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Considering finite normal-form games, we assume that players maximise expected
utility, that they hold beliefs with full support, and that these facts are
“approximate common knowledge” among players. We show that players satisfy
these assumptions if and only if they choose strategies that survive the following
procedure: first, all weakly dominated strategies are eliminated, and then strongly
dominated strategies are iteratively eliminated. This procedure is due to E. Dekel
and D. Fudenberg [J. Econ. Theory 52 (1990), 243-267]. We compare our justifica-
tion for this procedure to theirs. Jowrnal of Economic Literature Classification Num-
ber: C72. ©: 1994 Academic Press, Inc.

1. INTRODUCTION

In the Bayesian approach to noncooperative games (e.g., Bernheim [1]
and Pearce [10]), it is assumed that players form subjective beliefs about
the other players’ strategies, about their beliefs, about their beliefs about
beliefs, etc., and then make a choice that maximises expected utility. Two
basic results are: If no assumption is made about players’ beliefs, a strategy
can be an expected utility maximising choice if and only if it is not strongly
dominated by another strategy; if, on the other hand, it is common
knowledge that all players maximise expected utility, then a strategy can be
chosen if and only if it survives the iterated deletion of strongly dominated
strategies.'

* This paper is a revised version of parts of my paper “Bayesian Optimisation and
Dominance in Normalform Games” (Basel, 1989). I would like to thank Darryl Biggar,
Maarten Janssen, Larry Samuelson, Max Stinchcombe, two referees, and, in particular, Drew
Fudenberg and an associate editor for their comments. Financial support from the
“Schweizerischer Nationalfonds” is gratefully acknowledged.

! The first result is Lemma 3 in [10]. The second result is stated as Theorems 5.2 and 5.3
in [13].
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The sets of strategies that are not strongly dominated, and also the sets
of strategies that survive iterated deletion of strongly dominated strategies,
are usually large. More restrictive concepts are obtained if “strong
dominance” is replaced by “weak dominance.” Several authors have hence
considered strategies that are not weakly dominated, or strategies that
survive the iterated removal of weakly dominated strategies (e.g., Kohlberg
and Mertens [7] and Moulin [9]).

The question arises whether these concepts also have justifications in
Bayesian terms. If the elimination is not iterated, the answer is “yes.” A
strategy is not weakly dominated if and only if it maximises expected utility
for a subjective belief that assigns strictly positive probability to all
strategy-combinations of the other players.” This may be referred to as the
case in which players are “cautious” in the sense that they regard no
behaviour of other players as “completely impossible.”

As regards iterated elimination of weakly dominated strategies the
following difficulty arises: In analogy to the case of strong dominance one
might try to derive iterated elimination of weakly dominated strategies
from the assumptions that players maximise expected utility using full
support beliefs, and that this fact is common knowledge. But these assump-
tions may be logically inconsistent. The common knowledge assumption
implies that every player knows that all other players maximise expected
utility using a full support belief. Hence every player assigns zero probabil-
ity to choices of the other players that do not maximise expected utility for
some full support belief. On the other hand, every player must have a full
support belief himself, and hence give positive probability to every choice
of the other players. If some of the other players have weakly dominated
strategies these two requirements are incompatible. This difficulty seems to
be insurmountable. So far no justification of iterated elimination of weakly
dominated strategies in a conventional model of Bayesian optimisation and
common knowledge has been given.?

Responding to these difficulties, this paper considers a procedure that is
intermediate between iterated deletion of strongly dominated strategies and
iterated deletion of weakly dominated strategies, and shows how this
procedure can be justified in Bayesian terms. The procedure begins with one
round of elimination of weakly dominated strategies and continues with
iterated elimination of strongly dominated strategies. We show that this proce-
dure can be derived from the assumption that players maximise expected utility
using full support beliefs, and that this fact is approximate common knowledge.

*Lemma 4 in [10].

® Stahl's [11] recent argument for iterated deletion of weakly dominated strategies uses the
somewhat less conventional framework of lexicographically ordered sequences of beliefs. See
our Section 5.
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The notion of “approximate common knowledge” is due to Monderer
and Samet [8] and Stinchcombe [12]. Roughly speaking, an event E is
“approximate common knowledge” if everybody assigns high probability to
E, and if everybody assigns high probability to the event that everybody
assigns high probability to E, etc. An important point to note is that by
assuming “approximate” common knowledge rather than “full” common
knowledge we avoid the difficulty described above in the context of iterated
deletion of weakly dominated strategies.

The main result of this paper is that it is approximate common knowledge
that players maximize expected utility using full support beliefs if and only
if they choose strategies that survive the procedure described above.

This procedure was originally proposed by Dekel and Fudenberg [5].
To motivate the procedure, Dekel and Fudenberg start from the observa-
tion that any definition of rationality in games should at least include all
those strategies that survive iterated deletion of weakly dominated
strategies. They then argue that in practice players’ payoffs are never com-
plete common knowledge. They therefore apply iterated deletion of weakly
dominated strategies not directly to the game under consideration, but
instead to versions of this game in which information about payoffs is
incomplete. Taking the limit for the uncertainty tending to zero, and con-
sidering all possible specifications of incomplete information about payoffs,
they then obtain the iterative procedure which also we obtain.

The framework within which Dekel and Fudenberg justify their procedure
is not a formal model of Bayesian rationality and common knowledge. In
fact, their argument employs a concept—iterated deletion of weakly
dominated strategies—for which, as we explained above, no Bayesian inter-
pretation is known. Although Dekel and Fudenberg’s analysis follows a
different methodology than ours, there is a close formal relationship
between their paper and ours. We shall elaborate on this relationship below.

The organisation of this paper is as follows. In the next section we intro-
duce our assumption. In Section 3, we characterise the strategies that can
be chosen under this assumption. In Section 4, we discuss the formal
relation between our analysis and that of Dekel and Fudenberg. Section 5
concludes with a discussion of Bernheim’s {17] closely related notion of
“perfect rationalizability.” We shall use an example to illustrate how this
concept differs from that of Dekel and Fudenberg. Section 5 will also refer
to some related work of Brandenburger [4].

2. THE ASSUMPTION

We consider a game played by a finite number of players ielf=
{1,2,.., I} (I=2). Every player i e I has a finite set of strategies s,& S;. We
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define S=T1,.,S;and, forie, S _,=T1,,,S,.* Elements of S are denoted
by s, and elements of S_; are denoted by s_,. Every player / has a utility
function u,: S — R,

We shall assume that every player chooses his strategy on the basis of a
hierarchy of beliefs. A hierarchy of beliefs consists of a first order belief, i.e.,
a probability measure on the Cartesian product of the players’ strategy
sets, and, for every ne N with n> 2, an nth order belief, i.e., a probability
measure on the Cartesian product of the players’ strategy sets and the sets
of their (n— 1)th order beliefs.” We shall not give the formal definition of
hierarchies of beliefs. It is given in Tan and Werlang [13, Definition 3.9].

Within this framework we now make a sequence of assumptions. The
first is:

(1) Every player chooses a strategy that maximises his expected
utility, whereby expected utility is calculated using the player’s first order
belief. Moreover, every player’s first order belief has full support on the
Cartesian product of the other players’ strategy sets.

Our further assumptions are defined inductively. For every ne N with
n =2 we shall assume that players’ nth order beliefs satisfy:

(n) Every player believes with a probability of at least p that assump-
tions (1) and (n— 1) are true.

Here pe (0, 1) is a given and fixed parameter. Below we shall focus on
the case that p is close to 1. The assumptions (n) (n > 2) taken together can
then be interpreted as saying that (1) is “approximate common
knowledge.”

The above assumptions can be formalised in the same way as the tradi-
tional assumption that players maximise expected utility, and that this fact
is “full” common knowledge, is formalised. We omit the details. A formal
statement of the traditional assumption is, for example, given in [13,
pp. 377-3781].

Our notion of “approximate common knowledge” is closely related to
the concept of “common beliefs” due to Monderer and Samet [8]° and to
Stinchcombe’s [12] notion of “approximate common knowledge.” As
Stinchcombe, but unlike Monderer and Samet, we do not assume that
players’ beliefs are derived from an objective prior. On the other hand, we

*In analogous contexts in the remainder of this paper we shall use the lower index “—i”
without giving an explicit definition.

* We permit that players are uncertain about their own choices. This is only to simplify
terminology. Players’ beliefs about their own choices will not play any role. The same
simplification is made in Tan and Werlang [13, p. 373].

¢ Monderer and Samet do not define their concept explicitly in terms of hierarchies of
beliefs. However, their Proposition 3.(II) [11, p. 177] gives a characterisation of common
beliefs in terms of such hierarchies. When comparing our assumptions with Monderer and
Samet's concept, it is their Proposition 3.(II) to which we refer.
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follow Monderer and Samet and require beliefs to be “close to common
knowledge” at all levels of the hierarchy, whereas Stinchcombe requires
them to be “close to common knowledge” only at a finite, but “large”
number of levels. Finally, both in Monderer and Samet’s definition and in
Stinchcombe’s definition each assumption (n) (n>2) concerns the prob-
ability with which players believe assumption (#n — 1) to be true, whereas in
our definition assumption (n) concerns the probability with which players
believe assumptions (1) and (n— 1) to be true simultaneously. Among these
points, the last two are not essential for our result. The first is, of course,
important.

It is useful to consider circumstances under which our assumptions will
be satisfied. Suppose, for example, that for every player there is a small
possibility that he makes a “mistake” and chooses a strategy at random.
Our assumption is satisfied if players maximise expected utility, if the
mistake probabilities are small but positive for every possible strategy, and
if these two facts are common knowledge among the players.

Alternatively, imagine that there is some incomplete information about
players’ payoffs. Assume every player’s beliefs about the other players’
payoffs has a “large” support, in the sense that every strategy of the other
players can become strongly dominant. If it is common knowledge that
players maximise expected utility, that the uncertainty has the structure
just described, and that every player attaches a “large” probability to the
other player’s true payoffs, then again the assumptions introduced above
will hold.

3. CHARACTERISATION

To characterise strategy choices that are compatible with the assumption
of Section 2 we first take pe (0, 1) to be arbitrary but fixed. Later we then
focus on the case that p is close to 1.

We begin with notation: Let ie I, let §, be a nonempty subset of S,, and
let §_, be a nonempty subset of S_;. We denote by D?(S;, §_,) the set of
all strategies that maximise expected utility in S, for some belief of
player i with support S_;, which assigns at least probability p to strategies
in §_,. Formally, s;e€ S, is in D?(S,, §_,) if and only if there is a proba-
bility measure u; on §_; such that ¥ ¢ [u(s;,s_;Ju(s_))12
e es Lud5,s_) pu(s_,)] for all 5,€8, wi(s_)>0foralls_,eS_,, and
uS )= p.

Assumption (1) implies that every player / chooses a strategy s; in
D?(S,;, S_;). We denote this set by S7'. Next, assumptions (1) and (2)
together imply that every player i chooses a strategy s; in D?(S;, $”}). Call
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this set $7:2. We can continue like this. In general, assumptions (1) and (n)
together imply that every player i chooses a strategy s, in DP(S;, S~ 1),
and we denote these sets by S7”. A necessary condition for a strategy to
be a rational choice under the above assumption is thus that it is contained
in ﬂns &Y Siﬂdl‘

Consider the sequence of sets (S'"), .. Clearly, this sequence is nested.
On the other hand the sets in this sequence cannot be empty. Because the
strategy sets are finite, there is hence an m e N, such that for n > m the sets
SP7” no longer depend on n. Thus, a necessary condition for a strategy to
be a possible choice is that it is in S7".

This condition is also sufficient. To show this we first note that by
construction the sets S satisfy $7"” = D?(S;, S”7'). Hence a strategy is in
S7” if and only if it is a best response to a belief with support S_, that
assigns a probability of at least p to S”7". Borrowing a term that Pearce
{10, p. 1033] used in a similar context, we shall call this property of the
sets S7 the “best response property.”

This property implies that every strategy in S>™ is a best response to
some first order belief with full support, and hence satisfies assumption (1)
above. Since this is true for all players /, it follows from the “best response
property” that every strategy in S7" is also a best response to a first order
belief of a hierarchy that satisfies assumption (2) above. Since this is true
for all players i, the “best response property” implies that every strategy is
also a best response to a first order belief of a hierarchy that
simultaneously satisfies assumptions (2) and (3). We can continue ad
infinitum. We conclude that the sets of strategies for every player that are
possible choices under our assumption are precisely the sets S

We continue by developing a procedure by which the sets S can be
determined. First, we observe that for every n > 2 the set D?(S,, S/ ') is
identical to the set DP(S7" ', $77~'). This is because when looking for an
optimal reply to full support beliefs that assign a probability of at least p
to S77 ! we can restrict attention to strategies that are optimal replies to
full support beliefs that assign a probability of at least p to §#7~2 (since
this latter set is a superset of S 1), and hence we can restrict attention
to strategies in S7" .

We can conclude that the sets S7"™ can be determined as follows: We
begin by deleting for every player all strategies that are not a best response
to any full support belief of that player. We then delete for every player all
strategies that are among the remaining strategies not a best response to a
full support belief that assigns a probability of at least p to the remaining
strategies of the other players. We iterate this step until no further
strategies can be deleted for any player.

So far we have not made any assumptions about p. Now we focus on the
case in which p is close to 1. We first give a characterisation of the sets
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D?(8,, 5_,) using dominance notions. Then we use this result to obtain a
simplified description of the procedure described in the preceding
paragraph.

In the following, we need to take into account that a strategy may be
(strongly or weakly) dominated by a mixed strategy only, not by a pure
strategy.” A mixed strategy of player i is a probability measure o, on S;. If
g, is a mixed strategy of player i and if s_, is a pure strategy combination
for all other players then we write u;(o,, s_;) for player i’s expected utility.

LEMMA. There exists some © with 0<n <1 such that for all iel, all
p=mn, all nonempty subsets 8, of S, and all nonempty subsets S_, of S_,
strategy s,€ S, is contained in D?(S;,8 ;) if and only if the following two
conditions are satisfied:

(iy There is no mixed strategy o, which has support in S, and which
weakly dominates s; on S_,, ie., which satisfies u, (¢, s_;)=u,(s;, s_;) for
all s_;e S _; with strict inequality for at least one s _,€ S _,

(i) There is no mixed strategy o, which has support in S, and which
strongly dominates s; on S_,, i.e., which satisfies u;(c;, s_;)>u;(s;, s_;} for
all s_,eS _;

Proof. The Lemma claims that there exists some number 7 which has
the asserted properties for all i, S;, and S§_,. However, it suffices to prove
that for any fixed i, S,, and §_, some n with the asserted properties exists,
thus allowing = to depend on i, §, and §_,. The number 7, the existence
of which is claimed in the Lemma, can then be defined as the maximum
over all i, §;and § _, of the ’s thus constructed. This maximum exists since
there are only finitely many combinations of i, §;, and § _,.

So let some ie I, some nonempty subset S, of S,, and some nonempty
subset § , of S_, be given and fixed. Consider the correspondence which
maps every p with 0< p <1 into the set D?(S,, S_,). Clearly this corre-
spondence is nonempty valued. Also, as p increases the set D?(5,, §_)) is
(in terms of set-inclusion) non-increasing. Taking into account that S, is
finite, we conclude that there is a boundary (strictly between 0 and 1) such
that D?(8;, §_,) no longer depends on p if p exceeds the boundary. We
claim that m can be taken to be this boundary. Letting n denote this
boundary our claim is hence that, for pe(m, 1), a strategy s, is contained
in DP(S,, §_,) if and only if it satisfies the two conditions of the Lemma.

We first prove the “only if-part” of this assertion. As far as condition (i)
is concerned, this part is trivial. The necessity of condition (ii) can be
proved as follows: Let (p,),.n be a sequence of numbers which are con-
tained in the open interval (n, 1), and suppose that this sequence converges

" This possibility is illustrated by an example on p.6 of [6].
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to 1. We have for every n that s,e D?(3,, §_;). Hence for every ne N there
exists a probability measure on S_; which assigns at least probability p, to
S, such that s, maximises expected utility within §,. We can take the limit
of this sequence of probability measures (taking a convergent subsequence
if necessary). The limit measure is a measure with support in § ,. By
continuity, s, must also maximise expected utility in S, given the limit
belief. Then it obviously cannot be strongly dominated on § , by a mixed
strategy with support in 5.

We now turn to the “if-part.” Suppose that a strategy s, satisfies the two
conditions of the Lemma. By Lemma 4 in [10], condition (i) implies that
there exists a probability measure u;, on S_,; that has support S_; such
that s, maximises expected utility in S, given this measure. By Lemma 3 in
[10], condition (ii) implies that there exists a probability-measure y, , on
S_, that has support in §_, such that s, maximises expected utility in S,
given this measure. Obviously s, also maximises expected utility in S, for
any linear combination of the two measures, ie., for any measure u’=
(Y—=4)-p, +4-p,, with 2e(0,1). All such measures have the support
S _,. Moreover, the probability which u? assigns to §_; is at least 4.

Now let some p with m< p<1 be given. The strategy s, maximises
expected utility in S, for the belief u/ that one obtains if one sets 4 = p. This
belief has full support and assigns a probability of at least p to §_,. Hence
we can conclude s; € D{’(S‘,—, S ), as required. Q.E.D.

The Lemma shows that for large enough p the procedure that we
developed to identify the sets S7™ is equivalent to the procedure in which
at each step all strategies are climinated that are either weakly dominated
in the original game or strongly dominated in the remaining reduced game.
In each case, the dominating strategy can either be one of the remaining
pure strategies of the player under consideration, or some mixed strategy
that randomises over some of these pure strategies.

Considering this procedure, it is moreover obvious that in the first step
the eliminated strategies are simply those that are weakly dominated, and
that in all later steps the eliminated strategies are those that are strongly
dominated in the remaining game. We have thus derived the procedure
described in the Introduction.

4. COMPARISON WITH DEKEL AND FUDENBERG’S ARGUMENT

In the previous section, we obtained the procedure of Dekel and
Fudenberg [5], using an argument different from theirs. In this section, we
shall provide some insight into the question why the two approaches yield
the same procedure.
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As was explained in Section 1, Dekel and Fudenberg consider incom-
plete information versions of the given normal-form game, and solve these
using iterated deletion of weakly dominated strategies. It is useful to
consider a special case of this construction.

Let some finite normal-form game be given, and consider the following
incomplete information version of this game. Nature selects one out of 7+ 1
possible states of the world. (/ is the number of players.) If nature selects
state 0 then all players’ payoffs are equal to their “true” payoffs, ie., to
their payoffs in the original game. If nature selects a state i/ with 1 <i</
then only player i’ payoffs are his true payoffs. All other players are indif-
ferent between all possible outcomes of the game. Nature selects state O
with probability ¢ and all other states with probability (1 —g)//. These
probabilities are commonly known.

Every player is informed about his own payoffs, but not about the other
players’ payoffs. Hence, if a player learns that his payoffs in the incomplete
information game are equal to his true payoffs, he assigns probability § =
g/(g + (1 — ¢q)/I) to the event that all other players’ payoffs are also equal
to their true payoffs, and he assigns the remaining probability to the event
that all other players are indifferent between all outcomes of the game.

A player’s strategy consists of one choice for the case in which his payoffs
are his true payoffs, and of another choice for the case in which he is indif-
ferent between all outcomes of the game.

Suppose that we applied iterated deletion of weakly dominated strategies
to this incomplete information game. Clearly, in the case that they are
indifferent between all outcomes of the game, players can make arbitrary
choices. Hence the deletion procedure will only restrict those choices that
players can make if they have their true payoffs. For any player i denote
by S;(g) those choices that player i can make if he chooses a strategy that
survives iterated deletion of weakly dominated strategies, and if his payoffs
are his true payoffs.

Dekel and Fudenberg’s result immediately implies that for ¢ sufficiently
close to 1 the sets S;(g) are contained in the sets of strategies that remain
if the elimination procedure of Section 3 is applied to the original normal-
form game. In principle, the sets S;(¢) could be smaller than Dekel and
Fudenberg’s sets because the above construction is only a special case of
Dekel and Fudenberg's construction. However, inspection of Dekel and
Fudenberg’s proof shows that this is irrelevant, and that the sets S,;(gq) are
in fact equal to Dekel and Fudenberg’s solution. Roughly speaking, this is
so because indifferent players can exhibit every conceivable behaviour.

We can now link this construction to our own result. Consider again the
incomplete information game constructed above. Suppose we had carried
out a fixed number of iterations of elimination of weakly dominated
strategies in that game. In the next iteration a player’s choice (for the case
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in which he has his true payoffs) can be eliminated if and only if it is not
a best response to a convex combination giving weight g to a belief which
has full support on the choices that remain for the other players’ true types
and weight 1 —§ to a belief which has full support on the set of all choices
of the other players. Thereby all beliefs are defined on the other player’s
strategy sets in the original complete information game.

Equivalenty, a choice can be eliminated if and only if it is not a best
response to a belief that has full support on the set of all strategies of the
other players, and that assigns a probability of at least § to the remaining
strategies of the other players (for their true payofls). Hence, if we focus on
the players’ true types, iterated elimination of weakly dominated strategies
as applied to the incomplete information game with parameter ¢ is just the
same as the procedure developed in the preceding section for the
approximate common knowledge assumption with parameter §. Moreover,
if ¢ tends to 1, § approaches 1, too.

Thus, for ¢ close to 1, iterated deletion of weakly dominated strategies
in the incomplete information game is identical both to Dekel and
Fudenberg’s procedure, and to ours. The two procedures are therefore
identical.

5. CONCLUSION

A concept that is related to the concept studied in this paper is due to
Bernheim [1]. Bernheim introduces a refinement of “rationalizability”
which he calls “perfect rationalizability,” defined as follows: Consider any
finite normal-form game. Assume that every player has to choose each of
his pure strategies with a certain strictly positive minimum probability.
Assume that the minimum probabilities are common knowledge. Then
apply “rationalizability” to the thus perturbed game. Strategies are
“perfectly rationalizable” if they are the limit of rationalizable strategies in
perturbed games as the minimum probabilities in these perturbed games
converge to zero.

[t is immediate that all perfectly rationalizable strategies must be con-
tained in the sets determined by the procedure of Section 3. In some games,
Bernheim’s concept is, however, more restrictive than ours. There are two
reasons for this. The first is that he assumes that different players’ trembles
are uncorrelated and that players’ beliefs about other players’ behaviour
take the form of product measures. The second is that Bernheim assumes
the probabilities of trembles to be common knowledge.

The first point matters only in games with more than two players. The
second point matters also in two player games. Consider the example in
Fig. 1. The procedure of Section 3 leaves for player 1 the strategies 7, M,
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L c R

T 3,0 1,0 0,0

M, 0,0 1,0 3,0

M, 2,0 0,0 2,0

M; 0,3 0,2 0,0

B 0,0 0,2 0,3
FIGURE 1

and M,. However, the strategy M, is not perfectly rationalizable in
Bernheim’s sense.

A formal proof of this was given in an earlier version of this paper. The
structure of this argument is as follows: Player 2’s optimal choice in this
game depends only on the probabilities which he attaches to M, and B.
Player 1 will choose these strategies only if he trembles. Since tremble
probabilities are common knowledge, it follows that player 1 knows all
important aspects of player 2’s beliefs. Now note that there are no beldiefs
of player 2 which make both L and R (simultaneously) optimal choices.
Hence, if tremble probabilities are small, player 1 can never attach large
probabilities simultaneously to L and R. However, that is necessary for M,
to be an optimal choice. Hence, M, is not perfectly rationalizable.?

Bernheim’s paper, as well as this paper, argue within a traditional
Bayesian framework. An alternative is a model in which agents’ beliefs take
the form of a sequence of lexicographically ordered probability measures.
Such a model was investigated by Blume e @l [2].

Using Blume et al’s model, Brandenburger [4] has recently provided a
further justification of Dekel and Fudenberg’s procedure. He assumes that
the union of the supports of the players’ lexicographically ordered beliefs
equals the other players’ strategy sets. He then introduces a common
knowledge assumption. It is characteristic of Brandenburger’s result that
this assumption is formalised as a requirement referring only to those
beliefs that have highest rank in the lexicographic ordering.’ It might be
interesting to investigate more restrictive concepts that can be obtained if
assumptions for lower rank beliefs are also made. Steps in this direction
have recently been made by Stahl [11].

® The example is a counterexample to Dekel and Fudenberg’s [S, Footnote 4] assertion
that in two player games perfect rationalizability coincides with the procedure of Section 3.

?In this respect, Brandenburger’s result is related to Propositions 4 and 7 in [3]. These
results characterise trembling hand perfect equilibria in the lexicographic framework. The
characterisations use a full support assumption, but “knowledge” assumptions are made only
for beliefs of the highest rank.



276 TILMAN BORGERS

REFERENCES

. B. D. BERNHEIM, Rationalizable strategic behavior, Econometrica 52 (1984), 1007-1028.
. L. BLuME, A. BRANDENBURGER, AND E. DEKEL, Lexicographic probabilities and choice
under uncertainty, Econometrica 59 (1991), 61-79.

. L. BLUME, A. BRANDENBURGER, AND E. DEKEL, Lexicographic probabilities and equi-

librium refinements, Econometrica 89 (1991), 81-89.

. A. BRANDENBURGER, Lexicographic probabilities and iterated admissibility, mimeo.,
Harvard Business School, 1990.

. E. DEker anD D. FupengerG, Rational behavior with payoff uncertainty, J. Econ. Theory
52 (1990), 243-267.

. D. FUDENBERG AND J. TIROLE, “Game Theory,” MIT Press, Cambridge, MA, 1991,

. E. KoHLBERG aND J. F. MERTENs, On the stability of equilibria, Econometrica 54 (1986),
1003-1038.

. D. MONDERER AND D. SAMET, Approximating common knowledge with common beliefs,
Games Econ. Behav. 1 (1989), 170-190.

. H. MouuN, Dominance solvable voting schemes, Econometrica 47 (1979), 1337-1351.

. D. PEARCE, Rationalizable strategic behavior and the problem of perfection, Econometrica
52 (1984), 1029-1050.

. D. StaHL, “Lexicographic Rationality, Common Knowledge, and Iterated Admissibility,”
Working Paper 91-10, Center for Economic Research, University of Texas, 1991.

. M. B. STINCHCOMBE, Approximate common knowledge, mimeo, University of California
at San Diego, 1988.

. T. C. TAN aND S. WERLANG, The bayesian foundations of solution concepts of games,
J. Econ. Theory 45 (1988), 370-391.



