seen that the introduction of a small amount
of noise into the information transmission process can result in welfare improvements.
The source of this welfare gain is the strategic effect: the presence of noise induces the
sender to reveal more information than she otherwise would. When ε is low, this effect
dominates the direct effect of lost messages. This result is perhaps even more surprising
when we consider that our agents are risk averse: payoff is a concave function of dis-
tance from their ideal actions. In fact, risk aversion helps as well as hinders. Consider the
position of the receiver, faced with a message that may have been sent in error. To mini-
mize his expected loss, he adjusts his action toward the ex ante expectation of θ . The size
of this adjustment depends, of course, on the amount of noise, but also on the degree
of risk aversion. Very risk averse agents are more concerned about the small probability
of being far from the ideal action, and therefore make a larger adjustment. This im-
plies that the receiver’s actions are less responsive to the different messages sent by the
sender, who thus has less incentive to exaggerate, so that more informative partitions are



412 Blume, Board, and Kawamura Theoretical Economics 2 (2007)

possible. It is easy to show, however, that noise can generate a Pareto improvement even
when the payoff loss is a linear function of distance from the ideal action (in a sense, the
risk neutral case). This contrasts with the results of Krishna and Morgan (2004): they
construct equilibria in which multiple rounds of communication can be beneficial by
leveraging the risk aversion of the sender.

4.1.2 High bias While Proposition 9 states that a small amount of noise can generate a
Pareto improvement for almost any bias, the following observation notes that a Pareto
improvement is possible for any amount of noise if the bias is high.

O 1. For all b ∈ � 1
4 , 1

2

�
and all ε ∈ (0, 1) the noise model has an equilibrium

that is Pareto superior to all equilibria of the CS model.

To prove this result, we refer back to the characterization of the set of two-step equi-
librium outcomes in Section 3.1 above. There we show that as long as m1 > 0, a two-step
equilibrium exists for all b < 1

2 and ε∈ (0, 1). On the other hand, for b ∈ � 1
4 , 1

2

�
the unique

equilibrium outcome of the CS model is completely uninformative. Since the receiver is
strictly better off with some information rather than none, the result follows.

In the more general framework of Section 2, the link between the sender’s and re-
ceiver’s payoffs is broken and equilibria cannot always be Pareto ranked. The finding
that noise enables communication when it would otherwise not have been possible,
however, seems fairly robust. Suppose that Crawford and Sobel’s monotonicity condi-
tion (M) holds,14 and let b ∗ be the lowest bias level for which the unique equilibrium
outcome of the CS model is pooling (i.e. b ∗ is the level of bias that is just too high for
communication to be possible). Then we can show that there is some b ∗∗ > b ∗ such
that, for b ∈ [b ∗,b ∗∗), there exists a two-step equilibrium of the noise model, for any
level of noise.15 This equilibrium is better for the receiver, but not necessarily for the
sender, than the equilibrium of the CS model.16

A related result is obtained by Austen-Smith (1994) in a rather different context. In
his model, the sender may or may not know the value of her type; the receiver is unable
to determine whether she is informed (there is receiver uncertainty), and the sender is
allowed to send a message if and only if she is informed (but is not required to do so).
He shows that, for a given set-up, if there is an informative equilibrium of the CS model
then there is an informative equilibrium of the receiver-uncertainty model; but there
is a range of values of sender bias for which there is an informative equilibrium of the
receiver-uncertainty model only. In this sense, receiver uncertainty, like noise, facili-
tates communication. From a formal standpoint, the equilibrium construction used by
Austen-Smith to prove this result resembles a two-step front-loading equilibrium of the

14See page 1444 of Crawford and Sobel (1982), or the discussion preceding the proof of Proposition 5 in
the Appendix.

15Details are available in a supplementary file on the journal website, http://econtheory.org/supp/263/
supplement.pdf.

16Crawford and Sobel’s Theorem 5 states that (under condition (M)) the sender strictly prefers equilibria
with more steps to equilibria with fewer steps. This need not be true in the noise model since, in the noise
event, sender types may not obtain their intended actions.

http://econtheory.org/supp/263/supplement.pdf
http://econtheory.org/supp/263/supplement.pdf
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noise model: informed sender types in the first partition element pool with uninformed
sender types, sending no message, in the same way that in a front-loading equilibrium
of the noise model sender types in the first partition element can be thought of as pool-
ing with types who suffered from the error event; on the other hand, types in the second
partition element guarantee self-identification by sending some message (for Austen-
Smith) or by sending a specific message that is received with zero probability in the error
event (in our equilibrium of the noise model).

4.2 Optimal equilibria of the noise model

Proposition 9 and Observation 1 describe circumstances under which we can find equi-
libria of the noise model that Pareto dominate the best equilibrium of the CS model.
But we would also like to know, for given parameter values (b and ε), the optimal equi-
librium of the noise model. We are able to provide only a very partial answer to this
question. Specifically, for given b , we are able to find the optimal equilibrium of the
noise model if ε is a choice variable (Section 4.2.1). For arbitrary b and arbitrary ε, how-
ever, we do not know what optimal equilibria look like. We have been unable to solve
this problem even if attention is restricted to equilibria with a given number of steps.
Further, unlike in the CS model,17 equilibria with more steps do not necessarily Pareto
dominate equilibria with fewer steps. First, equilibrium partitions of the noise model
with more steps may nevertheless divide the state space less evenly than equilibrium
partitions with fewer steps, and hence provide less information. Second, the coding of
messages is also important: in general, the more messages that are used by a given par-
tition element, the more distortion is created, since it is harder to distinguish whether
such messages were sent by error or not. For a given partition, then, a particular coding
minimizes the distortion effect (perhaps having all of the messages sent by the small-
est partition element). But changing the coding changes the equilibrium partition, and
there might be a trade-off between the kind of coding that minimizes the distortion ef-
fect and the kind of coding that generates the finest partition (i.e. maximizes the strate-
gic effect).

4.2.1 The optimal level of noise Proposition 9 says that as long as the level of noise is
low enough, we can find an equilibrium of the noise model that Pareto dominates the
best equilibrium of the CS model. We prove this proposition by constructing a front-
loading equilibrium in which the sender types in the first element of the equilibrium
partition use almost all of the message space. Now suppose that we are free to choose
the level of noise. Within this class of equilibria, it is easy to compute the optimal level
of noise, i.e. the level that maximizes the receiver’s (and sender’s) expected payoff.

We show in the proof of Proposition 9 that the receiver’s expected payoff in this kind
of equilibrium is given by

EU R =−4b 2(N −2)(N −1)2N +4b (N −1)2(2N −1)θ1+((2N −1)θ1−1)2

12(N −1)2
,

17Again, restricting attention to the uniform–quadratic case.
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F 4. ε∗ as a function of b .

where N =
 

1/
p

2b
£

is the number of steps in the equilibrium and θ1 is the boundary
type between the first and second partition elements (see page 432 below). The value
of θ1, of course, depends on the level of noise, ε, and is given by (11). Maximizing EU R

with respect to θ1 we obtain

θ ∗1 =
1−2b (N −1)2

2N −1
and hence

ε∗ =
(1−2b (N −1)2)(1−2b N 2)

4(N −1)N (b +b 2(N −1)N −1)
.

Figure 4 shows ε∗ as a function of b . Values of b above 1
6 are omitted for the sake of

clarity. The function continues to rise for b > 1
6 , and ε∗(b ) → 1

4 as b → 1
2 . Note that

for b = 1/(2N 2) (N = 2, 3, 4, . . .), the optimal level of noise is ε∗ = 0—as Proposition 9
states, for these values of b no equilibrium of the noise model Pareto dominates the
best equilibrium of the CS model.

Substituting the optimal value of θ1 into the expression for the receiver’s expected
payoff, we get

EU R =− 1
3b (1−b ).

This value of the expected payoff is exactly the same as can be achieved by the very
different equilibrium construction considered by Krishna and Morgan (2004), although
their construction is valid only for values of b < 1

8 . More significantly, Goltsman et al.
(2007) show that− 1

3b (1−b ) is an upper bound on the payoff that the receiver can obtain
in any mediated equilibrium18 (see their Lemma 1). A fortiori, it follows that the front-
loading construction with noise level ε∗ gives us the optimal equilibrium of the noise
model.

18That is, in any equilibrium in which the sender can submit her message to an impartial mediator, who
then passes on a recommendation to the receiver according to some pre-determined and possibly stochas-
tic rule. Clearly such a mediator could reproduce the effect of noise in our model, so a noise equilibrium is
a special case of a mediated equilibrium.
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5. C  

5.1 Error probabilities that are correlated with messages

In this paper we explore the impact of noise on communication, where the noise mech-
anism takes a very specific form: both the probability of error and what happens in
the event of error are independent of the original message sent. We now consider what
happens if we relax the first assumption, allowing the probability of error to vary across
messages; relaxing the second assumption is left for future research.

Consider the uniform–quadratic model introduced in Section 3, except that the
probability of error is a continuous function of the message, e : [0, 1] → (0, 1), so that
when the sender sends message m , with probability 1− e(m ) the message is faithfully
transmitted and with probability e(m ) the received message is a draw from the uniform
distribution on M . Call the resulting model the correlated-noise model. It turns out
that in this framework, it is possible to establish a result that is analogous to Proposi-
tion 9. First we show (Lemma 1) that if there is an N -step front loading equilibrium of
the noise model with noise level ε, then there is a N -step equilibrium of the correlated-
noise model that is arbitrarily close to it, as long as ε is in the range of e. The welfare
result (Proposition 10) follows easily from this lemma.

L 1. Consider the noise model with noise level ε and the correlated-noise model
with error function e, where e is continuous and includes ε in its range. Suppose that
there is an N -step front-loading equilibrium of the noise model that yields expected payoff
EU R for the receiver. Then for any η> 0, there is an N -step equilibrium of the correlated-
noise model that yields expected payoff EU ′R for the receiver, where

��EU R −EU ′R
��<η.

The proof of Lemma 1 can be found in the Appendix. We show that it is possible
to construct an N -step front-loading equilibrium of the correlated-noise model where
each interval 2, . . . , N of the equilibrium partition uses a single message with noise level
very close to ε, while the first interval randomizes over all remaining messages in such
a way that whichever of these messages is received, the receiver’s posterior probabil-
ity of an error is the same. It turns out that this probability depends only on the errors
associated with the messages sent by intervals 2, . . . , N , and is also very close to the cor-
responding probability in the N -step equilibrium of the noise model. Hence the indif-
ference conditions for boundary types are very similar across the two models, and we
can therefore find an equilibrium of the correlated-noise model with almost the same
equilibrium partition, and almost the same actions induced, as in the equilibrium of the
noise model. Furthermore, it is easy to see that this equilibrium induces an outcome
(joint distribution over types and actions) that is very close to that of the N -step noise
equilibrium: although types in the first interval send a range of messages associated
with different noise levels, they induce some action a 1 (where a 1 is close to the corre-
sponding value in the equilibrium of the noise model) with probability one whether or
not there is an error; and types in each other interval i induce some action a i (again
close to the corresponding value in the equilibrium of the noise model) with probability
close to 1−ε, and action a 1 otherwise. This gives the required result.
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Proposition 10 follows immediately from Lemma 1.

P 10. If b < 1
2 and b 6= 1/(2N 2) for all integers N > 1, then there exists an ε> 0

such that if e(m ) < ε for some m , there is an equilibrium of the correlated-noise model
that is Pareto superior to all equilibria of the CS model.

As long as there are some messages associated with low enough error, then, we can
find “good” equilibria of the correlated-noise model even if the error is very high for al-
most all other messages. All of these unreliable messages will be sent by the first interval
of types.

Finally, it is worth noting that if the range of the error function includes ε∗, the opti-
mal level of noise derived in Section 4.2.1, the same construction can be used to find an
equilibrium of the correlated-noise model that yields an expected payoff for the receiver
that is arbitrarily close to its upper bound in any mediated equilibrium, − 1

3b (1−b ).

P 11. Consider the correlated-noise model with error function e, where e is
continuous and includes ε∗ in its range, and let EUR denote the set of equilibrium payoffs
that are attainable for the receiver in this model. Then sup EUR =− 1

3b (1−b ).

5.2 Noisy talk with common interest

Although the focus of this paper is the interaction between noise and divergent inter-
ests, it is instructive to consider the effects of noise in the common-interest case, where
b = 0. Recall that an equilibrium is separating if every sender type induces a different ac-
tion (in the no-noise event). Without noise, there is a separating equilibrium where the
sender follows the “natural” strategy of sending message m = θ when her type is θ , and
the receiver chooses action a =m . But this is not an equilibrium when there is noise.
The reason is that under this sender strategy, the posterior probability of an error having
occurred equals the prior, ε. Thus, following each message the receiver attributes this
probability to the event that this message was the result of noise and therefore distorts
his response toward the pooling response, choosing action a = (1−ε)m +ε 1

2 . A rational
sender would try to offset this distortion by deviating from the rule m = θ . This illus-
trates nicely the distortionary effect of introducing noise: even in the common-interest
game sender and receiver cannot simply continue to use the strategies that “work” in
the absence of noise. Our next result shows that nevertheless a separating equilibrium
does exist for any value of the error probability ε. The fundamental idea underlying the
construction of such an equilibrium is to have the sender use only a small subset of the
message space. Then, whenever a message from this subset is received, the posterior
probability that it was not sent by error is high. As the size of the set of used messages
converges to zero, this posterior probability converges to one. Denote the common
expected payoff in a separating equilibrium of the common-interest game with error
probability ε byΠ(ε). Note that the pooling payoff,Πp , is independent of the error prob-
ability (in the uniform–quadratic case considered here, Π(0) = 0 and Πp = − 1

12 , but it
is easy to see that the proof is easily extended to the more general model introduced in
Section 2.1).
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P 12. The common-interest game has a separating equilibrium. In this equi-
librium the receiver learns with probability one whether or not a received message was
sent in error. Equilibria of this form are efficient in the common-interest game and have
a common expected payoff

Π(ε) = (1−ε)Π(0)+εΠp .

P. Take any set M 0 ⊂ [0, 1] that has the same cardinality as the set [0, 1] and at the
same time has (Lebesgue) measure zero (for example, M 0 can be the Cantor set). Since
M 0 has the same cardinality as [0, 1], there exists a sender strategy that is a bijection
from the type space [0, 1] into M 0. At the same time, since the error distribution has
a density, sets of (Lebesgue) measure zero have probability zero; it follows from Bayes’
rule that the probability of an error following a message m ∈M 0 equals zero. Therefore,
whenever he receives a message in M 0, the receiver knows that with probability one the
message was not sent in error. In that case, given that the sender’s strategy is a bijection,
the receiver correctly infers the sender’s type. Similarly, whenever he receives a message
in [0, 1]\M 0, the receiver knows that with probability one the message was sent in error.
Regarding efficiency, it suffices to consider receiver payoffs. Conditional on each event,
noise or no-noise, the receiver maximizes his payoff. Therefore he maximizes his ex
ante expected payoff. The fact that the expected payoff Π(ε) has the indicated form is a
simple consequence of the receiver taking the separating action in the no-noise event,
and the pooling action in the noise event. Finally, note that since all sender types receive
their ideal actions in the no-noise event and cannot affect the action taken in the noise
event, the sender has no incentive to deviate. �

As an aside, we observe that Theorem 4 of Gordon (2007) can be used to show
that there is an alternative, proportional-coding equilibrium with an infinite partition,
in which types in partition element [θj−1,θj ) randomize uniformly over the interval
[θj−1,θj ). These equilibria have the intuitive property that types in a given element of
the equilibrium partition use only messages in the same set. Since these equilibria do
not make optimal use of the available information, however, unlike equilibria in which
the set of used messages has measure zero, they are not Pareto optimal. Therefore, we
have the additional observation that in the common-interest game there are multiple
Pareto-ranked infinite-interval partition equilibria.

Returning to the construction used to prove Proposition 12, a referee has observed
that it relies on the message space being a continuum, so we can find an uncountable set
of messages that nevertheless has measure zero. In the finite case, separating equilibria
may not exist if the cardinality of the message space is close to the cardinality of the
type space and the level of noise is sufficiently high. But we now show that, as long as
the message space is large enough, separation can be achieved through a construction
analogous to that used in the infinite case.

Let K be a positive integer and consider the finite set of types T (K ) = {θ ∈ [0, 1] |
θ = n × 1/K for some n ∈ N0}, each of which is equally likely. First, to show why sep-
aration may be impossible, let the message space be identical to the type space,19 and

19If the message space is smaller than the type space, separation is trivially impossible.
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suppose the error distribution is uniform. In a candidate separating equilibrium, the
receiver’s response to the message sent by the lowest type (θ = 0) would be the action
a 0 = (1−ε)0+ε 1

2 , while his best response to the message sent by the second lowest type

would be a 1 = (1−ε)(1/K ) +ε 1
2 . For incentive compatibility, type θ = 1/K must prefer

a 1 to a 0, i.e.

−
�

1

K
−a 1

�2

≥−
�

1

K
−a 0

�2

⇒ ε≤ 1

K −1
.

If ε is above this threshold, then, no separating equilibrium exists (in fact, this condition
is necessary and sufficient for the existence of a separating equilibrium).

If we fix K and ε, however, but increase the size of the message space, we can al-
ways find a message space large enough that a separating equilibrium exists. Suppose
that each sender type sends exactly one (distinct) message. Then as the message space
grows, the receiver’s response to a message sent by type θ converges to θ for all θ ∈ T (K ).
Formally, if the receiver observes the message sent by type θ , his best response is given
by

a θ = (1−µ)θ +µ 1
2 ,

where

µ=
ε 1
|M |

(1−ε) 1
K+1 +ε

1
|M |

is the receiver’s posterior probability that the message was sent in error. As |M | → ∞,
µ→ 0 and so a θ → θ . Hence for a sufficiently large message space, each sender type
strictly prefers to send the message assigned to her than any message sent by the other
types, or one of the unsent messages (to which the receiver’s best response is the action
a = 1

2 ).

6. C

We have examined two principal barriers to communication, misaligned preferences
and the possibility of misunderstandings, and their interaction. We find that while each
of these factors limits communication on its own, the possibility of misunderstand-
ings may help partially overcome the limitations due to divergent preferences. We have
shown that introducing a small amount of noise into information transmission can al-
most always benefit communication. When noise levels continuously vary across a suf-
ficiently large range of messages, there are equilibria that approximate optimal medi-
ated communication. In the case of extreme biases, introducing noise may enable com-
munication when it would otherwise not have been possible.

A: P  

Before proving Proposition 1, we start with two lemmas.



Theoretical Economics 2 (2007) Noisy talk 419

L 2. If type θ induces actions a 1 and a 2 with a 1 < a 2, then there exists η > 0 such
that types in (θ −η,θ ) induce action a 1 and types in (θ ,θ +η) induce action a 2.

P. Concavity of the sender’s payoff function in a implies that a 1 < aS(θ ,b ) < a 2

(where aS(θ ,b ) denotes type θ ’s ideal action). Continuity of the sender’s payoff function
and the single-crossing condition (US

12 > 0) imply that there is a nonempty open set of
types (θ ,θ +η1) such that for all θ ′ ∈ (θ ,θ +η1) we have aS(θ ,b )< aS(θ ′,b )< a 2. Type
θ ′’s payoff is decreasing to the right of a 2 and by single crossing, θ ′ prefers a 2 to all
actions a ∈ (−∞, a 1). No action a ∈ (a 1, a 2) is induced in equilibrium because otherwise
type θ would have an incentive to deviate. This shows that all types in (θ ,θ +η1)must
induce action a 2. An analogous argument shows that we can find a nonempty open set
(θ −η2,θ ) such all types in that set induce action a 1. Choose η=min{η1,η2}. �

L 3. In every equilibrium of the noise model, for every action a , the set of sender
types that induce action a is an interval. If this interval has a nonempty interior, then all
types in the interior induce only action a .

P. If a is induced by only one type, the result holds trivially. If types θ and θ ′ with
θ < θ ′ both induce action a , then types θ ′′ ∈ (θ ,θ ′) never induce an action a 1 > a ,
because otherwise, since US

12(a ,θ ,b ) > 0, type θ ′ would strictly prefer a 1 to a ; simi-
larly, types θ ′′ ∈ (θ ,θ ′) never induce an action a 0 < a , because otherwise by single-
crossing type θ would strictly prefer a 0 to a . Hence types in the interval (θ ,θ ′) induce
only action a . �

P  P . The result now follows easily: Lemma 2 implies immediately
that at most a countable number of types induce two actions and that the receiver’s re-
sponse is not altered if we have all such types switch to induce only one of these actions.
With each type inducing exactly one action, Lemma 3 implies that each of these actions
is induced by an interval of types. �

P  P . For any interval I in the partition of types induced by the
sender strategy σ, let M I be the union of the supports of the distributions σ(· | θ ) over
all θ ∈ I . Since types in distinct intervals induce distinct actions, I 6= I ′ implies M I ∩
M I ′ = ∅. The receiver’s payoff from choosing action a conditional on observing mes-
sage m ∈M I is given by

∫ 1

0

U R (a ,θ )µ(θ |m )dθ .

Maximizing this expression with respect to a is equivalent to maximizing

∫ 1

0

U R (a ,θ )((1−ε)σ(m | θ )+εg (m )) f (θ )dθ .
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Since a (m ) is a common maximizer for all m ∈M I , it also maximizes

∫

M I

∫ 1

0

U R (a ,θ )((1−ε)σ(m | θ )+εg (m )) f (θ )dθd m

=

∫

I

U R (a ,θ )(1−ε) f (θ )dθ +
∫ 1

0

U R (a ,θ )ε

∫

M I

g (m )d m f (θ )dθ .

Maximizing the latter expression, however, is equivalent to maximizing

∫

I

U R (a ,θ )
(1−ε)g (m )∫
M I

g (m ′)d m ′ f (θ )dθ +

∫ 1

0

U R (a ,θ )εg (m ) f (θ )dθ ,

which is exactly the problem that the receiver solves after receiving a message m ∈M I

when all types in I use the common distribution g (m )/
∫

M I
g (m ′)d m ′ on M I . �

P  P . First assume that there is a type θ0 whose ideal action is the
pooling action, a p . Suppose there is a set M 0 of unused messages that has positive
measure. Whenever the receiver observes a message m0 ∈ M 0, the receiver’s optimal
reply a (m0) satisfies

a (m0) = arg max
a

∫ 1

0

U R (a ,θ ) f (θ )dθ .

By assumption a (m0) is the ideal action for type θ0. Since this type could induce this
action by sending one of the unused messages, he induces it in equilibrium. Consider
first any equilibrium in which the set of types, Θ0, that induce the same action a (m0) as
θ0 has positive probability. Using M (Θ0) to denote the set of messages used by Θ0, we
have

a (m0) = arg max
a

∫

Θ0

U R (a ,θ )
(1−ε)g (m )∫

M (Θ0)
g (m ′)d m ′ f (θ )dθ +

∫ 1

0

U R (a ,θ )εg (m ) f (θ )dθ .

Since a (m0) maximizes the second term of this expression, it also maximizes the first
term. Therefore, we also have

a (m0) = arg max
a

∫

Θ0

U R (a ,θ )
(1−ε)g (m )∫

M 0∪M (Θ0)
g (m ′)d m ′ f (θ )dθ +

∫ 1

0

U R (a ,θ )εg (m ) f (θ )dθ ,

which is the receiver’s best response if we change the sender’s strategy so that types inΘ0

randomize over M 0∪M (Θ0) according to the error distribution restricted to that set. Next
consider any equilibrium in which the set of types Θ0 has probability zero. Having all
these types randomize uniformly over M 0∪M (Θ0) does not alter the receiver’s posterior
after any message and thus preserves equilibrium.

Now we deal with the case where there is no type whose ideal action is the pooling
action. Since b > 0 and US is continuous, every type’s ideal action must be larger than
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a p (aS(θ ,b ) > a p for all θ ∈ T ). If the equilibrium under consideration is pooling, the
conclusion follows immediately. If not, then we can find two actions, a 1 and a 2, induced
in equilibrium with the property that a 1 < a p < a 2. It follows easily that there cannot
be any unused messages: sending an unused message would induce action a p , which is
preferred by every type to action a 1. �

P  P . The result is immediate ifM andM ′ have different numbers
of elements; therefore let both have N elements. Consider an equilibrium of the noise
model that is adapted toM , and let T1, . . . , TN denote the elements of the equilibrium
partition. Define

a (Ti , M i )≡ arg max
a

∫

Ti

U R (a ,θ )(1−ε) f (θ )dθ +
∫ 1

0

U R (a ,θ )ελG (M i ) f (θ )dθ .

Since types in Ti randomize with the error distribution over messages in M i , the re-
ceiver’s equilibrium response a i to a message m ∈ M i satisfies a i = a (Ti , M i ). If
λG (M ′

i ) 6=λG (M i ), then a (Ti , M ′
i ) 6= a (Ti , M i ), unless we have

arg max
a

∫

Ti

U R (a ,θ ) f (θ )dθ = arg max
a

∫ 1

0

U R (a ,θ ) f (θ )dθ .

This condition, however, can be satisfied for at most one Ti , while for any M ′ that is
G -distinguished fromM , there must be at least two partition elements Tj and Tk , such
that the corresponding message sets satisfy λ(M j ) 6= λ(M ′

j ) and λ(M k ) 6= λ(M ′
k ). It fol-

lows immediately that O(M )∩O(M ′) =∅, as required. In contrast, for anyM andM ′
that are not G -distinguished, we have a (Ti , M ′

i ) = a (Ti , M i ) for all i , and therefore any
outcome of an equilibrium that is adapted toM can be reproduced as an outcome of
an equilibrium that is adapted toM ′ and vice versa. �

Before proving Proposition 5, we provide a formal restatement of Crawford and So-
bel’s monotonicity condition (M). In the CS model, let a CS(θi−1,θi ) denote the receiver’s
best response to a message that indicates only that the sender’s type lies in (θi−1,θi ), i.e.

a CS(θi−1,θi ) = arg max
a ′

∫ θi

θi−1

U R (a ,θ ) f (θ )dθ .

Consider the second-order difference equation

US(a CS(θi−1,θi ),θi ,b ) =US(a CS(θi ,θi+1),θi ,b ). (2)

Then condition (M) says:

(M) Suppose (θ0,θ1, . . . ,θN ) and (θ ′0,θ ′1, . . . ,θ ′N ) are two solutions to (2), and θ0 = θ ′0 and
θ1 >θ

′
1. Then θi >θ

′
i for all i ≥ 2.
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P  P . Denote the boundary types of the N -step CS partition by
θ ∗i , i = 1, . . . , N − 1. Let â (θi−1,θi ,M ,ε) ≡ a (Ti , M i ), where Ti = (θi−1,θi ), M i is the
i th component of M , and a (Ti , M i ) is as defined in the proof of Proposition 4 (so
â (θi−1,θi ,M ,ε) is the receiver’s best response to messages in M i when types in (θi−1,θi )
randomize over messages in that set according to the error distribution and ε is the level
of noise). We can view M as a point in the N − 1 simplex ∆N−1. Then, â is a contin-
uous function on the set {(θi−1,θi ) | θi−1 ≤ θi } ×∆N−1 × [0, 1] (where in this instance
(θi−1,θi ) denotes an ordered pair rather than an open interval); this follows from con-
tinuity of U R , the Theorem of the Maximum and the fact that â (θi−1,θi ,M ,ε) is a sin-
gleton for all (θi−1,θi ,M ,ε). It follows from the single-crossing condition, U R

12 > 0, that
â (θi ,θi+1,M ,ε) is strictly increasing in its first two arguments.

Next, define

V (θi−1,θi ,θi+1,M ,ε,b )≡US(â (θi ,θi+1,M ,ε),θi ,b )−US(â (θi−1,θi ,M ,ε),θi ,b ).

The continuity of â and of US implies that V is continuous on the compact set
{(θi−1,θi ,θi+1) | θi−1 ≤ θi ≤ θi+1}×∆N−1×[0, 1]×{b} (whatever the value of b ). Therefore
V is uniformly continuous on this set.

The function V (θ ∗i−1,θ ∗i ,τi+1,M , 0,b ) is strictly decreasing in τi+1 in a neighbor-
hood of θ ∗i+1. This property follows from the fact that V (θ ∗i−1,θ ∗i ,θ ∗i ,M , 0,b ) > 0,
V (θ ∗i−1,θ ∗i ,θ ∗i+1,M , 0,b ) = 0, â (θi ,θi+1,M , 0) is strictly increasing in θi+1, and U R (a ,θ )
is strictly concave in a . This implies that there existτ′i+1 andτ′′i+1 withτ′i+1 <θ

∗
i+1 <τ

′′
i+1

such that V (θ ∗i−1,θ ∗i ,τ′i+1,M , 0,b ) > 0 > V (θ ∗i−1,θ ∗i ,τ′′i+1,M , 0,b ). This and the uni-
form continuity of V on {(θi−1,θi ,θi+1) | θi−1 ≤ θi ≤ θi+1} ×∆N−1 × [0, 1] × {b} im-
ply that there exists η1 > 0 such that for all τi−1 ∈ [θ ∗i−1 − η1,θ ∗i−1 + η1], for all τi ∈
[θ ∗i −η1,θ ∗i +η1], for all ε∈ [0,η1], and for allM , we have V (τi−1,τi ,τ′i+1,M ,ε,b )> 0>
V (τi−1,τi ,τ′′i+1,M ,ε,b ). Hence, the Intermediate Value Theorem implies that for all
τi−1 ∈ [θ ∗i−1−η1,θ ∗i−1+η1], for all τi ∈ [θ ∗i −η1,θ ∗i +η1], for all ε∈ [0,η1], and for allM ,
there exists τi+1(τi−1,τi ,M ,ε) such that V (τi−1,τi ,τi+1(τi−1,τi ,M ,ε),M ,ε,b ) = 0.

Furthermore, from V (τi−1,τi ,τ′i+1,M ,ε,b ) > 0 > V (τi−1,τi ,τ′′i+1,M ,ε,b ), the fact
that â (τi ,τi+1,M ,ε) is strictly increasing in τi+1, and the strict concavity of U R in
its first argument, it follows that τi+1(τi−1,τi ,M ,ε) is unique. In conjunction with
the continuity of V , this implies that τi+1(τi−1,τi ,M ,ε) is continuous for all τi−1 ∈
[θ ∗i−1−η1,θ ∗i−1+η1], for all τi ∈ [θ ∗i −η1,θ ∗i +η1], for all ε∈ [0,η1], and for allM .

Iterating on i , this implies that there exists η > 0 such that for allM , for all θ1 with
|θ1−θ ∗1 | ≤η and ε that satisfy ε≤η, there exists a solution θi (θ1,M ,ε) for i = 0, . . . , N−1
to the difference equation

US(â (θi−1,θi ,M ,ε),θi ,b ) =US(â (θi ,θi+1,M ,ε),θi ,b )

with initial values θ0 = 0 and θ1, and that the solution is continuous on this domain.
Define

W (θ1,M ,ε)≡US(â (θN−1(θ1,M ,ε), 1,M ,ε),θN−1(θ1,M ,ε),b )

−US(â (θN−2(θ1,M ,ε),θN−1(θ1,M ,ε),M ,ε),θN−1(θ1,M ,ε),b ).
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The continuity of θi (θ1,M ,ε) implies that W (θ1,M ,ε) is continuous on the com-
pact set [θ ∗1 − η,θ ∗1 + η] × [0,η] × ∆N−1 and therefore uniformly continuous on that
set. This implies that for all ζ > 0 we can find ε > 0 such that ε < ε implies
|W (θ1,M ,ε)−W (θ1,M , 0)|<ζ for allM and all θ1 ∈ [θ ∗1 −η,θ ∗1 +η]. Since W (θ1,M , 0)
does not depend on M , we have that for all ζ > 0 there exists ε > 0 such that ε < ε
implies |W (θ1,M ′,ε)−W (θ1,M , 0)|<ζ for allM ,M ′ and all θ1 ∈ [θ ∗1 −η,θ ∗1 +η].

Consider θ ′1 ∈ (θ ∗1 −η,θ ∗1 ), and θ ′′1 ∈ (θ1,θ ∗1 +η) such that θN−1(θ ′′1 ,M , 0) < 1. Then
condition (M) implies that

W (θ ′1,M , 0)< 0<W (θ ′′1 ,M , 0)

for allM . It follows from our earlier argument that we can find ε̃ > 0 such that ε < ε̃
implies that

W (θ ′1,M ,ε)< 0<W (θ ′′1 ,M ,ε)

for allM . Hence, by the Intermediate Value Theorem, for all ε < ε̃ and for allM there
exists θ1 for which

W (θ1,M ,ε) = 0.

It is easy to see, for this θ1, that the boundary values θ1,θ2(θ1,M ,ε), . . . ,θN−1(θ1,M ,ε)
describe an equilibrium partition that is adapted toM .

Finally, if we denote the corresponding sender strategy byσε, uniform continuity of
θi (θ1,M ,ε) on the set [θ ∗1 −η,θ ∗1 +η]× [0,η]×∆N−1 implies that for any δ > 0 we can
choose ε̃ such that for any ε< ε̃we have |P(σε)−P(σ)|<δ. �

P  P . Suppose that there is a separating equilibrium of the noise
model. Then by the single-crossing condition (U R

12(a ,θ ) > 0), ω is strictly monotonic.
Therefore ω is continuous except at a countable number of types. Let θ be a point of
continuity of ω and suppose that ω(θ ) 6= arg maxa US(a ,θ ,b ). Then we can find a type
θ ′ near θ such that both types either preferω(θ ) toω(θ ′) or preferω(θ ′) toω(θ ), violat-
ing incentive compatibility. It follows that ω(θ ) = arg maxa US(a ,θ ,b ) at all θ at which
ω is continuous. For any η > 0 we can find θ such that 1− θ < η and ω is continuous
at θ . Furthermore, we can choose η small enough to ensure that the receiver’s opti-
mal response to the message sent by type θ is less than arg maxa U R (a ,θ ). This implies
ω(θ )< arg maxa U R (a ,θ )< arg maxa US(a ,θ ,b ) =ω(θ ), establishing a contradiction. �

Derivation of two-step equilibria Recall that we impose the following restrictions on
the parameters: 0< b < 1

2 ; 0< ε< 1; 0≤ λ1 ≤ 1. We are interested in two-step equilibria
where types in the first interval, denoted [0,θ1), randomize uniformly over messages in
M 1, and types in the second interval, [θ1, 1], randomize uniformly over messages in M 2,
where M 1 ∩M 2 = ∅ and M 1 ∪M 2 = [0, 1]. Let λ1 denote the measure of M 1 according
to the error distribution, so that 1−λ1 is the measure of M 2. The actions chosen by the
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receiver on receiving messages in M 1 and M 2 are respectively

a 1 =
(1−ε)θ1

θ1
2 +ελ1

1
2

(1−ε)θ1+ελ1

a 2 =
(1−ε)(1−θ1)θ1+1

2 +ε(1−λ1) 12
(1−ε)(1−θ1)+ε(1−λ1)

.

Equilibrium requires the sender to be indifferent between a 1 and a 2 when θ = θ1, i.e.

θ1+b = 1
2 (a 1+a 2). (3)

Furthermore, since a 1 < a 2 for θ1 ∈ (0, 1), (3) along with the condition that 0< θ1 < 1 is
sufficient for equilibrium. We use θ ∗1 (b ,ε,λ1) to denote such a solution, when it exists.

Rather than analyzing the set of equilibria for various values of b , as we did in Sec-
tion 3.1, it is more convenient to consider different values of λ1. The results below es-
tablish all of the claims made in Section 3.1.

λ1 = 0: Substitutingλ1 = 0 into the expressions for a 1 and a 2 and simplifying, we obtain

1
2 (a 1+a 2) =

1+θ1−2(1−ε)θ 2
1

4(1− (1−ε)θ1)
.

We can then solve (3):

θ1+b =
1+θ1−2(1−ε)θ 2

1

4(1− (1−ε)θ1)
⇒ (θ1+b )4(1− (1−ε)θ1) = 1+θ1−2(1−ε)θ 2

1

⇒ 2(1−ε)θ 2
1 − (3−4b +4bε)θ1+1−4b = 0

⇒ θ1 =
3−4b +4bε±

p
(3−4b +4bε)2−8(1−ε)(1−4b )

4(1−ε) .

It can be shown that the relevant solution is the smaller one, which lies strictly
between 0 and 1 if and only if b < 1

4 . Thus a two-step equilibrium exists for b ∈�
0, 1

4

�
, with boundary type

θ ∗1 (b ,ε, 0) =
3−4b +4bε−

p
(3−4b +4bε)2−8(1−ε)(1−4b )

4(1−ε) .

If b ∈ � 1
4 , 1

2

�
, there is no two-step equilibrium.

λ1 = 1: Substituting λ1 = 1 into the expressions for a 1 and a 2 and solving (3), we obtain

1
2 (a 1+a 2) =

2ε+θ1+2(1−ε)θ 2
1

4(ε+(1−ε)θ1)
.
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We can then solve (3):

θ1+b =
2ε+θ1+2(1−ε)θ 2

1

4(ε+(1−ε)θ1)
⇒ (θ1+b )4(ε+(1−ε)θ1) = 2ε+θ1+2(1−ε)θ 2

1

⇒ 2(1−ε)θ 2
1 − (1−4b (1−ε)−4ε)θ1−2ε(1−2b ) = 0

⇒ θ1 =
1−4b (1−ε)−4ε±

p
1+8b (1−ε)+16b 2(1−ε)2+8ε

4(1−ε) .

It can be shown that the relevant solution is the larger one, which lies strictly be-
tween 0 and 1 for all b ∈ �0, 1

2

�
. Thus a two-step equilibrium exists for b ∈ �0, 1

2

�
,

with boundary type

θ ∗1 (b ,ε, 1) =
1−4b (1−ε)−4ε+

p
1+8b (1−ε)+16b 2(1−ε)2+8ε

4(1−ε) .

λ1 ∈ (0, 1): When λ1 ∈ (0, 1), (3) reduces to a cubic and finding an analytical solution is
cumbersome. However, we can show that the equation has exactly one solution
that lies (strictly) between 0 and 1 for all b ∈ �0, 1

2

�
. To see why, notice that at

θ1 = 0, θ1+b < 1
2 (a 1+a 2) = 1

2 , while at θ1 = 1, θ1+b > 1
2 (a 1+a 2) = 1

2 . Since both

θ1+b and 1
2 (a 1+a 2) are continuous in θ1, (3) is satisfied for at least one value of

θ1 ∈ (0, 1). To show uniqueness, notice that

d

dθ1
(θ1+b ) = 1,

while

∂

∂ θ1

� 1
2 (a 1+a 2)

�
= 1

2 −
ε(1−λ1)(1−ελ1)
(1−ε(λ1−θ1)−θ1)2

− ε(1−ε(1−λ1))λ1

(ε(λ1−θ1)+θ1)2
< 1

2 .

Further, since 1
2 (a 1+a 2) is continuous inλ1 ∈ (0, 1), the equilibrium boundary type

θ1(b ,ε,λ1) is also continuous in λ1. To show that θ ∗1 (b ,ε,λ1) is strictly increasing
in λ1, note that (for given θ1)

∂ a 1

∂ λ1
=
(1−ε)ε(1−θ1)θ1

2(ε(λ1−θ1)+θ1)2
> 0

∂ a 2

∂ λ1
=

(1−ε)ε(1−θ1)θ1

2(1−ε(λ1−θ1)+θ1)2
> 0,

so
∂

∂ λ1

� 1
2 (a 1+a 2)

�
> 0.

Thus when we increase λ1, the left-hand side of (3) is unchanged, while the right-
hand side shifts up, for every value of θ1; since the right-hand side intersects the
left-hand side from above, the (unique) point of intersection also increases. Intu-
itively, this means that allowing the first step of the equilibrium partition to use a
larger proportion of the message space shifts the boundary between the two steps
to the right.
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Finally, we show that all boundary values between the lower bound of θ1(b ,ε, 0) (if
b < 1

4 ) or 0 (if b ≥ 1
4 ) and the upper bound of θ1(b ,ε, 1) can be achieved by an appropriate

choice of λ1. First note that 1
2 (a 1 + a 2) = a (λ1,θ1) is continuous in λ1 ∈ [0, 1] for all

θ1 ∈ (0, 1). So limλ1→0 a (λ1,θ1) = a (0,θ1) and limλ1→1 a (λ1,θ1) = a (1,θ1) for all θ1 ∈ (0, 1),
and hence limλ1→0θ1(b ,ε,λ1) = θ1(b ,ε, 0) if b < 1

4 and limλ1→1θ1(b ,ε,λ1) = θ1(b ,ε, 1). It

remains to show that limλ1→0θ1(b ,ε,λ1) = 0 if b ≥ 1
4 . To see this, fix some θ̂1 > 0, and

notice that limλ1→0 a (λ1, θ̂1) = a (λ1, 0). Further,

a (0, θ̂1) =
1+ θ̂1−2(1−ε)θ̂ 2

1

4(1− (1−ε)θ̂1)

=
1

4

1− θ̂1

(1− (1−ε)θ̂1)
+
θ̂1

2

< 1
4 +

1
2 θ̂1

< θ̂1+b .

It follows that for λ1 sufficiently close to 0, the (unique) relevant solution to (3),
θ1(b ,ε,λ1), is less than θ̂1. Since θ̂1 was chosen arbitrarily, we have the desired result.

P  P . The proof is constructive. Consider an (infinite) partition of
the type space of the form

{{0}, . . . , [θ−3,θ−2), [θ−2,θ−1), [θ−1, 1]},
where θi−1 < θi and 0 < θi < 1 for i ≤ −1, and limi→−∞θi = 0 (so the set does indeed
partition [0, 1]). Suppose that type θ = 0 sends message m = 0, all types θ ∈ [θi−1,θi ) (i ≤
−1) randomize uniformly over messages in [ζθi−1,ζθi ), and types θ ∈ [θ−1, 1] randomize
uniformly over messages in [ζθ−1, 1] (ζ is a constant whose value will be determined
later). Consider the receiver’s best response to this strategy of the sender. Conditional
on receiving a message m ∈ [ζθi−1,ζθi ), the receiver’s posterior belief that the message
was received in error is given by

η=
εζ(θi −θi−1)

(1−ε)(θi −θi−1)+εζ(θi −θi−1)
=

εζ

(1−ε)+εζ .

Thus the receiver’s optimal action, a i , solves

max
a
(1−η)

∫ θi

θi−1

−(θ −a )2
1

θi−θ i−1
dθ +η

∫ 1

0

−(θ −a )2 dθ

⇒ a i = (1−η) 12 (θi +θi−1)+η 1
2 (for i ≤−1).

On receiving a message m ∈ [ζθ−1, 1], on the other hand, it is easy to verify that the
receiver’s optimal response is to choose the action

a 0 =
(1−ε)(1−θ−1) 12 (θ−1+1)+ε(1−ζθ−1) 12

(1−ε)(1−θ−1)+ε(1−ζθ−1)
.
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Turning now to the sender’s strategy, we need each sender boundary type θi to be indif-
ferent between inducing action a i and action a i+1, i.e.

θi +b = 1
2 (a i +a i+1) (for i ≤−1).

Notice that each of these indifference conditions (except for θ−1) involves θi+1, θi and
θi−1. Solving for θi+1, we obtain the second-order difference equation

θi+1 =
2+2η

1−η θi −θi−1+
4b −2η

1−η (for i ≤−2). (4)

We have said nothing yet about the value of ζ. Let

ζ=
2b (1−ε)
ε(1−2b )

,

so that η= 2b (notice that ζ > 0 as long as 0< b < 1
2 ). Then a solution to this difference

equation is

θi−1 = θ−1

�
1−p2b

1+
p

2b

�−i

(i = . . . ,−2,−1, 0).

As long as we choose a value of θ−1 ∈ (0, 1), we have θi−1 < θi and 0 < θi < 1 for i ≤ −1,
and limi→−∞θi = 0, as required.

The remaining indifference condition fixes the value of θ−1:

θ−1+b = 1
2 (a−1+a 0)

⇒ θ−1 =
1−p2b

1+
p
ε

.

For this construction to work, we need to make sure that the sender’s strategy described
at the beginning of this section is well-defined, i.e. there are some messages left over for
the final interval of sender types to send. This requires

ζθ−1 ≤ 1

⇒ ε≥ 2b

(1+
p

2b )2
. �

Note that a very similar construction can be used to demonstrate the existence of
an N -step equilibrium for any finite N ≥ 3 (Section 3.1 above deals with the case where
N = 2). To see how, consider the N -step partition

{[0,θ1−N ), [θ1−N ,θ2−N ), . . . , [θ−2,θ−1), [θ−1, 1]}.

Suppose that the sender adopts the same strategy as before, with types θ ∈ [θi−1,θi )
(i ≤−1) randomizing uniformly over messages in [ζθi−1,ζθi ) and types θ ∈ [θ−1, 1] ran-
domizing uniformly over messages in [ζθ−1, 1]. The indifference conditions for bound-
ary types θ1−N , . . . ,θ−2 yield the same second-order difference equation as above, (4).
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Solving this equation with the boundary condition θ−N = 0 and treating θ−1 as a pa-
rameter, we can compute a−1 (the action corresponding to the penultimate step) as a
function of θ−1. For any given θ−1, the value of a−1 is lower than in the infinite case,
since the steps are more spaced out. The final indifference condition, therefore, gives a
lower value of θ−1, so the threshold value of ε required for this construction to work is
strictly lower than before.

P  P . Consider the partition

�{{θ }}θ∈[0,θ ∗], . . . , (θ−3,θ−2], (θ−2,θ−1], (θ−1, 1]
	

,

where θi−1 < θi and 0 < θ ∗ < θi < θ0 = 1 for i ≤ −1, and limi→−∞θi = θ ∗. Suppose the
sender adopts the strategy

• if θ ∈ [0,θ ∗], send message m = s (θ ) where s is a strictly increasing differentiable
function with s (0) = 0

• if θ ∈ (θi−1,θi ] (i ≤ 0), randomize uniformly over messages in (ζ(θi−1 − θ ∗) +
s (θ ∗),ζ(θi −θ ∗)+ s (θ ∗)], where ζ(1−θ ∗)+ s (θ ∗) = 1.

(Note that we use intervals that are open on the left rather than on the right here
merely to simplify the notation.) Now consider the receiver’s best response. Suppose he
receives a message m ∈ [0, s (θ ∗)]; the distribution of sent messages in this continuous
portion of the message space is given by s−1(m )with density

1

s ′(s−1(m ))
.

Hence, conditional on receiving a message m ∈ [0, s (θ ∗)], the posterior probability that
m was received by error is given by20

µ(m )≡ ε

ε+ (1−ε)
s ′(s−1(m ))

.

The receiver then chooses the action a that maximizes

−(1−µ(m ))(a − s−1(m ))2−µ(m )
∫ 1

0

(a −θ )2 dθ .

20Let m ∈ [m ′, m ′′] ⊂ [0, s (θ ∗)] and recall that the error distribution is G (m ) =m . Then the probability
that a message was received in error, E , conditional on knowing that the message is in [m ′, m ′′], equals

P(E | [m ′, m ′′]) =
P([m ′, m ′′] | E ))ε

P([m ′, m ′′] | E )ε+P([m ′, m ′′] | ¬E )(1−ε)
=

(m ′′−m ′)ε
(m ′′−m ′)ε+(s−1(m ′′)− s−1(m ′))(1−ε)

=
ε

ε+ s−1(m ′′)−s−1(m ′)
m ′′−m ′ (1−ε)

.

Now consider the limit as m ′′−m ′→ 0.
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The maximum is achieved at

a m = (1−µ(m ))s−1(m )+µ(m ) 12 .

Let θ = s−1(m ). Clearly if the receiver’s optimal response matches the sender’s ideal
point (θ + b ), the sender has no incentive to deviate from the specified strategy (for
θ ∈ [0,θ ∗]).21 Formally,

a m = θ +b

⇒ (1−µ(m ))θ +µ(m ) 12 = θ +b

⇒ µ(m ) =
2b

1−2θ
,

which can be solved for

s ′(θ ) =
2b (1−ε)

ε(1−2b −2θ )
.

Using the boundary condition s (0) = 0, we obtain the sender’s strategy for types θ ∈
[0,θ ∗]:

s (θ ) =−b (1−ε)
ε

ln

�
1−2b −2θ

1−2b

�
.

Next, suppose that the message received is in the interval (ζθi−1 + s (θ ∗),ζθi + s (θ ∗)]
(i ≤ 0); then the receiver’s optimal action is given by

a i = (1−η) 12 (θi +θi−1)+η 1
2 ,

where η is as defined in the proof of Proposition 7. As before, it follows that boundary
types must satisfy the difference equation

θi+1 =
2+2η

1−η θi −θi−1+
4b −2η

1−η (for i ≤−1).

We need a solution of this difference equation that converges to θ ∗—this ensures that
the required indifference condition for the boundary type at θ ∗ is satisfied. Hence θ ∗
must satisfy

θ ∗ =
2+2η

1−η θ
∗−θ ∗+ 4b −2η

1−η
⇒ θ ∗ =

η−2b

2η

⇒ θ ∗ =
1

2
− b (1−ε(1−ζ))

εζ
.

21In fact, it follows from the proof of Proposition 6 that, in any equilibrium, almost all types that fully
reveal themselves must induce their ideal actions; thus there is no equilibrium in which the highest types
adopt a separating strategy.
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Solving for ζ, we obtain

ζ=
2b (1−ε)

ε(1−2θ ∗−2b )
,

so

η=
2b

1−2θ ∗
.

The difference equation becomes

θi+1− 2−4θ ∗+4b

1−2θ ∗−2b
θi +θi−1 =− 8θ ∗b

1−2θ ∗−2b
.

With the boundary constraint θ0 = 1, the solution is

θi = (1−θ ∗)
�

1−2θ ∗+2b −
p

4b (2−4θ ∗)
1−2θ ∗−2b

�−i

+θ ∗.

Finally, recall that we require that

ζ(1−θ ∗)+ s (θ ∗) = 1,

so all messages are used in equilibrium. Can we find a θ ∗ that solves this equation?
Notice that s (0) = 0, and s ′(θ ∗) is strictly increasing for θ ∗ ∈ �0, 1

2 −b
�

with limθ ∗→ 1
2−b =

∞. Further, ζ(1−θ ∗) is increasing in θ ∗ (as long as b < 1
2 ). So, by continuity, we can find

a solution to this equation if and only if ζ(1− θ ∗) < 1 when θ ∗ = 0. This implies that
ε> 2b . �

Calculation of EU R for three-step equilibrium in Example 1 With an error of ε= 1
126 , we

showed that there is an equilibrium partition with elements
�

0, 1
25

�
,
� 1

25 , 8
25

�
, and

� 8
25 , 1

�
.

In the event of no error, these elements induce the actions a 1 = 1
10 , a 2 = 9

50 , and a 3 = 33
50

respectively. The expected payoff of the receiver is given by

EU R = (1−ε)
�∫ 1

25

0

−(θ −a 1)2 dθ +

∫ 8
25

1
25

−(θ −a 2)2 dθ +

∫ 1

8
25

−(θ −a 3)2 dθ

�

+ε

�∫ 1

0

−(θ −a 1)2 dθ

�

=− 36
1200 .

P  P . Suppose that

1

2N 2 <b <
1

2(N −1)2

for some integer N > 1. We show there exists ε > 0 such that for all ε ∈ (0,ε), there
is an N -step equilibrium of the noise model that Pareto dominates the Pareto optimal
equilibrium of the CS model.22

22As an aside, it is worth noting that as ε tends to 0, the equilibrium constructed here tends to the most
informative equilibrium of the CS model.
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Let the probability of error be ε. Consider the partition {[0,θ1), . . . , [θN−1, 1]}, and
suppose the sender obeys the strategy

if θ ∈ [0,θ1], randomize uniformly on [0, 1] \ {m2, . . . , mN };
if θ ∈ (θ1,θ2], send message m2;

...

if θ ∈ (θN−1, 1], send message mN .

The actions chosen in each step are, respectively,

if m ∈ [0, 1] \ {m2, m3} is received, choose a 1 =
(1−ε)θ1

1
2θ1+ε 1

2

(1−ε)θ1+ε
;

if m =m2 is received, choose a 2 = 1
2 (θ1+θ2);

...

if m =mN is received, choose a N = 1
2 (θN−1+1).

Solving the indifference conditions

θ1+b = 1
2 (a 1+a 2)

θ2+b = 1
2 (a 2+a 3)

...

θN−1+b = 1
2 (a N−1+a N )

gives

θ2 =
2θ1(2b +θ1)+ε(θ1−1)(4b +2θ1−1)

ε(θ1−1)+θ1
(5)

θ3−θ2 = θ2−θ1+4b (6)

...

1−θN−1 = θN−1−θN−2+4b . (7)

Now observe that
N−1∑

i=1

(θi+1−θi ) = 1−θ1 (8)

and combining (6)–(7) we obtain

N−1∑

i=1

(θi+1−θi ) = 1
2 (N −1)(N −2)4b +(N −1)(θ2−θ1). (9)
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Equations (8) and (9) give us

1−θ1 = 1
2 N (N −1)4b +(N −1)(θ2−θ1)

⇒ θ2−θ1 =
1−θ1

N −1
−2b (N −2). (10)

Finally, solving (5) and (10) for θ1, we find

θ1 =
1+2b N −2εN −2bεN −2b N 2+2bεN 2

2(1−ε)N

+

p
4ε(ε−1)(−1+2b (N −1))N 2+(1−2εN +2b (ε−1)(N −1)N )2

2(1−ε)N .

(11)

Equation (5) gives us the position of the first boundary point, θ1, in an N -step equilib-
rium of the noise model. Solving for ε, we can find the level of noise required to sustain
a particular equilibrium value of θ1:

ε=
θ1(−1−2b N +2b N 2+Nθ1)
N (1−θ1)(1+2b −2b N −θ1)

. (12)

The expected payoff of receiver is given by

EU R
noise = (1−ε)

�∫ θ1

0

−(θ −a 1)2 dθ +

∫ θ2

θ1

−(θ −a 2)2 dθ + · · ·+
∫ 1

θN−1

−(θ −a N )2 dθ

�

+ε
�∫ 1

0

−(θ −a 1)2 dθ

�

= (1−ε)
�
− θ1(−2ε(θ1−1)θ 3

1 +θ
4
1 +ε

2(θ1−1)2(3+θ 2
1 ))

12(ε+θ1−εθ1)2
− 1

12

N∑

i=2

(θi −θi−1)3
�

+ε
�
− ε

2−2(ε−1)εθ1+4(ε−1)2θ 2
1 −6(ε−1)2θ 3

1 +3(ε−1)2θ 4
1

12(ε+θ1−εθ1)2

�
.

Solving and substituting for ε using (12), we can re-write the expected payoff of the re-
ceiver in terms of θ1:

EU R
noise =−

4b 2(N −2)(N −1)2N +4b (N −1)2(2N −1)θ1+((2N −1)θ1−1)2

12(N −1)2
.

To see that this equilibrium Pareto dominates the Pareto optimal equilibrium of the CS
model for small ε, we consider two cases.

Case 1: 1/[2N (N −1)]¶b < 1/[2(N −1)2]. The Pareto optimal equilibrium of the CS
model has N −1 steps, with resulting expected payoff

EU R
CS =−

1

12(N −1)2
− b 2((N −1)2−1)

3
.
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Notice that this equilibrium coincides precisely with the construction above when
ε = 0, so that θ1 = 0. By introducing a small amount of noise, we are able to
squeeze an extra step into the equilibrium partition. We now compute the differ-
ence in the receiver’s expected payoff in the two types of equilibrium.

EU R
noise−EU R

CS

=−4b 2(N −2)(N −1)2N +4b (N −1)2(2N −1)θ1+((2N −1)θ1−1)2

12(N −1)2

−
�
− 1

12(N −1)2
− b 2((N −1)2−1)

3

�

=− (2N −1)θ1(4b (N −1)2−2+(2N −1)θ1)
12(N −1)2

> 0 for θ1 ∈
�

0,
2−4b (N −1)2

2N −1

�

Substituting for θ1, we obtain EU R
noise−EU R

CS > 0 if

ε∈
�

0,
2(1−2b (N −1)2)(1+2b (N −1)N )

((2N −3)2+2b (2N −3)2(N −1)−8b 2(N −1)3)N

�

To see that the upper bound of this interval is strictly positive, we show that
both numerator and denominator are strictly positive. Consider first the numer-
ator. Clearly (1 + 2b (N − 1)N ) > 0, and since b < 1/[2(N − 1)2], we also have
(1− 2b (N −1)2) > 0 as required. For the denominator, suppose first that N = 2
(recall that N is an integer greater than 1). Then the denominator simplifies to
2(1−2b (4b −1))> 0 since b < 1

2 . Now suppose N ≥ 3. We can rewrite the denomi-
nator as follows:

N ((2N −3)2+2b (2N −3)2(N −1)−4b (N −1)2b (N −1)2)

>N ((2N −3)2+2b (2N −3)2(N −1)−4b (N −1))

=N ((2N −3)2+2b ((2N −3)2−2)(N −1))

> 0 as required.

Case 2: 1/[2N 2]<b < 1/[2N (N −1)]. In this case, the most informative equilibrium of
the CS model has N steps, with resulting expected payoff

EU R
CS =−

1

12N 2 −
b 2(N 2−1)

3
.

This equilibrium coincides precisely with the construction above when ε= 0 and
θ1 = (1−2b (N −1)N )/N . By introducing a small amount of noise, we increase the
size of the first (and smallest) element of the equilibrium partition. As before, we
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compute EU R
noise−EU R

CS .

EU R
noise−EU R

CS

=−4b 2(N −2)(N −1)2N +4b (N −1)2(2N −1)θ1+((2N −1)θ1−1)2

12(N −1)2

−
�
− 1

12N 2 −
b 2(N 2−1)

3

�

=
(2N −1)(−1+4b 2(N −1)2N 2−4b (N −1)2N 2θ1−2N 3θ 2

1 +N 2θ1(2+θ1))
12(N −1)2N 2

> 0 for θ1 ∈
�

1−2b N (N −1)
N

,
1+2b N (N −1)

N (2N −1)

�
.

Substituting for θ1, we obtain EU R
noise−EU R

CS > 0 if

ε∈
�

0,
2(1+2b (N −1)N )(2b N 2−1)

(N −1)(1+2(1−b )N )(1+2N −4b N 2)

�
.

It is easy to see that the upper bound is strictly positive, completing the proof. �

P  L . Suppose that the N -step equilibrium of the noise model has an
equilibrium partition given by {[0,θ1), [θ1,θ2), . . . , [θi−1,θi ), . . . , [θN−1, 1]}. In the model
with correlated noise, consider an N -step partition {[0,θ ′1), [θ

′
1,θ ′2), . . . , [θ ′i−1,θ ′i ), . . . ,

[θ ′N−1, 1]}. Let m2, m3, . . . , mN be a sequence of messages, with m i 6= m i ′ for all i 6= i ′
and e(m i )≥ e(m i+1) for all i = 2, . . . , N −1. Define M ∗ ≡∪N

i=2{m i }. The sender adopts the
following strategy:

if θ ∈ [0,θ ′1), randomize over M \M ∗ with a distribution that has densityφ;

if θ ∈ [θ ′1,θ ′2), send message m2;

...

if θ ∈ [θ ′N−1, 1], send message mN .

(We define φ shortly.) The receiver’s posterior probability that the sender’s type is in
[0,θ ′1) conditional on receiving a message m ∈M \M ∗ equals

P(θ ∈ [0,θ ′1) |m ) =
((1− e(m ))φ(m )+

∫ 1

0
e(λ)φ(λ)dλ)θ ′1

((1− e(m ))φ(m )+
∫ 1

0
e(λ)φ(λ)dλ)θ ′1+

∑N
j=2 e(m j )(θ ′j −θ ′j−1)

.

And the receiver’s posterior probability that the sender’s type is in [θ ′i−1,θ ′i ) conditional
on receiving a message m ∈M \M ∗ equals

P(θ ∈ [θ ′i−1,θ ′i ) |m ) =
e(m j )(θ ′i −θ ′i−1)

((1− e(m ))φ(m )+
∫ 1

0
e(λ)φ(λ)dλ)θ ′1+

∑N
j=2 e(m j )(θ ′j −θ ′j−1)

.
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Notice that if we can ensure that these posteriors do not vary with m ∈M \M ∗, then the
sender is indifferent among all messages in this set. This condition in turn is satisfied if
there is a constant c such that

(1− e(m ))φ(m )+

∫ 1

0

e(λ)φ(λ)dλ= c (13)

for all m ∈M \M ∗. Integrating (13) with respect to m shows that we must have c = 1.
The resulting integral equation is solved by the functionφ that is defined by

φ(m ) =
1∫ 1

0
1−ε(m )
1−ε(ν ) dν

.

This implies that the receiver’s posteriors do not depend on the entire shape of the error
function e, but only on the specific values e(m i ) for i = 2, . . . , N . (The resulting posteriors
are in fact the same as in a model where messages may get lost with probabilities e(m i ),
i = 2, . . . , N that depend on the messages sent, and the lowest interval of types refrains
from sending a message.)

For all m ∈M \M ∗ the receiver’s best response is given by

a ′1 = P(θ ∈ [0,θ ′1) |m )
θ ′1
2
+

N∑

i=2

P(θ ∈ [θ ′i−1,θ ′i ) |m ) 12 (θ ′i−1+θ
′
i )

=
θ ′1

θ ′1+
∑N

j=2 e(m j )(θ ′j −θ ′j−1)

θ ′1
2
+

N∑

i=2

e(m i )(θ ′i −θ ′i−1)

θ ′1+
∑N

j=2 e(m j )(θ ′j −θ ′j−1)

θ ′i−1+θ
′
i

2

(where θ ′N = 1), and for m i ∈M ∗ the receiver’s best response is

a ′i =
1
2 (θ

′
i−1+θ

′
i ).

Then type θ ’s payoff from sending message m i ∈M ∗ equals

EUS(θ , m i )≡−(1− e(m i ))(θ +b −a ′i )
2− e(m i )(θ +b −a ′1)

2.

The payoff from sending some message m1 ∈M \M ∗ equals

EUS(θ , m1)≡−(θ +b −a ′1)
2.

(Henceforth, we use m1 to denote a generic message in M \M ∗.) Suppose that a ′2 > a ′1 (it
follows from the expression for a ′i above that a ′i+1 > a ′i for i = 2, . . . , N−1). Since we have
assumed ε(m i )≥ ε(m i+1), if any type θ is indifferent between sending messages m i and
m i+1, then any type θ ′ >θ strictly prefers m i+1 to m i and any type θ ′′ <θ strictly prefers
m i to m i+1. Intuitively, sending message m i increases the risk of the “bad” action a ′1,
so for type θ to be indifferent between m i and m i+1, she must prefer action a ′i to action
a ′i+1; for a higher type θ ′ this preference is weaker (and is reversed eventually), while the
payoff loss from action a ′1 is higher, so m i+1 is strictly preferred. For lower types θ ′′, on
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the other hand, the preference for a ′i over a ′i+1 is stronger, while the payoff loss from a ′1
is lower, so m i is strictly preferred.

Therefore, if our partition is chosen such that a ′2 > a ′1 and each boundary type θi is
indifferent between messages m i and m i+1 (i = 1, . . . , N − 1), we have an equilibrium.
The indifference conditions for these boundary types are given by

EUS(θ ′1, m1) = EUS(θ ′1, m2)
...

EUS(θ ′N−1, mN−1) = EUS(θ ′N−1, mN ).

In the case where there are at least N − 1 messages that yield equal error probabilities
of exactly ε, the result follows easily. Substituting ε for e(m i ), i = 2, . . . , N , we see that
these indifference conditions are identical to the corresponding conditions in the noise
model; thus {[0,θ1), , . . . , [θN−1, 1]} is also an equilibrium of the correlated-noise model,
with the same induced actions a 1, . . . , a N .

If we cannot find N − 1 such messages, a more intricate argument is needed. Rede-
fine a ′1 for arbitrary (ε2, . . . ,εN ) as

a ′1 ≡
θ ′1

θ ′1+
∑N

j=2εj (θ ′j −θ ′j−1)

θ ′1
2
+

N∑

i=2

εi (θ ′i −θ ′i−1)

θ ′1+
∑N

j=2εj (θ ′j −θ ′j−1)

θ ′i−1+θ
′
i

2
.

Define

US,i (θ ;ε2, . . . ,εN ;θ ′1, . . . ,θ ′N )≡−(1−εi )(θ +b −a ′i )
2−εi (θ +b −a ′1)

2.

Define

V S,i−1,i (θ ′i−1;ε2, . . . ,εN ;θ ′1, . . . ,θ ′N )
≡US,i−1(θ ′i−1;ε2, . . . ,εN ;θ ′1, . . . ,θ ′N )−US,i (θ ′i−1;ε2, . . . ,εN ;θ ′1, . . . ,θ ′N ).

Note that for N > 2, V S,N−1,N is a continuously differentiable function in an open neigh-
borhood of ε2 = · · ·= εN = ε and θ ′i = θi , i = 1, . . . , N . Also, at ε2 = · · ·= εN = ε and θ ′i = θi ,
i = 1, . . . , N , the derivative with respect to θ ′N equals −(1− ε)(θN−1 +b − 1

2 (θN−1+θN )),
which is strictly positive. Therefore, by the Implicit Function Theorem, the equation

V S,N−1,N (θ ′N−1;ε2, . . . ,εN ;θ ′1, . . . ,θ ′N ) = 0

has a local solution
θ ′N = f N (ε2, . . . ,εN ;θ ′1, . . . ,θ ′N−1),

where f N is continuously differentiable.
For N − 1 > 2, substitute this solution into V S,N−2,N−1. The resulting function is

continuously differentiable in an open neighborhood of ε2 = · · · = εN = ε and θ ′i = θi ,
i = 1, . . . , N −1. Its derivative at ε2 = · · ·= εN = ε and θ ′i = θi , i = 1, . . . , N −1 with respect
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to θ ′N−1 is strictly positive and once again the Implicit Function Theorem guarantees the
existence of a local solution

θ ′N−1 = f N−1(ε2, . . . ,εN ;θ ′1, . . . ,θ ′N−2),

where the function f N−1 is continuously differentiable.
As long as i > 2, we can recursively continue this procedure with V S,i−1,i . The case

of i = 2 requires slightly more attention. Let ε denote (ε, . . . ,ε). We need to determine

∂

∂ θ ′2
V S,1,2(θ1;ε;θ1,θ2, f 3(ε,θ1,θ2), f 4(ε,θ1,θ2, f 3(ε,θ1,θ2)), . . . )

=
∂

∂ θ ′2
(1−ε){−(θ1+b −a ′1)

2+(θ1+b −a ′2)
2}

=−(1−ε)
n
−2(θ1+b −a ′1)

∂ a ′1
∂ θ ′2

+
�
θ1+b − 1

2 (θ1+θ2)
�2
o

.

The boundary values θ ′1,θ ′2, . . . ,θ ′N (notice that θ ′0 is excluded) satisfy the difference
equation

θ ′i+1 = 2θ ′i −θ ′i−1+4b .

With θ ′1 and θ ′2 as parameters, the solution becomes

θ ′i = 2θ ′1−θ ′2+4b +(θ ′2−θ ′1−6b )i +2b i 2.

Hence, ∂ θ ′N /∂ θ
′
2 =N −1. Therefore,

∂ a ′1
∂ θ ′2

=
∂ a ′1
∂ θ ′N

∂ θ ′N
∂ θ ′2

=
∂ a ′1
∂ θ ′N

(N −1).

Finally,

∂ a ′1
∂ θ ′N

=
1

2

¨ −εθ 2
1

(θ1+ε(1−θ1))2
+

2ε(θ1+ε(1−θ1))−ε2(1−θ 2
1 ))

(θ1+ε(1−θ1))2

«
> 0.

Therefore

∂

∂ θ ′2
V S,1,2(θ1;ε;θ1,θ2, f 3(ε,θ1,θ2), f 4(ε,θ1,θ2, f 3(ε,θ1,θ2)), . . . )> 0.

This means that our recursion extends to V S,1,2. Let ~ε= (ε2, . . . ,εN ). We have shown that
we can generate a series of functions f 2, . . . , f N that are locally continuously differen-
tiable in their arguments and that have the property that for θ ′1 in an open neighborhood
of θ1 and ~ε in an open neighborhood O (ε) of ε the values

θ ′1
θ ′2 = f 2(~ε;θ ′1)
θ ′3 = f 3(~ε;θ ′1, f 2(~ε;θ ′1))

...

θ ′N = f N (~ε;θ ′1, f 2(~ε;θ ′1), . . . , f N−1(~ε;θ ′1, . . . , f N−2(~ε;θ ′1, . . . )))
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solve the system of equations

V S,i−1,i (θ ′i−1;~ε;θ ′1, . . . ,θ ′N ) = 0, i = 2, . . . , N .

Notice that since e is continuous, regardless of how small we choose O (ε), we can find
messages m i , i = 2, . . . , N with m i 6=m j for i 6= j , (e(m2), . . . ,e(mN ) ∈ O (ε), and e(m i ) ≥
e(m i+1). In the sequel consider values of ~εwith ~ε= (e(m2), . . . ,e(mN )).

Then, for equilibrium it remains to find a value of θ ′1 such that

f N (~ε;θ ′1, f 2(~ε;θ ′1), . . . , f N−1(~ε;θ ′1, . . . , f N−2(~ε;θ ′1, . . . ))) = 1.

To see that such a θ ′1 exists, first note that, evaluated at ε, the indifference conditions for
boundary types θ2, . . . ,θN are solved by

f 2(ε;θ1) =
2θ1(2b +θ1)+ε(θ1−1)(4b +2θ1−1)

ε(θ1−1)+θ1

f 3(ε;θ1,θ2) = 2θ2−θ1+4b

...

f N (ε;θ1, . . . ,θN ) = 2θN−1−θN−2+4b .

Furthermore,

d f 2

dθ1
(ε;θ1) = 2+

ε

(ε+θ1−εθ1)2

d f 3

dθ1
(ε;θ1,θ2) =

∂ f 3

∂ θ2

d f 2

dθ1
+
∂ f 3

∂ θ1
= 2

�
2+

ε

(ε+θ1−εθ1)2

�
−1

= 3+
2ε

(ε+θ1−εθ1)2

...

d f N

dθ1
(ε;θ1, . . . ,θN ) =N +(N −1)

ε

(ε+θ1−εθ1)2
.

In particular, observe that (d f N /dθ1)(ε;θ1, . . . ,θN ) > 0. It follows that for sufficiently
small β > 0 and ~ε in a sufficiently small open neighborhood of ε,

f N (~ε;θ1−β , f 2(~ε;θ1−β ), . . . , f N−1(~ε;θ1−β , . . . , f N−2(~ε;θ1−β , . . . )))< 1

f N (~ε;θ1+β , f 2(~ε;θ1+β ), . . . , f N−1(~ε;θ1+β , . . . , f N−2(~ε;θ1+β , . . . )))> 1.

The existence of the required value of θ ′1 follows from the Intermediate Value Theorem.
To complete the proof, observe that f 2(ε;θ1) = θ2, f 3(ε;θ1,θ2) = θ3, . . . , and each

f i (~ε; . . .) converges to f i (ε; . . .) as ~ε→ ε. �
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