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Biologists and economists have analyzed populations in which each individual
interacts with randomly selected individuals. Because random matching generates
a very complicated stochastic process, biologists and economists frequently
approximate the population dynamics by a deterministic process. This paper
examines the limit of random matching schemes as the population grows, matches
occur very frequently, and the proportion of the population paired in a matching
becomes very small. In the limit, the population evolves according to a differential
equation. The proof of convergence depends either on the existence of a global
attractor or on finiteness of the time horizon. Journal of Economic Literature

Classification Numbers: C73, C78, D83. i 1995 Academic Press, Inc.

1. INTRODUCTION

Many important models consider large populations with randomly
matched individuals.” In such models, the matching process is usually
not defined, but the stochastic process it generates is assumed to be

* The author thanks Kerry Back and Stanley Sawyer for their help. Phil Dybvig,
Drew Fudenberg, George Mailath, John Nachbar, Larry Samuelson, the participants of the
workshop at the University of Pittsburgh, an associate editor, and two referees made
suggestions that improved this paper.

' Reference [4] analyzes a game played repeatedly by randomly matched players.
Individuals belong to a finite number of types, where a type is defined to be a belief over the
strategy the other individuals adopt. References [5, 9] study a market where traders are
randomly and pairwise matched. In some job search models (see, for instance. [ 11]) workers
and employees are randomly matched. In biology, genes are randomly matched to determine
a phenotype (see, for instance, [3]) and animals are randomly matched against competitors
for scarce resources (see, for instance, [8]).
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approximated by a particular deterministic process.” The purpose of this
paper is to give conditions under which a deterministic process is a good
approximation to a random matching process.

In the model, each individual is of a type. Individuals update their types
after they are matched to other individuals. Specifically, an individual’s new
type depends on the type of the matched individual. The random matching
process considered in this paper is defined by a population size, the
frequency with which individuals are matched, and the proportion of the
population paired in each matching.

The approximation results can be stated by considering a sequence of
random matching processes. In such a sequence, the population size goes
to infinity, the time interval between matches goes to zero, and the
proportion of the population paired at each point in time goes to zero.
Corresponding to the sequence of random matching processes there is a
sequence of trajectories which describe the evolution of each matching
process over time. Corollary 1 states that the trajectories converge to the
solution of a differential equation. Proposition |1 gives numerical bounds
for deviations of the random matching process and allows us to prove
Corollary 1 and Proposition 2 (and hence Corollary 2). Corollary 2 gives
conditions under which the limiting behavior of the deterministic process
approximates the limiting behavior of the random matching process;
namely, the differential equation which approximates the random matching
process must have a globally stable point. The paper ends with an example
where the deterministic process has one locally asymptotically stable
stationary point (a sink) and three unstable stationary points. Each
unstable stationary point is an absorbing state for the random matching
process. Furthermore, for any initial population, the random matching
process converges to one of the unstable points in finite time.

Ideally, for all time periods, the deterministic process would be close to
the random population process with high probability. However, the
approximation deteriorates as the time horizon increases unless the deter-
ministic approximation has a globally stable point. This requirement is a
strong one and typically is not satisfied. Consequently, we should be
cautious when characterizing random matching processes using results
derived from a deterministic process.

This note is closely related to [2], but the results are different because
the matching schemes are different. In both cases, individuals behave the

* One exception is [10] who considers an uncountable number of buyers (of measure &)
and sellers (of measure 1). The random matching process is such that the probability with
which a subset of buyers is matched to a subset of sellers which has measure m is equal to
m. Reference [ 10] proves by a law of large numbers that the proportion of sellers that is not
matched to any buyer is e “*. However, such a model cannot be applied to the models listed
above where individuals are matched to at most one individual.
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same in a given matching. However, the number of matchings in [2] is one
per individual, while the number of matchings per individual in this note
is random and converges to a Poisson process as the population grows.
The limiting deterministic process is different in the two cases, showing that
aggregate dynamics are sensitive to the fine structure of the matching
process.

This paper considers large, but finite, populations. Reference [2] shows
that there is no random matching processes that satisfies a list of
apparently innocuous and intuitive requirements when the population is
taken to be the natural numbers. Reference [ 9] points out the same result
when the population is indexed by an interval,® The urn results used in this
paper are a slight modification of the results in [2]. The method of proving
the continuous approximation is taken from [13].

2. APPROXIMATION

The population P(N) consists of individuals {1, ..., N}. Individuals are of
m different types, where a generic type is labeled by s,.

Individuals are randomly pairwise matched at time ¢=a(N), 2a(N), ....
At each period, the fraction of the population that is matched is a(N). For
instance if a(N)=1, then the entire population is matched at time I, 2,
3,... If o(N) =1, then half of the population is matched at time 3, 1, 1, ....
The proportion of the population which is matched and the frequency with
which the population is matched are chosen in such a way that, for a time
period of length 1, the number of pairs matched is N/2.

The random matching scheme works as follows. In each period,
individuals are put in a large urn and then drawn in pairs, without replace-
ment. The number of pairs drawn is «{ N)N/2 (by assumption an integer);
individuals drawn together are matched to one another.*

If an individual of type s, is matched with an individual of type s,, the
individual of type s, becomes a type 1(s,, s.) while the individual of type
s, becomes a type t(s,, 5,).

Let p”(k) be the proportion of individuals of type s, after k periods of
matchings, when the population size is N. The random matching and the
updating rule generate the Markov chain {p™(k)}. Let pY(z> be the
proportion of individuals of type s, at time ¢ For xeR, let [x] be
the integer part of x. Then p”{¢> = p™([t/«(N)]). Figure 1 illustrates the

* After discussing this result they state “We believe that the conceptual imperfections of this
approach are, in principle. properly dealt with by limit theorems.” This is exactly the
approach taken in this paper.

*Let n™(t, i) be the number of times that individual i/ has been matched after time 1.
Iflimy ., «({N)=0, then n™(1, i) converges to a Poisson process with mean .
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Fig. 1. A realization of p(k) and corresponding p{t>: p(k)} is the proportion of the
population of type s, after & matchings, p{¢> is the proportion of the population of type
s, at time ¢ (after [¢/a] periods of matchings). As « converges to 0, p{t) converges to the
solution of a particular differential equation.

relationship between p"(k) and pV{t) in a model where there are only
two types.

Let 77 ¥(s,) be the set of matches that lead the first individual to be a
type s,; ie, T '(s,)={(v, w): 7(s5,..5,) =5,}. Let p, be the proportion of
the population which is of type s, and let p=(p,, .., p.,). Let F.(p) be the
expected change in the proportion of the population which is of type s,
after the next matching time; specifically, F(p)=3% -, p.p.— P, Let
p(t) be the solution of the differential equation p(¢) = F(p(1)), p(0)=p°,
where p°e 4™.° Such a solution exists and is unique since F is polynomial.

The initial population, p~¥(0), is assumed to be deterministic, and for
all 7, [pM(0)— p°| < 1/N.5

S4m={peRT X, p, =1} '
® We cannot necessarily pick p(0) = p" because p¥ e {k/N}, c v
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Ideally, we would like a result such as Ve, 6>0, 37*, N* such that
Prob(|p(t) — p™{t>|| =) <efor all t = T* and N> N*. This result is false
as shown by the example at the end of the paper. Hence, we prove a
weaker result, Proposition 1, which is proven in Appendix A.

PROPOSITION 1. For all 6>0 and t 20, if e "' > C,a(N)+ 1/N, then

2tm2(1 + m)

N
Prob(||p(t)—p <’>“>5)<N(5ef('11 Cya(N —]/N)z’

where C, is such thar max, |[F.(p) - F(@)| < C,llp—¢ql| and C,=
X, 0 lE(P)].

Note that the probability with which the stochastic process, {p™<{1>}, is
within 6 of the deterministic process is an increasing function of the
population size, N, and a decreasing function of time, ¢. Furthermore,
the size of J is an increasing function of ¢ and, if ®(N) is nonincreasing, a
decreasing function of N.

From now on, lim, _ , a(N)=0.

COROLLARY 1. For all >0 and 5>0, limy .. Prob(||p(¢) —p~{t>|
20)=

Corollary 1 is not strong enough to motivate learning models where an
individual updates his type according to the pairings in that period.’
However, it can be generalized. Let p,. denote the proportion of (s,,s,)
pairs in a matching. The updating rule, H: R™ > R” is a function of
p={p..) such that for some K>0, max, , |DH, (p)| <K Let Flp}=
H(ppT). Then Corollary 1 still holds, as was shown in [11.

Corollary 1 states that the deterministic process approximates the
random matching process over bounded time intervals. At the end of the
paper, there is an example where the limiting behavior of the two processes
is very different. Corollary 2 states that if the deterministic process is
globally asymptotically stable, then the limiting behavior of the deter-
ministic process provides a good approximation of the limiting behavior of
the random matching process.

Let AV be the Cesaro average for the random matching process; i.e., for
all Bc 4™,

AY(B)= lim

1 K
Jim o 3 Prob(p"(k)e B1p(0)=p)*

7 See, for instance, [6].
* This limil always exists as a probability measure because {p“(k)} is a finite Markov
chain, as follows simply from [ 14, p. 541].

642:66°2-21
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The probability measure A" is invariant; ie., for all k and B, A¥(B)=
{ Prob(p~(k)e B | p(0)=p)dA™(p). Since A" is a probability measure
over a compact set, there is a weakly convergent subsequence, {A™},
where lim; . AYM=A. Let G(p)=p(1), where p(t) is such that p(r)=
Fp(1)), p(G)=p.

PROPOSITION 2. A is an invariant probability measure of G,; ie.,
A=AG, "

Proof. Let PY{B| p) denotes the probability that p¥{¢> € B given that
p¥{0>=p. By Proposition1, P™(.|p) converges weakly to OGim
uniformly with respect to p. Hence by weak convergence arguments,
lim, ., { PYdAY =4, dA=AG, " Therefore, AG, ' =lim, ., | PV dA™
=lim; ., AY=4. |

COROLLARY 2. Suppose the deterministic process has a globally asymp-
totically stationary point; ie., for all initial conditions, lim,_ . p(t)=p.
Then, limy . . AN =6. Consequently, for each neighborhood of p, U, if N
is large enough, then p™(k) is outside of U (at most) a finite number of times.

Proof. Since p is a globally asymptotically stationary point, J; is the
unique invariant measure, and all convergent subsequences { 4"} converge
to 6. Therefore, {A"} converges to 6;. |

Corollary 2 cannot be extended to the case where the deterministic
process 1s only localy asymptotically stable. For instance, suppose there are
six different types. Types are updated as follows: (s, s;) =1(s, 5,) =5,,
(8, 81) =8¢, T(85, 85) =84, TS5, $2)=17(52, §3)=5,, (83, 5;)=1(51, 53) =53,
(83, 8,) =55, for ie{1,2,3}, j, ke{4,5,6}, where j#k, t(s;,s)=
(s, 5;) =, 5,) =5, 5, and (s, 5. ) =3, n

In the deterministic process j,=p,=p,=(3+3 \/13)/54, Pa=Ps=
Pe=(1/3)—(3+3 \/13)/54 is a sink; i.e., j is a stationary point and all the
eigenvalues of DF have negative real parts. Thus (see [ 7, p. 1811) there is
a neighborhood U< 4° of § such that if p(0)e U, then for some positive
constants B and ¢ and for all ¢, |p(t)— p| < Be ' |p(0)— pl. The other
stationary points, ¢, =(1, 0,0, 0, 0, 0}, e,=(0, 1, 0, 0, 0, 0}, e;=(0, 0, |,
0, 0, 0), are unstable (this follows from the fact that DF has a positive
eigenvalue and the corollary in [7, p. 187]).

For any population p*(k) we can construct a finite number of matchings
after which all individuals are of one type (which could be s, s,, or s5).
Furthermore, for any population size we can find a lower bound for such a
probability (see Appendix B). Therefore, in finite time, the population
becomes of only one type. Consequently, if {A4™} converges, then
tim, , AY=ad, +fd,,+yd,,, for some nonnegative constants a, ff, y.
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APPENDIX A
This section proves Proposition 1. The proof makes use of Lemma 1.

Lemma 1. For large N,

E[(p)k+ 1) —pNk) | pN(k)]=a(N) E(p"(k))

Var[ p¥(k + 1) —p¥(k) | pY(k)) <2m(m + 1) zﬁ/fvl)_

Proof (Lemma). Consider the subpopulation consisting of the a(N)N
individuals drawn, Let x,=1 if the ith pair is of type (s,, s,) and zero
otherwise. Let p;ﬁ denote the proportion of (s,, s,) matches; ie.,

2
(NN RS

i

pr=
Note that the random variables {x;}, are exchangeable. Thus,

E(Z .\‘,): E("):“U\;)N E(xy).

i

Let N be large enough so that the terms p, N—1, p, N—2, p, N—3 can be
approximated by p, N. Then

_0.N pN=0,)

E(x,) N No] PP

and
E(p))= 2 a(N)Nprp;p P
T AN)N 2 A

Note that x7=x, Then, by exchangeability of the random variables

v
't~‘i»\i} FRis

wwlzo)-e{ (5]

=Y E(x,x)+E (Z ,\-,.> ‘[E <Z \>] 2

P# 7 ]

=a(}Z)N (a(]Z)N__ 1) E(X]XZ)+E<Z x,)‘E{<Z \,>:|~

=




RICHARD T. BOYLAN

N pN—6,. p,N—1-6,. p.N—1-26,,
R e o £ g

rr- L S o S S ~ 1l gl
N N NZ2 N-3 TPPe
then
, 4 2 N)N [«(N)N >
V: Ny o _ 2 2
ar(py) a(N)zNZ{ 2 ( e
N NN, L a(N)*N?
PP ) PP 2
-2 (1 )
_(X(N)Np'pl [7,-[7:»~
If the individuals are matched according to {p,.}. then
pYk+1)= Y aN) p¥ (k) +pNk)—a(N) Y pN(k).

s, v

Consequently,

ELpM(k+ 1) = pX(k) | pYK)]=a(N) ¥ pltk) pY(k) —a(N) p¥(k)

= I(s,)

= a(N) E(p™(k)).

Since Cov(X, Y)<max{Var(X), Var(Y)},

Var[p(k +1) = pJ(k) | p¥ (k)] <a(N)* m(m + 1) max Var(p]})

23

<a(NZ2mim+1) (NN 1

By definition, p,(1) = p? + [} F.(p(u)) du. Note that

e ([ )z L0 2 (0 ()
J‘(’ bp o N) e .v§|) J.va(h’) v a(N) du
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Let {m,(k)} be the martingale defined by

k -1
m,(k)y=pNky—pX0) =Y, E[pFs+1)—p}s)| pMs)].

x=0

Thus,

k—1
plky=m (k) +pM(0)+ Y. E[pNMs+1)—pNs) | p™Ms)]
s=0
.

-1
=m (k) +p}(0)+aN) F(p™(s))
0

5=

i kx{ N} 3 u
:m,(k)-l-p‘?(()]-4~j0 F,([)‘N <L((N}]>>du'

Let C, be such that max, |F(p)—-Fg<C lip—yq|, let C,=
max, , F(p), and set k = [t/a(N}]. Then

vt (k ’ - ¥ :
o[ femone -+ ()

/ ¥ u
F"(\” (['a(N)D)

du

Y0~ p0l + |
kx( NY

1
< 'YH,.(I\ )‘ +N

+C, J[: ”[)(u) _p‘V<{a(’*}‘v)]>H du+ Cyo(N).

Let M?*(k)=max, m2(k). Then
”P(t)—p‘”'([—l~]>]] SM(k)+'1—+C7:x(N)
i aflNY 1/ N :

S

Gronwall’s lemma (see [ 12, p. 499]) states that if ¢ is a locally bounded
Borel function of R, such that for all ¢ d)(t)éa-}-bj{) #(s) ds, then
¢ty <ae™. Letting ¢(1)= | p(t) — p™ ([ t/x(N)]}|, we get that

| - ! I , __l_ ( e
[Pt —p (L(MDHs[M(A)+N+Cza<N)}e .
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By Lemma 1, E(M?(k))<2km*(1+m)a(N)/N. Chebychev’s inequality
states that for all # >0, P()&] = ) < EE2/p?. Thus if de = "' > C,a( N} + /N,
then

‘ N _wt__ ( =i ( _.L)
Prob <Up(t)—p ([a(N)]>h>5><Prob (M(k))ée C,a(N) N

2km2(l +m)alN)
S N(de ' — Coal N)— 1/N)?
2tm*(1 +m)
N(de "~ C,a(N) = 1/N)*

<

APPENDIX B

This section examines the example at the end of the paper and computes
the lower bound for the probability with which the population converges,
in a finite number of periods, to one of the unstable stationary points.

In order to make the probability as small as possible, suppose
a{N)N=2. First we show how we get to a situation where for some

e{1,2, 3}, p;(k)+ p; . 3(k)=0. Without loss of generality, pick i=2.

First we eliminate type ss by matching each individual of type s against
another individual of type s (if there is only one individual of type s5 left,
this individual is matched against an individual of type s,). This takes less
than N/2 periods. The probability of such a sequence of matchings is
greater that N~ Then we eliminate s, by matching each individual of
type s, with an individual of type s,. Again, this step takes less than N/2
periods and the probability of such a sequence of matchings is greater
than N~%.

Next we show that if for some i€ {1, 2,3}, p,(k)+ p,, ;(k)=0, then we
can get to a situation where for some je {1,2,3}, p,=1.

Suppose p,+ ps=0. First we eliminate type s, by matching each
individual of type s, against another individual of type s, (and if this is not
possible, then against an individual of type s,). Then we match each
invidual of type s, against an individual of type s,. This takes at most N
periods and occurs with probability greater than N 2%,

Hence, the whole population is of only one type in less than 2N periods
with probability greater than N 4"
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