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Abstract

This paper considers a version of Bush and Mosteller's ([5], [6]) stochastic
learning theory in the context of games. We compare this model of learning to
a model of biological evolution. The purpose is to investigate analogies between
learning and evolution. We ¯nd that in the continuous time limit the biological
model coincides with the deterministic, continuous time replicator process. We
give conditions under which the same is true for the learning model. For the
case that these conditions do not hold, we show that the replicator process
continues to play an important role in characterising the continuous time limit
of the learning model, but that a di®erent e®ect (\Probability Matching")
enters as well.

Journal of Economic Literature Classi¯cation Numbers: C72, D83.
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1 Introduction

The evolutionary approach to game theory attracts increasing attention. If the
word \evolution" is used in a biological sense, then this approach is concerned
with environments in which behavior is genetically determined, and strategy
selection obtains because carriers of di®erent genes di®er in reproductive ¯t-
ness. However, often \evolution" is not intended to be understood biologically.
Rather, \cultural evolution," i.e. a learning process, possibly in a population
of interacting players, is meant. Implicit is the view that there is an analogy
between biological evolution and learning.

There are two levels at which such an analogy can exist. First, it might
exist at the level of the individual. Decision makers are usually not completely
committed to just one set of ideas, or to just one way of behaving. Rather,
several systems of ideas, or several possible ways of behaving are present in
their minds simultaneously. Which of these predominate, and which are given
less attention, depends on the experiences of the individual. The change which
the \population of ideas" in the decision maker's mind undergoes may be
analogous to biological evolution.

We can also imagine environments in which individual learning behavior
is possibly di®erent from biological evolution (for example because individuals
adjust too rapidly, as in the case of best response learning) but in which,
at the population level, a process operates which is analogous to biological
evolution. Decision makers observe and imitate each other. They talk to and
convince each other. These processes may imply that the distribution of ideas
and strategies in a population of agents changes over time in a way that is
analogous to biological evolution.

In this paper we shall focus on the analogy between learning at the indi-
vidual level and biological evolution. We are interested in this case because,
traditionally, game theory has referred to individual players rather than to po-
pulations of players. Also, this analogy seems to have received less attention
in the recent literature.1 We shall construct discrete time models of indivi-
dual learning and of biological evolution in games. We shall then show that
these models, although di®erent in discrete time, exhibit identical, or related
behavior, once a continuous time limit is constructed.

In the continuous time limit both models yield the (asymmetric) conti-
nuous time replicator dynamics (see [19], [34], [35]) or certain modi¯cations
of it. This dynamic process has attracted much interest in the recent game

1References to papers which formalise the analogy at the population level are given at
the end of this Introduction.
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theory literature.2 It postulates gradual movement from worse to better stra-
tegies. It thus contrasts with another important class of dynamic processes
in game theory, best response dynamics, which involves instantaneous move-
ment to best replies. The gradual movement postulated by replicator dynamics
has often important implications. For example, in games such as the Battle
of the Sexes, the quick movements of best response dynamics may prevent
convergence to equilibrium while the gradual adjustment of replicator dyna-
mics permits such convergence. On the other hand, if best response dynamics
gradually slows down, as in \¯ctitious play," then there are examples such as
Matching Pennies in which (continuous time, asymmetric) replicator dynamics
cycles, but ¯ctitious play converges.

When compared to other di®erentiable dynamic processes, i.e. processes in
which the state variables are di®erentiable functions of time, 3 the continuous
time replicator dynamics stands out because it is \aggregate monotonic" in
the sense of Samuelson and Zhang [29]. Samuelson and Zhang show that
the continuous time replicator dynamics, and certain multiples of it, are the
only di®erentiable processes satisfying aggregate monotonicity. Samuelson and
Zhang show that this property implies important facts about the dynamic
process, for example, that it eliminates in the long run pure strategies which
are strongly dominated by a mixed strategy. 4

Given that replicator dynamics has a number of distinctive features it is
important to investigate possible interpretations of it, i.e. to ask which mo-
dels might give rise to this dynamics. If replicator dynamics is to be relevant
to economics, it is particularly important to investigate interpretations of the
replicator process as a learning process. Our paper provides one such interpre-
tation. 5

We begin the formal parts of this paper in the next section with a very sty-
lized biological model. We consider ¯nite normal-form games. For each player
of the given game, there is a continuum size population of individuals. Each
individual is genetically programmed to play a pure strategy. Time is discrete,
and in each period all individuals are randomly matched in groups, where each
group consists of one individual from each population. Each group then plays
the game. The payo®s which the individuals receive determine their gross re-

2See, for example, the recent special issue (Volume 57 (1992)) of the Journal of Economic
Theory.

3Note that the continuous time versions of best response dynamics are typically not
di®erentiable.

4Further properties of aggregate monotonic dynamics are investigated in Ritzberger and
Weibull [27].

5Alternative learning interpretations of the replicator dynamics have been obtained by
authors who consider the interaction of many learning individuals in large populations.
As was mentioned in footnote 1, the relevant work will be discussed at the end of this
Introduction.
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productive success. We employ a speci¯c assumption about deaths which we
shall explain later. It is easily calculated that the evolution of the populati-
ons in our model can be described by a variant of the replicator equation in
discrete time. If an appropriate continuous time limit is constructed, then the
continuous time replicator process obtains.

We then turn to learning. The learning model which we consider is in
the tradition of Bush and Mosteller's ([8], [9]) stochastic learning theory. The
model concerns several agents playing in discrete time repeatedly the same
normal-form game. At each point in time, each player is characterised by a
probability distribution over her strategy set which indicates how likely she is
to play any of her strategies. Players' choices are described as random because
they are a®ected by some unmodelled psychological factors.

The probabilities adjust over time in response to experience. A player's
experience consists ¯rstly of the fact that the player herself has chosen a par-
ticular strategy, and secondly of the payo® which she has received. Positive
payo®s represent reinforcing experiences, which induce a player to increase the
probability of the strategy just chosen. For given initial probabilities, a larger
payo® induces a larger increase. Negative payo®s cause an analogous reduction
in the probability with which a strategy is chosen.

Since Bush-Mosteller learning theory is likely to be less familiar to eco-
nomists than other learning theories, some comments on the interpretation
of the theory, and the motivation for considering this theory, are in order.
We begin with interpretational issues, and emphasize ¯rst that payo®s in the
Bush-Mosteller learning model are not to be interpreted as von Neumann-
Morgenstern utilities, for which, of course, the distinction between positive
and negative values is meaningless. Rather, payo®s are simple parametrizati-
ons of players' responses to their experiences.

Implicit in the learning model is the assumption that players' responses to
their experiences are stable over time. This is not always plausible. Players
might, for example, have an \aspiration level" to which they compare their
experiences, and this aspiration level itself might adjust in response to players'
experiences. We analyse a model which is similar to the model in this paper,
but which includes a moving aspiration level, in [5]. The main e®ects which
we describe in this paper remain present in the modi¯ed model.6

The players in the Bush-Mosteller model respond to very limited infor-
mation only. This might be because no further information is available, or
because the processing of any further information appears so costly relative
to the potential gains that players prefer to ignore it. The model thus seems
most plausible if agents' behaviour is habitual, and not the result of careful
re°ection.

6The concluding section contains further details concerning moving aspiration levels.
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In economics, the decision how much cash households hold, or the proce-
dures adopted by ¯rms to make routine decisions, might fall into this category.
Another economic example of decisions to which Bush-Mosteller theory seems
applicable is consumers' choice of brands of everyday items. Indeed, theo-
retical and empirical marketing research has sometimes modelled consumers'
brand choice using Bush and Mosteller's learning theory. 7 This work lends
some support to Bush and Mosteller's theory.

There are also experimental situations to which Bush and Mosteller's lear-
ning model might be applicable. We think primarily of situations in which
subjects' information is very limited. Indeed, a remarkable book by Suppes
and Atkinson [33] which concerns learning in game theoretic settings reports
such experiments, and these experiments do provide some support for stocha-
stic learning theory. In the more recent experimental literature in economics
papers by Mookherjee and Sopher [24] and Roth and Erev [28] have shown
that algorithms similar to Bush and Mosteller's learning processes may be
successful in explaining learning behavior in economic experiments.

To demonstrate how the learning model is related to the replicator process,
we consider ¯rst the case in which all payo®s are positive, i.e. all experiences
are reinforcing. Experiences di®er only in their strength of reinforcement. This
case has previously been investigated by Cross ([13], see also [14]). If attention
is restricted to this case, we therefore refer to the learning model also as \Cross'
learning model."

An obvious di®erence between the biological process and Cross' learning
process is that the learning process is stochastic whereas the biological process
is deterministic. However, the processes are related in that the expected motion
of the learning process, conditional on any state, is equal to the actual motion
of the biological process, conditional on the same state. Since the biological
process coincides with a version of the discrete time replicator process, this
means, roughly speaking, that the learning process coincides in expected terms
with the discrete time replicator process.

The di®erence between the two models disappears when the continuous
time limit is taken. In this limit, also the learning model converges to the
deterministic, continuous time replicator process. We prove this result by
appealing to a mathematical result due to Norman [26]. The intuition is that,
if the continuous time limit is taken, each time interval sees many iterations
of the game, and the adjustments which players make between two iterations
of the game are very small. Consequently, a law of large numbers applies, and
the process becomes deterministic.

To develop further understanding of the relation between the biological
7Relevant work is surveyed in parts of Meyer and Kahn [23]. Among the empirical papers

are [18] and [20].
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model and Cross' learning model it is convenient to reinterpret Cross' learning
model as a model of an agent who has simultaneously several contradictory
ideas in mind, and who adjusts the weights given to these ideas in response
to experience. We shall present such an interpretation in this paper. The
interpretation will be based on ideas of Estes' [16] \stimulus sampling" theory
of learning. Bush and Mosteller, in Chapter 2 of [9], have interpreted their
general model in terms of Estes' theory, and our argument will be similar to
Bush and Mosteller's. The reinterpretation of Cross' model is useful because it
shows that the intuition for our result can be derived from an analogy between
the \population of ideas" in an agent's mind and a population of genetically
programmed individuals.

It is important to note that our result about the continuous time limit
refers to arbitrary, but ¯nite points in time. It is no longer true if in¯nite time,
i.e. the asymptotic behavior of the processes involved, is considered. We shall
show that the asymptotic behavior of the biological process in discrete time,
and the asymptotic behavior of the learning process in discrete time are quite
di®erent from each other, and from the asymptotic behavior of the continuous
time replicator model.

If payo®s are permitted to be negative, the continuous time limit of the
learning model is characterised by a di®erential equation which is related to
the replicator equation but di®erent from this equation. The right hand side
of the di®erential equation for the learning process consists of two terms. One
of these is of the \replicator type." The second term, however, re°ects an
entirely di®erent force. If the second term alone were active, then players would
equate the probability with which they choose a strategy with the probability
with which this strategy is \successful," i.e. is reinforced. This behavior is
often called \probability matching." There is some experimental evidence for
behavior of this type (provided that payo®s are \small"; see Siegel [32] and
the references quoted therein).

\Probability matching" is often irrational behavior. In decision problems,
for example, maximization of expected payo®s requires agents typically to set
the probability of one strategy equal to one, and to set the probability of all
other strategies equal to zero.

It seems to have been known among psychologists that there is a relation
between stochastic learning theory and probability matching. From this per-
spective, the contribution of our paper is to point out that stochastic learning
theory is also related to replicator dynamics, and to show that, in the conti-
nuous time limit, the learning process can be decomposed into exactly these
two forces.

Literature which is related to this paper includes the previous investigations
of Cross' learning process in [13], [31]. Other processes in the Bush-Mosteller
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class have been investigated in [8], [9], [21], [22]. All of these authors have
focused on asymptotic properties of the process in discrete time. Some progress
has been made, but knowledge of these properties is still very incomplete.

The continuous time limit of stochastic learning processes has previously
been considered by Norman [26]. Our analysis relies heavily on his mathemati-
cal results. Norman used these results to study some special cases of the Bush
and Mosteller's learning model which are di®erent from the ones considered
here. Also, he was concerned with di®erent interpretational issues. Indepen-
dent, and sometimes more general versions, of Norman's mathematical results
concerning continuous time approximations have been developed in several
contributions, for example in [2].

The continuous time limit of a model in which large, but ¯nite populations
of agents interact in discrete time has recently been constructed by Boylan
[7]. His model di®ers both from our biological model (since he considers ¯-
nite populations) and from our learning model (since he considers populations
rather than individuals, and since individuals' transition from one \type" to
another is deterministic rather than stochastic). However, the formal issues
in his and our work are closely related. He employs mathematical techniques
which are similar to those used in the references to which we appeal here, such
as Norman [26]. Like us, Boylan emphasises the di®erence between results for
¯nite points in time and asymptotic results. This latter issue is also one of the
issues addressed in Boylan [6].

Other work concerning the analogy between learning and biological evo-
lution is due to Binmore and Samuelson [4], Cabrales [11] and Schlag [30].
These papers show how imitation of better strategies in large populations of
players can generate the replicator dynamics at the population level. Thus
they formalise the second of the two main lines of argument concerning \social
evolution" to which we referred at the beginning of this Introduction. This
work is complementary to ours.

This paper is structured as follows: Section 2 describes the biological pro-
cess and its continuous time limit. Section 3 explains the learning process in
the case of positive payo®s, i.e. Cross' learning model, and derives its con-
tinuous time limit. Sections 2 and 3 together show that, in the continuous
time limit, the two processes are identical. In Section 4 we give an intuitive
explanation of this result by interpreting the learning model using ideas from
Estes' [16] stimulus sampling theory of learning. Section 5 explains why our
result does not extend to the in¯nite time horizon. In Section 6 we generalize
the learning model and permit also negative payo®s. Section 7 concludes the
paper.
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2 The Biological Model

We consider a ¯nite normal-form game with two players.8 The two players
will be indexed by i and will be called R (Row) and C (Column). The feasible
strategies of R are: j 2 J ´ f1; 2; :::; Jg. The feasible strategies of C are:
k 2 K ´ f1; 2; :::;Kg. The payo® to player i when R plays j and C plays k is
U ijk. In this section payo®s will indicate the number of o®springs of a player.
Hence U ijk 2 IN [ f0g for all i; j and k. We write U i for the matrix with U ijk
in row j and column k.

There are two populations of players. Each population is of continuum
size with total mass 1. Members of population 1 can ¯ll the role of player R.
Members of population 2 can ¯ll the role of player C.

The game is played repeatedly. Repetitions are indexed by n 2 IN. At
the beginning of each round each player is characterised by the pure strategy
which she is genetically programmed to play. Denote by pj(n) the proportion
of players in population 1 programmed to play strategy j in stage n. De¯ne
p(n) ´ (p1(n); :::; pJ (n)). Similarly, denote by qk(n) the proportion of players
in population 2 programmed to play the strategy k in stage n, and de¯ne
q(n) ´ (q1(n); :::; qK(n)). We then have p(n) 2 SJ¡1 and q(n) 2 SK¡1, where,
for any L 2 IN , we denote by SL the L-dimensional simplex. We de¯ne
S ´ SJ¡1 £ SK¡1.

In every stage n only a proportion ® (with 0 < ® < 1) of players in each
population plays the game. All other players remain idle. The individuals who
actually play the game are selected randomly from their respective populations.
The two selected groups of players are then randomly matched in pairs to play
the game.9 Players play the pure strategies with which they are programmed.
After playing, players reproduce. Individuals reproduce on their own, without
a partner. The number of o®springs of any individual player is equal to the
payo® that the player received when playing the game.

After reproduction, a proportion of each population dies. The number
of deaths is such that the total size of each of the two populations remains
constant. The individuals who die are randomly selected from all players who
have not been born in the current period. Newborns cannot die.

The assumption described in the previous paragraph is logically consistent
only if the number of newborns can never be greater than the number of

8We restrict attention to the case of just two players to simplify the presentation.
9Note that we implicitly assume that random matching schemes for continuum size po-

pulations exist. Although this implicit assumption is common in the literature, it is not
obvious that it is justi¯ed. For countably in¯nite populations the issue has been investiga-
ted by Boylan [6] and Gilboa and Matsui [17], but we know of no corresponding work for
continuum size populations.
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existing players. To ensure this we assume that the product of ® and the
maximal payo® is not greater than one: ® ¢maxi;j;kU ijk · 1.

We now construct the equation which describes the evolution of the two
populations over time. We de¯ne: ¢pj(n) ´ pj(n+ 1)¡ pj(n) and ¢qk(n) ´
qk(n + 1) ¡ qk(n). Also, we write er for the unit vector with a one in the
r-th row, and zeros elsewhere. In the following proposition, and also later
in similar contexts, we drop for notational simplicity the required transpose
symbols. Proposition 1 follows from straightforward calculations.

Proposition 1 For every n 2 IN, j 2 J and k 2 K:

¢pj(n) = ®pj(n)
³
ejURq(n)¡ p(n)URq(n)

´

¢qk(n) = ®qk(n)
³
p(n)UCek ¡ p(n)UCq(n)

´

Proposition 1 shows that the proportion of individuals playing a particular
strategy grows if and only if this strategy yields higher than average expected
payo®. The percentage increase or decrease in the proportion of players playing
a particular strategy is equal to a proportion ® of the di®erence between that
strategy's expected payo® and the average expected payo®.

The model that we have presented is very similar to one in Chapter 9 of
Binmore [3]. An important di®erence is that we have changed the assumption
about deaths made in [3].10 In [3] it is assumed that all individuals, including
the newborns, can die. With this assumption, the right hand sides of the
formulas in Proposition 1 have to be divided by some denominator.11 The
equations which include this denominator are often called the \discrete time
replicator equations" 12. We have altered the assumption about deaths because
this will facilitate the comparison between the model of this section and the
learning model of the next section.

As was explained in the Introduction our focus in this paper will be on
continuous time limits. To construct the continuous time limit of the biological
model of this section we conduct a thought experiment in which, in each \real"
time interval, the game is played very often, but the proportion of players who
are selected in each round to play is very small. Speci¯cally, we assume that the
time interval between two successive stages is of length 0 < µ · 1, and that the
proportion of active players in each stage is µ® (where µ is the same constant
in both assumptions). We denote the resulting process by f(pµ(n); qµ(n))gn2IN .
This process satis¯es Proposition 1 if we replace ® by µ®.

10The two other di®erences are that Binmore considers the case of symmetric games,
whereas we deal with potentially asymmetric games, and that he assumes that in each
round all individuals play, whereas we assume that only a fraction plays.

11See p.419 in [3].
12for asymmetric two player games.
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Since we imagine that the time interval between two repetitions is of length
µ, the variables (pµ(n); qµ(n)) describe the state of the process at time µn. We
are now interested in the continuous time limit, i.e. in the limit µ ! 0. To
obtain the state of the limit process at some time t ¸ 0 we consider the limit
of (pµ(n); qµ(n)) for a sequence of µs and ns with the property that µ ! 0 and
µn! t.

To describe this limit we need to introduce the \continuous time replicator
equation." Let p̂(t) 2 SJ¡1 and q̂(t) 2 SK¡1 for all t ¸ 0. Suppose that p̂ and
q̂ are di®erentiable functions, and that they satisfy:

dp̂j(t)
dt

= ®p̂j(t)
³
ejURq̂(t)¡ p̂(t)URq̂(t)

´

dq̂k(t)
dt

= ®q̂k(t)
³
p̂(t)UCek ¡ p̂(t)UC q̂(t)

´

for all t ¸ 0, j 2 J and k 2 K. Then we call p̂ and q̂ the \solution of
the continuous time replicator equation" for initial values p̂(0) and q̂(0). The
continuous time replicator equation in the form just described is due to Taylor
[34]. 13

The following proposition says that for µ ! 0 the process constructed in
this section is characterised by the continuous time replicator equation.

Proposition 2 Suppose that for all µ : (pµ(1); qµ(1)) = (p̂(0); q̂(0)). Consider
some t with 0 · t < 1 and assume µ ! 0 and nµ ! t. Let p̂ and q̂ be the
solution of the continuous time replicator equation for initial values p̂(0) and
q̂(0). Then (pµ(n); qµ(n))! (p̂(t); q̂(t)).14

Proof: This follows from a theorem that is well-known in numerical mathema-
tics because it underlies \Euler's method" for the numerical solution of ordi-
nary di®erential equations.15 The theorem is stated as Theorem 203A in [10].
The theorem uses an assumption which refers to the function v : S ! IRJ+K

which is de¯ned by:

v(p; q) ´
Ã
¢pµ(n)
µ

;
¢qµ(n)
µ

!

13The continuous time replicator equation was ¯rst introduced in [35] for symmetric two
player games. The version that we use here was introduced later for asymmetric two player
games.

14The reference quoted in the proof of Proposition 2 also shows that under the assumptions
of this result j pµ

j (n) ¡ p̂j(t) j converges to zero at least as fast as µ.
15Euler's method solves ordinary di®erential equations by discretizing them.
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where it is assumed that pµ(n) = p and qµ(n) = q. The theorem requires that
this function is Lipschitz. Since v is polynomial on a compact domain this is
satis¯ed.

The conclusion of the theorem is that, in the continuous time limit, (p; q)
converges to the solution of the di®erential equation (dp=dt; dq=dt) = v(p; q)
with initial value (p̂(0); q̂(0)), evaluated at time t. Thus the assertion follows
from Proposition 1, where v(p; q) was calculated.

Q.E.D.

3 Cross' Learning Model

The game that we consider in this section has the same set of players and the
same sets of strategies as before. However, payo®s now play a di®erent role,
and hence we introduce a new notation for them. We write ~U ijk for the payo®
to player i when R plays j and C plays k. In this section, payo®s will be
interpreted as \strengths of reinforcement." We shall assume that they satisfy:
0 < ~U ijk < 1 for all i; j and k. We explained already in the Introduction that
we focus in this section and in the following two sections on the case that all
payo®s are non-negative, i.e. that there is no deterrence. It will become clear
below why we need, in addition, that payo®s are not greater than one. Without
this assumption we would not be able to give payo®s the interpretation used
below. The fact that the two inequalities are strict rather than weak will only
be used in the proof of Proposition 5 below.16 We write ~U i for the matrix with
~U ijk in row j and column k.

The ultimate purpose of this section is to show that, in the continuous time
limit, the model of this section and the model of the previous section coincide.
For this we shall need a relation between the payo®s in the two models. We
shall make throughout the following assumption: ®U ijk = ~U ijk for all i, j and
k. Once it is noted that, in the model of the previous section, the \e®ective"
payo®s were ®U ijk, it is clear that this is the relation that we need.

In contrast to Section 2, we shall now assume that the game is played not
by two populations but by two individual players: i = R;C. These players
play the game repeatedly, and, as before, the iterations of the game are indexed
by n 2 IN. At the beginning of stage n each player i is characterised by the
probability with which she plays each of her strategies. For player R these
probabilities are P(n) ´ (P1(n); :::; PJ (n)). For player C they are Q(n) ´
(Q1(n); :::; QK(n)). We call P(n) (resp. Q(n)) the \state" of player R (resp.
C) at stage n. We de¯ne S(n) ´ (P(n); Q(n)). Thus S(n) can be called

16In the veri¯cation of Norman's condition (H8).

10



the \state of the game" at stage n. In our model P(n), Q(n), and S(n) will
be random variables. We write ~p(n), ~q(n), and ~s(n) for realisations of these
variables.

The set of all possible states for player R (resp. C) is SJ¡1 (resp. SK¡1).
The set of all possible states of the game is S ´ SJ¡1 £ SK¡1. To simplify
notation we identify the element of player i's state space that allocates all
probability to one of i's strategies with that strategy itself. In other words,
the sets of vertices of the two players' state spaces are identi¯ed with J and
K.

We assume that, at each stage, a player observes only the strategy that
she plays, and the payo® that she receives. Players hence don't observe the
other players' strategies. After making their observations, players update their
states. If player R played strategy j in the n-th repetition of the game, and
if she received payo® ~URjk, then she updates her state by taking a weighted
average of the old state, and of the unit vector which puts all probability on
strategy j. The weight that is put on the unit vector is equal to the payo®
~URjk. Formally, this means:

Pj(n+ 1) = ~URjk + (1¡ ~URjk) Pj(n)

Pj0(n+ 1) = (1¡ ~URjk) Pj0(n) for all j0 6= j

Player C updates Q(n) in an analogous manner. Observe that the above for-
mula is meaningful only if ~URjk · 1. This is why we introduced this assumption
earlier.

For given initial random variables (P (1); Q(1)) the above equations de¯ne
a stochastic process fP(n); Q(n)gn2IN . We refer to this process as \Cross'
learning process."

Suppose that players have reached the n-th repetition of the game, and that
the current state of the game is ~s. Conditional on this, the state in period n+1
is still a random variable. We want to describe the expected movement of the
state. We de¯ne: ¢Pj(n) ´ Pj(n+1)¡Pj(n) and ¢Qk(n) ´ Qk(n+1)¡Qk(n).
We denote by E[::: j S(n) = ~s] the expected value of the random variable (...)
conditional on the state of the game in stage n being ~s. The following result
follows from straightforward calculations.

Proposition 3 For all n 2 IN, ~s 2 S, j 2 J and k 2 K:

E[¢Pj(n) j S(n) = ~s] = ~pj
³
ej ~UR~q ¡ ~p ~UR~q

´

E[¢Qk(n) j S(n) = ~s] = ~qk
³
~p ~UCek ¡ ~p ~UC ~q

´
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Propositions 1 and 3 together show that for given current state the expected
movement of the two players in the learning model is exactly the same as the
actual (deterministic) movement of the two populations in the biological model.
The two processes di®er only in that the learning process is stochastic whereas
the biological process is deterministic.

Next, we construct the continuous time limit of the learning process and
show that in this limit expected motion and actual motion of the players' states
coincide. We construct the continuous time limit in a way that is analogous to
the previous section. We hence imagine again that the amount of \real" time
that passes between two repetitions of the game is given by a number µ with
0 < µ · 1. After each repetition of the game, the players adjust their states
by µ times what it was so far. Formally, we replace the adjustment formulas
given earlier by:

P µj (n+ 1) = µ ~URjk + (1¡ µ ~URjk) P µj (n)

P µj0(n+ 1) = (1¡ µ ~URjk) P µj0(n) for all j0 6= j

where we introduce the upper index µ to indicate that we are now referring
to a modi¯ed process. An analogous formula applies to Qµ(n+1). We obtain
a process f(P µ(n); Qµ(n))gn2IN , provided that we specify the initial random
variables (P µ(1); Qµ(1)). This process satis¯es Proposition 3 if one multiplies
the right hand sides of the equations in Proposition 3 by µ.

Since we imagine the time interval between repetitions to be µ the random
variable Sµ(n) describes the state of the process at time nµ. As in Section 2
we are interested in the limit µ ! 0. We obtain the state of the limit process
at some time t ¸ 0 by investigating the limit of Sµ(n) for any sequence of µs
and ns with the property that µ ! 0 and nµ ! t.

Proposition 4 Suppose that for all µ: (P µ(1); Qµ(1)) = (p̂(0); q̂(0)) with pro-
bability 1. Consider some t with 0 · t < 1 and assume µ ! 0 and nµ ! t.
Let p̂ and q̂ be the solution of the continuous time replicator equation for initial
values p̂(0) and q̂(0). Then Sµ(n) converges in probability to (p̂(t); q̂(t)).

Proof: We use Theorem 1.1 in Chapter 8 of Norman [26]. This theorem con-
cerns the continuous time limit of discrete time Markov processes with in¯nite
state spaces. The processes to which we apply this theorem are the processes
fSµ(n)gn2IN . Our assertion follows immediately from parts (A) and (B) of
Norman's theorem. Therefore, it is su±cient to verify that the assumptions
of the theorem are satis¯ed. This is trivially true for Norman's assumptions
(a.1)-(a.3).

Norman's assumptions (b.1)-(b.3) refer to the function v : S ! IRJ+K
which is de¯ned by:

12



v(p; q) ´ E
"
¢Sµ(n)
µ

j Sµ(n) = (p; q)
#

Norman's assumption (b.4) refers to the function w : S ! IR(J+K)2 which is
de¯ned by:

w(p; q) ´ V ar
"
¢Sµ(n)
µ

j Sµ(n) = (p; q)
#

(Here, we denote by V ar[::: j Sµ(n) = s] the variance-covariance matrix of the
random variable (...) conditional on the event that the state of the game in
stage n is s.) Norman's assumption (c) refers to the function r : S ! IR which
is de¯ned by:

r(p; q) ´ E

2

4
¯̄
¯̄
¯
¢Sµ(n)
µ

¯̄
¯̄
¯

3

j Sµ(n) = (p; q)

3

5

(Here, if x 2 IRJ+K , we de¯ne: j x j3=
PJ+K
i=1 j xi j3.)

Norman's condition (b.1) requires v to be di®erentiable, condition (b.2)
requires the derivative of v to be bounded, and condition (b.3) requires the
derivative of v to be Lipschitz. Condition (b.4) requires w to be Lipschitz.
Condition (c) requires r to be bounded from above. In our case, all functions
involved are obviously polynomial (in the case of r: piecewise polynomial
and continuous) functions with compact domains, and hence all of Norman's
assumptions are satis¯ed.

The conclusion of Norman's Theorem is that in the continuous time limit
the state variable S converges in probability to the solution of the di®erential
equation ds=dt = v(p; q) with initial value (p̂(0); q̂(0)), evaluated at time t.
Thus, the assertion of Proposition 4 follows from Proposition 3 where v(p; q)
was calculated.

Q.E.D.

In words, Proposition 4 says that, if µ is small, and if nµ is close to t ¸ 0,
then, with high probability, Sµ(n) will take a value that is close to the solution
of the continuous time replicator equation at time t.17 18 The intuition for

17Using results in [26] it can also be shown that, under the assumptions of Proposition 4,
for every " > 0 and every j 2 J the probability Pr(j P µ

j (n) ¡ p̂j(t) j¸ ") converges to zero
at least as fast as µ. The analogous statement holds for every pure strategy of player C.

18A stronger version of Proposition 4 would assert that, as µ tends to zero, the distribution
of the polygonal curve connecting the points (nµ;Sµ(n)) (where nµ · t) converges weakly
to the probability distribution which gives probability one to the solution of the replicator
equation. Although we believe this result to be true, we don't deal with it here since its
statement and proof would involve additional complications.
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this result is that frequent play and slow movement ensure that a law of large
numbers applies, and therefore actual and expected movement of the learning
process coincide. Propositions 2 and 4 together show that the learning model
and the biological model coincide when the continuous time limit is considered,
and attention is restricted to some ¯nite point in time. Thus, they demonstrate
an analogy between learning and biological evolution.

4 Stimulus Sampling

The learning model of Section 3 postulates a particular behavior without giving
a description of the internal structure of players that gives rise to this behavior.
This is also true for Bush and Mosteller's general theory of learning, of which
the model in Section 3 is a special instance. Proceeding like this has the
advantage that the formal framework admits several di®erent interpretations.
On the other hand, the general theory is too abstract to suggest intuitions.
For this reason Bush and Mosteller presented in Chapter 2 of [9] a speci¯c
interpretation of their model. It was based on ideas from Estes' [16] stimulus
sampling theory of learning. In this section we give a similar interpretation that
applies to our context.19 Then we use this interpretation to develop intuition
for the results of the previous sections.

Suppose that each player when making a choice is subject to many sti-
muli. Speci¯cally, for each player there is a continuum of such stimuli. The
total mass of this continuum is one. Each stimulus is programmed to suggest
one particular choice to the player, but di®erent stimuli may suggest di®erent
choices. The player chooses a strategy by selecting randomly one of these
stimuli.

Once a player has chosen a strategy, and experienced a payo®, some ran-
domly selected stimuli are re-programmed to suggest the particular strategy
that the player has just taken. The measure of the set of re-programmed
stimuli is equal to the payo® which the player experienced.

A straightforward calculation shows that this model of players' behavior
generates exactly the process that we described in Section 3. Thus, the model
provides one possible interpretation of the framework of Section 3.

We can re-phrase this interpretation of Cross' learning model in biological
language to obtain a biological model that is exactly equivalent to the learning
model. For this we identify the two continua of stimuli in°uencing each of the
two players with two continuum size populations of agents with genetically
inherited strategies. The randomly selected stimulus which each player follows

19We shall make some simpli¯cations in comparison to Bush and Mosteller's argument.
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can then be interpreted as a randomly selected individual who is playing the
game \on behalf of her population."

After the two individuals have interacted, they reproduce. Each of the
two representative individuals has o®springs which are of positive measure in
comparison to the population from which they come, and this measure is equal
to the payo® received in the game. Deaths occur in the way which was also
postulated in Section 2. It is now evident that this pseudo-biological model is
exactly equivalent to the learning model.

It is also clear how this biological model di®ers from the biological model
of Section 2. Whereas in Section 2 we assumed that the proportion of each
population that plays and reproduces is of positive measure, and hence of
continuum size, in the model that we have just constructed this is done by two
randomly selected, representative individuals. Also, in the model of Section 2,
the o®springs of any particular individual are of measure zero, whereas in the
model just described the two representative individuals have sets of o®springs
of positive measure.

As a consequence, the pseudo-biological model is a stochastic version of
the biological model. In expected terms the two models are identical, as was
shown in Propositions 1 and 3. By Propositions 2 and 4, the di®erence between
the models disappears, and both models become deterministic, if a continuous
time limit is taken, and if attention is restricted to a ¯nite point in time.

5 Asymptotic Analysis

The convergence results of Propositions 2 and 4 apply to any point in time
t <1. They have no implications for the asymptotic behavior, for t ! 1, of
the discrete and continuous time processes. In fact, the asymptotic behavior of
the discrete time processes may be very di®erent from that of the continuous
time process. Moreover, the asymptotic behavior may be di®erent for the two
discrete time processes that we consider. These di®erences may arise even for
arbitrarily low values of µ.

To show these points, we ¯rst state a result concerning the asymptotic
behavior of the discrete time learning process. The result says that, with
probability 1, the learning process will converge to a situation in which both
players play some pure strategy with probability 1. This result holds for all
possible speeds of learning.

Proposition 5 For all µ > 0 and for all initial variables (P µ(1);Qµ(1)) with
probability 1 the sequence f(P µ(n);Qµ(n))gn2IN converges, and its limit is in
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Proof: Taking µ to be given and ¯xed, we use Theorem 2.3 of Norman [25].
The ¯rst sentence of that theorem says that under certain assumptions a sto-
chastic process will converge with probability one to one of its absorbing states.
In our learning model it is clear that the set of absorbing states is J £ K.
Thus, our assertion follows if the assumptions of Norman's theorem are sa-
tis¯ed. The conditions which Norman labels (H1)-(H6) are merely technical
conditions which are easily veri¯ed.

Condition (H7) requires in our context the following: Consider any period
n. Let ~s(n) and ~s0(n) be two possible states of the two players at the beginning
of period n. Consider also some ¯xed strategy pair (j; k). Denote by ~s(n+ 1)
the state that is reached if the initial state was ~s(n) and (j; k) was played
in period n, and let ~s0(n + 1) be the state that is reached if the initial state
was ~s0(n) and (j; k) was played in period n.21 Then d(~s(n+ 1); ~s0(n + 1)) ·
d(~s(n); ~s0(n)), where d denotes Euclidean distance. In words the requirement
is hence that, with probability 1, the updating process acts as a contraction.
A straightforward calculation shows that this requirement is satis¯ed in our
model.

Note that the inequality in the above requirement is weak. Norman's as-
sumption (H8) requires that in certain cases the inequality is strict. However,
in our model, the inequality is always strict, so that also (H8) is satis¯ed.

Norman's assumption (H9) is not required for the result that we are app-
lying here. Assumption (H10) can be phrased as follows: For any initial state
s, the closure of the set of states that can be reached from s with positive
probability within ¯nite time, contains at least one of the absorbing states. To
see that this is true, notice that for any initial state s and for every player i
there is a strategy of i such that the probability that this strategy is played
m times is positive for all m 2 IN . Playing the same strategy any ¯nite num-
ber of times will, however, generate a sequence of states that converges to an
absorbing state.

Q.E.D.

We now compare the asymptotic behavior described in Proposition 5 to
the asymptotic behavior of replicator dynamics. It is well known that there
are many games in which replicator dynamics does not converge to a pure
strategy outcome (see Section 17 of [19]). Thus, the asymptotics of the learning

20One can also prove that, for any completely mixed starting point, every element of J£K
has a positive probability of being the limit of f(P µ(n);Qµ(n))gn2IN . This can be shown
using the methods of Section 7.2 of [9]. We are grateful to Nick Rau for this observation.

21Of course, the probability with which (j; k) is played will depend on the state at the
beginning of period n. However, this does not matter for the following argument.
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process may be very di®erent from the asymptotics of replicator dynamics.
Mathematically speaking, the learning process converges pointwise, but not
uniformly on the complete real line, to continuous time replicator dynamics.

We give an example that illustrates this point, and that also shows that
the asymptotics of discrete time replicator dynamics may be di®erent both
from the asymptotics of continuous time replicator dynamics, and from the
asymptotics of discrete time learning. The example is a version of \Matching
Pennies." 22

L R
T 0.2,0.8 0.8,0.2
B 0.8,0.2 0.2,0.8

Example 1

Denote by ~p1 (resp. ~q1) the probability with which player R (resp. player
C) chooses \T" (resp. \L"). It is well-known that in this game the continuous
time replicator process cycles along the level curves of ~p1(1¡ ~p1)~q1(1¡ ~q1). The
phase diagram of the process is described by the unbroken lines in Figure 1.

By Proposition 5 the learning process will converge with probability one
to one of the corners of the unit square. The phase diagram in Figure 1 thus
illustrates the di®erence between the asymptotic properties of the learning
process and of continuous time replicator dynamics.

For the discrete time replicator process Proposition 1 implies that, at any
point in the phase diagram, the direction of movement of the process in dis-
crete time is the same as the direction of movement in continuous time. Thus,
every step of the discrete time process goes into a direction that is tangential
to the trajectory of the continuous time process. This is illustrated by arrows
in Figure 1. The arrows show that at each step of the discrete time replicator
process the value of ~p1(1 ¡ ~p1)~q1(1 ¡ ~q1) decreases, provided that we don't
start in the equilibrium point (0:5;0:5). It can also be shown that the dis-
crete time replicator process in this game will not converge, unless it starts in
(0:5; 0:5).23 We can conclude that any trajectory of the discrete time process
which does not start in (0:5; 0:5) will asymptotically approach the boundaries
of the unit square without converging to any point on this boundary. Thus,
in this example, the discrete time replicator process behaves asymptotically

22The payo®s in this example can be interpreted as either the values ®U i
jk of Section 2,

or as the values ~U i
jk of Section 3.

23We don't give a formal proof. But, intuitively, it is straightforward to see that there
cannot be any limit point in which any of the two probabilities is interior. This leaves the
corners of the unit square as possible limit points. But in a neighbourhood of a corner, the
movement of the replicator process is always away from the corner point.
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quite differently from the continuous time replicator process. This example
also shows how the learning process and the biological process may have clif-
ferent asymptotic. Note that Example 1 is robust under perturbations of
payoffs. This can be seen from the discussion of examples of this type in
Section 17 of Hofbauer and Sigmund [19].

That discrete and continuous time replicator dynamics may have different
asympt otics has been noted by a number of authors (most of whom use a
slightly different version of discrete time replicator dynamics): [12], [15], [29]
or [36]. The idea to illustrate this possibility geometrically as in Figure 1
appears first in [1]. The possibility that a discrete time, stochastic version of
the replicator process is absorbed in a ranclomly selected corner of state space
while the continuous time replicator process cycles along closed curves appears
first in Section 2 of [6]where an example similar to our Example 1 is presented.
Boylan’s discrete time process differs from ours in that it describes stochastic
evolution in a finite population rather than learning.24

24The possibility of differing asymptotic of stochastic discrete time models and related

deterministic continuous time models is also one of the issues addressed in [7].



6 Negative Payo®s

So far, our analysis has relied on the assumption that all payo®s are positive.
We now extend the analysis to the case that some payo®s are negative. As
before we maintain the assumption that the absolute value of payo®s is greater
than zero and less than one. If player R, say, chooses a strategy j and receives
a payo® ~URjk > 0, then she updates her strategy as before. If she receives a
payo® ~URjk < 0, then she takes probability away from strategy j and shifts it
to other strategies.

For reasons which will become clear below, we shall discuss two di®erent
speci¯cations of how, in the case of negative payo®s, probability which is ta-
ken away from one strategy is re-allocated to the other strategies. The ¯rst
speci¯cation is that the probability is re-distributed among the remaining stra-
tegies in proportion to their old probabilities. We shall call this speci¯cation
\proportional updating." Formally, this is de¯ned by:25

Pj(n+ 1) = (1¡ j ~URjk j) Pj(n)

Pj0(n+ 1) = Pj0(n)+ j ~URjk j Pj(n)
Pj0 (n)
1¡Pj (n)

for j0 6= j

Player C updates Q(n) in an analogous manner.

Observe that, although the formula which de¯nes proportional updating
looks di®erent from the formula which applies in the positive payo® case, pro-
portional updating is actually exactly symmetric to the updating behaviour
with positive payo®s. If payo®s are positive, probability is added to the stra-
tegy just played, and it is taken away from all others in proportion to their
current probabilities. If payo®s are negative, probability is taken away from
the strategy just played, and is added to the other strategies in proportion to
their current probabilities. Moreover, the amount of probability added resp.
taken away depends in both cases in exactly the same way on the absolute
value of the payo®.

Besides \proportional updating" we shall also consider \random updating."
Random updating di®ers from all updating rules considered so far in that
P(n + 1) is a random variable even if one conditions on P(n), the strategy
j and the payo® URjk. With random updating the probability which player R
takes away from strategy j is assigned to a single alternative strategy j0. This
strategy j0 is randomly selected, whereby each strategy j0 has a probability
of being selected which is proportional to the probability with which it is
currently played. Formally, random updating is de¯ned by the assumption
that for every strategy j0 6= j there is a probability Pj0(n)=(1¡Pj(n)) that the
new state of player R is:

25We use the notation of Section 3.
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Pj(n+ 1) = (1¡ j ~URjk j) Pj(n)

Pj0(n+ 1) = Pj0(n)+ j ~URjk j Pj(n) for j0 6= j

Pk(n+ 1) = Pk(n) for k 6= j; j0

Player C updates Q(n) in an analogous manner.

Notice that proportional updating and random updating di®er only if a
player has more than two strategies. Notice also that, even if a player has more
than two strategies, the expected change in this player's strategy, conditional
on any state ~s(n), is the same under the two updating rules. Therefore, the
two updating rules give rise to the same continuous time limit.

Because proportional updating is symmetric to the case of positive payo®s,
it might appear to be the speci¯cation which we should prefer. We have intro-
duced random updating nevertheless because it facilitates our interpretation
of the continuous time di®erential equation below.

To characterise the continuous time limit of the two models, one can no
longer apply the theorem of Norman quoted in Section 3, because the func-
tions v, w and r referred to in that theorem need no longer have the regularity
properties required for the theorem. If a player has at least three pure stra-
tegies, then these functions may have discontinuities in those states in which
this player plays a pure strategy. The discontinuities result from the assump-
tion that probability which is taken away from one strategy is redistributed
among the remaining strategies 26 in proportion to their current probability. If
all other strategies currently have very small probabilities, then even a small
change in current probabilities may lead to a large change in the expected
updated probabilities.

Fortunately, the discontinuities occur only on the boundary of the state
space. The functions v, w and r are well-behaved on any compact subset of
the interior of the state space. Moreover, if the learning process starts in the
interior of the state space, if only a ¯nite time interval is considered, and if the
process is close to the continuous time limit, then the process will stay with
high probability within a compact subset of the interior of the state space. We
believe that we can show that this is su±cient for the continuous time limit
to have the properties asserted by Norman. We omit the formal proof of this,
though, since it would make this paper much longer, and would change the
emphasis of the paper.

The di®erential equation which we obtain in the continuous time limit
is related to, but not identical to the replicator equation. Without loss of

26Deterministically or stochastically.
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generality we state it only for the probability of some strategy j of playerR. We
¯rst need additional terminology and notation. This terminology and notation
will refer to the model with random rather than proportional updating.

We shall say that strategy j receives a \bene¯t" if an event occurs which
leads to an increase in j's probability. In the random updating model strategy
j receives a bene¯t if either j is played and a positive payo® is received, or
if some other strategy is played, a negative payo® is received, and strategy j
is selected as the strategy to which probability is re-allocated. If strategy j
receives a bene¯t, we shall also say that it is \successful". Also, we shall call
the absolute value of the payo® received in this event the \size of the bene¯t
for strategy j."

De¯ne j ~UR j to be the matrix of absolute values of player R's payo®s.
Hence this matrix represents the size of all potential \bene¯ts." De¯ne for
every j 2 J the matrix ~UR¤j to be the matrix which is obtained from ~UR if in
row j all negative entries are replaced by zeros whereas all positive entries are
left unchanged, and in rows j0 6= j all positive entries are replaced by zeros
whereas all negative entries are replaced by their absolute values. ~UR¤j thus
describes the size of potential bene¯ts for strategy j.

Next, we introduce some notation which refers to the case that the players
are in some particular state ~s. For simplicity, we suppress in the notation the
dependence on ~s. We write ~p¤j for the J-dimensional vector the j-th entry
of which is ~pj and, for j0 6= j, the j0-th entry of which is ~pj0(~pj=(1 ¡ ~pj0)).
Roughly speaking, this vector indicates the probability with which playing
any particular strategy in J leads to a bene¯t for strategy j, provided that a
positive (if j is played) resp. a negative (if j0 6= j is played) payo® is received.

We de¯ne moreover ~q¤j to be the J-dimensional vector the j0-th entry of
which is the probability with which player C plays a strategy which leads
to a non-zero entry in the j0-th row of matrix UR¤j , if such an entry exists,
and which has zeros elsewhere. The total probability with which strategy j is
successful is hence ¾¤j , the vector product of ~p¤j and ~q¤j . Conditional on this
event occurring, the expected size of the bene¯t is ¹UR¤j ´ (~p¤j ~UR

¤

j ~q)=¾¤j .

With this notation, the continuous time limit of the learning process is
given by:

d~pj
dt
= ~pj( ¹UR

¤

j ¡ ~p j ~UR j ~q) + ¹UR
¤

j (¾
¤
j ¡ ~pj)

The proof is a simple calculation which we omit.

On the right hand side of the above di®erential equation, the ¯rst term is
analogous to the right hand side of the replicator equation. However, notice
that this term now refers to \bene¯ts" rather than \payo®s." Clearly, when
negative payo®s are allowed, it is \bene¯ts" not \payo®s" which matter.

21



The sign of the second term is the same as the sign of (¾¤j ¡ ~pj). Hence
it is positive if the probability of strategy j being successful is bigger than
the probability of strategy j being played, and it is negative otherwise. If
this term alone were active, strategy j would hence be played with exactly
the same probability with which it is successful. In more special contexts27
behaviour that equates the probability with which a strategy is played and the
probability with which it is successful has been called \probability matching"
by psychologists (see, for example, [32], and the references quoted there). The-
refore, we say that the second term in our di®erential equation represents the
\probability matching force."

\Probability matching" is in most cases irrational behavior. Expected
payo® maximisation usually requires one strategy to be chosen with proba-
bility 1, even if that strategy's probability of success is not equal to 1. Thus,
in the case that payo®s may be negative we ¯nd that players' behavior is partly
irrational.

Notice that, if we multiply out the products on the right hand side of the
above equation, the ¯rst term cancels against the fourth term. Nevertheless
it is more natural to write the equation in the above form, because this form
reveals more clearly the two forces present in the dynamic process.

We emphasised earlier that the de¯nitions of the variables entering the
above di®erential equation are derived from the random updating model, not
from the proportional updating model. The main reason why this matters is
that only in the random updating model the probabilities ¾¤j add up to one.
In the proportional updating model several strategies may be \successful" at
the same time, and hence the sum of the success probabilities may be larger
than one. It then no longer makes intuitive sense to say that agents are trying
to match choice and success probabilities.

To obtain further insight into the above equation, we shall now describe
two extreme cases. The ¯rst case will be such that the probability matching
term in our di®erential equation vanishes and only the replicator term remains.
In the second case the reverse will be true.

The ¯rst case is simply the case which we considered in the previous sec-
tions, i.e. the case in which all payo®s are positive. In that case a strategy
is successful if and only if it is played. Therefore the two probabilities ¾¤j
and ~pj are identical. Thus the probability matching term vanishes, and only
the replicator term remains. Moreover, the distinction between \bene¯ts" and
\payo®s" becomes void. Hence the replicator term in the above equation is
just the same as the conventional replicator term.

The second case is the case in which all payo®s are of equal absolute value,
but some are positive and some are negative. In this case the expected bene¯t,

27See Example 2 below.
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conditional on some strategy j being successful, and the expected bene¯t of
all strategies, are identical and equal to the absolute value of payo®s. There-
fore the replicator term vanishes. Behaviour in the continuous time limit is
hence determined by the probability matching term only. Psychologists, when
investigating probability matching, have typically referred to situations of this
type. A typical example is Example 2.

¹ 1-¹
T 0.5 -0.5
B -0.5 0.5

Example 2

Example 2 is a one agent decision problem rather than a game. Player R
chooses between T and B. The columns in the middle and on the right denote
states of nature which occur with probabilities ¹ and 1¡¹ respectively. If the
¯rst state occurs, strategy T is successful. Otherwise, B is successful. 28

Denote by ~p1 the probability with which player R chooses T . The conti-
nuous time equation for ~p1 specializes to:

d~p1
dt
= 0:5(¹¡ ~p1)

Obviously, for all initial values, the solution of this equation will converge
for t ! 1 to ¹. The model thus predicts in the long run pure probability
matching by player R.

Next, we give an example of a 2-player game which is of the same type as
Example 2 in that only the probability matching term, but not the replicator
term matter. The example is a version of \Matching Pennies". We give this
example because it is interesting to compare it with our earlier version of
\Matching Pennies", Example 1. By comparison to Example 1, the following
game is a more conventional version of matching pennies.

28Formally the example ¯ts into our 2 player framework if one supposes that player C
chooses the \state of nature", also that C chooses among these states with initial probabili-
ties identical to those of \nature" in the decision problem, and that all payo®s of player C
equal zero. Player C will then stick forever to her initial choice probabilities. Player C thus
acts as \nature."
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T -0.5,0.5 0.5,-0.5
I B I 0.5,-0.5 I -0.5,0.5 I

Example 3

If we denote by fil the probability with which player R chooses T, and by
~1 the probability with which player C chooses L, then the continuous time
equations are:

dj51
—–o.5(1–&pJ
dt –

Since allpayoffs are of equal absolute value, these equations contain only pro-
bability matching expressions. Figure 2 shows the phase diagram for these two
equations. Unlike in the case of replicator dynamics in Figure 1, there are now
no cycles and the mixed strategy Nash equilibrium is globally asymptotically
stable.
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We should emphasise that it is accidental that the limit point of the process
in Figure 2 is a Nash equilibrium. In general, probability matching is irratio-
nal, and therefore the limit points of our learning process will not be Nash
equilibria. In Example 3 it happens that in the Nash equilibrium probability
matching and expected payo® maximisation coincide.

We ¯nally give an example in which there are three strategies. We give this
example in order to illustrate the role of \random updating" in our theory. The
example is, like Example 2, a one player decision problem under risk, not a
game.

¹ 1-¹
T 0.5 -0.25
C 0.5 0.25
B -0.5 0.25

Example 4

We shall denote by ~p1; ~p2 and ~p3 the probabilities of the strategies T , C
and B respectively. The continuous time di®erential equation of ~p1 is:

d~p1
dt

= ~p1(0:5¡ (¹ ¢ 0:5 + (1¡ ¹) ¢ 0:25))

+ 0:5((~p1 + ~p3
~p1

~p1 + ~p2
)¹¡ ~p1)

We shall explain how to construct the second term, i.e. the probability
matching term, in this equation. We need to compute the probability with
which strategy T is successful. There are two events in which strategy T
is successful. First, T may be played and receive a positive payo®. The
probability of this event is ~p1¹. Alternatively, B may be played, receive a
negative payo®, and T may be chosen to receive the re-assigned probability.
The probability of this event is ~p3(~p1=(~p1+~p2))¹. We hence obtain as the total
probability with which T is successful: (~p1+ ~p3(~p1=(~p1+ ~p2)))¹. The expected
bene¯t of the top strategy, conditional on this event, is 0.5. This explains the
probability matching term in the above equation.
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7 Issues for Further Research

We conclude the paper by listing some issues for further research. In the pre-
vious section we derived a system of di®erential equations which characterises
the continuous time limit of the learning process in the general case, but we
did not investigate general properties of this system of equations. One issue
for further research is hence a general study of these di®erential equations.

In Section 5 we emphasised that our results apply only to ¯nite points in
time, and not to the asymptotics for time tending to in¯nity. The discrete
time asymptotics of the learning process are of particular interest to us, and
we hope to deal with these in the future.

In this paper it was exogenous whether an experience is reinforcing or de-
terring. It seems more plausible that this is endogenous. Speci¯cally, suppose
that agents compare their experiences to an aspiration level, and that an expe-
rience is reinforcing or deterring depending on whether the payo® received is
above or below the aspiration level. In this paper, we have implicitly assumed
that the aspiration level is ¯xed over time and equal to zero. It seems more
plausible to assume that the aspiration level adjusts over time in response to
agents' experiences.

We investigate a model which includes this assumption in [5]. In that mo-
del, agents are \realistic" and adjust in each iteration their aspiration level
towards the actually experienced payo®. In the continuous time limit this
implies that the aspiration level moves towards the actual expected payo®.
The adjustment of strategies is as in this paper, and hence, in the continuous
time limit, strategy adjustment is governed by a replicator and a probabi-
lity matching force. The endogeneity of the aspiration level then makes it in
most cases unavoidable that there is an element of probability matching in
the continuous time limit. Speci¯cally, suppose that for every strategy there
is some positive variance of payo®s. Once the endogenous aspiration level is
su±ciently close to the expected payo®, the actual payo® will sometimes be
below the aspiration level. Hence, \negative" payo®s become unavoidable, and
probability matching will a®ect behavior. The endogenous adjustment of the
aspiration level thus creates an element of irrationality. We describe the details
of this e®ect in [5].

A ¯nal and important issue for further research is the extent to which the
results in this paper depend on the particular functional forms of strategy
adjustment which was postulated.
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