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The iterated deletion of weakly dominated strategies has been advanced as a 
necessary requirement for “rational” play. However, this requirement relies on the 
assumption that the players have no doubts about their opponents’ payoffs. We 
show that once such doubts are introduced, all that can be justified by an appeal 
to rationality is one round of deletion of weakly dominated strategies, followed by 
iterated deletion of strategies that are strongly dominated. This extends the 
Fudenberg, Kreps, and Levine (J. Econ. Theory 12 (198s) 354-380) study of the 
robustness of Nash equilibrium refinements to the robustness of solution concepts 
based only on rationality. Our results also clarify the relationship between various 
notions of what it means for payoff uncertainty to be “small.” Jmrnal of Economic 
Literature Classification Number: 026. c 199C Academc Press, Inc. 

1. INTRODUGTI~N 

Wash equilibrium and its refinements describe situations with little or no 
“strategic uncertainty, ” in the sense that each player knows and is correct 
about the beliefs of the other players regarding how the game will be 
played. While this will sometimes be the case, it is also interesting to under- 
stand what restrictions on predicted play can be obtained when the players 
strategic beliefs may be inconsistent, that is, using only the assumption that 
it is common knowledge that the players are rational. Bernheim [4] and 
Pearce fl9] have argued that these restrictions are captured by the 
concept of rationalizability. A more general notion is that of iterated 
deletion of strongly dominated strategies, which is equivalent to correlated 

* This work was begun while the second author was at the kiniversity of California, 
Berkeley. We acknowledge many helpful conversations with Adam Bran&&urger and 
Matthew Rabin. Financial support from the Miller Institute and NSF grants SES 88-08133 
and 88-08204 is gratefully acknowledged. 
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rationalizabi1ity.l While (correlated) rationalizability may be appropriate 
for generic normal form games it has been argued that it does not capture 
all the implications of “rationality” in non-trivial extensive forms 
(Bernheim [4, Sect. 6(b)], Pearce [19, Sect. 41). For example, in games of 
perfect information the only solution consistent with common knowledge 
of rationality might seem to be that given by backwards induction. 

Recently, Fudenberg, Kreps, and Levine [12], (henceforth referred to as 
FKL) have argued that standard Nash equilibrium refinements such as 
trembling hand perfection [23] and sequential equilibrium [16] are not 
“robust” in the following sense. Extensive form refinements succeed in 
restricting the set of outcomes by rejecting some out-of-equilibrium play as 
unreasonable. Now the way .a player should respond to a deviation by 
his/her opponents depends on how s/he expects the opponents to play sub- 
sequently. If the observed play to date is not consistent with the player’ 
initial understanding of the game, one plausible inference is that the reason 
for the deviation is that the deviators’ payoffs are different than had 
originally been supposed. FKL model these inferences by supposing that 
players entertain small ex-ante doubts about their opponents’ payoffs. They 
then characterize the sets of equilibria which can “justified” (made to 
satisfy strong equilibrium refinements) by allowing for different classes of 
such doubts. 

The question of what players can infer from behavior they did not expect 
to occur is not restricted to equilibrium analysis: Rosenthal [22], Reny 
[21], Basu [3], Binmore [S, 61, and Bonanno [S] discuss this issue in the 
context of solution concepts based on common knowledge of rationality 
alone. In this paper we adopt the FKL explanation that the reason for the 
unexpected play is that the payoffs are different than had been supposed. 
Thus we characterize the implications of introducing small uncertainties 
about the payoffs for predictions based on the assumption of “rational” 
play. We maintain that the assumption of payoff uncertainty is, if anything, 
more apt here than in the equilibrium context. This is because correlated 
rationalizability and its refinements assume that the payoffs are common 
knowledge, but allow the players to have inconsistent beliefs (inconsistent 
in the sense that they may disagree) about each other’s play. Yet in many 
situations with substantial strategic uncertainty, the common-knowledge- 
of-payoffs assumption is suspect as well. 

There are two modeling issues which need to be considered in order to 

’ Correlated rationalizability, in contrast to rationalizability, does not impose the 
restriction that each player believes the other players’ strategy choices are independent. The 
relationship between these rationalizability concepts, formal definitions of common knowledge 
of rationality, and equilibrium solution concepts is discussed by Aumann [2], Brandenburger 
and Dekel [lo], and Tan and Werlang [25]. 
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achieve our characterizations. First, a sharp notion for the implications of 
rational behavior must be given for games with small doubts. We chose the 
notion of iterated deletion of weakly dominated strategies2 since it clearly 
incorporates certain intuitive objectives of rationality postulates3 The 
second modeling issue is related to the assumption of consistency. In t 
rationalizability approach to modeling strategic uncertainty players are 
allowed to have inconsistent beliefs about each other’s strategies. Hence it 
seems natural here to consider the case where they have inconsistent 
doubts about each other’s payoffs as well. 

The latter modeling issue emphasizes the fact that the key question in 
evaluating the robustness of various solution concepts is which sequences 
of games are to be considered good approximations of a given game. 
Section 2 introduces our model and explains the notions of convergence we 
consider. Briefly, we say that a sequence of games converges weakly to a 
limit if each game in the sequence has the same “physical extensive form,” 
so that the only difference between the games is in the beliefs about the 

ayoffs and moreover almost all types have almost the same payoffs as in 
e limit game. The sequence converges strongly if almost all types 

xactly the same payoffs. 
Section 3 proves our main result: The closure of iterate 

dominance with respect to the strong convergence described above is the 
set we call S”W. This set is computed by first deleting tbe weakly 
dominated strategies, and then continuing with iterated deletion of strong1 

ominated strategies.4 The intuition for this result is the following: Eat 
layer knows his/her own payoffs, and so by our ratio~aiity postulate wi 

not choose a weakly dominated strategy. In order to do a second round of 
deletion players must know that all the others will not choose certain 
strategies. A small amount of payoff uncertainty cannot alter strong 
dominance relationships, but can break weak ones, so that after the first 

we can only proceed with the iterated deletion of strongly 
ated strategies. This result suggests reconsideri the intuition that 

since anything may occur iterated deletion of wcakI~ minated strategies 
is appropriate. The point is that if the reason that anything might occur is 

certainty about the payoffs, then iterated weak do ’ 
ecently Biirgers [9] generalized the argument for S 

captures any situation where it is “almost common knowledge” (in the 

’ This is similar to the use of strict equilibrium by FKL. 
’ The relationship between backwards and forwards induction (two primary notions of 

rationality) and weak dominance is discussed in Kohlberg and Mertens [IS]. 
4 In two person games this coincides with Bernheim’s [4] extension of trembling hand 

perfection to the context of rationalizability. For n person games this differs from Bernheim’s 
notion by allowing for correlation--cf. footnote 1. 
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sense of Monderer and Samet [ 181 and Stinchcombe [24]) that players do 
not use weakly dominated strategies, and not only the case where players’ 
doubts result from payoff uncertainty.’ 

Section 4 shows that weak convergence yields the set s”w which is the 
closure of S”W with respect to extensive form payoff perturbations. To 
facilitate comparisons with FKL, Section 4 also considers the closure of a 
slightly more restrictive version of iterated weak dominance, namely the 
iterated -deletion of strategies that are never strict best replies. Section 5 
explains why the concept S”W allows cooperation in the finitely repeated 
prisoner’s dilemma. This is of particular interest since the Nash equilibria 
of this game do not exhibit cooperation, and FKL have shown that even 
under payoff uncertainty Nash equilibria are robust to (consistent) payoff 
perturbations. We use these contrasting predictions of S”W and Nash 
equilibrium to illustrate the distinction between consistent and inconsistent 
strategic beliefs in the context of examining the robustness of solution 
concepts. Section 6 discusses the alternative interpretation of the robustness 
program in terms of how players interpret strategies which were 
unexpected, and how the two interpretations relate to our two definitions 
of convergence. Furthermore, using the notions of lexicographic beliefs 
derived in Blume, Brandenburger, and Dekel [7], it is argued that the 
distinction between the two notions of convergence is analogous to the 
difference between perfect and sequential equilibrium. 

To summarize, this‘paper shows that the FKL critique of refinements of 
equilibrium can be extended to iterated deletion of weakly dominated 
strategies, which allows for strategic uncertainty. Payoff uncertainty is 
shown to directly cast doubts on the deletion of weakly dominated 
strategies. Thus, we pinpoint weak dominance arguments, which underlie 
many refinements, as the feature which led to the failure of robustness 
demonstrated by FKL. Finally, we believe that the robustness of S”W 
suggests it as a useful concept in its own right. 

2. PERTURBATIONS, ELABORATIONS, AND CONVERGENCE 

Since this paper examines some implications of “small” amounts of 
payoff uncertainty, a crucial issue to consider is what forms of uncertainty 
are small. This is formalized by using different definitions for the con- 
vergence of sequences of games. A basic premise throughout the paper is 

5 Borgers’ almost common knowledge assumption is satisfied in one version of our model 
since strong convergence implies that in nearby games it is almost common knowledge (at 
states of the world which are possible in the limit) that the limit game is actually being played, 
Hence our results imply that Borger’s assumption cannot imply more restrictions than S”W. 
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that the physical extensive form (who moves when, and the players’ infor- 
mation regarding their opponents’ actions) is common knowledge, and the 
only doubts the players entertain (other than those explicitly specified in 
the given extensive form) are about each other’s payoffs. More precisely, we 
begin with a finite I player game of perfect recall, E. This game E prescribes 
a game tree Y with representative nodes y, terminal nodes ZEZ~ informa- 
tion sets I-I, and a utility function ui E U z (f j f: Z + R j for eat 

Following Harsanyi [14], we model the idea that the players have 
doubts about the payoffs by considering “elaborations” E of E, in which 
nature randomly chooses a utility function wi for each player, and then an 
extensive form with the same structure as E is played. Each player’s behefs 
about the true payoffs, about his/her opponents’ information, etc., are 
summarized by the player’s type t’ E T’. We assume that each player i is 

of his/her utility function, and receives no information regarding 
the other players’ utility function.6 Under this assumption 
T’ with U. The game tree y of g has one copy of Y for each 
by nature, which is denoted by t E T- ni 27’. If player i has a move at node 
y of T then s/he has a move at (v, t) for ah t E 27 Similarly 2s i~forrna~~o~ 
at node y is just H’(y) x (t’}. 

The beliefs of each player i are derived from a prior pi on the set 
which determines conditional beliefs vi( .( l’) on the set T-‘= 
the other players’ types and marginal beliefs pi on 2”‘. For tee 

easures pi and vi are assumed to have finite support. 
s of player i in game E is denoted S’. Player ts mixed strategies are 
by a’~d(S’), and beliefs over S’ are denoted by c’EA(S-‘), 
(X) is the set of probability measures over X. 

In general in this paper we will be considering games E and sequences 
of elaborations of I!?, denoted &,~ To distinguish between the stra 
utility functions, etc., in the elaborations E, and the game I?, we a 

qpropriate symbol; e.g., 3; denotes the pure strategies of i in 
a particular elaboration E, is discussed it ‘11 occas~o~a~~~~ be 

ecessary to refer to the utility functions or strategy 
a particular version of the game, that is, wben each player is of a particuIar 
type. This is done by including the type explicitly as an argument; e.g., 
$Jti, 1-j) denotes the utility function for player i when i is of type k’. Since 
this utility does not depend on the types of the other players we will drop 
2*-’ from the notation. 

Now we can formahze the different forms of convergence which wiEk be 
e weakest version, which we call weak converg 

ret~tio~ that each player is “almost” sure that the payo are “ajlmost” as 

6 FKL call this assumption “personal types” in distinction from the “general types” case in 
which i may receive better information than j about J’S payoffs. We restrict attention ta 
personal types because we feel that this is most often the relevant kind of uncertainty. 
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in the original game. (The latter “almost” requires a definition of close 
utility functions, and the former is a probabilistic statement--each player 
attaches probability of almost one to the payoffs being close to those in the 
original game). Two stronger and closely related notions of convergence 
are immediately apparent. One might require that the players be “almost” 
sure that their payoffs are precisely as in the original game; or that they be 
absolutely sure that the payoffs are “almost” as in the original game. These 
two notions will be called strong convergence and convergence in payoffs, 
respectively. In the next section only strong convergence will be examined, 
since the results are most intuitive and simplest to prove for this case. 
Furthermore, as we argue m Section 6, strong convergence is most 
appropriate for modeling players’ inferences when “surprised.” The other 
notions, which will be discussed in Section 4, are important both for 
clarifying the relationship of this paper with FKL, and to verify that our 
results do not depend in an essential way on whether weak or strong 
convergence is used. 

In addition to the importance of distinguishing between various notions 
of convergence, it is important to consider the implications of assuming 
different restrictions on the information structure of games of incomplete 
information. For example, in the context of consistent priors, FKL 
considered the implications of assuming that the players’ beliefs over each 
others’ types are independent.7 In this paper we examine with care the role 
of assuming consistent priors (pi=p, for all i). Interestingly, several of our 
results hold with either consistent or inconsistent priors. This is because, so 
long as players are almost certain that the payoffs are as in the original 
game, the effects of inconsistent priors over the payoffs can be duplicated 
by appropriately specified inconsistencies in the players’ beliefs about each 
others’ strategies. Brandenburger and Dekel [ 111 prove a version of the 
converse result: some of the effects of inconsistent strategic beliefs can be 
achieved in a model where strategic beliefs are consistent, but players have 
inconsistent beliefs about the structure of the game. In that paper a limited 
form of consistency in the beliefs over the spaces of strategic uncertainty 
(namely the existence of a mediator) is achieved by shifting the incon- 
sistency to the beliefs over the state space. However, once the structural 
beliefs are required to be consistent, the assumption of a mediator does 
entail a loss of generality. Similarly, in the present paper, the consistency 
in the players’ beliefs over the type spaces can be achieved (in Proposi- 
tion 3.1) only by incorporating the inconsistency into the beliefs over the 
strategy spaces. So when the latter is ruled out (as in Proposition 4.1) the 
consistency of the beliefs over the type spaces can no longer be achieved. 

’ With independent types player is observation ofjs play cannot affect I’s beliefs over k’s 
type, whereas in the “personal types” model p need not be a product measure. 
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The two results here, combined with their converses in Brandenburger and 
Dekel [If], show that while the conceptual distinction between strategic 
uncertainty (beliefs about the strategies) and structural uncertainty (behefs 
about the payoffs and other parameters of the game) is clear, assumptions 
about one of these kinds of uncertainty cannot always be separated from 
assumptions about the other. 

In order ts state our main result strong cQn~er~e~ce must be define 
The definition is simpler for the case of consistent rim-s, SQ we start with 
that case. 

EFINITION 2.1. A sequence &, of consistent elaborations of E 
converges strongly to E (E, -+ E) if: 

(i) (a) Isupport pn 1 < A4 for all n; 

(b) Iii:! <B for all i and n; 

(ii) For all i there is a subset 7;’ of T’ such that 

(a) lim, p,( T’) = 1; 

(b) for all t? E T’, iii( ii) = z?. 

Thus E,, -+ E if (i) the number of types and the absolute value of the 
payoffs are uniformly bounded in n, and (ii) the set of types with payoffs 
different than those in E has probability zero in the limit. Mote that 
because of the assumption of consistency the conditional beliefs v,(. j P) of 
every “sane” type I’ in T” are that the other players are very likely to be 
“sane.” With this notion of convergence we are treating as identical a game 
E and an elaboration I? where all versions in I!? have the same payoffs as 
in E. So the two games in Fig. 2.1 are identical (with the obvious rna~~~~~ 
of strategies of player 2). This way, each type plays a pure strategy, but a 
player can have a nondegenerate belief over the strategies of the 
players (because the belief over their types may be ~ondege~e~at~) 
is equivalent to their playing a mixed strategy. 

EFEWITHBN 2.2. A sequence of strategies 5: will be sai 
(Pi r&ten 5: -+ a’) if lim, &, T, &(ti) 8:( ti) = ~9. A seq 
grofiles CT’, = (8L9 . . . . 17:) converges to c if 6: converges to 
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This notion of convergence requires that player z’s play converge to ci at 
every information set, even those which are not reached by gi regardless of 
the other player’s strategies. 

3. ITERATED WEAK DOMINANCE AND S”W 

A pure strategy si is weakly dominated if there is another strategy s^’ such 
that u’(s^‘, c-i) > ui(si, a-‘) for all 0-j~ A(S-‘), and the inequality is strict 
for some flmi. Any strategy si which is not weakly dominated is said to be 
admissible (Lute and Raiffa [17]), and is a best reply to some full support 
belief c-i (i.e., the support of o-i is Sei) over l’s opponents’ strategies 
(Pearce [19, Appendix B], van Damme [26], Gale and Sherman [13]). 
Any mixture over admissible actions is admissible. Kohlberg and Mertens 
[ 151 have argued in favor of iterated weak dominance, denoted W” (that 
is, iteratively deleting strategies which are weakly dominated), as a minimal 
requirement of a solution concept. More generally, S’Wk is used to denote 
the set of strategies remaining after k rounds of simultaneous deletion of 
weakly dominated strategies, followed by I rounds of deletion of strongly 
dominated strategies. Each of these sets is a Cartesian product of strategies 
for each player, so (S’W”)j denotes the projection of S’Wk on z?s strategy 
space. 

Proposition 3.1 below says that any strategy profile8 in S”W is close to 
a strategy profile in W” for some sequence of nearby games, and any 
strategy profile in W” for nearby games is close to a strategy profile in 
S”W. Thus if there is “small” payoff uncertainty in the sense described by 
strong convergence (as, we would argue, is typically the case) then ruling 
out any strategy in S”W is questionable, even if we agree to rule out all 
strategies not in W” when payoffs are common knowledge.’ 

PROPOSITION 3.1. s E S m W(E) if and only if there are a sequence of 
consistent elaborations E,, -+ E, and strategies 5n E Wa(En) such that g,, -+ s. 

Proof: (Only if) In this direction of the proof the sequence of elabora- 
tions Z?‘, is constructed. Let Ti = {t’, zi}, where ~‘(0 = ui and u’(p) = 0. So 
i can either be a “sane” type (with payoffs as in E), or “crazy” and com- 
pletely indifferent among all his/her strategy choices. The common prior p 
assigns probability 1 - l/n to all the players i being of type t”, and for each 
player i probability l/nZ (I is the number of players) to the event that only 

* We thank Matthew Rabin for pointing out that Proposition 3.1 can be stated in terms of 
strategy profiles as well as individual strategies. 

9 Under the assumption of general types, instead of personal types, the “closure” of W” 
would simply be S”. 
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i is sane and all the other players are crazy. Thus, when i is sane, the condi- 
robability vf,(. j t”) that s/he assigns to the event t at all the players 

are sane is Z(n - 1 )/(Z(n - 1) + 1) and the conditional ~robab~lity that all 
the others are crazy is l/(Z((n - 1) + 1). Player ?s strategy in E,, is written 
as an ordered pair (CL, ~7:) where the first element is ?s play when sane, 
and the second is his/her play when crazy. Since, when t is sane, 
opponents are either all sane or all crazy, we can consider his/here 
over Sii (the opponents’ strategies) as elements of d(S-‘) x b(F’). Such 
beliefs are denoted by ordered pairs (5ci, 8-j 
((SiT d) / S’E (SmW(E))i, S’E 5”). Since 
implies the only if part of Proposition 1. 
steps 

Step I. (?, si) e W(8,). Since SIE (S” 
full support belief 8 pi E A(S pi) such that 
is a best reply to (a’, 5 -‘) which is equivalent to a full support belief over 
S;j. For future reference let r be the smallest weight assigned to any pure 
strategy Ci by 0-5 

‘, si) E (SW(E))‘x S’ then (L?, si) E 
need to show that (?, 2) is a best reply 

8,))-‘, which by step 1 is a superset of (S 
Since ?E((SW(E))’ there is a v-i E (W(E))-’ to which s’ is a best reply. 
Specify that the sane types of the opponents play 0-j with probability 1 - fi 
(where fl is small and is specified below), and with corn 

types play any full support distribution 6-j over all 
E))-‘. The crazy types of 
the weighted average aweigh 

of the crazy and sane opponents, with the sane opponents 
f7 ‘-’ and d-! is O-‘. To make this precise set NE Z(M - 1 
(I(n - 1) i 1) = 1 - l/N, and l/(Z(n - 1)) = l/N. The induce 
opponents is (I- l/N)(l -B)a-‘+ (I - E/N) ,I!%~‘+ ( 
want to be equal to (1- l/N)(l -/I)o-~+ [I- (l- %/A!)(1 -B)]F”. This 
is achieved by setting cr’-’ = 6-j + &N-l)[~-“-ei~‘] which wEl?t be a 

ability measure as long as /I < cx/(N- 1 j. 

n now be iterated to show that if (Sig si) E ( 

&nrmA 3.1. Note that in step 2 the fact that s’ E (S (E))’ was used in 
finding a m-i E (W(E))-’ to which S’ is a best reply. This suggests 
could not have found an elaboration to “‘justify” si if that strategy 
deleted by strong dominance. Intuitively, “‘small” 

aye ould not be able to undo the iteration of strict dominance, so 
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that the S” step in S”W should be necessary for a characterization of the 
“closure” of W”. This is verified in the proof of the “if’ direction below. 

(If) To prove that if ?n E Wm(&) converges to s, then s is in S”W(E), 
we establish the slightly stronger fact that this inclusion holds player-by- 
player. 

Step 1. s”i E (W(En))i implies ii E (W(E))’ for all t7’E T’. This follows 
from the fact that Si is a best reply to some full support belief 6;’ over 3~~. 
Hence Qt’) is a best reply to c+;‘-&i vL(t-‘l t’) 5ii(tei) which is a full 
support belief over S-‘. Since player z’s utility function when s/he is of type 
t” is the same as his/her utility function in E, clearly s”i is not weakly 
dominated in E. 

Step 2. $1 E W’(E,) implies s”:(C) E SW(E). We know that Si(t’) is a 
best reply to some K’r C,-;~?;~(t-‘)v,(t-‘j t’) for some ~7;’ which is 
suppported by strategies in (W(&)) Pi since ~“LE (W’(&))l. As noted 
earlier, by condition (ii) of the definition of convergence in types vn(t -’ 1 ii) 
converges to a measure supported by T-‘; i.e., player i is almost certain 
that the others have the same payoffs as in E. Further, by step 1, for those 
types t -” in T-’ we know that cY,(tei) is a belief over (W(E))-‘. Taking 
limits now in the definition of 8;’ (in the second sentence of this step) it 
has been shown that $(t’) is a best reply to lim 6;’ which is supported by 
(W(E))-‘; hence s”;(P) is not strongly dominated within (W(E))‘. 

Step 2 can now be iterated to show that s”k(?) is an element of 
(S”W(E))‘. 1 

Remark 3.2. The reason that after one round of deletion of weakly 
dominated strategies only strongly dominated strategies could be deleted 
follows from the difference between steps 1 and 2 in the ifpart of the proof. 
In step 1 si is a best reply to a strategy 6;’ which has full support. In step 2 
a similar 8;’ was found, but it does not have full support within (W(E))-‘: 
Its support is larger because of the possibility of crazy types of j # i, and 
of course its limit may have smaller support than (W(E)) -i 

The sequence of elaborations E,, we constructed in the proof of the “only 
if’ direction has the property that, when a player is sane, s/he assigns 
probability v,( TPi] ?) = 1(n - l)/(l(n - 1) + 1) to all his/her opponents 
being sane as well. This means that, when all players are sane, the event 
“all players are sane” is evident v,( T-‘l Q-belief in the sense of Monderer 
and Samet [lS]. Since both the marginal probability that all players are 
sane and these conditional probabilities converge to one, the event “all 
players are sane” is “almost common knowledge” (at states which are 
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possible in the limit). (More generally, we believe that strong convergence 
at the payoffs are “almost common knowledge.“) Since it is 

common knowledge that players conform to W” in any elaboration, we 
can conclude that for n large it is almost common knowledge that players 
do not use strategies that are weakly dominated spect to the sane 
(i.e., limit) payoffs. Thus our results show that th othesis of almost 
common knowledge of admissibility cannot imply restrictions than 
§“W. This observation was prompted by Borgers [!?]l study of the 
implications of almost common knowledge of admissibility in a more 
general setting. 

Since the solution concept used here involves iterated 
ures it erently allows for inconsistencies in the trategic beliefs of the 
layers. the proof of the “only if’ part of Pro osition 3.1 a player’s 

beliefs in steps 1 and 2 and in the iteration of step 2 need not be the same. 
In particular, in the first step the crazy types were exp to play K’, in 
the second step a’-‘, and in the iteration of the second the beliefs over 
the opponents would be different each time. SEnce the beliefs about the 
crazy types’ strategies are allowed to be inconsistent, one suspects t 
allowing for inconsistent beliefs over the types will not change this res 
Corollary 3.1 below confirms this intuition. We should int out that 
inconsistent beliefs about types do, in general, matter.” e rea the 
inconsistency is innocuous here is that we consider d~stri~~tio~s t put 
probability close to one on all players being sane. 

In order to formalize the inconsistent case the definition of convergence 
of elaborations must be extended accordingly. Recall that the common 
prior p was used in condition (ii) of Definition 2.1 to verify that T’ was the 
set of types with positive limit probability. For a seque of elaborations 
to converge we then required that for any player i all 
the same payoffs as in the original game. When the pla 

tion of convergence-i.e., the analog of condition (ii)-is more 
certainly want lim, pi( T’) = 1, so that each player believes 
ost certainly will be sane. However, we also need each player 

t to be almost certain that 2s opponents are sane as well, an so on 
iteratively. To formalize this, let nzi= Bim, ~upport(~~)~ and let 
lim, support(vi( . / ti)) be player is beliefs about his/her opponents 

tional on his/her own type. We will still require T’ as in condition 
of ~e~~it~o~ 2.1 to be a set of types whose payoffs are the same as an IS3 

” For example let player two have two types: E; has s; as a strongly dominating strategy, 
and s; is strongly dominant for t;. Assume further that s; is a strict best response to si and 
that s;’ is best against s;. Then the set of rationalizable strategies depends on l’s beliefs about 
2. If we allow inconsistent beliefs then we can obtain rationalizable outcomes which are not 
rationalizable for any consistent beliefs about the types. 
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but now we replace condition (ii)(a) of the definition by the following 
iterative test: 

(ii) (a’) VZ’C T’, and if thEmh, t’emh(th), tjEm’(t’), . . . . tkEm’(t’) for 
some permutation of players h, i, j, . . . . k, Z, then t’ E T’. 

Thus, if th has positive probability in the limit, and th thinks t’ has positive 
limit probability, then t/c T’; and the same is true for arbitrary chains of 
players. A general sequence of elaborations then converges strongly when 
conditions (i) and (ii) of Definition 2.1 are satisfied with respect to the 
extended definition of T’, i.e., replacement of (ii)(a) with (ii)( Since 
(ii)(a) and ( ii a’ coincide when pi = p for all i, the extended definition of I( ) 
convergence agrees with the previous one when beliefs are consistent. 

COROLLARY 3.1. s E S”W(E) if and only if there is a sequence of 
elaborations EH + E, and strategies gn E Wa(En) such that s”, -+ s. 

Prooj The proof of Proposition 1 proves the corollary also, when 7” is 
redefined as discussed above. The “only if” direction is exactly the same. 
The iterative definition of T’ in the inconsistent case corresponds to the 
iteration applied in the proof of the “if’ direction. i 

4. PAYOFF PERTURBATIONS AND STRICT BEST REPLIES 

This section discusses the implications of using weak convergence, 
instead of strong convergence, to characterize “small” doubts. The dif- 
ference is that in weak convergence the types t? in T’ may have payoffs 
iid(t’) which converge to the payoffs ui in E, instead of iii( ii) = ui for all n 
and I’m TI As one would expect, the consequence of allowing more con- 
vergent sequences of elaborations is that more strategies in E survive W m 
in nearby games. In fact, the resulting set is the closure of S” W with 
respect to extensive form payoff perturbations, which we denote S”W. 
Moreover (again because more sequences of elaborations converge to a 
given game E) we can show that any strategy in S”W is close to a strategy 
which satisfies a stronger requirement than W” in nearby games, namely 
the iterated deletion of strategies which are never strict best replies. A 
strategy which is weakly dominated is never a strict best reply, but the 
converse is in general false. In considering weak convergence and strict best 
replies we are also able to clarify the relationship between our results and 
those of FKL. 

To understand the results of this section it is helpful to review briefly a 
result on rationalizability. Brandenburger and Dekel [lo] show that 
correlated rationalizability is the same as a posteriori equilibrium (Aumann 
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[ 11). This is the same as a Nash equilibrium where a su ective correlating 
device is explicitly introduced, and the players’ strategies are required to be 
optimal conditional on all observations of the device, including those 
assigned prior probability zero. So, an alternative to W m as a re~~e~e~t 
of S” is to look at strict Nash equilibrium with subjective correlatiP-?g 
devices. 

DEFINWQN 4.1. ii;, converges in payoffs to E (8, --f p E) if ~Q~dit~o~ (i) 
of Definition 2.1 holds, and: 

(ii) For all t’ E T’, ii:(t’) + 24’. 

EFINKTION 4.2. Two strategies for player i are equivalent if they lead to 
the same probability distribution over endpoints for all strategies of the 
opponents. A Nash equilibrium (sl, . . . . s’) is strict if each player’s strategy 
si does strictly better against spi than any other strategy 2’ which is not 
equivalent to 5’. 

LEMMA 4.1. If si is not weakly dominated then there exists a consistent 
sequence 8, -+ p E, where s” is a strict best reply (up to equivalent strategies) 
to some oPi~ A(,$;‘). 

ProofI If si is not weakly dominated then it is a best reply to scme s-’ 
with full support. Let T be a singleton in each elaboration &, so 
utility functions (defined next) are common knowledge. Let 
U’(Z) + I/B on all endpoints z reached by si and 6, and U;(Z) = U’(Z) 
otherwise. 

Lemma 4.1 provides the intuition for Proposition 4.1 be 
that allowing for small extensive form payoff perturba 
strategies which are not weakly dominated to be made stri 
Proposition 4.1 below is an analog to Proposition 3.1, where the notion of 
‘“not weakly dominated” is strenghtened to “is a strict best reply” and 
convergence is weakened to allow for extensive form payoff perturbations. 

DEFINITION 4.3. B, converges weakly to E (8,zE) if ~o~d~t~~~s (i) 
and (ii)(a) of Definition 2.1 hold, and: 

(ii) For all t’~ T”, iif + zJ. 

RXOPCJSITION 4.1. If si E (SmW(E))i then there is a sequence of elabora- 
tions B 12 s E and strategies $, 2 si such that s”i is a strategy in a strict Nash 
equilibrium of &. 

Remark 4.1. roposition 4.1 relies on inconsistent e~ab~~a~io~s in a;” 
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essential way to obtain as a Nash equilibrium strategies that may not be 
played in any objective correlated equilibrium of the original game E. Any 
subjective correlated equilibrium is a Nash equilibrium of the game where 
the appropriate subjective correlating device is explicitly incorporated into 
the strategy spaces. The point is that nature’s move at the beginning of the 
game, which determines the types of the players, serves also as a subjective 
correlating device. (The difference between subjective and objective 
correlating devices corresponds to the cases of consistent and inconsistent 
priors.) 

ProoJ: The elaborations 8” are constructed as follows. In each elabora- 
tion each player’s set of possible types T’ is partitioned into two sets, the 
“sane” types T’ and the “crazy” types Fi. T’ is isomorphic to (S”W(E))’ 
and p is isomorphic to the set S’ of I’s pure strategies in E. (Using these 
isomorphisms we will write t’= Si and i’ = Si.) The priors P; will be chosen 
so that only types in T’ are possible in the limit, which explains the abuse 
of notation. If ?s type is s^i = 2: E F”, we say that i was “told” to play s”:, 
and if ?s type is $=$E (SmW)i we say that i was told to play Sh. The 
payoffs and beliefs will be chosen so that in each elaboration playing as 
told will be a strict best reply for each possible type of player i, and so that 
the elaborations converge weakly to E. 

For each crazy type iA, set the payoffs iit so that s^: is a strict best 
reply (up to equivalent strategies) to any belief c-i over the other players. 
(See FKL for an explicit construction.) Note that since these payoffs may 
be very different from those in E, the types in p must have probability zero 
in the limit. 

To make Sk in (SooW)i a strict best reply for type Pi we proceed as 
follows. First fix a sequence E,,J 0. Since $E (SmW)i there exists a 
rr~~~d(n~+~ Si) with full support, such that 5; is a best reply to a;‘. Also 
there exists a B;‘E~(&+ (S”W)j), such that Si is a best reply to 8~~. 
Since g.ki has full support we can increase the payoffs at all endpoints 
reached under crki and Si by E, and thus make Si a strict best reply against 
cki. Furthermore this change in payoffs will not change the fact that Si is 
a best reply against ski. This is because no other pure strategy of i can 
increase the probability of reaching the endpoints for which payoffs were 
increased. 

Next we specify the beliefs in an elaboration. Let 2s beliefs over the 
others’ types, conditional on his/her type, be as follows. For “sane” types 
Pi the beliefs v,( .I ti) (i) assign probability E, to all the others being crazy, 
with the distribution of crazy types corresponding to oki; and (ii) assign 
probability 1 - E, to all the others being sane. For crazy types ?A, the beliefs 
are arbitrary. For each i choose a sequence of marginals pt over T’ which 
has full support on T’u p, and which converges with probability one to 



PAYOFF UNCERTAINTY 257 

the sane type of player i which was in the hypothesis of the Proposition 
(say Si, = ii,). Th e priors pi which are generated by the vi and pi are sue: 
that the sets of types which, in the limit, players think that others t 
that... have positive probability are exactly the sane types T’. Thu 
converges weakly to E. 

Finally we observe that by construction, for each n and 
each type’s playing as told is a strict best reply to the other p 
hence playing as told is a strict Nash equilibrium. 

player i, 
g as told, 

Remark 4.2. In our construction we used several 
for each player. This is because we require each strate 
a strict best reply to some strategies of the opponents, and to ensure that 
this preference is strict we may need to use a different small payoff pertur- 
bation for each k. 

Now we turn to the question of finding a converse to 
i.e., we ask which strategies can be justified using elabor 
verge weakly to the original game. The problem is that e converse to 
Proposition 4.1 is not precisely correct. There are strategie 
the limits of strategies that survive iterated deletion of w  
strategies in a sequence of elaborations th verge to E> but w  
not elements of SCUW(E). This is because is a normal form s 
concept, whereas in the sequence of elaborations convergi 
tion to incomplete information on the payoffs, we allow 
of the extensive form payoffs of E. IIence, roughly sp 

O” allows for extensive form payoff pertur 
olution concept which is closed with respect to such 

k dominance is not closed in this sense, neither i 
this suggests that we could achieve a ge 

on 2.1, we believe it is more interesting 
cterization. For this purpose we replace 

EFINITION 4.4. si E (SmW(E))i if Sf, + si and S”i E ( 
sequence of elaborations E, + p E. 

(IT,))’ for some 

i%OPOSITION 4.2. ii E (Wm(E,,))i, E:, 7 E, SL r si E E, if and only f,f d E 
(SmW(E))i. 

ProoJ (If) This follows from a simple diagonal argument and Proposi- 
tion 3.1. If sic (S”W(E))’ then there exists a sequenie E, -+ p with $, -+ .Y; 
and 5: E (SaW(B,))‘. By Proposition 3.1 there exist Ek,, -+ 8, and ik,* -+ s”i 
with jk,, E (Wm(E,))i. Clearly ?i n -+ si and EL,,, r E as required. 

642/52/S2 
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(Only if) We are given a sequence E,, r E. Let R’ denote the strategies 
played by sane types; that is, R’ z lim sup Ri,, where Ri = {sip S’I for some 
$~E((W~(&))’ and some t”~ T’, a:( t’) = si}. Construct the following 
elaborations i.?,, which will converge in payoffs to E. The set of possible 
types for each player i is isomorphic to R” x R-‘. The types in E” will be 
denoted by s:(m), where sh E R’ for k = 1, . . . . 1 R’(, and m = 1, . . . . (R-‘I. For 
a given i and k all types s:(m) have the same payoffs (independent of m), 
and these payoffs are determined as follows. Since S: E R’, then taking a 
subsequence if necessary, there exist 5: and ? with s”:(c) = of and 
.$E(W~(&))‘. Hence there exists ii;‘~d((W”(&J)-‘) such that s”L is a 
best reply to a;’ with payoffs as in E,,, That means in particular that 
?i(t;‘) = sh is a best reply to B;‘=C Z;‘(t-‘) v(t-‘1 t’), with payoffs z?k(t”). 
Although s”:(P) is not necessarily a best reply to 8-‘slim, 8;‘, it is a best 
reply to 6’ if the payoffs at all the endpoints reached by the strategies 
s:(e) and 8-j are increased by a sufficiently large “bonus” of E,. Further- 
more, the bonus required converges to zero since lim $(t?) is a best reply 
to 6-j with payoffs lim ii;(?). Let the payoffs of type s;(m) be equal to 
ii;(t’) with the E, bonus. Since E, + 0, i?,, + p E. We now claim that there 
exist beliefs V,(. 1.) for the elaboration i?,, such that the strategy I-tuple 
where each type s:(m) of each player i plays & is a Nash equilibrium in 
undominated strategies, hence this strategy I-tuple is in SOOW(E,). Recall 
that I’s oppo;ents will be an (I- l)-tuple of types in R-’ x R’. Let ?s beliefs 
be such that if s/he is of type s:(m), then s/he believes that the opponents 
can only be of type {k} x R-‘, and the distribution over R-’ is determined 
by 6-j (see above). Then s;(m) is a best reply to the opponents all playing 
the strategy to which their type is matched. This shows that each type 
s;(m) playing si is a Nash equilibrium. 

Finally we show that it is not weakly dominated. Since $(t’) E 
(Wm(&J)i, there is a zki E A(S-‘) such that s”i(t’) = s; is a best reply to zPi 
with full support when the payoffs are iii(?). The strategy 8: is still a best 
reply to T ~ ’ when the payoffs are changed to include the bonus E, described 
above. So each type sf(m) playing .si is a best reply to the full support 
strategy of the opponents where each type in R-‘x (k} plays zki. 1 

Remark 4.3. The reader may wonder why we did not simply take each 
player’s type space to be Ri, instead of R’x R-‘, since all types s;(m) with 
the same m have the same payoffs. Indeed, a single type .si( 1) for each 
k E R’ would suffice for us to have a Nash equilibrium with each type &( 1) 
playing .sL. However, to make the strategy “play ,si whenever told to” 
admissible for player i in a two person game, we will need as many distribu- 
tions over the types of j # i as I R’I, even if this is larger than I Ri’l. The 
easiest way to guarantee enough types for the strategy profile to be a Nash 
equilibrium and to be admissible is to use the product structure. 
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Remark 4.4. The above results enable us ts provide two clarifymg 
observations regarding the relation of this work to FKL. 

1. Our results show that in order to be robust an e~~i~~b~~rn refine- 
ment can, at most, apply one round of deletion of weakly dorn~~~te 
strategies. To see this recall Proposition 7 of FKL which states that 
strategy profile is robust if and only if it is quasi-c-perfect, Using 

a 4.1 and the characterization of weakly dominated strategies dis- 
at the beginning of Section 3, this proposition is equivalent to one 

stating that a refinement is robust if and only if it is contained in the 
closure (with respect to convergence in payoffs) of the set of Na 
hbria in the game remaining after weakly dominated strategies are 
This reinterpretation of Proposition 7 is similar to rour 

h states that the closure with respect to weak conver 
is equal to the closure with respect to convergence in 

(which is the same as correlated rationalizable strategi 
remaining after weakly dominated strategies are deleted. 

2. By adopting admissibility as our basic notion of rational behavior 
we obtain similar characterizations of the closure of OcI when weak or 
strong convergence is used (Propositions 3.1 and 4.3 1~ Since FKL use strict 
best replies as their tight notion of rationality, their results hold only for 
weak convergence. As Section 6 argues, strong convergence may be more 
appropriate for some purposes. 

The concept S”W allows there to be cooperation in the finitely repeated 
prisoner’s dilemma, even though in a Nash equilibrium the players always 
fink. By expanding on this observation we can illustrate the ~nt~it~o~ for 
our approach and the substantive way in whit it differs from that of F 
The stage game for the prisoner’s dilemma is hown in Fig. 5.1; this g 
is to be repeated T times. 

First note that for any horizon T the unique outcome consistent wit 
cc is for both players to always fink. (Any strategy s of the repeated 

coop 

Fink 
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that specifies cooperation in the last period for some sequence of play 
through period T- 1 is weakly dominated by the strategy that agrees with 
s through period T- 1 and then finks at T. Proceeding with the familiar 
induction, we argue that if the opponent is sure to fink for the last k 
periods then cooperating at T-k is weakly dominated.) However, with 
S”W the induction stops after one round: After all strategies that 
cooperate in the last period (which are weakly dominated) are deleted, 
cooperating in the next-to-last period cannot be ruled out by strict 
dominance. 

Next we examine the strategies that survive W” once we allow for a 
small amount of payoff uncertainty. When T = 2, W” applied to the 
perturbed game predicts that both players will fink in both periods. This is 
because every sane type of each player will find it weakly dominating to 
fink in the last period. Since the likelihood of a sane opponent is almost 
one, each sane type will judge that cooperating in the first period is 
unlikely to induce the opponent to cooperate in the second, so (in the 
perturbed game) cooperating in the first period can be ruled out by W”. 
However, when T = 3, applying W” to the perturbed game no longer 
yields strong conclusions. We demonstrate below that strategies for player 
2 which specify cooperation in the second period if player 1 cooperated in 
the first period are not removed at the second round of deletion. The 
failure of “cooperate at period 2” to be weakly dominated in the perturbed 
game suggests that the arguments for a unique outcome (under payoff 
uncertainty!) must rely on more than backwards induction: Information 
about period 1 play must be “moved forward” to generate constraints in 
period 2. It will soon be seen how the hypothesis that play corresponds to 
a Nash equilibrium can provide the necessary forward link between periods 
1 and 2. 

To show that “cooperate in period 2” is not weakly dominated in a 
perturbed game, and to illustrate how the consistency of Nash equilibrium 
rules out cooperation, a particular elaboration is constructed. In this 
elaboration W” is consistent with cooperation while Nash equilibrium 
rules out cooperation. Player 1 has only two types, “sane” and “crazy,” 
where the latter occurs with probability E, and player 2 is sane with 
probability one. The sane players have the same payoffs as in the original 
game; the crazy player 1 plays cx Cooperate in the first two periods, and 
cooperate in the third if and only if player 2 cooperated in the second. 

Weak dominance implies that the sane types fink in the last period. The 
second round of weak dominance then implies that the sane player 1 
should link in period 2, and that player 2 should fink in period 2 if player 1 
linked in period 1. On the third roud of deletion, we conclude that since 
player l’s play in independent of player 2’s first period action, player 2 
should fink in period 1. These arguments reduce the normal form to the 
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one shown in Fig. 5.2. Strategy U for player 1 is: ‘“if sane always fink, if 
crazy play 0;” and strategy D is: “if sane cooperate in period 1 and fink i 
periods 2 and 3, if crazy play a.” Strategy L is “always fink,” 
“cheat in periods 1 and 3, cooperate in period 2 iff player 1 coo 
period 1.” The payoffs for player 1 are expected values for player I’s two 
types, where we have set the payoff of the crazy type to equal zero if s/he 
plays a. 

The W” algorithm terminates at this stage as each remaining strategy is 
a strict best response to an opponent’s strategy. Cooperation in 
construction relies upon inconsistent expectations: Player 2 plays his 
cooperative strategy R when s/he thinks player l’s play reveals l’s type: 
player 1 plays the cooperative strategy D to exploit player 2’s expectations, 
and R is not a best response to D. In fact this inconsistency is necessary 
since FML showed that Nash equilibria are robust to the kind of 

ncertainty we consider, and clearly the Nash equilibria of the pris~~c~9s 
ilemma involve finking along the equilibrium path. 
To see in more detail how the hypothesis of eq~~~ibri~rn yields 

finking in the perturbed game consider Fig. 5.2. ile all four strategy 
combinations are rationalizable, the unique Nash Iibrium has player 1 
playing U (“always fink if sane”) with probabilit 
equilibrium player 1 is almost certain to fink in iod 1, and so player 2 
is almost certain to fink in period 2. For a fixed 0, Nash equilibrium E’s 
consistent with the sane types sometimes acting “crazy,” but the total 
probability of crazy play is of order E. In contrast, ite weak dominance 
accepts and rejects pure strategies without descrk their ~ike~i~~o~~ 
Indeed, a key difference with equilibrium analysis is 
are not objective quantities, and can differ for the two players. In an a 
posteriori equilibrium, when player 2 is told to play R s/he must believe 
that player 1 is unlikely to play D. Playing is only optimal if the sane 
player P is unlikely to cooperate. Thus player 2 
small probability of actually cooperating in the set 
whenever layer 1 plays D s/he assesses a high pro 
cooperating in period 2. This inconsistency of 
uncertainty is what makes cooperation possibl 

e R 

FIGURE 5.2 
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The discussion above studied one particular “elaboration” of the 
prisoner’s dilemma. Additional insight into the distinction between equi- 
librium and non-equilibrium analysis is provided by the general argument 
that the only Nash equilibrium path of any sufficiently close elaboration is 
“always cheat.” 

The proof proceeds as follows. Let the prior probability that each player 
is sane be 1 -E and let 8: be the event player i is a crazy type who 
cooperates in period 3 iffj cooperates in period 2. Fix a Nash equilibrium, 
and use it to calculate a joint probability distribution 7~ over types and over 
the outcome xi in period i for i = 1, 2, 3. Since “sane” players link in 
period 3 along the equilibrium path, playerj will fink in period 2 following 
any first period outcome x1 with K(x~) > 0 except for x1 which leads to a 
sufficiently large posterior probability 7c(0; 1 x1) that player i is a crazy type 
who cooperates in period 3 iff j cooperates in period 2. We denote this 
critical probability by it; in our example it = $. 

Now consider the probability of the event that player j’s second period 
beliefs that player i is such a crazy type exceed 71. That is, determine Q, E 
X( {x1 : ~(0; 1 x1) 3 El). Bayes’ rule implies that Q, d E/Z, so Q, + 0 as E -+ 0. 
This step would also be valid in an a posteriori equilibrium: Neither player 
thinks it is likely that s/he will cooperate in the second period. The 
distinction between Nash equilibrium and a posteriori equilibrium, i.e., the 
distinction between consistent and inconsistent strategic beliefs, comes 
about as we work backward to the first period. Player i will only cooperate 
in period 1 if this is sufficiently likely to induce cooperation in periods 2 
and 3. Since period 1 is the first period, player z’s beliefs are that player j 
is probably sane, so player i can only cooperate if s/he believes that by 
his/her doing so the sane type of player j is likely to cooperate. We have 
just seen that in a Nash equilibrium, the sane type of player j is unlikely 
(ex ante) to cooperate in period 2, so that when E is sufficiently small the 
sane player i finks in the first period. On the other hand ex post-after an 
x1 such that ~(0: 1 x1) > e-player j is likely to cooperate in period two (as 
in the elaboration above). Hence this cooperative strategy may be 
undominated. Furthermore, when the player’s strategic beliefs are not con- 
sistent, player i can believe j will cooperate more often than j expects to. 
Indeed, player i can attach probability one to player j using any strategy 
not ruled out by dominance. Therefore in the case of inconsistent strategic 
beliefs player i can cooperate in period 1 with the intent to lead j to 
cooperate in period 2. Thus a crucial distinction between consistent and 
inconsistent beliefs for robustness arguments is one of how likely each 
player can believe the other is to change his play in response to the 
possibility of crazy types. 
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6. AN ALTERNATIVE :NTERP~~TA~~~~ 

We motivated the consideration of payoff uncertainty by asking what 
players should infer when they observe play that is not consistent with t 
understanding of the game. This section sketches an alternative, direct, for- 
malization of those inferences. To begin, note that the state space for 
player i is Qi z njr i (Sj x Tj) and specify I’s beliefs over SC?” by C$ E A 
The traditional assumption (implicit in the refinements literature) which is 
questione in this paper is that even when bserving an une 
strategy oice the player does not update s/her beliefs on 
retaining this assumption extensive form refinements are led to an internal 
inconsistency: they impose restrictions based on a particular hypothe 
play even after that hypothesis has been contradicted (see Reny [21], 

inmore [S, 63, and Bonanno [S] among others). 
players can always have an inference which is consistent with 
Formally, here we allow for Support marg,j $(. 1 H’) # uj if 

#(Hi) = 0 (where H’ is a cell in is information partition). This approac 
is related to the formalization in this paper in essentially the same w  
beliefs at all information sets in sequential equihbrium are determi 
a sequence of beliefs (generated by completely mixed strategies). 
conditional probability c$(. / H’) is determined by a sequence of elabora- 
tions and the strategies in the elaborations. Our purpose in this section is 
to show how our results and the different notions of convergence use 

to the idea of updating beliefs on payoffs observing unex- 
strategy choices. This is best seen in a simple ple which mimics 

the construction in the proof of Proposition 3.1. In Fig. 6.1, player 1 believes 
node a that player 2 will play E and that the payoffs are as in E, so 1 will 

; player 2 believes that 1 will play L 
so player 2 does not expect to play. 

and updates his/her beliefs to assign probability one 
the payoffs being as in E', so 2 will play L as 
is no need to specify the beliefs at the third n 

ying E satisfies a natural form of ckwards ind~~ti~~ rationality 
players’ beliefs over payoffs can 

e above argument shows how st 

FIGURE 6.1 
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precisely to the ideas of updating beliefs. That is, it satisfies Support 
marg,j qi(. 1 Hi) = ui if Hj was assigned positive prior probability by qi. 
Thus strong convergence seems more appropriate for modeling the idea 
that a player i may update his/her beliefs about an opponent’s payoffs if 
and only if i observes an unexpected strategy choice by the opponent. This 
interpretation does not allow for the payoffs to be “almost” equal to ui 
when the player is not surprised. On the other hand for modeling the ques- 
tion of robustness of a refinement it seems more natural to allow for the 
wider class of perturbed games which is formalized by weak convergence. 
The similarity between the closure of iteratively admissible strategies with 
respect to either notion of convergence emphasizes the close relationship 
between these two objectives. 

In terms of the formal mathematical properties of the definitions the 
previous discussion points to an interesting distinction between strong and 
weak convergence, which is roughly analogous to the difference between 
sequential and perfect equilibrium. In sequential equilibrium each player’s 
beliefs at information sets along the equilibrium path are precisely that the 
equilibrium strategies are being played. Analogously the definition of 
strong convergence specifies that an elaboration & is close to a game E 
only if all types which receive positive probability according to E have 
precisely the same payoffs in En as in E. On the other hand in perfect equi- 
librium, even at information sets along the equilibrium path the players 
allow for “trembles” in the opponents’ strategies. This is analogous to weak 
convergence which allows for (small) payoff perturbations even for those 
types which receive positive probability in the limit. The notion of 
lexiographic beliefs’i is useful for modelling such perturbations within the 
limit game. To see this consider Fig. 6.2. The elaborations E,, in Fig. 6.2a 
converge weakly, but not strongly, to the game E in Fig. 6.2b. (Therefore 
Saw(E), whcih equals (L} x {I}, d oes not include the limit of Wm(gJ, 
which equal (R, L} x {r, I}. Of course S”W does include the latter limit.) 
However, using lexicographic beliefs, the limit of i?,, is naturally defined to 
be g in Fig. 6.2c, where E is a positive infinitesimal. Now Saw(&) does 
include the limit of Wm(&). The payoff perturbations in the elaborations 
are incorporated in & so that the closure of SooW(g) with respect to payoff 
perturbations is not required. 

One more point regarding this interpretation of the model is worth 
clarifying. Our approach allows a player to update his/her beliefs about 
the opponents’ payoffs whenever surprised, even if there is a “rational” 
explanation which does not require changing beliefs about the payoffs. An 
interesting extension of this model involves imposing the restriction that a 

” Refinements of Nash equilibrium such as perfect equilibrium are characterized using 
lexicographic beliefs in [7]. 
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FIGURE 6.2 

player who is surprised by an opponent’s strategy first tries to explain the 
observation without violating the assumptions that payoffs and rationality 
are common knowledge. (One might even consider more precise orderings 
on what assumptions players revise when surprised, and thus attem 
characterize different refinements.) Thus the player may assume 
his/her beliefs about the opponents’ strategy choice (or the opponen 
beliefs about other players’ strategies, etc.) were wrong. Only if t 
“‘deviation” cannot be explained by questioning the players’ beliefs ov 
elements of strategic uncertainty is the more basic a~s~rn~t~on regarding 
common knowledge of payoffs doubted. Rabin’s idea of ‘“focal 
rationalizability” can be interpreted as implementing ea. 

7. CONCLLXHNG EXAMPLE AND 

e conclude with an example, described in Fi 
we do not feel comfortable with a prediction 

. similar to a modification in van Damme [I2 of an example from 
ohlberg and Mertens [15]. The unique strate 
is game is (U, R). However, we feel that 

because, if player 2 accepts the W” solution 
intuition of forwards induction) and then is give 
2 must conclude that “‘something basic has changed,” and 2 might conch 
that l’s payoffs will lead 1 to violate the unique m outcome in the 
subgame. 
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II 
L C R 

U 1.5.1.5 1.5.1.5 1.5,1.5 

M 

D 

FZEI 22 3,7 or0 

2.2 0,o 1,3 

FIGURE 7.1 

In conclusion we would like to review the main points of this paper. 
First, as we argued in the Introduction, the questions of robustness and 
“what to believe when surprised” are particularly relevant in models which 
assume only common knowledge of rationality and payoffs. Including 
payoff uncertainty in the model and using weak convergence yields a sharp 
and intuitive characterization of the “closure” of iterated weak dominance 
(Section 3). This approach also yields a model which is more restrictive 
than rationalizability yet provides an explanation for being at any informa- 
tion set; moreover, the explanation does not contradict the model. In fact, 
it suggests how more restrictive theories can be developed while this form 
of internal consistency is retained. Finally, the distinction between weak 
and strong convergence is helpful in understanding the relationships 
between strict best replies and weak dominance, and between robustness 
and the updating of beliefs on null events. 
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