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1. Introduction 

Subjectivity and correlation, though formally related, are conceptually 
distinct and independent issues. We start by discussing subjectivity. 

A mixed strategy in a game involves the selection of a pure strategy by means 
of a random device. It has usually been assumed that the random device is a 
coin flip, the spin of a roulette wheel, or something similar; in brief, an ‘objective’ 
device, one for which everybody agrees on the numerical values of the proba- 
bilities involved. Rather oddly, in spite of the long history of the theory of 
subjective probability, nobody seems to have examined the consequences of 
basing mixed strategies on ‘subjective’ random devices, i.e. devices on the 
probabilities of whose outcomes people may disagree (such as horse races, 
elections, etc.). Even a fairly superficial such examination yields some startling 
results, as follows : 

(a) Two-person zero-sum games lose their ‘strictly competitive’ character. 
It becomes worthwhile to cooperate in such games, i.e. to enter into binding 
agreements.’ The concept of the ‘value’ of a zero-sum game loses some of its 
force, since both players can get more than the value (in the utility sense). 

(b) In certain n-person games with n 2 3 new equilibrium points appear, 
whose payoffs strictly dominate the payoffs of all other equilibrium points.2 

Result (a) holds not just for certain selected 2-person O-sum games, but for 
practically3 all such games. Moreover, it holds if there is any area whatsoever 
of subjective disagreement between the players, i.e., any event in the world 
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‘Example 2.1 and sect. 6. 
2Example 2.3. 
%pecifically, wherever there is one payoff greater than the value and another one less than 

the value (for player 1, say). 
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(possibly entirely unconnected with the game under consideration) for which 
players 1 and 2 have different subjective probabilities. 

The phenomenon enunciated in Result (b) shows that not only the 2-person 
O-sum theory, but also the non-cooperative n-person theory is modified in an 
essential fashion by the introduction of this new kind of strategy. However, this 
phenomenon cannot occur4 for 2-person games (zero-sum or not); for such 
games we will show5 that the set of equilibrium payoff vectors is not changed by 
the introduction of subjectively mixed strategies. 

We now turn to correlation. Correlated strategies are familiar from co- 
operative game theory, but their applications in non-cooperative games are less 
understood. It has been known for some time that by the use of correlated 
strategies in a non-cooperative game, one can achieve as an equilibrium any 
payoff vector in the convex hull of the mixed strategy (Nash) equilibrium payoff 
vectors. Here we will show that by appropriate methods of correlation, even 
points outside of this convex hull can be achieved.6 

In describing these phenomena, it is best to view a randomized strategy as a 
random variable with values in the pure strategy space, rather than as a dis- 
tribution over pure strategies. In sect. 3 we develop such a framework; it allows 
for subjectivity, correlation, and all possible combinations thereof. Thus, a side 
product of our study is a descriptive theory (or taxonomy) of randomized 
strategies. 

We are very grateful to Professors M. Maschler, B. Peleg, and R. W. Rosenthal 
for extremely stimulating correspondence and comments on this study. 

2. Examples 

(2.1) Example. Consider the familiar two-person zero-sum game ‘matching 
pennies’, which we write in matrix form as follows : 

1, -1 -1, 1 

-1, 1 
I 1 

1, -1 - 

Let D be an event to which players 1 and 2 ascribe subjective probability 2/3 and 
l/3 respectively. Suppose now that the players bindingly agree to the following 
pair of strategies: Player 2 will play left in any event; player 1 will play top if 
D occurs, and bottom otherwise. The expectation of both players is then l/3, 
whereas the value of the game is of course 0 to both players. 

To make this example work, one needs an event D whose subjective probability 
is > l/2 for one player and < l/2 for the other. Such an event can always be 

4Except in a very degenerate sense; see Example 2.2. 
%ect. 5. 
%xamples 2.5 through 2.9. 
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constructed as long as the players disagree about something, i.e., there is some 
event B with p,(B) # p,(B) (where pi is the subjective probability of i). For 
example, if p,(B) = 718 and p2(B) = 518, then we can construct the desired 
event by tossing a fair coin twice (provided these particular coin tosses were 
not involved in the description of B); if C is the event ‘at least one head’, then 
we have p,(B n C) = 21/32 > l/2 > 15/32 = p,(B n C). This kind of con- 
struction can always be carried out (see the proof of Proposition 5.1). 

(2.2) Example. Suppose that there is an event D to which players 1 and 2 
ascribe subjective probabilities 1 and 0 respectively and such that only player 1 
is informed before the play as to whether or not D occurs. Consider the following 
pair of strategies: Player 2 plays left; player 1 plays top if D occurs, bottom 
otherwise. This strategy yields a payoff of (1, 1); moreover, it is actually in 
equilibrium, in the sense that neither player has any incentive to carry out a 
unilateral change in strategy. However, it has a somewhat degenerate flavor, 
since it requires that at least one of the two players be certain of a falsehood 
(see sect. 8). We now show that a similar phenomenon can also occur in a 
non-degenerate set-up; but it requires 3 players. 

(2.3) Example. Consider the three-person game given as follows : 

mp:::p y-E-j 
here player 1 picks the row, player 2 the column, and player 3 the matrix. A 
triple of objectively mixed strategies is an equilibrium point in this game if and 
only if player 1 plays bottom and player 2 plays left; player 3 may play any 
mixed strategy. All these equilibrium points have the same payoff vector, 
namely (1, 1, 1). Suppose now that D is an event to which players 1 and 2 
ascribe subjective probabilities 3/4 and l/4 respectively, and such that only 
player 3 is informed as to whether or not D occurs. Consider the following 
strategy triple: player 1 plays top; player 2 plays right; player 3 chooses the left 
matrix if D occurs, the right matrix if not. If player 1 moves down he will get 
l/4.8 = 2 rather than 1.3 = 3 ; similarly for player 2 if he moves left; as for 
player 3, he certainly cannot profit from moving, since he is getting his maximum 
payoff in the whole game. Therefore this is an equilibrium point; its payoff is 
(3, 3, 3), instead of the (1, 1, 1) obtained at all objective equilibrium points. 

That this kind of phenomenon cannot occur with fewer than 3 players will 
be shown in sect. 5. 

An interesting feature of this example is that the higher payoff at the new, 
subjective, equilibrium point is not only ‘subjectively higher’, it is ‘objectively 
higher’. That is, unlike the case in Example 2.1, the payoff is higher not only 



70 R.J. Aumann, Randomized strategies 

because of the differing probability estimates of the players, but it is higher in 
any case, whether or not the event D takes place. The contribution of subjective 
probabilities in this case is to make the new point an equilibrium; once chosen, 
it is sure to make all the players better off than at any of the old equilibrium 
points. 

We remark that by using different numbers we can find similar examples 
based on arbitrarily small probability differences. 

It is essential in this example that only player 3 be informed as to whether or 
not D occurs. If, say, player 1 were also informed (before the time comes for 
choosing his pure strategy), he could do better by playing top or bottom accord- 
ing as to whether D occurs or not. 7 This secrecy regarding D is quite natural. 

If we were to insist that all players be informed about D, it would be like insisting 
that in an objectively mixed strategy based on a coin toss, all players be informed 
as to the outcome of the toss. But much of the effectiveness of mixed strategies 
is based precisely on the secrecy, which would then be destroyed. In practical 
situations, it is of course quite common for some players to have differing sub- 
jective probabilities for events about which they are not informed, and on which 
other players peg their strategy choices. 

Our last 6 examples deal with correlation. 

(2.4) Example. Consider the following familiar 2-person non-zero-sum game : 

There are exactly 3 Nash equilibrium points: 2 in pure strategies, yielding (2, 1) 
and (1, 2) respectively, and one in mixed strategies, yielding (2/3, 2/3). The 
payoff vector (3/2, 3/2) is not achievable at all in (objectively) mixed strategies. 
It is, however, achievable in ‘correlated’ strategies, as follows: One fair coin is 
tossed; if it falls heads, players 1 and 2 play top and left respectively; otherwise, 
they play bottom and right. 

The interesting aspect of this procedure is that it not only achieves (3/2,3/2), it 
is also in equilibrium ; neither player can gain by a unilateral change. Any point 
in the convex hull of the Nash equilibrium payoffs of any game can be achieved 
in a similar fashion, and will also be in equilibrium. This is not new; it has been 
in the folklore of game theory for years. I believe the first to notice this pheno- 
menon (at least in print) were Harsanyi and Selten (1972). 

In the following 4 examples we wish to point out a phenomenon that we believe 
is new, namely that by the use of correlated strategies one can achieve a payoff 
vector that is in equilibrium in the same sense as above, but that is outside the 

‘I am grateful to R.W. Rosenthal for this remark. 
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convex hull of the Nash equilibrium payoffs. In fact, except in Example 2.7, it is 
better for all players than any Nash equilibrium payoff. 

(2.5) Example. Consider the 3-person game given as follows : 

mi !::i:$::::~ ~z$~:~ * 

Here player 1 picks the row, player 2 the column, and player 3 the matrix. If 
we restrict ourselves to pure strategies, there are only 3 equilibrium payoffs, 
namely (0, 0, 0), (1, 0, 0), and (0, 1, 0). If we allow (objectively) mixed strategies, 
some more equilibrium payoffs are added, but none of their coordinates exceed 1. 
Consider now the following strategy triple: Player 3 plays the middle matrix. 
Players 1 and 2 get together and toss a fair coin, but do not inform player 3 of 
the outcome of the toss. If the coin falls on heads, players 1 and 2 play top and 
left respectively; otherwise, they play bottom and right respectively. The payoff 
is (2,2,2). If player 3 would know the outcome of the toss, he would be tempted 
to move away; for example, if it was heads, he would move left. Since he does 
not know, he would lose by moving. Thus the introduction of correlation among 
subsets of the players can significantly improve the payoff to everybody. 

(2.6) Example. Another version of Example 2.5 is the following: 

This version has the advantage that there is only one Nash equilibrium payoff, 
namely (1, 1, 1); and it can be read off from the matrices by the use of simple 
domination arguments, as compared to the slightly laborious computations 
needed in the previous example. The advantage of Example 2.5 is that the new 
rorrelated strategy equilibrium point has the property that any deviation will 

>ctually lead to a loss (not only a failure to gain). 
In both examples, player 3 will not even want to know the outcome of the toss; 

he will want players 1 and 2 to perform it in secret. It is important for him that 
players 1 and 2 know that he does not know the outcome of the toss; otherwise 
they cannot depend on him to choose the middle matrix, and will in consequence 
themselves play for an equilibrium point that is less advantageous for all. Thus 
in Example 2.6, player 3 knows that if he can ‘peep’, then players 1 and 2 will 
necessarily play bottom and left respectively, to the mutual disadvantage of all. 

(2.7) Example. In Examples 2.5 and 2.6, equilibrium payoffs outside of the 
convex hull of the Nash equilibrium payoffs were achieved by ‘partial’ correla- 
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tion - correlation of strategy choices by 2 out of the 3 players. We now show 
that a similar phenomenon can occur even in 2-person games; here again a kind 
of partial correlation is used, but it is subtler than that appearing previously. 

Consider the 2-person game given as follows : 

This game has two pure strategies equilibrium points, with payoff (2, 7) and 
(7, 2) respectively, and one mixed strategy equilibrium point, with payoff 
(4$,4$). Consider now an objective chance mechanism that chooses one of three 
points A, B, C with probability l/3 each. After the point has been chosen, 
player 1 is told whether or not A was chosen, and player 2 is told whether or not 
C was chosen; nothing more is told to the players. Consider the following pair 
of strategies: If he is informed that A was chosen, player 1 plays his bottom 
strategy; otherwise, his top strategy. Similarly, if he is informed that C was 
chosen, player 2 plays his right strategy; otherwise, he goes left. It is easy to verify 
that this pair of strategies is indeed in equilibrium, and that it yields the players 
an expectation of (5,5) - a payoff that is outside the convex hull of the Nash 
equilibrium payoffs (listed above). 

The strategies in this equilibrium point are not stochastically independent, 
like the mixed or pure strategies appearing in Nash equilibrium points, nor are 
they totally correlated, like the strategies appearing in Example 2.4. It is 
precisely the partial correlation that enables the phenomenon we observe here. 

(2.8) Example. Consider the 2-person game given as follows: 

7,2 0, 3 0,o “~ 

This is obtained from the previous example by adding a middle row and a middle 
column, with appropriate payoffs. The strategy pairs (top, right) and (bottom, 
left), which previously yielded the equilibrium payoffs (2, 7) and (7,2), are no 
longer in equilibrium; the equilibrium property has been ‘killed’ by the addition 
of the new strategies. The mixed-strategy pair which previously yielded (43,4$) 
remains in equilibrium here; moreover we get a new pure strategy equilibrium 
point yielding (4,4), and a new mixed strategy equilibrium point yielding 
(2$$, 2%). These are all the Nash equilibrium payoffs. Thus we see that 43 is the 
maximum that either player can get at any Nash equilibrium point. 

The equilibrium point in ‘partially correlated’ strategies described in Example 
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2.7 remains in equilibrium here, and yields (5, 5) - more, for both players, than 
that yielded by any of the Nash equilibria. 

Though the random device needed in Examples 2.7 and 2.8 is conceptually 
somewhat more complex than the coin tosses (secret or joint) used in classical 
game theory and in Examples 2.4, 2.5, and 2.6, it is not at all difficult to con- 
struct. Given a roulette wheel, it is easy to attach electrical connections that will 
do the job. If the reader wishes, he can think of the players as jointly supervising 
the construction of the device, and then retiring to separate rooms to get the 
information and choose their strategies. It is advantageous for both players to 
build the device, to satisfy each other that it is working properly, and then to 
follow the above procedure. Once chosen, the procedure is of course self- 
enforcing; neither player will wish to renege at any stage. 

(2.9) Example. Consider again the 2-person O-sum game ‘matching pennies’ 
already treated in Example 2.1. Suppose that nature chooses one of four points 
A, B, C, or D, and that players 1 and 2 ascribe to these choices subjective 
probabilities (l/3, l/6, l/6, l/3) and (l/6, l/3, l/3, l/6), respectively. Under no 
condition is either player told which point was chosen, but player 1 is told 
whether the point chosen is in {A, B} or in {C, D}, and player 2 is told whether 
the point chosen is in {A, C} or in {B, D}. Consider the following strategy pair: 
Player 1 chooses top or bottom according as to whether he is told ‘{A, B}’ or 
‘{C, D>‘; player 2 chooses left or right according as to whether he is told 
‘{A, C}’ or ‘{B, D}‘. Like the strategy pair in Example 2.1, this yields each 
player an expectation of l/3, whereas the value of the game is of course 0 to 
both players; unlike the strategy pair of Example 2.1, this pair is in equilibrium. 

If, in a 2-person zero-sum game with value V, we permit correlation but rule 
out subjectivity, then the payoffs to all strategy pairs continue to sum to 0, and it 
is easy to see that the only equilibrium points have payoffs (u, -0). If we rule 
out correlation (i.e. permit mixed or pure strategies only) but permit subjectivity, 
we still get only (0, - u) as an equilibrium payoff; this follows from Proposition 
5.1. But if we permit both subjectivity and correlation, then this example shows 
that there may exist mutually advantageous equilibrium points, even in 2- 
person O-sum games. 

3. The formal model 

In this section, definitions are indicated by italics. 
A game consists of: 

(1) a finite set N(thepZayers); write N = (1, . . ., n); 
(2) for each i E N, a finite set Si (the pure strategies of i); 
(3) a finite set X(the outcomes); 
(4) a function g from the Cartesian product S = x isnSi onto X (the outcome 

function). 
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This completes the description of the game as such; formally, however, we still 
need some equipment for randomizing strategies, and for defining utilities and 
subjective probabilities for the players. Thus to the description of the game we 
append the following: 

(5) A set !2 (the states of the world), together with a o-field 29 of subsets of C? 
(the ecents) ; 

(6) For each player i, a sub-o-field Yi of 39 (the events in pi are those regarding 
which i is informed). 

(7) For each player i, a relation ki (the preference order of i) on the space of 
lotteries on the outcome space X, where a lottery on Xis a .%Y-measurable’ 
function from Q to X. 

The intuitive scenario associated with this model involves the following steps, 
to be thought of as occurring one after the other as follows: 

(i) Nature chooses a point w in a. 

(ii) Each player i is informed as to which events in pi contain CD. 

(iii) Each player i chooses 9 a pure strategy Si in Si . 

(iv) The outcome is determined” to be g(sr , . . ., s,). 

Returning to the formal model, let us define a randomized strategy (or simply 
strategy) for player i to be a measurable function si from (Q, 4,) to Si. Note 
that si must be measurable w.r.t. (with respect to) pi, not merely w.r.t. 37’; this 
means that i can peg his strategies only on events regarding which he is informed. 
[In the above scenario, strategies are chosen before step (ii).] 

Ifs is an n-tuple of strategies, then g(s) is a lottery on X. An equiZibrium point 
is an n-tuple s = (sr , . . ., s,) of strategies such that for all i and all strategies ci 

of i, we have 

g(s) Xi g(sl 9 * * *I si-l 3 ti, si+l 7 . * -9 sn>* 

We will assume : 

Assumption 1. For each i, there is a real function ui on X (the utility function 
of i) and a probability measure” pi on R (the subjectice probability of i) such 
that for all lotteries x and y on X, we have 

x kiyifandonlyif 

g ui(x(m)) dPi(m) 2 S,ui(Y(w)) dPi(w); 

moreover, pi is unique.r2 

8This means that for each x E X, the set {x = x} [i.e. the set {w:x(w) = x}] is in 9. 
9Without informing the other players. 
“‘Note that g does not depend on w; see subsect. d) of sect. 9. 
“~-additive non-negative measure withp@) = 1. 
I21 e if (u,‘, pi’) also satisfy the condition of the previous sentence, then p,’ = p,. Axiom . . 

systems leading to subjective probabilities usually imply the uniqueness as well. In our case, 



R.J. Aumann, Randomized strategies 75 

This assumption says that player i’s preferences between lotteries are governed 
by the expected utility of the outcomes of the lotteries. There are well known 

systems of axioms on the preferences & that lead to utilities and subjective 
probabilities; see for example Savage (1954) or Anscombe and Aumann (1963). 

Note that pi is defined on all of ~8, not only on .Yi ; that is, i assigns a proba- 
bility to all events, not only those regarding which i is informed. 

Two events A and B are i-independent if 

Pi(A n B) = Pi(A) 

intuitively, this means that i can get no hint about A from information regarding 
B. More generally, the events A,, . . ., A, are i-independent if 

pi(B, n . . . n &) = Pi(B1) - - -Pi(&) 

whenever each Bj is either Aj or Q. Events are independent if they are i-indepen- 
dent for all i. An event is i-secret if it is in $i, and for each j other than i, it is 

j-independent of all events in the a-field generated by all the 9, with k # i. 

Thus i is informed regarding each i-secret event, but players other than i can get 
no hint of it, even by pooling their knowledge. The family of i-secret events is 
denoted Yi. We assume 

Assumption II. For each i, there is a a-field WI of i-secret events such that 
each pi is non-atomic on pi. 

Intuitively, Wi can be constructed from a roulette spin conducted by i in 
secret. To obtain the non-atomicity, it is sufficient to assume that each player j 
assigns subjective probability 0 to each particular outcome;13 or equivalently, 
that there exist finite partitions of 0 into Wi-events whose pj-probabilities are 
arbitrarily small. Such non-atomicity assumptions are familiar in treatments of 
subjective probability. l4 Note that the roulette wheel need not be ‘objective’, 
i.e. the players may disagree about the probabilities involved. 

A strategy si of i is mixed if it is Yi-measurable, i.e. pegged on i-secret events. 
Strategies sl, . . ., s, are uncorrelated if for each s E S, the n events {sj = sj} are 
independent. Mixed strategies are uncorrelated, but the converse is false; 
strategies may be uncorrelated even though they are pegged on events regarding 
which all players are informed. 

An event A is called objective if all the subjective probabilities p,(A) coincide; 
in that case their common value is called the probability of A, and is denoted 

if we had wanted to minimize our assumptions we could have avoided assuming uniqueness, 
at this stage. Indeed, the uniqueness of pi follows from the exisrence of a non-atomic pi; 
and this is assumed in Assumption II. It is, however, more convenient to assume uniqueness 
already at this stage, since it enables us to refer immediately to ‘the’ subjective probability of 
player i, and this simplifies the entire discussion. 

13The set of outcomes is taken to be the unit interval (nor {0, 1, . . ., 36)). 
‘%f. Savage (1954, pp. 38-40, especially postulates P6’ and P6). 
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p(A). A strategy sI of i is called objective if it is pegged on objective events, i.e. if 
{Si = Si} is an objective event for all si E Si. The strategies occurring in the 
classical non-cooperative theory are precisely those that are both objective 
and mixed. 

An event or strategy is called subjective if it is not objective. 
The preference order of i determines his utility function on X only up to a 

monotonic linear transformation. Given a specific choice ul, . . ., u, of utility 
functions of the players, define the payofffunction of player i in the usual way; 
that is, ifs is an n-tuple of pure strategies (i.e. s E S), define 

and if s is an n-tuple of arbitrary strategies, define 

(3.1) Hi(s) = Ei(hi(s)) = ihi(s(w)) dPi(w), 

E, being the expectation operator w.r.t. the probability measure pi on Sz. Then 
g(s) > i g(l) if and only if Hi(s) > Hi(t). Write 

h = (hl, . . ., h,), 

H= (H,,...,H,). 

Any vector of the form H(s) is called a,feasiblepayofS; ifs is an equilibrium point, 
then H(s) is called an equilibrium payofi and if s is an equilibrium point in 
objective mixed strategies, then H(s) is an objective mixed equilibrium payoff. 

To orient the reader, we mention that Example 2.1 involves a pair of subjective 
strategies that is not in equilibrium; Examples 2.2 and 2.3 involve equilibrium 
points in mixed subjective strategies; and Examples 2.4 through 2.8 involve 
equilibrium points that are objective, but are not in mixed strategies (the 
strategies are in fact correlated, i.e. not uncorrelated). 

4. Preliminaries and generalities 

This section is devoted to the statement of several lemmas needed in the 
sequel, of an existence theorem for equilibrium points (Proposition 4.3), and of a 
proposition concerning the nature of the sets of feasible and equilibrium payoffs. 
We also discuss the notion of ‘correlation’. 

Though most of the results stated in this section are intuitively unsurprising, 
the proofs are a little involved (because of the relatively weak assumptions we 
have made). We therefore postpone these proofs to sect. 7, in order to get as 
quickly as possible to the conceptually more interesting results of the paper 
(Propositions 5.1 and 6.1). Readers who are interested only in the statements of 
these propositions (as opposed to the proofs) may skip this section. 

The first lemma asserts that objective mixed strategies can be constructed with 
arbitrary probabilities, i.e. that all the ‘classical’ mixed strategies appear in this 
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model as well. Define a distribution on S, to be a real-valued function on Si 
whose values are non-negative and sum to 1. 

(4.1) Lemma. Let i E N, and let ai be a distribution on Si. Then i has an 
objective mixed strategy si such that for all si E Si, 

p(Si = Si> = bi(Si)* 

Next, we have 

(4.2) Lemma. For any i in N, any event B, and any u between 0 and 1, there 
is an objective i-secret event with probability CL that is independent of B. 

Intuitively, Lemmas 4.1 and 4.2 depend on the existence of an objective 
roulette wheel that i can spin in secret. Thus they appear to go somewhat 
further15 than Assumption II, and it is of some interest that in fact, they follow 
from it. 

The next proposition asserts that the classical equilibrium points of Nash 
(1951) appear in this model as well. If c = (aI, . . ., a,) is an n-tuple of distribu- 
tions on S1, . . ., S, respectively, and if i E N, define 

F,(a) = ~~hi(s)~j,N~j(Sj) 3 

where the sum runs over all pure strategy n-tuples s = (sl, . . ., s,). The payoflto 
o is the n-tuple F(o) = (FI(o), . . ., F,,(o)). Recall that r~ is a Nash equilibrium 
point if for any i and any distribution Zi on Si, we have 

Fi(g) 2 Fi(a, 3 . . -9 ci-13 bi+lp . * 03 an); 

in that case F(o) is called a Nash equilibriumpayoff. 

(4.3) Proposition. The set of Nash equilibrium payoffs coincides with the set 
of objective mixed equilibrium payo#s. 

From this proposition and Nash’s theorem it follows immediately that there 
is an equilibrium point in every game. 

We now come to the concept of correlation. Set S, = AisN~i ; the members 
of S, are called public events. A continuous chance device, or roulette for short, 
is a sub-o-field W of R on which each pi is non-atomic; if W consists of public 
events, it is called apublic roulette. 

Parallel to Lemma 4.2, we have 

(4.4) Lemma. Assume that there is a public roulette. Then for any event B, 
and any c1 between 0 and 1, there is an objective public event with probability ~1 
that is independent of B. 

A public roulette can be used as a correlating device on which all players can 
peg their choices; this leads (cf. Example 2.4) to 

1 ?ke subsection e) of sect. 9 for a discussion of this point. 
F 
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(4.5) Proposition. Assume that there is a public roulette. Then the set of 
equilibrium payoffs and the set offeasible payoffs are both convex. 

It is not known whether the set of equilibrium-or feasible-payoffs is 
closed, whether or not one assumes the existence of a public roulette. 

Public roulettes enable all players to correlate their strategies, as in Example 
2.4. In Examples 2.5 through 2.9, the correlation is of a subtler kind. To describe 
the situation, let us call the triple consisting of the pair (Q, &?), the n-tuple 

(4 1 . . ., 9,), and the n-tuple (pi, . . ., p,) a randomizing structure. In Examples 
2.4, 2.5, and 2.6, the randomizing structure is of a particularly simple kind, 
which we call standard, and which is described as follows: 

For each T c N, let JT be a copy of the unit interval [0, l] with the Bore1 sets. 

Let (Q g) = x TcNJT, and let 7cT be the projection of Q on JT. For i in iV, call 
two members o1 and w2 of Q i-equivalent if nT(W1) = 7+(w2) for all Tcontaining 
i. Let .YI be the a-field of all events in R that are unions of i-equivalence classes. 
Let all the pi be Lebesgue measure on Q. 

Intuitively, the points of J, are outcomes of an objective roulette spin con- 
ducted in the presence of the members of T only. Note that all the probabilities 
are the same, so that subjectivity does not enter the picture. Even in this 
relatively simple case, though, it is not clear that the set of equilibrium payoffs 
is closed (it is convex by Proposition 4.5). However, when n = 2 and the 
randomizing structure is standard, then it is easily verified that the set of 
equilibrium payoffs is precisely the convex hull of the Nash equilibrium payoffs. 

In Example 2.7,the randomizing structure is not standard ; but the probabilities 
are objective, i.e. all the p, coincide. It is easily verified that whenever the proba- 
bilities are objective and there is a public roulette, the set of feasible payoffs is 
simply the convex hull of the pure strategy payoffs. In particular, this will be the 
case when the randomizing structure is standard. 

5. Equilibrium points in two-person games 

In Example 2.3 we showed that by pegging strategies on subjective events, it is 
possible to find a 3-person game with an equilibrium point in mixed strategies 
whose payoff is higher for all players than the payoff to any equilibrium in 
objective mixed strategies. In this section we show that this cannot happen in the 
case of 2-person games. 

(5.1) Proposition. Let G be a 2-person game,16 and assume that 

(5.2) for any event B, pi(B) = 0 if and only ifp,(B) = 0. 

Then for each equilibrium point s in mixed strategies, there is an equilibrium 
point t in objective mixed strategies such that H(s) = H(t). 

16Not necessarily O-sum. 
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Proof Let (Q, s2) be an equilibrium point in mixed strategies. Let t, be an 
objective mixed strategy for player 1 that mimics the way player 2 sees sl, i.e., 
such that for all pure strategies s1 of player 1, 

(5.3) &l = %> = P2{% = $11; 

such a strategy exists because of Lemma 4.1. Similarly, let tz be an objective 
mixed strategy for player 2 such that for all s2, 

(5.4) Pit, = sz} =p1{s, = sz}. 

Let s~~,s~~, . . . be the pure strategies that enter actively into sl, i.e., with 
positive p,-probability. Because s1 is in equilibrium, 

(5.5) Elhl(Slj, $2) = Hl(s13 s2) 

for allj. But from (5.2) it follows that the Slj are also precisely the pure strategies 
that enter actively into t, ; hence (5.5) yields 

(5.6) Hi@, , sz> = fG@, 3 4. 

Since s1 maximizes Hi (if 2 plays sZ), it follows from (5.6) that t, also does. But 
by (5.4), player 1 ascribes the same distribution to t, as to s2 ; therefore 

&(G, tz) = K(t,, SZ) = K(%, SZ), 

and furthermore, i, maximizes Hi if 2 plays t2. Similarly, 

and t, maximizes H, if 1 plays t, . Therefore (tr , tJ is an objective mixed 
equilibrium point with the same payoff as (sl, sz), and the proof of this proposi- 
tion is complete. 

It would have been reasonable to conjecture that this proposition remains true 
if both occurrences of the word ‘mixed’ are deleted. Example 2.9 shows that this 
is false. 

6. Two-person zero-sum games 

A game is called 2-person O-sum if n = 2 and if there are utility functions 
u1 and u2 for the players such that 

u,(x)+u,(x) = 0 

for all x E X. After adopting a specific such pair of utility functions, one defines 
the value of the game as usual. Specifically, Proposition 4.3 provides an equili- 
brium point in objective mixed strategies; by the minimax theorem, all such 
equilibrium points must have the same payoff, which is of the form (v, -u). 
Then v is called the value of the game. 
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(6.1) Proposition. Let G be a 2-person O-sum game with value v. Assume 

(6.2) There are outcomes x and y with q(x) > v > ul(y). 

(6.3) For each player i, there is a subjective event B, regarding which i is 
informed. 

Then there is a pair s of strategies such that 

(6.4) H,(s) > v, H&) > -v. 

Remark. The proposition is considerably easier to prove if one assumes that 

(6.5) there is a public subjective event B and there is a public roulette, 

To see this, assume without loss of generality that 

PI(B) > P,(B) 

(otherwise, use the complement of B). If C is a public event and 0 5 8 s 1, 
denote by 9C a public event such that 

plW) = OPT and p2W) = OPT; 

the existence of such a BC follows” from Lemma 4.4. From (6.2) it follows 
that there is a fl with 0 < p < 1 such that 

v = Pur(x)+(l -P)%(Y). 

ForO<Jc l,set 

Bd = Cl\~(Cl\B). 

Then for 6 sufficiently small, we have pl(Bg) > p2(B6) > p; hence if we let 
A = 8B’ for an appropriate 0, then 

(6.6) PI(A) > B ’ PZ(A)- 

Now define s as follows: Both players choose pure strategies leading to x, or 
both players use pure strategies leading to y, according as to whether A does or 
does not occur. Then (6.4) follows, and the proposition is proved under the 

assumption of (6.5). 

Proof of Proposition 6.1. In (6.2), let x = g(r, , rJ and y I g(tl , tz); then 

hl(rl, rz) > 0 > WI, tJ. 

Suppose first that hl(rl , tz) 2 u. Setting 

H*(s) = ah&, r2) + (1 --4hkl, tz> 

H&) = h(fl, rJ + Cl- 4hl(tl, t,>, 

171t also follows from the theorem of Lyapunov (1940) on the range of a vector measure 
We shall see in sect. 8 that Proposition 4.4 is itself proved via Lyapunov’s theorem; intuitively’ 
though, Proposition 4.4 is more transparent than Lyapunov’s theorem. 
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we find that for E > 0 sufficiently small, 

H*(E) > 0 > H*(E). 

Hence there is a B in [0, I] with 

1) = /3H*(E)+(1 -fi)H*(&). 

Now let A, be a subjective event in Y1 withp,(A,) > p > p&4,). The existence 
of such an event may be established as in the remark [cf. (6.6)], except that now 
the mapping C -+ 8C takes 9, into itself (rather than 91 n $z into itself), 
Lemma 4.2 (rather than 4.4) is used to prove the existence of BC, and B, is 
substituted for B. Again using Lemma 4.2, we obtain an objective 2-secret event 
AZ with probability E that is independent of A,. Define a strategy pair s by 
stipulating that si takes the value Yi or ti according as to whether A i does or does 
not occur. Then s is uncorrelated and satisfies (6.4). 

If h,(r,, t2) 5 v, the proof is similar, the roles of the two players being then 
reversed. This completes the proof of Proposition 6.5. 

Proposition 6.5 fails if it is only assumed that there is a subjective event of 
which at least one player is informed. For example, if in the 2-person O-sum 
game with matrix 

1 1 ‘II ------3 
2 0 

there is a subjective event in 9, but not in 9z, then there is no pair of strategies 
satisfying (6.4). In this game it is sufficient for (6.4) that there be a subjective 
event in 9,. In general, the proof of Proposition 6.5 shows that in any specific 
game, only one player need use a subjective strategy, while the other can use an 
objective one; but which player it is that uses the subjective strategy may depend 
on the game. 

It is perhaps worth noting that in Proposition 6.5, the strategies constituting s 
may be taken to be independent; indeed, the strategies constructed in the proof 
are independent. 

7. Proof of the propositions of sect. 4 

We start with a lemma that is basic to the proofs in this section. 

(7.1) Lemma. Let 9 be a roulette, and let B’, . . ., B’ be events. Then for 
any a between 0 and 1, there is an objective event in 9 with probability a that is 
independent of each of the B’. 

Proof. Consider the (1 +&z-dimensional vector measure p on (Q9p) 
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defined by 

&t) = P,(A), i=l ,*..,n, 

pkn+i(A) = pi(A n Bk), i = 1, . . ., n, k = 1, . . ., 1. 

That p is non-atomic follows from the non-atomicity of the pi on 3. By the 
theorem of Lyapunov (1940) on the range of a vector measure, the range of p is 
convex. Now 

and 
W) = (1, * * -5 1,P,(B’), * - .PP”W), - - .,Pi(N, - - *,P,@‘N 

/J(0) = (0, . . ., 0). 

Hence a,i@) is in the range of p, i.e. there is a set A in W such that p(A) = 
a,u(n). This means that p’(A) = a for all i and 

pi(A n Bk) = crpi(Bk) = pi(A 

for all i. The proof of the lemma is complete. 

Proof of Lemma 4.1. By induction on the number m of members si of Si for 
which pi > 0. Let W, be the i-secret roulette provided by Assumption II. 
As often in the case of inductive proofs, it is convenient to prove a somewhat 
stronger statement than is needed; here we show that 

(7.2) a strategy s1 can be chosen obeying Proposition 4.1, so that the events 

{si = si} are in gi. 

If m = 1 there is nothing to prove. Let m > 1, and suppose the proposition true 
for m-l. Let Si = {.St, . . ., Sy, . . .}, where cr,(si) > 0 if and only if j 5 m. 
By the induction hypothesis, there are disjoint objective events B’, . . ., Bmml 
such that p(Bj) = o,(s{)/(l -ai($ By Lemma 7.1 with W = pi, there is an 
objective i-secret event B” independent of each of B’, . . ., B”-l, such that 
p(B”) = 1 -a&$‘). Set A’ = Bj n B” for j < m, A” = QZ\Bm, and Ai = 0 for 
j > m; then A’ E Wi for allj. Define si by si(w) = s{ if and only if w E Aj. Then 
si satisfies (7.2). This completes the proof of Lemma 4.1. 

Proof of Lemma 4.2. Use Assumption II, and apply Lemma 7.1 with W = Wi 
and 1 = 1. 

Before proving Proposition 4.3 we need a lemma. 

(7.3) Lemma. Let (sl, . . ., s,,) be an n-tuple of strategies, and let s E S. For 
some i E N, suppose that all the sj exceptpossibily si are mixed. Then 

pi{s = S} = pi{Si = Si}pi(Sj = Sj forallj # l} 

= pi{S = Sl} * a * pi(S, = S,}. 
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Proof. W.1.0.g. let i = 1, and let Aj = (Sj = Sj} for allj; then 

{s = s} = Al n . . . n A,. 

Moreover, A, E 4, and Aj E Yj for j > 1. By definition of Sj, each Aj with 
j > 1 is l-independent of A,+l n . . . n A,. Hence 

PI(AZ n a. . n A,) = P~(&~P~(& n . . . n -4,) 

= *.. = PI(A,) . . . PI(AJ. 

Again by definition of ~j, each Aj with j > 1 is l-independent of 
A, n A, n . . . n Aj_ 1. Hence by the precious equation, 

pl(A, n A, n . . . n -4) = pl(Al n A, n . . . n An-ll~l(AJ 

= . . . = ~k4l~~Gb). . . pl(A,J = P,(A,~P,(-& n . . . n A,). 

This completes the proof of the lemma. 

(7.4.) Corollary. Let (sl, . . ., s,,) be an n-tuple of mixed strategies. Then the 
si are independent. 

Proof of Proposition 4.3. Ifs = (sl , . . ., s,,) is an objective mixed equilibrium 
point, then for each strategy ti of i, 

(7.5) Hi(S) 2 Hi(Sl,...,Si-l,ti,Si+l,...,S,). 

In particular, this holds when ii is itself objective and mixed. From this it 
follows that H(s) is a Nash equilibrium payoff. 

Conversely, if F(a) is a Nash equilibrium payoff, then from Lemma 4.1 and 
Corollary 8.4 it follows that there is an n-tuple s = (sl, . . ., s,) of objective 
mixed strategies with payoff F(a) that is in equilibrium against deviations that 
are restricted to objective mixed strategies; i.e. that (7.5) holds when ti is an 
objective mixed strategy. In particular (7.5) holds when ti is ‘pure’, i.e. takes on 
a particular value in Si with probability 1. To show that s is an equilibrium in our 
sense, we must show that (7.5) holds when pi is any strategy of i, i.e. that i cannot 
‘correlate into’ the strategies of the other players. Intuitively this follows from 
the fact that the Sj are mixed, i.e. pegged on j-secret events; formally, though, 
we must show that our definition of secrecy does indeed yield this result. 

W.1.o.g. let i = 1. Write S’ = S, x . . . x S,, and s’ = (sz, . . ., s,). 

For any s1 in S, , write 

H,(s,, ~‘1 = &(h(+ 3 0). 

Since (7.5) holds when ti is ‘pure’, it follows that for all s1 E S, , 

(7.6) H,(s,, s’) s H,(s). 
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Then for an arbitrary strategy t, of 1, it follows from Lemma 7.3 and (7.6) that 

HI@, 2 4 = 2 PI #I 9 s’) = swc9 

Proof of Lemma 4.4. Apply Lemma 7.1 with 1 = 1, taking W to be a public 
roulette. 

Proof of Proposition 4.5. We first consider the equilibrium payoffs. Let s and t 
be equilibrium points, and let 0 5 LY 5 1. Let 9%’ be the public roulette. By 
Lemma 7.1, there is an objective event A in W with probability a that is 
independent of all the events {s = s> and {t = s} for all s in S. Now let each 
player i play the strategy Yi defined as follows: if A occurs, play si ; if not, play 
ti. In other words, i plays a given pure Si in Si if and only if the event 

(7.7) [A n {Si = Si}] U [(R\A) CI {ti = Si}] 

occurs. This is indeed a strategy, since the event (7.7) is in the a-field 9i. It may 
then be verified that r is an equilibrium point and that 

(4.12) H(r) = aH(s)+(l- cz)H(t), 

so the set of equilibrium payoffs is convex. The proof that the set of feasible 
payoffs is convex is similar, so the proof of Proposition 4.5 is complete. 

8. A posteriori equilibria 

We would like to view an equilibrium point as a self-enforcing agreement. In 
the scenario described in sect. 3, if the players agree on an equilibrium point s 
before stage (ii) (the stage at which information about o is received), no player 
will want to renege [i.e. choose a pure strategy other than si(o)] after stage (ii). 
More precisely, when making the agreement each player i assigns subjective pro- 
bability 0 to the possibility that he will want to renege after receiving his 
information. 

There is, however, a difficulty here. Though the subjective probability of 
wanting to renege is 0, this possibility is not entirely excluded; more important, 
it is quite possible that a player assigns positive probability to a &&rent player’s 
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wanting to renege. In that case the equilibrium point can no longer be considered 
self-enforcing; the possibility of somebody wanting to renege is not negligible. 
This is exactly the phenomenon that is responsible for the equilibrium payoff 
of (1, 1) in Example 2.2. 

To legitimize the view of an equilibrium point as a self-enforcing agreement, 
one can either 

(a) make assumptions under which the possibility of some player wanting to 
renege is assigned probability 0 by all players; or 

(b) construct a model in which it is possible to define equilibrium points at which 
no player ever wants to renege. 

Specifically, we may assume that though the players may have different sub- 
jective probabilities, the concept of ‘impossible’ or ‘negligible’ is the same for all. 
That is, if p,(B) = 0 for one i then p,(B) = 0 for all i; in other words, the pi are 
absolutely continuous with respect to each other. [For the case of two players, 
this is the same as (5.2).] In that case, the possibility that any player will want 
to renege is negligible for all players, and so can be safely ignored. 

Alternatively, one could replace the concept of equilibrium point by that of 
‘a posteriori equilibrium point’ - a strategy n-tuple from which no player i ever 
wishes to move (unilaterally), even after receiving his information about nature’s 
choice of o. Formally, this can be done by adding the following to the 7 items 
that define a game (see sect. 3). 

(8) For each player i and each o in Q, a relation XT on the space of lotteries 
on X (the preference order of i given his information about o). 

The relations &r will also be called a posteriori preferences. An a posteriori 
equilibrium point is then defined to be an n-tuple s of strategies such that for all 
o, all i, and all t i in Si, we have 

g(s) XY g(sl 9 . . .T si-l 3 si+l 9 * * *9 sn). 

Under appropriate assumptions one can then prove the following results : 

(8.1) Theorem 5.1 holds without the hypothesis of mutual absolute continuity 
(5.2), if ‘equilibrium point’ is replaced by ‘a posteriori equilibrium point’. 

(8.2) If all the pi are mutually absolutely continuous, then the set of payoffs to 
a posteriori equilibrium points coincides with the set of payoffs to equi- 
librium points. 

The proof of (8.1) is like the proof of Proposition 5.1, except that a pure strategy 
sij is now said to ‘enter actively’ into the strategy si if there is some o for which 
si(w) = sii, even if i assigns probability 0 to the set of all such o. Note that 
from (8.1) it follows that (1, 1) is not an a posteriori equilibrium payoff in 
Example 2.2. 
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One can also prove a posteriori results that are analogous to Propositions 4.3 
and 4.5. 

A logically complete development of the a posteriori theory involves rewriting 
Assumptions I and II, redefining many of the concepts defined above (such as 
i-secrecy and mixed strategy), and making assumptions that relate preferences 
to a posteriori preferences. ‘* The development therefore becomes somewhat 
lengthy. In view of result (8.2), it does not seem worthwhile, at least at this stage, 
to impose a formal description of the a posteriori theory on the reader. 

9. Discussion 

a) The fact that differing subjective probabilities can yield social benefit is 
perhaps obvious. Wagers on sporting events, stock market transactions, etc., 
though they can be explained by convexities in utility functions, can also be 
explained by differing subjective probabilities; and in reality, the latter explana- 
tion is probably at least as significant as the former. Correlation of strategies is 
basically also a fairly obvious idea. It is all the more surprising that these ideas 
have heretofore not been more carefully studied in game theory in general, and 
in the context of randomization in particular. 

b) Our more substantive results can be broadly divided into two classes: 
Those having to do with equilibrium points (notably Examples 2.2 through 2.9, 
and Proposition 5.1), and those having to do with feasible points (notably 
Example 2.1 and Proposition 6.1). The former belong to the ‘non-cooperative’ 
theory, the latter to the ‘cooperative’ theory. An understanding of this distinction 
rests on an understanding of the concepts of communication, correlation, com- 
mitment, and contract. Let us examine these concepts in the context of this paper, 
noting in particular how they are related to ‘cooperative’ and ‘non-cooperative’ 
games. 

Recall that in step (ii) of the scenario of sect. 3, each player i is given his 
information about nature’s choice of w. By communication we mean communica- 
tion between the players before step (ii). Strategies of the players are correlated 
if they are statistically dependent. A commitment is an irrevocable undertaking 
on the part of a player, entered into before step (ii), to play in accordance with 
a certain strategy. l9 A contract (or ‘binding agreement’ or ‘enforceable agree- 
ment’) is a set of commitments simultaneously undertaken by several players, 
each player’s undertaking being in consideration of those of the others. 

leThe a posteriori preferences of player i can be derived from his a priori preferences, but 
(like conditional probabilities) only for gi-almost all w. Of course, as we saw above, it is 
precisely the sets ofpi-measure 0 that cause the difficulty. 

IgOne can imagine broader meanings for the word ‘commitment’, in which the undertaking, 
though irrevocable, need not be to play in accordance with a certain strategy. For example, 
it could be to play in accordance with one of a certain set of strategies, or it could be contingent 
on the choice of w or on other commitments. We have not found it necessary to complicate 
the discussion by considering these broader meanings. 
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Of the four terms just introduced, only ‘correlation’ has a formal meaning in 
the framework of our formal model (see sect. 3, where ‘uncorrelated’ is defined). 
The other three refer not to the model itself, but to how the model is to be 
interpreted. 

If the players can enter into commitments and contracts, we have a cooperative 
game. If not,20 we have a non-cooperative game. Formally, cooperative and non- 
cooperative games are described in the same way, namely by the model of sect. 3. 
The difference between the two types of games lies not in the formal description 
itself, but in what we have to say about it -what kind of theorems we prove 
about it. 

In a non-cooperative game, at each point of time, each player acts so as to 
maximize his utility at that point of time, without taking previous commitments 
into account. Therefore the only strategy n-tuples of interest are those that are in 
equilibrium (cf. sect. 8). On the other hand, in the cooperative theory the players 
can enter into binding agreements before step (ii); therefore a strategy n-tuple 
does not have to be in equilibrium to be of interest, and one is led to study all 
feasible n-tuples. 

In sect. 8 we saw that equilibrium points can be viewed as self-enforcing 
agreements. This is to be contrasted with feasible points that are not in equili- 
brium; if the players agree before step (ii) of the scenario to play such a point, 
some of them will wish to renege after step (ii). Therefore a contract - and an 
external enforcement mechanism - are required to make such agreements stick. 

Thus we see that both the non-cooperative and the cooperative theory involve 
agreement among the players, the difference being only in that in one case the 
agreement is self-enforcing, whereas in the other case it must be externally 
enforced. Agreement usually involves communication, so that we conclude that 
communication normally takes place in non-cooperative as well as cooperative 
games. 

As for correlation, this is sometimes taken as a hallmark of cooperative games. 
In our view, this is a fallacy; correlation may or may not be possible in a given 
game, whether or not it is cooperative. Examples 2.4 through 2.9 show that 
correlation may be involved in agreements that are not enforceable but are self- 
enforcing, so that it can be significant even in a non-cooperative game. On the 
other hand, even in a cooperative game it may be impossible to correlate, for 
example because the players are in different places and cannot observe the same 
random events; but nevertheless they can negotiate and even execute a contract, 
for example by mail. 

Equilibrium points can be viewed in ways other than as self enforcing agree- 
ments. For example, they can be viewed as strategy n-tuples with the property 
that if, for some extraneous reason, they ‘come to the fore’ or are suggested to 
the players, there will be no tendency to move away from them. Alternatively, 

“‘These are the two extremes. In many situations, some commitments and contracts are 
possible, others not. 
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they can be viewed as providing only a necessary condition for a satisfactory 
theory of non-cooperative games : if a theory is to ‘recommend’ a specific strategy 
to each player, then the n-tuple of the recommended strategies must be in 
equilibrium. To make sense, these points of view do not require pre-play com- 
munication. But even without communication, correlation is by no means ruled 
out. Thus in Example 2.4, the payoff (3/2, 3/2) is no more the result of com- 
munication than the payoff (2, 1). All that is needed to achieve (3/2, 3/2) is that 
a fair coin be tossed, or a similar random device be actuated, and that the out- 
come be communicated to both players before the beginning of play. If that is 
done, the payoff (3,2, 3/2) becomes a full-fledged equilibrium payoff, con- 
ceptually indistinguishable from (2,l); and that is so even in the absence of 
communication. 

Of course, communication may be important to choose a particular equilibrium 
point from among all those whose payoff is (3/2, 3/2). But the problem of choos- 
ing a particular equilibrium point has nothing to do with correlation - it exists 
in most non-cooperative games. Thus in example 2.4, even without the oppor- 
tunity for correlation, it is difficult to see why one equilibrium point rather than 
another should be chosen. This, incidentally, is one reason for preferring to view 
an equilibrium point as a self-enforcing agreement. 

Finally, a word about the distinction between ‘commitment’ and ‘contract’. 
Unlike a contract, a commitment is an individual undertaking; it may, for 
example, consist of giving irreversible instructions to an agent or a machine to 
act in accordance with a given randomized strategy, or it may involve an obliga- 
tion to pay a large indemnity if one does not act in accordance with this strategy. 
If there is no such agent or machine, or nobody to enforce collection of the 
indemnity, it may be impossible to undertake commitments, and we will have a 
non-cooperative game. Commitments are important in game theory even when 
contracts are impossible [see for example Aumann and Maschler (1972)]. 
However, when it is possible to make commitments as well as to communicate, 
it should usually be possible to make contracts as well. Moreover, by permitting 
commitments one opens the door to pre-emptive tactics (such as threats) in the 
pre-play stage, which may easily lead the outcome away from equilibrium. Thus 
we feel that when one has admitted commitments, one has already gone much 
of the way from the non-cooperative to the cooperative theory. 

To sum up: The cooperative theory requires communication as well as com- 
mitment and contracting power; and it is a priori concerned with all feasible 
outcomes. The non-cooperative theory requires that there be neither commit- 
ment nor contracting power, but it permits communication; and it is concerned 
with equilibrium outcomes. Both theories can accommodate correlation, but do 
not require its presence. 

c) It is interesting that those of our results that belong to the ‘cooperative’ 
theory are concerned with 2-person O-sum games, which have traditionally been 
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considered the epitome of non-cooperative games; it has been asserted that such 
a game can only be played non-cooperatively, since it can never be worthwhile 
to reach an agreement concerning it. Our results show that this is incorrect. 
It is not true that a 2-person O-sum game is strictly competitive, i.e. that the 
preferences of the players are always in direct opposition;2’ both players can 
gain by the use of a binding agreement. Thus 2-person O-sum games can profit- 
ably be played cooperatively. 

On the other hand, when correlation is ruled out, the introduction of subjective 
strategies creates no new equilibrium payoffs [see (5.1)]. This indicates that 
subjectivity alone (without correlation) at least does not affect the non- 
cooperative theory of 2-person O-sum games. However, we must be careful 
before reaching even this modest conclusion. The arguments for the use of 
minimax strategies, as presented by von Neumann and Morgenstern (1953), are 
of two kinds : the equilibrium arguments, which they ($17.3) call ‘indirect’, and 
what they ($14, §17.4- $17.8) call ‘direct’ arguments.22 The indirect or equili- 
brium arguments are of course not affected by the introduction of subjectivity. 
But it is the direct arguments that have traditionally been used to support the 
contention that the theory of 2-person O-sum games is conceptually more 
satisfactory than that of more general games. To a certain extent, these direct 
arguments are affected; implicitly, they depend on the strictly competitive 
character of the game, which as we know is removed by subjectivity. 

d) It must be stressed that the chance elements of our model- the space 
(Q g) and the cr-fields si - are used for purposes of randomization only. 
Nature’s choice of a point w in Q does not directly affect the outcome of the 
game; the outcome function g does not depend on w. This model is therefore 
quite different from extensive game models in which chance makes ‘moves’ that 
affect the outcome; here chance is only ‘made available’ to the players for 
purposes of randomization. [See also subsection g) below.] 

e) Our use of the terms ‘subjective’ and ‘objective’ is a little different from 
the usual. The term ‘subjective’ often signifies a personalistic definition of 
probability, based on preferences, such as that of Savage (1954), whereas 
‘objective’ signifies a physical (i.e. frequency) definition.23 This is not the dis- 
tinction being made here. Here the distinction is based solely on whether the 
players in the game do or do not agree about the numerical value of the 
probability in question.24 

z’Nevertheless, even after the introduction of subjective strategies, the game remains 
‘almost strictly competitive’ in the sense of Aumann (1961). 

22These are called ‘guaranteed value arguments’ by Aumann and Maschler (1972). 
‘%f. Anscombe and Aumann (1963), where personalistic and frequency probabilities were 

called ‘probability’ and ‘chance’ respectively. 
z4The fact that they may disagree forces us to adopt a personalistic definition of probability 

for at least some events; but there is nothing to prevent us from adopting a physical definition 
for other events (e.g. roulette spins) on whose probabilities the players agree. Hybrid systems 
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f) In this paper we have extended the theory of games in strategic (i.e. normal) 
form by the consideration of subjective events. A parallel extension is possible 
for the theory of games in extensive form. Basically, such an extension would 
consist of replacing the probabilities now appearing in the extensive form 
[Kuhn (1953)] on chance moves by vectors of probabilities, with one component 
for each player. The definition of ‘strategy’ remains unchanged; the definition of 
‘payoff’ is modified only in that one uses the different probabilities on the chance 
moves in calculating the payoffs for the different players. It may be verified that 
the basic theorems [Kuhn (1953)] of extensive game theory - namely the theorem 
on pure strategy equilibrium points in games of perfect information, and on 
behavior strategies in games of perfect recall - go through in this case as well. 

One immediate application of this remark is to the theory of Harsanyi (1967, 
1968) of games of incomplete information. Harsanyi has shown that in what he 
calls the ‘consistent case’, a game of incomplete information in strategic form 
corresponds to a certain game of complete information in extensive form. In 
the ‘inconsistent case’, there is no such correspondence. However, if one extends 
the definition of extensive games in the way indicated above, then the inconsistent 
case can be taken care of in essentially the same way as the consistent case. 

g) An alternative approach to that of this paper would be to introduce the 
possibilities for correlation and subjective randomization explicitly into the 
extensive form of the game. This would mean starting the game with chance’s 
choice of a point in 0, and then giving each player i that information which is 
‘his’ in accordance25 with the o-field 9i. The strategic form of this enlarged 
game could be calculated as indicated under f) above; the Nash equilibrium 
points of the enlarged game correspond to the equilibrium points, as defined in 
this paper, of the original game. Thus in the appropriate context, our equi- 
librium points are special cases of Nash equilibrium points. One difficulty with 
this approach is that it would lead to an infinite extensive game, since IR is 
infinite. But this is by no means an insuperable difficulty; models have been 
studied that are entirely adequate to cover such a situation [Aumann (1964)]. 
We did not construct our model in this way for a number of reasons. First, none 
of the examples or propositions would have been simplified by such a procedure; 
on the contrary, the extensive form is clumsy to work with, and the mathematical 
treatment would presumably have been more complex. Second, one usually 
thinks of the extensive form as representing the originally given rules of the game. 

in which the two kinds of probability exist side by side, have been investigated; cf. Anscombe 
and Aumann (1963). On the other hand, a purely personalistic view, such as Savage’s, is also 
perfectly satisfactory for the purposes of this paper. Incidentally, if one does adopt such a 
purely personalistic view, then an a priori assumption on the existence of objective roulette 
wheels loses its intuitive attractiveness; thus the fact that Lemmas 4.1 and 4.2 follow from 
Assumption II gains in significance (see the discussion after the statement of Lemma 4.2). 

ZSThe information sets of i immediately after chance’s choice would be those subsets B 
ofRsuchthatforallAinY,,eitherBn A = @orB C A. 
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In that case extraneous random events, which do not directly affect the outcome 
of the game, do not belong in the extensive form, - one does not introduce all the 

possibilities for objective mixing explicitly into the game either [see subsect. e) 
above]. 

II 

0.0 0.0 

Original game 

chance 

2,1 0.0 o,o 12 ZJ 

Modified game 

Fig. 1 

w 0.0 12 

h) It is nevertheless useful to point out how some of our examples involving 
correlation look in an extensive framework. Example 2.4 may be restated as 
follows: Suppose we add a move at the beginning of the game in which chance 
simply announces the results of a coin toss; no other change is made in the game 
(see fig. 1). One would have thought that this could not possibly effect an 
essential change in the game. But in the classical theory of Nash (1951), it does; 
(3/2, 3/2) becomes the payoff to an equilibrium point, whereas it was not one 
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before. Similarly if chance announces the result of a roulette spin, every point 
in the interval connecting (2, 1) to (1,2! becomes an equilibrium payoff, whereas 
of these points, only the end points were equilibrium payoffs before. As we said 
in sect. 2, all this appears already in Harsanyi and Selten (1972). But examples 
2.5 and 2.6 can be treated in a similar manner. Here one must add a move in 
which chance tosses a fair coin and informs players 1 and 2 -but not player 3 - 
of the outcome. Again, one would have thought that the addition of such a move 
could not possibly affect the game in any essential manner. But it adds a Nash 
equilibrium point with payoff (2,2,2), whereas in the original game no player 
could get more than 1 at any Nash equilibrium point. Examples 2.7 and 2.8 may 
be treated similarly. 

i) The phenomena in Examples 2.1 and 2.3, which are the basic examples 
regarding subjective probabilities, do not depend on each player knowing the 
other players’ subjective probabilities precisely. Thus in Example 2.1, it is 
sufficient that both players know that players 1 and 2 ascribe to D probabilities 
that are > l/2 and < l/2 respectively; in that case it will already be worthwhile 
to enter into a binding agreement. A similar remark holds for Example 2.3, in 
which it is sufficient that players 1 and 2 ascribe to D subjective probabilities 
that are approximately 314 and l/4 respectively (the precise limits of the approxi- 
mation are easily calculated). 

Of course there is no particular reason to treat subjective probabilities 
differently from utilities - if we assume that the players’ utilities are known to 
each other, we may as well assume the same for the subiective probabilities. The 
above remark only points out that precise knowledge is not crucial. Situations 
in which the players’ utilities and/or subiective probabilities are not known to 
each other can be treated by the methods of games of incomplete information 
[Harsanyi (1967, 1968)]. 

j) The view is sometimes held that when people have different subjective 
probabilities for the same event, this can only be due to differences in the 
information available to these people. Such a view has been eloquently set forth 
by John Harsanyi (1968, §16), and we will call it the Hurwzyi doctrine. Suppose, 
for example, that players 1 and 2 have subjective probabilities 2/3 and l/3 
respectively that a given horse A will run faster than another horse B in a given 
race. One could simply say that the subjective probabilities are different and 
leave it at that. But one could also imagine that both players previously had a 
uniform prior on the probability p that A beats B; that 1 had seen A beat B in 
one race, and 2 had seen B beat A in another race. Harsanyi’s view is that differ- 
ences in subjective probabilities can always be accounted for in such a fashion.26 

The holders of such a view would probably consider the approach of this 

26Though Harsanyi (1968) does not state this position in such absolute terms, there is 
little doubt that that is his belief. 



R.J. Aumann, Randomized strategies 93 

paper invalid. Suppose that in Example 2.1, D is the event ‘horse A beats horse 

B’. Suppose further that each player knows that the other has observed exactly 
one previous race. Now in our context we assume that each player knows the 
other’s probability for D. But in that case, the very knowledge of the other 
player’s probability will cause revision of each player’s own probability. The 
result of this revision will necessarily be p,(D) = p,(D) = l/2, so that the 
previously ‘subjective’ probabilities become ‘objective’. 

But there is also another possibility, namely that each player has made 
several observations, and that these observations lead the players to assign 
probabilities 213 and l/3 respectively to D. For example, 213 would be 
the result of 3 wins for A and 1 win for B, as well as 1 win for A only. Though 
the players may know each other’s probability, they may not know on precisely 
what observations it is based. Thus each player would not know if his own 
information is or is not more reliable than the other player’s, and might be 
inclined to stick with his own information. Of course some revision of proba- 
bilities would certainly be called for even in such a case; but whether such a 
revision must always ultimately lead to equal probabilities for D is not clear. 

In any event, under the Harsanyi doctrine cases of differing subjective 
probabilities known to ail players either do not occur, or if they do occur, they 
should be treated by the methods of games of incomplete information. Basically, 
therefore, that part of this paper dealing with subjective randomization assumes 
that different people can have irreconcilable priors - precisely what Harsanyi 
calls the ‘inconsistent case’. Most workers in the field wouid probably agree that 
the inconsistent case can occur, and we are perfectly willing to let our contribu- 
tion stand or fall on this basis. 

But there is also another argument for our theory, an argument based on 
Savage’s ‘Small Worlds’ theme (1954, $2.5 and $5.5). Suppose we are faced with 
a game like that in Example 2.1 or 2.3, and wish to apply the Harsanyi doctrine; 
this leads to an analysis by means of the theory of games of incomplete informa- 
tion. Now such an analysis will in general involve an enormous expansion of the 
formal description of the game. It may be necessary to use a population of many 
millions of types for each of the 2 or 3 players.” The resulting game will in 
practice be completely unanalyzable. We suggest that an equally valid practice 
would be to accept apparent differences in subjective probabilities at their face 
value, even if one adheres to the Harsanyi doctrine. 

This question is not too different from the question ‘What is an outcome? 
(cf. Savage, op. cit.). Suppose we are playing a given matrix game for money. 
The normal procedure would be to assign utilities to the amounts of money 
involved, and then solve the game using any of the standard theories. But a sum 
of money is not in itself valuable; it depends on how one wishes to use it. So to 
analyze the game properly we would have to decide on how to invest the money 

27‘ . . . eoery possible combination of attributes . . . will be represented in this population . . .’ 
[Harsanyi (1968, p. 176) italics in the original]. 

G 
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or what consumer article to buy with it. But even the investment or the con- 
sumer article itself is often only a means to an end; and this ‘end’ in turn, is 
often again largely a means. Following through all this in a formal fashion, even 
if it were theoretically possible, would make the simplest of games totally un- 
manageable. So one isolates the given game as a ‘small world’, using the utilities 
to sum up all that follows. We suggest that even if in principle one accepts the 
Harsanyi doctrine, one can live with differing subjective probabilities as a 
summation of the complex informational situation in which the players find 
themselves. 

k) We end this paper with a discussion of two possible objections that could 
be raised against the idea of subjective strategies. To fix ideas, consider the 
situation of two politicians, Adams and Brown, running for the office of mayor 
of their town. Each one has a number of (pure) campaign strategies open to him. 
Each pair of such strategies yields a probability for the election of Adams, the 
complementary probability being that of the election of Brown; for simplicity, 
assume that these probabilities are objective. This is a classical example of a 
constant-sum game, since there are only two possible final outcomes; the utilities 
of Adams and Brown may thus be taken equal to the respective success proba- 
bilities, and the sum is therefore always constant ( = 1). 

What is now being suggested is that Adams and Brown use randomized 
campaign strategies that are pegged on events for which they have different 
subjective probabilities. These events may be entirely disconnected with the 
political campaign in question; to take an extreme example, if the candidates are 
Americans, they may peg their choices on the outcome of a cricket match in 

England. 
One objection that may be raised to this procedure is that whereas a prudent 

person might be willing to use mixed strategies based on a coin toss with known 
objective probabilities, he would hesitate to risk his career on the outcome of an 
event of which he knows little or nothing. Adams and/or Brown may know little 
or nothing about cricket in England; how can we suggest that they peg their 
decisions on it? 

Though this objection has great intuitive force, it is not consistent with the 
theory of subjective probability. According to this theory, people have subjective 
probabilities for any event, no matter how well or ill they are informed about it; 
of course the probability will depend on the available information, but there will 
always be a probability. Once this probability is determined, it enters the decision- 
making process in all respects like an objective probability. A certain amount of 
introspection will, moreover, support the conclusions of the theory despite their 
apparent strangeness. Suppose Adams is asked to choose between winning the 
election with objective probability l/3 and winning the election if the Manchester 
cricket team beats the Liverpool team. If he knows nothing at all about the 
cricket situation, and subscribes to the ‘principle of insufficient reason’, he might 
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well choose the second possibility, despite - or rather because of - his lack of 
information. The same point may similarly be made by considering the situation 
in which it is not a pre-determined coin that is tossed, but rather a biassed coin 
that is picked out of a hat with a wide distribution of biasses; in such a situation, 
the utility theory of von Neumann and Morgenstern (1953) still applies, 
although in a certain sense the user knows much less about the coin. 

1) Another possible objection runs as follows: Both players realize that the 
game is basically zero sum, since in the last analysis, only one of them can win 
the election. Both know it is an illusion to think that both can gain more than 
the value of the game; this illusion is based on what might be called a mistaken 
appraisal of probabilities by at least one of them (and possibly both). Would 
they not be more prudent, then, to guarantee to themselves the objective value 
of this game by the use of objectively randomized strategies, thus avoiding all 
possible ‘mistakes’ ? 

On one level, this question can be answered simply by saying that each side 
is here taking advantage of what it sees as the other side’s mistake, and that this 
is perfectly rational. On a deeper level, though, it is incorrect to speak of 
‘mistakes’ at all. Each side has well-defined systems of preferences, each perfectly 
consistent in itself, and these preferences are not directly opposed. Thus, it is 
incorrect to say that the situation is ‘basically zero sum’. This situation is 
analogous to a situation in which the players’ preferences as between pure out- 
comes are directly opposed, though between mixtures of outcomes they may 
not be; such a game is not usually called zero-sum or even ‘strictly competitive’. 

Consider, for example, the game 

L R 

I I 

Preference-wise, this matrix has a saddle point at (T, R). It is, however, not 
constant sum, since a contract to play (T, L) and (B, R) with probability l/2 
each is preferred by both players to the saddle point. Rather than signing the 
contract before tossing a coin, one could imagine that the coin has already been 
tossed, but that the players are not informed of the outcome. Paralleling the 
above argument, one could then say that both players realize that the game is 
‘basically strictly competitive’, since the preferences as between pure outcomes 
are directly opposed. Thus both know that it is an illusion to think that both can 
gain more than the 2 units assigned at the saddle point; this illusion is based on 
a mistaken appraisal of how the coin actually fell. Would they not be more 
prudent to guarantee a sure payoff of at least 2? 

Certainly if they knew how the coin fell, there would be no point in using it to 

G’ 
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mix outcomes; but in the current situation, they both prefer the l/2-1/2 com- 
bination of (5”, L) and (B, R) to the saddle point (T, R). This agreement is there- 
fore a perfectly natural one in spite of the fact that one of the players must 
necessarily lose out. Completely similar reasoning holds in the case of a game 
that is zero-sum in utilities, but that can be made non-strictly competitive by 
the appropriate use of subjectively randomized strategies. 
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