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This article considers a simple model of reinforcement learning. All behavior
change derives from the reinforcing or deterring effect of instantaneous pay-
off experiences. Payoff experiences are reinforcing or deterring depending on
whether the payoff exceeds an aspiration level or falls short of it. Over time, the
aspiration level is adjusted toward the actually experienced payoffs. This arti-
cle shows that aspiration level adjustments may improve the decision maker’s
long-run performance by preventing him or her from feeling dissatisfied with
even the best available strategies. However, such movements also lead to per-
sistent deviations from expected payoff maximization by creating “probability
matching” effects.

1. introduction

A simple and intuitively plausible principle for learning behavior in decision prob-
lems and games is as follows: Actions that yield payoffs above the decision maker’s
aspiration level are more likely to be chosen in the future, and actions that yield a
payoff below the decision maker’s aspiration level are less likely to be chosen in the
future. Models of learning that directly formalize this idea, and which do not refer to
any explicit optimization by the agent, will be referred to in the following as models
of reinforcement learning. We distinguish such models from belief-based learning mod-
els such as fictitious play. These latter models attribute explicit subjective beliefs and
the ability to maximize given these beliefs.

Economists recently have given some attention to reinforcement learning. One
reason is that certain specifications of reinforcement learning models seem to hold
promise in explaining experimental data. Examples of articles that come to this con-
clusion are those by Roth and Erev (1995), Mookherjee and Sopher (1997), and Erev
and Roth (1998). In fact, some articles come to the conclusion that reinforcement
learning models explain experimental data better than belief-based learning models,
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namely, those by Camerer and Ho (1997), Chen and Tang (1998), and Mookherjee
and Sopher (1994, 1997). Another reason for the recent interest in reinforcement
learning among economists is that there is a close analogy between reinforcement
learning and dynamic processes studied in evolutionary game theory (see Börgers
and Sarin, 1997).

There is a long tradition of research on reinforcement learning in psychology. Early
mathematical models of reinforcement learning in psychology are those of Bush and
Mosteller (1951, 1955) and Estes (1950). Reinforcement theory continues to be one of
the major approaches that psychologists use when studying learning. The prominence
of reinforcement theories in current psychology of learning is evident from textbooks
such as those of Lieberman (1993) and Walker (1995).

Previous analytical work on reinforcement learning models has focused on the
case where the decision maker’s aspiration level is exogenously given and fixed. One
case that has received some attention is that the exogenously fixed aspiration level
is below all conceivable payoff levels; see, for example, Arthur (1993), Börgers and
Sarin (1997), and Cross (1973). A smaller branch of the literature has considered the
case that there are only two possible payoffs values and that the aspiration level is
exactly in the middle between these two values (see Bush and Mosteller, 1951, 1955;
Schmalensee, 1975).

Experimental work and intuition suggest, however, that the aspiration level of an
agent is endogenous and changes over time. For example, the article by Bereby-
Meyer and Erev (1998) shows that reinforcement learning models with endogenous
aspiration levels explain data better than models of learning with exogenous aspira-
tion levels. How good a certain payoff “feels” depends on the past payoff experience
of the agent. This article offers some first analytical results about the properties of
reinforcement learning models when the aspiration level is endogenous. In addition,
our model contains as a special case the case that the aspiration level is exogenous
and fixed, and our article provides more general results for this case than have been
available so far.

Our analysis is set in the context of a single-person decision problem under risk.
Moreover, we shall postulate that the decision maker has only two choices. We make
these assumptions for analytical simplicity. We shall argue in the last section of this
article, however, that some of our results can be straightforwardly extended to the
more general case in which the decision maker has more than two choices and in
which he or she is involved in a game rather than a single-person decision problem.

We shall assume that the decision maker faces the same choice problem repeat-
edly. At any point in time, his or her behavior is given by a probability distribution
over his or her two actions. The distribution should not be interpreted as conscious
randomization. Rather, it indicates from the perspective of the outside observer how
likely it the decision maker is to choose each of these actions. The decision maker
also has an aspiration level. The decision maker chooses in each period some action,
receives a payoff, and then compares the payoff to the aspiration level. If the pay-
off was above the aspiration level, then the decision maker enters the next period
with a probability distribution that makes it more likely that he or she will choose
the same action again. The increase in the probability of this action is proportional
to the difference between the payoff and the aspiration level. The reverse occurs if
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the payoff falls short of the aspiration level. The aspiration level itself is adjusted in
the direction of the payoff realization.

To investigate our learning model, we introduce a continuous time approximation
of the learning process. This is a technical device aimed at simplifying our work. The
continuous time approximation is valid if, in each time interval, the decision maker
plays very frequently and, after each iteration, responds to his or her experience
with only very small adjustments to his or her choice probabilities. Whereas in dis-
crete time the learning process is stochastic, in the continuous time limit it becomes
deterministic, and the trajectories are characterized by simple differential equations.

We investigate these differential equations in detail in this article. We show that the
equations reflect two forces that together determine the decision maker’s behavior.
First, there is a force that is similar to the force modeled by the replicator dynamics
in evolutionary game theory. Roughly speaking, this force steers the process into the
direction of expected payoff maximization.

A second force, however, draws the decision maker into the direction of probability-
matching behavior. We briefly explain this term. Suppose the decision maker has to
choose repeatedly one of two strategies s1 and s2. With probability µ, strategy s1
yields one dollar, and strategy s2 yields nothing. With probability 1 − µ, strategy s2
yields one dollar, and strategy s1 yields nothing. One says that the decision maker’s
behavior exhibits probability matching if the long-run frequency with which strategy s1
is chosen is µ and the long-run frequency of strategy s2 is 1−µ. Probability matching
is irrational, provided that µ �= 0�5, because rational behavior would require that one
of the two actions is chosen with probability 1.

There is some empirical evidence of probability matching (see Siegel, 1960–1961;
Winter, 1982). The phenomenon seems to arise more clearly if payoffs are small.
The intuition why the reinforcement learning model predicts probability matching is
that the decision maker in this model responds myopically to instantaneous payoff
experiences. Since the optimal choice sometimes yields payoffs below the aspiration
level, the decision maker is thrown back and forth between different choices.

Probability matching should be distinguished carefully from the matching law pro-
posed by Herrnstein (Herrnstein, 1997; Herrnstein and Prelec, 1991). Herrnstein con-
siders more complicated decision problems than we do. He assumes that the payoff
distribution derived from a choice depends on the frequency with which this choice
is made in some given finite time interval. Herrnstein’s matching law asserts that
choices are made such that the empirical average payoff for all choices is the same.
Note that this will not be true for agents who probability match.

Because our learning model allows for more than two payoff levels, we introduce
a generalized definition of probability matching. We then show that the replicator
force and the probability-matching force together are the only forces that affect the
decision maker’s behavior. The replicator force is the only active force if all payoffs
are above the aspiration level. If some payoffs are below the aspiration level, then
the probability-matching force will be at work as well. The probability matching force
is the only force present in the model if all payoffs deviate by the same amount from
the aspiration level, but some are above and some below this level. Endogenous
movements of the aspiration level affect the relative weight of the replicator force
and the probability-matching force.
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We next ask whether endogenous aspiration level movements are beneficial or
harmful for the long-run performance of the decision maker. The answer depends
on characteristics of the decision problem as well as the decision maker’s initial aspi-
ration level. If the decision maker’s initial aspiration level is low, then, in most cases,
endogenous aspiration level adjustments will be harmful for the decision maker. He
or she would do better if he or she maintained a low aspiration level. The reason is
that with a low aspiration level, the learning process acts like replicator dynamics and
hence optimizes in the long run. Endogenous aspiration level movements will tend to
raise the aspiration level and therefore will bring the probability-matching effect into
play. This effect will prevent the decision maker from learning to play the optimal
strategy.

If the decision maker’s initial aspiration level is relatively high, then the issue is
more complex. If the aspiration level is kept fixed, the probability-matching effect
will prevent the decision maker from long-run optimization. Endogenous move-
ments of aspiration level may help to alleviate this problem by making the decision
maker more realistic. However, we shall show in this article that it is also possible
that the endogenous aspiration level movements do additional harm to the decision
maker.

An interesting implication of our results is that in the framework of this article, the
only learning behavior that guarantees that the decision maker finds in the long run
the expected payoff-maximizing strategy is learning behavior that starts with a very
low initial aspiration level and which keeps this aspiration level constant over time. If
the decision maker follows this rule, then his or her behavior will be determined by
the replicator effect alone and hence will be optimal in the long run. Another way of
putting this is that a reinforcement learner will find the optimal strategy if and only
if he or she imitates the process of biologic evolution.

This article is organized as follows: Section 2 describes the decision problem that
the decision maker faces and introduces the class of learning processes that we con-
sider. Section 3 constructs differential equations that characterize the continuous
time limit of the learning processes. We also explain how these differential equations
reflect the two forces of replicator dynamics and probability matching. In Section 4 we
present analytical and numerical results concerning the impact of endogenous aspira-
tion level movements. Section 5 discusses related literature, and Section 6 considers
some possible extensions of our research. Most of the proofs are in the Appendix.

2. the model

We consider a decision maker who has a choice between two strategies only: s1 and
s2. We assume that the decision maker faces some risk. For simplicity, we postulate
that the set of possible states of the world is finite. Each state has an objective prob-
ability of occurring. Payoffs depend on the strategy chosen and on the state of the
world. We normalize payoffs to be between zero and one. We exclude the uninter-
esting case that the expected payoff of both strategies is the same. It is then without
loss of generality to assume that s1 has strictly higher expected payoff than s2. This
leads to the following definition.
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Definition 1. A decision problem � is a four-tuple �S��� µ�π� where

• S ≡ �s1� s2	 is the set of strategies.
• � is a nonempty, finite set of states of the world.
• µ is a probability measure on � such that µ�e� > 0 for all e ∈ �.
• π � S × � → �0� 1� is the decision maker’s payoff function. It satisfies∑

e∈� µ�e�π�s1� e� >
∑

e∈� µ�e�π�s2� e�.

The decision maker faces the same decision problem repeatedly. We denote the
repetitions of the decision problem by n, where n takes values in � ∪ �0	. In each
round, the decision maker first chooses a strategy, and then the state of the world
is realized. For different n, the states of the world are independently and identically
(according to µ) distributed. We assume that in each iteration the decision maker
observes only his or her payoff. He or she does not observe the state of the world.

We shall take the decision maker’s choice at each iteration to be random. The
interpretation of this assumption was discussed in the Introduction. The probability
distribution over S at iteration n is denoted by pn. The set of all such probability
distributions, i.e., the one-dimensional simplex, will be denoted by �. By pn�s� we
denote the probability with which strategy s is chosen at iteration n. At each iteration
n, the decision maker also will have an aspiration level an ∈ �0� 1�. Roughly speaking,
an indicates which payoff level the decision maker finds satisfactory at iteration n. The
precise role of the aspiration level will become clear once we specify the learning rule.

We take p0 and a0 as exogenous. Our only assumption for p0 and a0 is that p0�s� �=
0 for both s ∈ S. We make this assumption to exclude the trivial case that a strategy
is never played just because it does not have positive probability initially.

We specify the learning rule by describing how pn and an change from one iteration
to the next. Consider some fixed n, and suppose that the current state of the decision
maker is �pn� an�. Assume also that in iteration n the decision maker chose strategy
s, that the state of the world was e, and that the decision maker hence received the
payoff π�s� e�.

If π�s� e� ≥ an, we assume that the decision maker takes this as encouragement
to play s again. Hence, in iteration n+ 1, s will have a higher probability. The other
strategy’s probability decreases correspondingly. The size of the increase in the prob-
ability of s is proportional to the size of the difference π�s� e� − an. Formally, we
assume that the new probability vector pn+1 is a convex combination of the old prob-
ability vector pn and the unit vector that places all probability on s. The weight
assigned to the unit vector is equal to π�s� e� − an.2

In addition to the probability vector pn, the aspiration level an also is adjusted.
We assume that the decision maker is “realistic” and adjusts an into the direction of
π�s� e�. Formally, an+1 is a convex combination of the old aspiration level an and the
payoff π�s� e� whereby the weight attached to π�s� e� is a fixed parameter β ∈ �0� 1�
that measures the speed of adjustment of the aspiration level.3

2 Notice that we can take this expression to be a weight because we assumed earlier that payoffs
and aspiration level are between zero and one.

3 Note that we allow β to be zero so that our model includes the case of a fixed exogenous
aspiration level as a special case.
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Formally, if we define α ≡ π�s� e� − an, then the learning rule in the case π�s� e� ≥
an is

pn+1�s� = �1− α�pn�s� + α

pn+1�s̃� = �1− α�pn�s̃� for s̃ �= s(1)

an+1 = �1− β�an + βπ�s� e�

If π�s� e� ≤ an, we assume that the decision maker takes this as discouragement to
play s. He or she shifts probability away from s. The probability of the other strategy
is accordingly increased. The size of the decrease in the probability assigned to s is
proportional to the size of the difference an −π�s� e�. The aspiration level is adjusted
as before.

Formally, if we now define α ≡� π�s� e� − an �, then the learning rule in the case
π�s� e� ≤ an is

pn+1�s� = �1− α�pn�s�

pn+1�s̃� = �1− α�pn�s̃� + α for s̃ �= s(2)

an+1 = �1− β�an + βπ�s� e�

This completes the definition of the learning rule. For a given decision problem,
there are three free parameters of the learning rule: the initial values p0 and a0

and the parameter β. Since we are interested in the formation of aspiration levels,
and since this is determined by the parameters a0 and β, we define the following
shorthand terminology:

Definition 2. An aspiration formation rule � is a pair �a0� β� ∈ �0� 1� × �0� 1�.

For given parameters p0, a0, and β, the learning rule implies that �pn� an�
�n ∈ IN ∪ �0	) is a discrete time Markov process with state space � × �0� 1�. To
proceed, we shall construct a continuous time approximation of this process.

3. the continuous time limit

3.1. Construction of the Continuous Time Limit. We shall first define the contin-
uous time model, and then we shall explain the sense in which it approximates the
discrete time model. We denote time by t ∈ IR+. At each point in time t the decision
maker is described by a probability distribution over his or her strategies, pt ∈ �,
and by an aspiration level, at ∈ �0� 1�. These variables will be differentiable functions
of time t. The derivative of each variable with respect to t is equal to the expected
movement of the stochastic learning process of the preceding section.

Formally, denote by E�· · · � · · ·� the expected value of the random variable indi-
cated before the vertical line conditional on the event indicated after the vertical line.
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Then we assume for both strategies s ∈ S

dpt�s�
dt

= E
[
pn+1�s� − pn�s� � pn = pt and an = at

]
(3)

and for the aspiration level at

dat
dt

= E
(
an+1 − an � pn = pt and an = at

)
(4)

The first of these equations says that the derivative of pt�s� with respect to time
is equal to the expected change in pn�s� that would occur in the discrete time model
of Section 2 if pn were equal to pt and an were equal to at . The second equation
contains an analogous statement for at . Here, expected values are taken before a
(pure) strategy is actually chosen and a state of the world is realized.

We give explicit formulas for the expected values in the preceding equations in the
next subsection. In the remainder of this subsection we discuss the relation between
the preceding equations and the learning process. We only give an informal descrip-
tion. A precise result is stated in the context of a related model in our earlier article
(Proposition 1 in Börgers and Sarin, 1997). The result given there is, in turn, based
on a result due to Norman (Theorem 1.1 of Chapter 8 of Norman, 1972).

Suppose that in each time interval �τ� τ+ 1� ⊂ IR+ there are N independent trials,
i.e., N opportunities to take a decision and to experience the payoff resulting from
this decision. The amount of “real” time that passes between two trials is 1/N . Sup-
pose that after each trial the decision maker changes his or her strategy and his or
her aspiration level by 1/N of the amount assumed in Equations (1) and (2). Now
let N tend to infinity, keeping the initial values p0 and a0 fixed, and ask where the
process is at a particular time t ∈ IR+.4 As N tends to infinity, the variance of strat-
egy and aspiration level5 at time t tends to zero, and the expected value tends to the
solution of differential Equations (3) and (4), evaluated at time t. Thus, by solving
the differential equations, we obtain for any finite t a good prediction of the state
variables of our learning process in the case that N is very large.

Notice that in the preceding paragraph we did not refer to the asymptotic behavior
for t → ∞. As we explain in Börgers and Sarin (1997), the asymptotic behavior of
the learning process in discrete time may be different from the asymptotic behavior
of the solution of (3) and (4). In other words, if one takes first the limit for t → ∞
and then the limit for N → ∞, one may obtain results that are different from those
which one obtains if one takes first the limit N → ∞ and then the limit t → ∞.
In this article we focus on the second order of limits. The differential equations we
study are frequently used to study the long-term behavior (e.g., Benveniste et al.,
1990; Binmore et al., 1995) of the associated stochastic dynamic model.

4 More precisely, consider the state of the process after n ∈ IN iterations, whereby n depends on
N and as N tends to infinity we have n/N → t.

5 Both are, of course, for any finite N , random variables.



928 BÖRGERS AND SARIN

3.2. Interpreting the Differential Equation. We shall now calculate the expected
values on the right-hand sides of differential equations (3) and (4). We shall write
the formulas in a way that leads to a simple and interesting interpretation. Recall
that the expected values relate to what would happen in the discrete time model if,
at iteration n, the current value of pn were pt and the current value of an were at .
We need to introduce some new notation that relates to this hypothetical situation.
For simplicity, we shall not reiterate explicitly, neither in the text nor in the notation,
that all probabilities and all expected values to which we refer in this subsection are
meant to be conditional on pn = pt and an = at .

Consider some strategy s ∈ S. There are two events in the discrete time model that
can lead to an increased probability for strategy s in iteration n+ 1. One is that s is
played and that a payoff above the aspiration level is experienced. The other is that
s̃ �= s is played and that a payoff below the aspiration level is experienced. Call the
total probability of these two events together σt�s�. We shall refer to this probability
as the probability of strategy s receiving a benefit.

The extent to which the probability of s is increased in either of these two events
depends, first, on the extent to which the payoff received deviates from the aspiration
level and, second, on the probability with which s is currently played. We wish to
measure the first of these two influences. Define αt ≡� π�s� e� − at �. We denote by
E�αt�s�� the expected value of αt conditional on the event that s receives a benefit,
i.e., conditional on the event the probability of which we denoted earlier by σt�s�.6 We
shall refer to E�αt�s�� also as the expected benefit of strategy s. Finally, we denote by
E�αt� the unconditional7 expected value of αt , and we denote by E�πt� the expected
payoff.

To clarify these definitions, we give an example. Consider the decision problem in
Figure 1. Here, rows correspond to strategies, and columns correspond to states of
the world. At the top of each column we have indicated the probability with which
the corresponding state of the world occurs. In the intersections of rows and columns
we have indicated payoffs.

Suppose that the current probability of strategy s1, pt�s1�, is 1
3 and that the current

aspiration level is at = 0�4. Then the variables defined above have the following
values (where we restrict attention to strategy s1):

σt�s1� =
1
3
· 3
4
+ 2

3
· 1
4
= 5

12

E�αt�s1�� =
1

σt�s1�
·
(
1
3
· 3
4
· 0�4+ 2

3
· 1
4
· 0�1

)
= 7

25

6 To simplify the notation, we do not indicate explicitly in the notation that we are conditioning
on this event.

7 Of course, we still condition on pn = pt and an = at . We write unconditional only to indicate
that we are not conditioning on the event that some particular strategy is successful.
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Figure 1

E�αt� =
1
3
· 3
4
· 0�4+ 1

3
· 1
4
· 0�3+ 2

3
· 3
4
· 0�2 + 2

3
· 1
4
· 0�1 = 29

120

E�πt� =
1
3
· 3
4
· 0�8+ 1

3
· 1
4
· 0�1+ 2

3
· 3
4
· 0�6+ 2

3
· 1
4
· 0�3 = 67

120

Using the notation introduced so far, we can now rewrite the expected values on
the right-hand sides of differential Equations (3) and (4). Since the two probabili-
ties pt�s1� and pt�s2� add up to one, it suffices to write just one equation for the
probabilities. The following equations result from straightforward calculations, and
therefore, we omit their proof.

dpt�s1�
dt

= pt�s1��E�αt�s1�� − E�αt�	 + E�αt�s1���σt�s1� − pt�s1��(5)

and
da�t�
dt

= β�E�πt� − at�(6)

Consider the two summands on the right-hand side of Equation (5). The first term
has the form of the standard replicator equation from evolutionary biology, with
the exception that “payoffs” are replaced by “benefits.” To understand the structure
of this term, suppose for the moment the second term were zero. If pt�s1� �= 0,
we can divide both sides of Equation (5) by pt�s1�, and we find that the relative
change in pt�s1� is equal to the difference between the expected benefit of strategy
s1 and the expected benefit of all strategies. This is what also happens in replicator
dynamics, with the exception that in the replicator dynamics it is “payoffs” rather
than “benefits” that matter. In our learning model it is clear that benefits rather than
payoffs determine a strategy’s success.

Consider now the second term on the right-hand side of Equation (5). Suppose
for the moment the first term were zero. The sign of the second term is the same
as the sign of σt�s1� − pt�s1�. As a consequence, if σt�s1� ≥ pt�s1�, then pt�s1� will
increase, and if σt�s1� ≤ pt�s1�, then pt�s1� will decrease. If this term alone were
active, and if σt�s1� converged for t → ∞, then it would have to be the case that
pt�s1� also converged and that limt→∞ pt�s1� = limt→∞ σt�s1�. Hence, asymptotically,
the decision maker would equate the probability with which s1 is chosen and the
probability with which s1 receives a benefit. If we think of the event that s1 receives a
benefit as the event that s1 is “successful,” then this amounts to probability matching
in the sense explained in the Introduction. We can hence say that the second term
of the preceding differential equation pulls the decision maker into the direction of
probability matching.
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Thus we find that the differential equation for pt�s1� contains exactly two terms,
the first of which reflects a version of replicator dynamics and the second of which
reflects a version of probability matching. There are no other forces active in this
differential equation, and these two forces enter additively.

Consider now the differential equation for at . The sign of the right-hand side is
identical to the sign of E�πt� − at . Hence at moves into the direction of the expected
payoff. This reflects the “realism” in the decision maker’s aspiration level that we
assumed in Section 2.

3.3. Two Extreme Cases. To develop further intuition for differential Equations
(5) and (6), we consider in this subsection two extreme cases. In the first case only
the replicator force will be present, whereas in the second case only the probability-
matching force will be present. In both cases we assume that β = 0, and hence we
abstract from movements in the aspiration level. The aspiration level therefore will
remain for all t at its exogenous initial level, a0.

The first case is that the initial aspiration level is below all feasible payoffs; i.e.,
a0 ≤ π�s� e� for all s ∈ S and e ∈ �. In this case, the decision maker experiences all
outcomes as pleasant and reinforcing. He or she lives in a heavenly world. His or
her behavior nevertheless evolves because outcomes differ in reinforcement strength.
The differential equation for pt�s1� reduces in this case to the standard replicator
equation:

dpt�s1�
dt

= pt�s1��E�π�s1�� − E�πt�	(7)

Here we write E�π�s1�� for the expected payoff of strategy s1.
To see that this equation is correct, notice first that in the case that we are consid-

ering the probability matching effect equals zero. This is so because the only way in
which strategy s1 can receive a benefit is by being played. Hence the probability with
which action s1 receives a benefit, σt�s1�, will equal the probability with which s1 is
played, pt�s1�, for all t. As a consequence, the probability-matching term will always
equal zero.

This leaves the replicator term. In general, the replicator term in our model refers
to “benefits,” whereas the replicator equation conventionally refers to “payoffs.”
However, in the case that we are considering, this distinction does not matter. This
is so because in this case benefits are equal to payoffs received minus the (constant)
aspiration level. Hence differences of benefits, as they appear in the replicator term,
are equal to differences of payoffs. Therefore, learning Equation (5) is exactly the
same as the replicator equation.

It is well known that in the replicator process the weight attached to strategies
that maximize the expected payoff converges to one as time tends to infinity.8 Hence
the first extreme case considered here is one in which the learning process finds the
optimal strategy.9

8 Recall that we have assumed that both strategies have initially positive weight.
9 In this special case of low and fixed aspirations in which all payoffs are positive, our result can

be shown to extend (by the results in Börgers and Sarin, 1997) to the situation in which the agent
has a finite number of strategies.
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Figure 2

In the second case, Equation (5) will reduce to pure probability matching. We
shall hence eliminate the replicator term. For this we assume that there are only two
possible values of payoffs and that these are exactly symmetric on either side of the
aspiration level. In other words, the decision maker experiences either a “success”
or a “failure,” and the “size” of these two experiences is exactly identical. Formally,
this is the requirement that �π�s� e� − a0� = c for all s ∈ S and e ∈ � and for some
constant c > 0. Under this assumption, the expected benefit of each of the two
strategies is equal to c. Therefore, the replicator term of Equation (5) equals zero,
and we are left with the probability-matching term:

dpt�s1�
dt

= c�σt�s1� − pt�s1��(8)

We mentioned already in the preceding subsection that this implies limt→∞ pt�s1� =
limt→∞ σt�s1�, provided that σt�s1� converges for t → ∞. Unfortunately, it is in gen-
eral not immediate that σt�s1� converges, since σt�s1� may depend on pt�s1�. A case
in which convergence of σt�s1� is obvious is the case in which σt�s1� does not depend
on pt�s1�. Figure 2 represents such a case. Here, we assume that µ ∈ �0� 1�, that
0 < y < x < 1, and that a0 = �x+ y�/2. In this case, Equation (8) reduces to

pt�s1�
dt

= c�µ− pt�s1��(9)

and it is clear that pt�s1� → µ for t → ∞. Thus we have a simple case of asymptotic
probability matching.

4. asymptotic optimization

4.1. Necessary and Sufficient Conditions. In this section we investigate whether,
in the long run, the decision maker benefits from having an endogenous aspiration
level. We use the continuous time approximation developed in the preceding section.
We focus on the limit t → ∞.

In the continuous time approximation, if the decision maker’s behavior converges
for t → ∞, it converges to a rest point of differential Equations (3) and (4). We
therefore begin with the following definition:

Definition 3. Consider a given decision problem � and a given aspiration for-
mation rule �. A rest point of differential Equations (3) and (4) is a pair �p∗� a∗� ∈
�× �0� 1� for which the right-hand sides of Equations (3) and (4) equal zero.
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Of course, our concern is not only with the existence of certain rest points but also
with the dynamic stability of these rest points. Therefore, we introduce the following
definition:

Definition 4. Consider a given decision problem � and a given aspiration for-
mation rule �. A rest point �p∗� a∗� of differential Equations (3) and (4) is globally
asymptotically stable if the solution of differential Equations (3) and (4) converges for
t → ∞ to this rest point from all initial points p0 ∈ � that satisfy p0�s� �= 0 for both
s ∈ S.

We can now define optimality of an aspiration formation rule:

Definition 5. An aspiration formation rule � is optimal in the decision problem
� if differential Equations (3) and (4) have a rest point �p∗� a∗� with p∗�s1� = 1 and
this rest point is globally asymptotically stable.

In this subsection we provide necessary and sufficient conditions for an aspira-
tion formation rule to be optimal. In the next subsection we shall supplement the
analytical results of this subsection with some numerical simulations.

As a benchmark case we consider first the case that the aspiration level is exoge-
nous (β = 0).

Proposition 1. For any decision problem � there is an ā ∈ �0� 1� such that an
aspiration formation rule � which satisfies β = 0 is optimal in the decision problem �
if and only if a0 ≤ ā.

In words, this result says that with an exogenous and fixed aspiration level, the
decision maker optimizes asymptotically if and only if the aspiration level is below
some threshold ā. The value of ā may depend on the decision problem at hand.

The formal proof of Proposition 1 is in the Appendix. It is easy to obtain some
intuition for the result. If the exogenous aspiration level a0 is smaller than the payoff
π�s� e� for all s ∈ S and e ∈ �, then the learning process with fixed aspirations is in
the continuous time limit equivalent to replicator dynamics, and it is well known that
replicator dynamics asymptotically optimize in decision problems. On the other hand,
if the exogenous aspiration level a0 is larger than the minimum payoff that is possible
when strategy s1 is played, then the probability-matching effect makes it impossible
that strategy s1 is played with probability 1, since sometimes strategy s1’s payoff will
be below the aspiration level, and hence strategy s2 will have a positive probability of
success. Probability matching will then imply that the decision maker plays strategy
s2 asymptotically with positive probability.

The preceding arguments refer only to extreme values of a0. Proposition 1 deals, in
addition, with intermediate values of a0� and asserts that there is a unique threshold
that separates those aspiration values which induce asymptotically optimal choices
from those that do not. Showing this constitutes the main formal difficulty in the
proof. Readers of the proof will notice that the proof also provides a simple method
for calculating the threshold ā for any given decision problem �.
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We now turn to the case of an endogenous aspiration level, i.e., β > 0. To be able
to state our result for this case, we need some additional terminology:

Definition 6. In a given decision problem �, the strategy s1 is called

• Safe if π�s1� e� = π�s1� ẽ� for all e� ẽ ∈ �.
• Dominant if π�s1� e� ≥ π�s2� e� for all e ∈ �.

Proposition 2. (i) Consider a decision problem � in which s1 is safe and dom-
inant. Then any aspiration formation rule � that satisfies β > 0 is optimal in �.

(ii) Consider a decision problem � in which s1 is not safe or not dominant. Then
no aspiration formation rule � that satisfies β > 0 is optimal in �.

We give the formal proof of Proposition 2 in the Appendix. Here we only discuss
the intuition behind the result. First, it is relatively easy to show that an aspiration
formation rule that lets the aspiration level move endogenously is indeed optimal
if the expected payoff-maximizing strategy is safe and dominant. The more difficult
part of the proof is the proof of the second part of the proposition. Suppose first
that the optimal strategy were not safe. If pt�s1� were to converge for t → ∞ to
1, then the aspiration level would have to converge to the expected payoff achieved
by s1. This is an immediate implication of the differential equation for at . Since s1
is not safe, this would imply that in the long run there would be a positive proba-
bility of s1’s payoff falling below aspiration level and s2 being successful. As in the
context of Proposition 1, probability matching would then induce the decision maker
to choose s2 with positive probability and hence would make asymptotic optimization
impossible.

The case that s1 is safe but not dominant is more difficult. In this case, if s1 is played
with probability of almost one in the discrete time model, all possible changes in the
probability of s1 will either be very small or will occur with very low probability only.
However, the negative effects outweigh the positive effects in order of magnitude, and
hence dp�s1�/ds1 < 0 if pt�s1� is close to one. This is what the formal argument in the
Appendix demonstrates. It is the main formal difficulty in the proof of Proposition 2.

We now summarize our results in a diagram. Consider a given decision problem �
and a given aspiration formation rule �. Call the initial aspiration level a0 high if it
is above the threshold ā of Proposition 1. Otherwise, call it low. Figure 3 indicates in
which cases the aspiration formation rule is optimal. In each box of the figure there is
a cross (×) if an aspiration formation rule with exogenous aspiration level optimizes,
and there is a circle (◦) if an aspiration formation rule with endogenous aspiration
level optimizes.

Figure 3 suggests a simple extension of our results. So far we have asked for a given
decision problem � and a given aspiration formation rule � whether the aspiration
formation rule is optimal in �. In reality, however, learning rules have to deal with a
large set of decision problems, not just with a single-decision problem. It is therefore
natural to ask which aspiration formation rules are optimal for a large set of decision
problems. A simple corollary of Propositions 1 and 2 is
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Figure 3

Corollary 1. An aspiration formation rule � is optimal in all decision problems
� if and only if a0 = 0 and β = 0.

Corollary 1 shows that among the aspiration formation rules that we consider
here, only those are optimal in a variety of decision problems which lead to learning
behavior that imitates, in a sense, evolution. We have referred to related results in
the Introduction.

The proof of Corollary 1 is obvious from Figure 3. If β > 0, the aspiration forma-
tion rule will not be optimal in decision problems in which the strategy s1 is not safe
or not dominant. If β = 0 but a0 > 0, the aspiration formation rule will not be opti-
mal in decision problems in which a0 < π�s� e� for some e ∈ �. On the other hand,
if a0 = 0 and β = 0, then the aspiration formation rule will lead to learning behavior
that, in the continuous time limit, is in all decision problems the same as replicator
dynamics and hence asymptotically optimizes.

4.2. Simulations. The results summarized in Figure 3 show that there are two
cases in which the comparison between learning with exogenous aspiration level and
learning with endogenous aspiration level is straightforward. First, if the optimal strat-
egy is safe and dominant, and if the initial aspiration level is too high, then it is better
to have an endogenous aspiration level. Second, if the optimal strategy is not safe
or not dominant, and if the initial aspiration level is sufficiently low, then it is better
to keep the aspiration level fixed and not to adjust it endogenously. We begin this
subsection with two simulations that illustrate these two cases.

The first simulation concerns a decision problem under certainty, i.e., a decision
problem in which the set � has only one element. This is the simplest case of a
decision problem in which the expected payoff-maximizing action is both safe and
dominant. The decision problem that we consider is displayed in Figure 4. Figure 5
shows a numerically obtained10 phase diagram for this decision problem. This phase
diagram refers to the case that the aspiration level is endogenous. For the simulation,
we have set β = 0�1. The phase diagram shows the simultaneous movements of the
probability pt�s1� of playing the better strategy and of the aspiration level at .

All trajectories in Figure 5 converge to the rest point in which p∗�s1� = 1 and a∗ =
0�6. The aspiration formation rule is optimal, as Proposition 2 asserts. Notice that it

10 To construct the numerical phase diagrams in this article, we used MATHEMATICA.
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Figure 4

Figure 5
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is obvious from analytical considerations, though not from Figure 5, that the learning
process has an additional rest point at p∗�s1� = 0 and a∗ = 0�3. This rest point’s basin
of attraction is, however, of measure zero. Only those trajectories which start with
initial values satisfying p0�s1� = 0 and a0 ≤ 0�3 converge to this rest point.

Of particular interest in Figure 5 are those trajectories which begin with a “too
high” aspiration level, say, an aspiration level above 0.6. In these cases, the deci-
sion maker would not asymptotically optimize if the aspiration level were kept fixed.
By contrast, with an endogenously moving aspiration level, the decision maker does
optimize asymptotically.

To explain how endogenous movements in the aspiration level bring about asymp-
totic optimization, we consider as an example the trajectory that begins in the top
right corner of the state space. The initial values for this trajectory are p0�s1� = 0�99
and a0 = 0�9. Hence the decision maker chooses the payoff-maximizing strategy s1
with an initial probability close to 1. However, his or her aspiration level is far too
high. Therefore, he or she is disappointed by the payoff which he or she receives
when playing s1 and hence shifts probability to the alternative strategy s2. At the
same time, he or she adjusts his or her aspiration level into the direction of the expe-
rienced payoffs, i.e., downward. Thus the trajectory points into the interior of the
state space.

As the state variables move along this trajectory, two effects take place. First, the
decision maker gathers experience with the strategy s2 and is disappointed by this
strategy as well. Second, the aspiration level is gradually reduced. As the aspiration
level approaches 0.6, the payoff associated with strategy s1, the size of the decision
maker’s disappointment with s1 tends to zero. These two effects lead to a reversal
in the downward trend of the probability with which s1 is played. In the long run, as
t → ∞, the decision maker returns to playing s1 with high probability, but he or she
now holds a more realistic aspiration level, and hence the situation becomes stable.

Next, we give an example in which the expected payoff-maximizing strategy is not
safe. Hence in this example an aspiration formation rule with fixed and sufficiently
low aspiration level would be optimal; however, an aspiration formation rule with
endogenous aspiration level is not optimal. The example is shown in Figure 6, and the
corresponding phase diagram of the process with moving aspiration level (β = 0�1)
is shown in Figure 7.

Figure 7 suggests that the learning process with endogenous aspiration level has a
globally asymptotically stable rest point that is in the interior of the state space. Hence
the asymptotic probability of the expected payoff-maximizing strategy is not equal to
one, and the aspiration formation rule is not optimal. This confirms Proposition 2.

It is particularly interesting to trace trajectories that start with a low aspiration
level, say, an aspiration level below 0.3. If the decision maker kept the aspiration

Figure 6
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Figure 7

level fixed, then he or she ultimately would play the optimal strategy with probability
one. The endogenous increase in the aspiration level prevents this from happening.

Consider as an example the trajectory that begins in the point p0�s1� = 0�7 and
a0 = 0�01. If the decision maker starts in this point, the probability of s1, and also
the aspiration level, will increase initially. This continues until the aspiration level
reaches, roughly, 0.5, the minimum payoff possible under strategy s1. When the aspi-
ration level reaches this value, the probability of s1 has already almost reached 1. The
endogenous aspiration level adjustment forces the aspiration level to move further,
since the expected payoff is larger than 0.5. But once the aspiration level exceeds
0.5, the probability-matching effect starts to affect the decision maker’s behavior. He
or she becomes disappointed by the strategy s1 and tries again the alternative strat-
egy s2. The probability pt�s1� therefore decreases. This continues until a rest point is
reached.

So far we have focused on examples in which the results of the preceding subsec-
tion allow an unambiguous comparison of learning with and without an endogenous
aspiration level. We now turn to cases in which such a comparison is not possible on
the basis of the results of the preceding subsection.

Consider first cases in which the optimal strategy is safe and dominant and in
which the initial aspiration level is sufficiently low. In such cases, the decision maker
will learn to play the optimal strategy independent of whether he or she adjusts his
or her aspiration level or not. As long as we focus on the asymptotics of the decision
maker’s behavior, nothing additional can be said about this case.
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Consider next decision problems in which the optimal strategy is not safe or not
dominant and in which the initial aspiration level is too high. In such cases, the
decision maker will not learn to play the optimal strategy independent of whether
he or she adjusts his or her aspiration level or not. However, in such cases, it is
conceivable that under one of the two types of learning rules the decision maker’s
asymptotic performance is “less bad” than under the other. We illustrate this with the
example in Figure 8, which is a special case of the example in Figure 3. Figure 9 shows
the phase diagram of the learning rule with endogenous aspiration level (β = 0�1)
for this example.

If the decision maker’s initial aspiration level in this example is exactly in the
middle of the two possible payoff values, i.e., if a0 = 0�5, the learning rule with fixed
aspiration level will lead to “pure” probability matching; i.e., the strategy s1 will be
chosen with probability 0.8. This follows from the calculations in Subsection 3.3.

Figure 8

Figure 9
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For the case that the aspiration level is endogenous, Figure 9 suggests that the
learning process is globally asymptotically stable. An interesting question to ask is
whether in the unique rest point in Figure 9 the decision maker does better or worse
than with pure probability matching. The somewhat surprising answer is that the deci-
sion maker does worse if he or she adjusts his or her aspiration level. The asymptotic
probability of choosing the strategy s1 turns out to be less than 0�8.

To explain the intuition for this, we show in Figure 10 a trajectory that starts in
the point of pure probability matching: p0�s1� = 0�8 and a0 = 0�5. Starting from this
point, there will be a tendency for at to increase. The reason is that in the initial
point, a0 is below the current expected payoff. If the decision maker played both
strategies with equal probability, his or her expected payoff would exactly equal a0.
However, in the initial point he or she plays the strategy with higher payoff more
often, and hence a0 is smaller than the current expected payoff.

In the initial point there will be no tendency for pt�s1� to change, and hence the
trajectory points vertically upward in the phase diagram. However, once the aspiration
level has increased, there also will be pressure on pt�s1� to change. To see why
this pressure works against s1, notice first that an increase in the aspiration level
will reduce the size of successes but increase the size of failures. Therefore, those
strategies which are mainly sustained by the failure of other strategies will benefit.
Now consider the point of pure probability matching. In this point the probability
of success of strategy s1 is 0.64, and the probability of failure of strategy s2 is 0.16.
Hence s1 is mainly sustained by successes. By contrast, the probability of success of
strategy s2 is 0.04, and the probability of failure of strategy s1 is 0�16. Hence strategy
s2 is mainly sustained by failures of s1. It is for this reason that an increase in the

Figure 10
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aspiration level reduces the probability with which s1 is played and increases the
probability with which s2 is played.

We now generalize the preceding observation. We consider the class of examples
given by Figure 2. We adopt the assumptions concerning x, y, and µ that were intro-
duced in the context of Figure 2. We then have the following result:

Proposition 3. If the decision problem � is given by Figure 2, and if the aspiration
formation rule � satisfies β > 0, then there is a unique rest point �p∗� a∗� of differential
Equations (3) and (4). This rest point satisfies 0�5 < p∗�s1� < µ.

The formal proof of this result is in the Appendix. The intuition behind the result
is the same as the intuition that we explained earlier in the context of Figure 10.
Observe that Proposition 4 does not make any assertion concerning the asymptotic
stability of the rest point. Our simulations suggest that it is globally asymptotically
stable, but we have not been able to prove this.

The formal and numerical results of this section suggest the following conjecture:
If the asymptotic aspiration level of the decision maker is above the initial aspi-
ration level, the aspiration level adjustment cannot improve the decision maker’s
performance. In the opposite case, the aspiration level adjustment cannot worsen
the decision maker’s performance. Unfortunately, we have been unable to prove this
conjecture.

5. related literature

The idea that reinforcement learning procedures will “behave well” in decisions
under risk only if they imitate evolution has been formalized previously in articles
by Sarin (1995) and Schlag (1994). Both articles consider relatively large classes of
learning procedures, introduce certain axioms, and then show that the only learning
processes that satisfy these axioms are those which are, in some way, equivalent to
replicator dynamics. Neither of these two articles, however, allows for an endogenous
aspiration level.

A related recent study that investigates the consequences of endogenous move-
ments of the aspiration level is that of Gilboa and Schmeidler (1996). They consider
the same type of decision problem as we do and study the following learning rule:
In each period the decision maker assesses the past performance of each strategy
by looking back at all those previous periods in which this strategy was chosen and
summing the differences between the payoffs received in those periods and his or
her (current) aspiration level. The decision maker chooses that strategy for which
this sum is largest. The aspiration level in the next period is a weighted average
of the current aspiration level and the maximum average performance of any strat-
egy in the past. Thus the state space of Gilboa and Schmeidler’s learning rule is
larger than the state space of the decision maker in our model. Moreover, Gilboa
and Schmeidler’s decision maker performs explicit maximizations. We think that our
model is of interest in this context because it describes a less sophisticated decision
maker who is still capable of achieving optimal decision making in the long run.
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Gilboa and Schmeidler’s main result is that if the initial aspiration level is suffi-
ciently high, or if the decision maker arbitrarily raises it from time to time, then the
decision maker will choose in the long run an expected payoff-maximizing action. The
benefit of high aspiration levels in Gilboa and Schmeidler’s framework is that they
induce the decision maker to experiment sufficiently frequently with all actions. In our
framework, because choice is stochastic rather than deterministic, as in Gilboa and
Schmeidler, and because we construct a continuous time limit with “many” choices in
each time interval, all actions automatically will be chosen sufficiently frequently. The
argument that shows that high aspiration levels do not induce some form of proba-
bility matching in Gilboa and Schmeidler’s framework is subtle. Roughly speaking, if
all actions initially are chosen sufficiently frequently, then in the long run the perfor-
mance measure for the optimal action will be so much better than the performance
measure for nonoptimal actions that occasional bad payoff experiences cannot over-
come this difference and induce the decision maker to switch actions.11 Endogenous
aspirations are also considered in Bereby-Meyer and Erev (1998) in the context of
decision problems; however, the focus of that article is experimental, and no analyti-
cal results regarding the long-run behavior of the learning dynamics are provided.

Karandikar et al. (1998) also investigate learning with an endogenous aspiration
level. They consider a two-player game in which each player has two strategies. They
stipulate the following learning rule: If the decision maker receives a payoff above
his or her aspiration level, then he or she sticks with his or her current strategy.
Otherwise, he or she switches with some probability to the alternative strategy. The
probability of switching is an increasing function of the difference between aspira-
tion level and payoff. In each period, with a high probability, the aspiration level is
adjusted toward the current payoff. With a small but positive probability, the aspira-
tion level is perturbed and takes some random value. Karandikar et al.’s most striking
results refer to the “Prisoner’s dilemma.” Karandikar et al. focus on the case that the
trembles in the aspiration level are very unlikely and that the regular adjustment in
the aspiration level occurs sufficiently slowly. They find that, in the long run, both
players will cooperate with a probability close to one.

Relating Karandikar et al.’s results to ours is difficult because we consider a single-
person decision problem, whereas they consider a game, and the endogenous changes
in the payoff distributions that result from this play a key role in the rather subtle
intuition for their result.12 One point worth noting is that in Karandikar et al.’s model
the “state space,” i.e., the set of states in which the decision makers might find
themselves at any given time, is the set of all pairs of a pure strategy and an aspiration
level. In our model, by contrast, players are described by mixed strategies and an
aspiration level. Our larger state space and our focus on the case in which the mixed
strategies adjust slowly ensure that a large amount of experimentation is built into
our learning model. By contrast, in Karandikar et al.’s model, experimentation occurs
only if the aspiration level makes a large upward jump. Thus experimentation occurs
very infrequently and is associated with high aspiration levels. This makes it easier in

11 Kim (1995) and Pazgal (1997) extend Gilboa and Schmeidler’s model to games and find the
possibility of perpetual cooperation in the “Prisoner’s dilemma.”

12 The intuition for their result is explained in detail in Section 4 of their article.
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Karandikar et al’s model for the decision maker to get trapped in a state in which he
or she plays a dominated strategy.

Another model with endogenous aspiration levels recently has been analyzed by
Palomino and Vega-Redondo (1998). They consider a continuum-size population.
In each period, players are randomly matched to play the “Prisoner’s dilemma.” The
learning rule is the same as in Karandikar et al. except that the aspiration adjustment
is modeled differently. Each individual’s aspiration level is adjusted in the direction of
some statistic of play in the whole population, such as the average payoff. There are
no random fluctuations in aspirations. Palomino and Vega-Redondo obtain asymptoti-
cally a mixed population in which some but not all players cooperate. The intuition for
their result is related to the intuition for probability matching in our model. For each
individual player, payoffs are asymptotically stochastic; they are sometimes above
and sometimes below the aspiration level. Therefore, the strictly dominant strategy
is not being learned. Specifically, in the “prisoner’s dilemma,” defecting players are
disappointed by their payoffs if they meet other defectors, and they will switch to
cooperation. The presence of cooperators implies that the aspiration level is indeed
above the (defect-defect) payoff. Thus cooperation becomes self-sustaining.

A recent article by Dixon (1998) is similar to that of Palomino and Vega-Redondo
(1998). One main difference is that there is no random matching in Dixon’s model.
Each pair of players stays together forever. Dixon finds that all players will cooperate
in the long run.

6. extensions

One of the assumptions of our model is that for given payoff and aspiration level,
the size of behavior adjustments made by the decision maker is the same over time.
One might argue that at later periods the decision maker will be more reluctant to
change his or her behavior. This feature is present, for example, in the Erev and
Roth (1998) model of reinforcement learning. A formal analysis of Erev and Roth’s
model, or related models, is beyond the scope of this article. One feature of their
model that complicates its analysis is that the decrease in the step size of the decision
maker’s behavior adjustments is endogenous. The step size depends on the decision
maker’s experiences, which, in turn, depend on his or her choices. It becomes much
easier to extend the results of this article if the decrease in the step size is made
exogenous.13 The simplest way of doing this is to postulate that at iteration n the
change in the decision maker’s choice probabilities is exactly 1/n of what it is in the
model introduced in Section 2. It is well known from the stochastic approximation
literature (Benveniste et al., 1990) that the asymptotic behavior of the resulting learn-
ing process is closely linked to that of the deterministic differential equation that we
constructed in Section 2 as a continuous time approximation. In particular, if the dif-
ferential equation has a unique, globally stable rest point, then the stochastic learning
process will converge to this rest point with probability 1.

13 We know of no analysis that would indicate whether an exogenous or an endogenous reduction
in step size is a better model of real learning behaviour.
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Our simulations suggest that the learning process with endogenous aspiration level
typically has a unique globally stable rest point that is interior.14 If this is correct, then
the analysis of this article applies to the asymptotic behavior of the modified learning
process as well. For the case that the aspiration level is exogenous and sufficiently
low, the analysis is complicated by the fact that the approximating differential equa-
tion, the replicator equation, has multiple fixed points, namely, all pure strategies.
However, since all fixed points except the optimal one have no basin of attraction, it
should be easy to extend stochastic approximation results and to show convergence
to the optimal action with probability 1.

Another important extension of our work would be to consider the case in which
the decision maker has more than two actions. This extension raises technical prob-
lems. In the most natural extension of our model to the case of more than two actions,
probability that is taken away from some action is distributed among the remaining
actions in proportion to their current probabilities. Such a proportional rule, how-
ever, implies that expected motion is not a continuous function of the current state.
This makes it impossible to appeal to standard theorems when taking continuous time
limits. Moreover, if there are more than two actions, an even more sophisticated def-
inition of probability matching will be needed. We expect that these problems can be
resolved, but we have not yet done so. We expect the broad picture to remain the
same as in the case of two actions.

Finally, it seems highly desirable to extend our work to the case that the deci-
sion maker faces a game rather than a single-person decision problem. The results of
this article suggest that we should expect that learning rules with either an exogenous
but relatively high aspiration level or an endogenously moving aspiration level have in
many games interior rest points in which all players’ behavior involves some combina-
tion of optimization and probability matching. In such rest points, one would expect
randomization to be self-enforcing: Each decision maker’s payoff is stochastic because
the other players randomize. Moreover, as a result of the probability-matching effect,
this randomness in payoffs induces each decision maker to randomize himself or her-
self. We conjecture that the only learning rules for which no such rest points exist
are those for which the aspiration levels are exogenous and lower than all conceiv-
able payoffs. The learning dynamics in this case become analogous to the replicator
dynamics of evolutionary game theory. The details of this case are in Börgers and
Sarin (1997).

appendix

Proof of Proposition 1. We consider a given and fixed decision problem �.
We proceed in three steps. The first step contains a preliminary observation. In the
remaining two steps we construct the threshold ā.

Step 1. In this step we prove that an aspiration formation rule � with β = 0 is
not optimal if a0 > mine∈� π�s1� e�. The proof is indirect. Suppose that the inequality

14 In simple examples, it is also easy to prove this formally. We do not, however, have a general
proof.
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holds and that the aspiration formation rule is optimal. Then, for any initial value
p0�s1� ∈ �0� 1�, we must have pt�s1� → 1. Hence p∗�s1� = 1 and a∗ = a0 must be
a rest point of differential Equations (3) and (4). But this is impossible. To show
that this is impossible, we show that p∗�s1� = 1 and a∗ = a0 imply dpt�s1�/dt < 0.
We calculate dpt�s1�/dt < 0 by considering the discrete time model of Section 2
and calculating the expected change in pn�s1� conditional on pn�s1� = 1 and an =
a0. When the decision maker plays s1, the payoff that he or she experiences will
sometimes be below a0 [because we assumed a0 > mine∈� π�s1� e�]. If such payoffs
are experienced, pn�s1� will be reduced. It also may happen that the payoff is equal to
or above a0. In the latter case, pn�s1� cannot be increased because it is already equal
to 1. In expectations, therefore, pn�s1� will decrease. Thus dpt�s1�/dt < 0. Hence
p∗�s1� = 1 and a∗ = a0 are not a rest point.

Step 2. Suppose that mine∈� π�s1� e� ≤ mine∈� π�s2� e�. Then we can set
ā = mine∈� π�s1� e�. This is so because, for a0 ≤ ā, according to the argument in
Subsection 3.3, differential Equation (3) becomes the replicator equation. There-
fore, pt�s1� → 1, provided that p0�s1� �= 0, and hence the aspiration formation rule
is optimal. If, on the other hand, a0 > ā, then Step 1 shows that the aspiration
formation rule is not optimal.

Step 3. Suppose that mine∈� π�s1� e� > mine∈� π�s2� e�. Clearly, if a0 ≤
mine∈� π�s2� e�, for the same reason as in Step 2, the aspiration formation rule
is optimal. Also, if a0 > mine∈� π�s1� e�, by Step 1, the aspiration formation rule is
not optimal. We must hence seek the threshold ā in the interval �mine∈� π�s2� e��
mine∈� π�s1� e��.

Consider any a0 ∈ �mine∈� π�s2� e��mine∈� π�s1� e��. Consider also a fixed pt�s1� ∈
�0� 1�. We wish to calculate the right-hand side of Equation (3). We denote by �1�a0�
the difference between the expected payoff of strategy s1 and a0. Next, we partition
the set � into two subsets, �−

2 �a0� ≡ �e ∈ � � π�s2� e� < a0	, and �+
2 �a0� ≡ �e ∈

� � π�s2� e� ≥ a0	.15 We denote by µ−
2 �a0� the probability of �−

2 �a0� and by µ+
2 �a0�

the probability of �+
2 �a0�. Finally, we denote by �−

2 �a0� the expected value of the
difference between a0 and s2’s payoff, conditional on �−

2 �a0�, and by �+
2 �a0� the

expected value of the difference between s2’s payoff and a0, conditional on �+
2 �a0�.

A simple calculation shows that Equation (3) becomes

dpt�s1�
dt

= �1− pt��pt��1�a0� − µ+
2 �a0��+

2 �a0��

+�1− pt�µ−
2 �a0��−

2 �a0�	(A.1)

For any pt�s1� ∈ �0� 1�, the sign of the expression on the right-hand side is determined
by the sign of the expression in braces. We therefore focus on this expression. Notice
that for pt → 1, this expression tends to A�a0�, which we define as follows:

A�a0� ≡ �1�a0� − µ+
2 �a0��+

2 �a0�(A.2)

15 Note that �+
2 (but not �−

2 ) may be empty. In this case, the argument that follows needs to be
modified. However, the required modifications are obvious, and therefore, we ignore this case.
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Now suppose that A�a0� ≥ 0. Then the expression in braces in Equation (A.1)
will be positive for all pt�s1� ∈ �0� 1�. This is so because it is a convex combination
of the nonnegative expression A�a0� and of the expression µ−

2 �a0��−
2 �a0�, which,

because of a0 > mine∈� π�s2� e�, is positive. If the right-hand side of Equation (A.1)
is positive for all pt�s1� ∈ �0� 1�, then pt�s1� must be monotonically increasing and
hence converging. The limit must be a rest point. The only rest point that can be
the limit is p∗�s1� = 1. We can conclude that A�a0� ≥ 0 implies that the aspiration
formation rule is optimal.

On the other hand, if A�a0� < 0, then the expression in braces in Equation (A.1)
will be negative if pt�s1� is sufficiently close to one. Therefore, pt�s1� cannot converge
to one. Thus the aspiration formation rule is optimal if and only if A�a0� ≥ 0 holds.

Next, we observe that a0 → mine∈� π�s2� e� implies that A�a0� > 0 because in
this limit A�a0� tends to the difference of the expected payoffs of s1 and s2, which
is by assumption positive. We also note that A�a0� is piecewise linear and strictly
decreasing on the interval �mine∈� π�s2� e�, mine∈� π�s1� e��. This is so because for all
a0 for which there is no e ∈ � with a0 = π2�s2� e�, the function A is differentiable in
a0, its derivative is −�1−µ+

2 �a0��, and locally µ+
2 �a0� does not depend on a0. Because

a0 > mine∈� π2�s2� e�, the probability µ+
2 �a0� is less than 1, and hence the derivative

is negative.
We now distinguish two cases. The first case is that A�a0� is everywhere nonnega-

tive on �mine∈� π�s2� e��mine∈� π�s1� e��. In this case we can set ā = mine∈� π�s1� e�.
With this definition, if a0 ≤ ā, and if a0 is in the domain of the function A, we have
A�a0� ≥ 0, and as we saw above, this implies that the aspiration formation rule is
optimal. If a0 is outside the domain of the function A, the arguments given at the
beginning of this part of the proof show that the aspiration formation rule is optimal
(respectively not optimal) as required.

The second case is that A�a0� does become negative on �mine∈� π�s2� e��mine∈� ×
π�s1� e��. Because A�a0� is strictly decreasing, there is then a unique value of a0

for which A�a0� = 0. We set ā equal to this value. If a0 ≤ ā, and if a0 is in the
domain of the function A, then A�a0� ≥ 0, and the aspiration formation rule is
optimal. If a0 > ā, and if a0 is in the domain of the function A, then A�a0� < 0, and
the aspiration formation rule is not optimal. Finally, the case that a0 is outside the
domain of the function A can again be dealt with as in the first paragraph of this
part of the proof. �

Proof of Proposition 2. (i) Throughout this part of the proof, we denote by
π1 the payoff that strategy s1 yields with certainty. We also write �2 for the expected
payoff of strategy 2. We shall consider a solution to differential Equations (3) and (4)
that starts with interior initial probabilities. We shall show that for any such solution
it is true that limt→∞ pt�s1� = 1.

The proof will consider separately two cases. The first case is that at ≤ π1 for some
t ≥ 0. If this is the case, there also needs to be some t ≥ 0 with at < π1. This is so
because the expected payoff is always less than π1 [since pt�s1� < 1 for all t ≥ 0],
and hence at = π1 implies that dat/dt < 0. Therefore, if the aspiration level reaches
π1, it also has to fall below π1. As we focus on the limit for t → ∞, there is now no
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loss of generality in defining the first case by the condition at < π1 for all t ≥ 0. The
second case will be the case that at > π1 for all t ≥ 0.

To deal with the first case, we shall show first that in this case we have dpt�s1�/dt >
0 for all t ≥ 0. This will be sufficient for the proof because it then follows that pt�s1�
is monotonically increasing and convergent. Then also at must be convergent. The
limit must be a rest point �p∗� a∗�. It is straightforward to see that the only rest point
with p∗�s1� > 0 is given by p∗�s1� = 1 and a∗ = π1. Hence this must be the limit
of �pt� at� for t → ∞. Thus we can conclude that the aspiration formation rule is
optimal.

So assume case 1 and let some t ≥ 0 be given. We partition the set � into two
subsets: �−

2 ≡ �e ∈ � � π�s2� e� < at	 and �+
2 ≡ �e ∈ � � π�s2� e� ≥ at	. For the

moment, we assume that none of these sets is empty. Later, we shall explain how to
modify the proof if this is not true.

Consider the expected change in pn�s1� conditional on pn = pt and an = at and
conditional on the event that the state of the world is contained in �−

2 . If any state
of the world in �−

2 occurs, the probability pn�s1� will be increased, independent of
whether s1 or s2 has been played. Hence the expected change in pn�s1� conditional
on the above-mentioned events is positive.

Consider next the expected change in pt�s1� conditional on pn�s1� = pt�s1� and
an = at and conditional on the event that the state of the world is contained in �+

2 .
Since the aspiration level is not greater than any of the relevant payoffs, the argument
of Subsection 3.3 implies that the expected change conditional on these events is
given by the replicator equation. Moreover, since s1 is dominant, its expected payoff
is at least as large as that of s2, even if we condition on �+

2 . Hence the expected
change is nonnegative. The total expected change in pn�s1�, conditional on pn = pt
and an = at , is a convex combination of the expected change conditional on these
events and conditional on �+

2 and the expected change conditional on the preceding
events and on �−

2 . We can conclude that it is positive.
Obviously, the argument continues to hold if �+

2 is empty. Moreover, if �−
2 is

empty, then the fact that s1 has higher expected payoff than s2 implies that the
expected change conditional on �+

2 must be positive. This completes the proof for
the first case.

We now consider the case that at > π1 for all t ≥ 0. For this case, we shall show
that for all p̄ ∈ �0� 1� there exist a τ ≥ 0 and a δ ∈ �0� π1 −�2� such that t ≥ τ and
pt�s1� ≤ p̄ imply that dpt�s1�/dt ≥ δ. This obviously implies that, after time τ, pt
can remain below p̄ for only a finite amount of time. This is true for p̄ arbitrarily
close to one, and hence we can conclude that pt�s1� converges for t → ∞ to one. It
follows that at converges to π.

Consider a given and fixed p̄. We shall now construct the corresponding τ and δ.
We begin with the observation that at > π1 implies that at is strictly decreasing. In
fact, it is straightforward to see that for every ε > 0 there is some τ�ε� > 0 such that
t ≥ τ�ε� implies that at ≤ π1 + ε. We shall argue that we can set the τ that we need
to construct equal to τ�ε� for some ε > 0.

Suppose that t ≥ τ�ε� for some ε > 0. A straightforward calculation, which uses
the fact that at > π1 implies that all payoffs are smaller than the aspiration level,
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shows that Equation (3) becomes

dpt�s1�
dt

= �1− pt�s1��2�at −�2� − pt�s1�2�π1 − at�

≥ �1− pt�s1��2�π1 −�2� − pt�s1�2ε(A.3)

If pt�s1� ≤ p̄, this is greater than or equal to

B�ε� ≡ �1− p̄�2�π1 −�2� − p̄2ε(A.4)

Since π1 > �2, this expression is positive if ε is sufficiently close to zero. In fact,
we can find for any δ ∈ �0� π1 − �2� an ε > 0 such that B�ε� = δ. If we then set
τ = τ�ε�, then the claim that we made at the beginning of the discussion of this case
is true.

(ii) Suppose that s1 is not safe. If the aspiration formation rule were optimal, there
would have to be a rest point �p∗� a∗� in which p∗�s1� = 1. In such a rest point,
a∗ would have to be equal to the expected payoff of s1. Because s1 is not safe, the
fact that a∗ is equal to the expected payoff of strategy s1 implies that π�s1� e� < a∗

for some e ∈ �. We can then use the argument used in Step 1 of the proof of
Proposition 1 to show that this cannot be a rest point. We omit the details.

Next, suppose that s1 is safe but not dominant. Denote by π1 the payoff that is
received with certainty if s1 is played. Suppose that the aspiration rule were opti-
mal. Then we would have for t → ∞ that �pt�s1�� at� → �1� π1�. In the following
we shall show, however, that there are p̄ ∈ �0� 1� and ā ∈ �0� 1� with ā < π1 such
that dpt�s1�/dt < 0 whenever �pt�s1�� at� ∈ �p̄� 1� × �ā� π1�. This will imply that the
aspiration formation rule cannot optimize. Suppose that the learning process started
with a probability p0�s1� ≤ p̄ and some aspiration level a0 < π1. Then at < π1 for all
t ≥ 0. Hence, to converge to �1� π1�, the process would have to enter the rectangle
�p̄� 1� × �ā� π1�. Since dpt�s1�/dt < 0 in this rectangle, this is impossible.

To construct the threshold values ā and p̄, we begin by partitioning the set � into
two subsets: �−

2 ≡ �e ∈ � � π�s2� e� < π1	 and �+
2 ≡ �e ∈ � � π�s2� e� ≥ π1	. Notice

that the fact that s1 yields higher expected payoff but is not dominant implies that
both these sets are nonempty. Denote by µ−

2 and µ+
2 their respective probabilities.

Finally, denote by �−
2 and �+

2 the expected payoff of s2 conditional on �−
2 and �+

2 ,
respectively.

Suppose that the aspiration level at satisfies maxe∈�−
2
π�s2� e� < at < π1. A simple

calculation then shows that differential Equation (3) becomes

dpt�s1�
dt

= �1− pt�s1���pt�s1���π1 − at� − µ+
2 ��+

2 − at��

+�1− pt�s1��µ−
2 �at −�−

2 �	(A.5)

Now suppose that at is so close to π1 that the first expression in the braces is negative.
Then the right-hand side of Equation (A.5) will be negative if and only if

pt�s1� >
µ−

2 �at −�−
2 �

µ+
2 ��+

2 − at� − �π1 − at� + µ−
2 �at −�−

2 �
(A.6)
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We now choose ā ∈ �0� π1� such that all at ∈ �ā� π1� satisfy the assumptions with
respect to at that we have made so far in the proof and such that the right-hand
side of Equation (A.6) has a supremum strictly smaller than 1 as at varies in �ā� π1�.
Inspection of Equation (A.6) shows that we can find such an ā. We choose p̄ to
be larger than the supremum of the right-hand side of Equation (A.6) but smaller
than 1. Then ā and p̄ have the required properties. �

Proof of Proposition 3. Using the same argument as in the first paragraph
of part (ii) of the proof of Proposition 2, one can show that in any rest point p∗�s1�
must be interior; i.e., p∗�s1� ∈ �0� 1�. This implies that in any rest point a∗ ∈ �x� y�.
Therefore, the conditions that define a rest point can be written as

p∗�s1�
1− p∗�s1�

= µ

1− µ
· p

∗�s1��x− a∗� + �1− p∗�s1���a∗ − y�
p∗�s1��a∗ − y� + �1− p∗�s1���x− a∗�(A.7)

and

a∗ = p∗�s1�µx+ �1− p∗�s1��µy

+p∗�s1��1− µ�y + �1− p∗�s1���1− µ�x(A.8)

We next replace a∗ in the first equation by the right-hand side of the second
equation. After simplification, we obtain

p∗�s1�
1− p∗�s1�

= µ

1− µ
· 1− µ+ 2p∗�s1��1− p∗�s1���2µ− 1�

µ− 2p∗�s1��1− p∗�s1���2µ− 1�(A.9)

Any solution p∗�s1� of this equation corresponds to a rest point if one sets the
aspiration level equal to the expected payoff that results if s1 is played with probability
p∗�s1�. Thus, by finding the solutions of the preceding equation, we find all rest points
of our example.16

Denote the left-hand side of the preceding equation by A�p�s1�� and the right-
hand side by B�p�s1��.17 Note that A�0� = 0, A is continuous and monotonically
increasing in p�s1�, and for p�s1� → 1, we have A�p�s1�� → ∞. As regards B, note
first that B�0� = B�1� = 1. Next, it is straightforward from the formula for B that
B is continuous, symmetric around 0�5 and that B is monotonically increasing for all
p�s1� < 0�5 and decreasing for all p�s1� > 0�5. To see this, observe that B depends
on p�s1� only through the term 2p�s1��1 − p�s1���2µ − 1� that appears both in the
numerator and in the denominator. Since this expression has the properties ascribed
to B, and since this expression is added in the numerator and subtracted in the
denominator, the assertion follows.

Finally, we observe that A�0�5� = 1 < B�0�5� = µ/�1− µ� and that

A�µ� = µ

1− µ
> B�µ� = µ

1− µ
· 1− µ+ 2µ�1− µ��2µ− 1�

µ− 2µ�1− µ��2µ− 1�(A.10)

These observations together imply the proposition. �

16 It is interesting that the equation no longer contains x and y.
17 We denote the argument of these functions by p�s1� rather than p∗�s1� because we want these

functions to be defined for all p�s1� ∈ �0� 1� and not just for the equilibrium values p∗�s1�.
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