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1. Introduction

The modern economic analysis of optimal taxation takes two distinct forms. One line

of research emphasizes the effects of taxation on capital accumulation (see Chari and Kehoe

(1999) for an excellent survey). The basic assumption is that a government faces a dynamic

Ramsey problem: it needs to fund a stream of purchases over time using linear taxes on

capital and labor income. The hallmark result of this literature is that it is optimal for the

government to set capital income tax rates to zero in the long run (Chamley (1986), Judd

(1985)).

A second branch of the literature is based on the work of Mirrlees (1971, 1976). Here,

the government has access to nonlinear taxation. However, agents have fixed heterogeneous

skill levels that are unobservable to others. The goal of taxation in this setting becomes (in

part) one of transferring resources from the highly skilled to the less skilled in an efficient

way, given that incomes but not skills are observable. An important lesson of this literature

is the uniform commodity taxation theorem of Atkinson and Stiglitz (1976, 1980). It states

that if utility is weakly separable between consumption and leisure, then, despite the presence

of the incentive problem, it is socially optimal for all consumption goods to be taxed at the

same rate.

In this paper, we re-examine the zero capital taxation and uniform commodity tax-

ation theorems in the context of a large class of dynamic economies. We enlarge the class

of economies previously studied in two ways. We allow for multiple types of labor; corre-

spondingly, agents’ skills are multi-dimensional. More importantly, we allow skills to evolve

stochastically over time. We impose no restriction on the evolution of skills except that it

must be independent across agents.



Besides enlarging the class of economies, we enlarge the choice set of the taxation

authority. We do not restrict attention to linear tax schemes (a la Ramsey) or piecewise

differentiable schemes (a la Mirrlees). Instead, we allow the taxation authority to use arbitrary

nonlinear tax schemes; in other words, it can achieve any incentive-compatible and physically

feasible allocation.

This general class of environments is technically challenging: it features both dynami-

cally evolving private information, and a multiple-dimensional type space. There is no known

way to develop a full characterization of the socially optimal allocations in this environment.

In particular, we might well obtain misleading answers if we were to simply substitute first-

order conditions for the large number of incentive constraints, and then apply Lagrangian

methods.1

In the first part of the paper, we reconsider the zero capital income taxation theorem.

We specialize the environment to have only one consumption good. We assume also that

utility is additively separable in consumption and leisure. We prove that in a Pareto optimal2

allocation, individual consumption satisfies a “reciprocal” intertemporal first order condition

of the kind derived by Rogerson (1985a):

1/u0(ct) = (βRt+1)−1Et{1/u0(ct+1)}

Here, Rt+1 is the marginal return to investment, u is the agent’s momentary utility function,

and β is the individual discount factor.

1Rogerson (1985b) provides sufficient conditions for the validity of the first-order approach in a static
principal-agent context. However, there are no known generalizations of his conditions in dynamic settings.

2By Pareto optimal, we mean Pareto optimal relative to the set of all allocations that are both incentive-
compatible and physically feasible.
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This “reciprocal first order condition” has an important consequence. If individual

marginal utility u0(ct+1) in a Pareto optimum is random from the point of view of period t,

then from Jensen’s inequality we know that:

u0(ct) < βRt+1Etu0(ct+1) (1)

(The incentive problem means that it is typically efficient for individual consumption to be

stochastic: The planner needs to offer more consumption to high skill types to get them to

work more.) We prove that (1) implies that if agents trade capital and consumption in a

sequence of competitive markets, it is optimal for tax rates on capital income to be positive.3

The intuition behind the inequality (1) (and the associated capital income tax result)

is as follows. Suppose society considers increasing investment by lowering an individual’s

period t consumption by ε and raising an individual’s period (t+ 1) consumption by εRt+1.

Doing so has two immediate consequences on social welfare (measured in utiles): there is a

cost u0(ct)ε and a benefit βεRt+1Etu0(ct+1). However, there is an additional adverse incentive

effect. If u is strictly concave, increasing ct+1 by εRt+1 reduces the correlation between u(ct+1)

and productivity. This correlation exists to provide incentives; reducing the correlation means

that effort and output both fall in period (t+ 1).

Thus, lowering consumption in period t and raising consumption in period (t+1) has

3Actually, the analysis only implies that any optimal tax sequence must be consistent with (1); the analysis
leaves indeterminate the actual sequence of taxes necessary to generate (1). In particular, if it is possible to
use consumption taxes, any path of consumption and capital taxes consistent with (1) is optimal. Some of
these paths may feature negative capital taxes as long as consumption taxes are growing at a sufficiently fast
rate.
Of course, this point is hardly unique to our paper. In particular, it applies to the original Chamley-Judd

analysis.
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an extra adverse effect on incentives. In a social optimum, marginal social costs and the

marginal social benefit are equated, which implies that the partial marginal cost u0(ct) is less

than the total marginal benefit βRt+1Etu0(ct+1).4

We go on to reconsider the uniform commodity taxation theorem. We revert to the

general assumption of multiple consumption goods, and assume that utility is weakly sepa-

rable between consumption and labor. We prove that any Pareto optimal allocation has the

property that within a period, the marginal rate of substitution between any two consumption

goods, for any agent, equals the marginal rate of transformation between those goods. This

result implies that if agents can trade consumption goods in a spot market, all consumption

goods should be taxed uniformly.

The idea behind the proof of the uniform commodity taxation theorem is as follows.

Because utility is weakly separable, consumption only affects the incentive constraints and

the planner’s objective function through the amount of sub-utility derived from consumption.

Hence, as long as resources are scarce, the planner wants to find a way to deliver these sub-

utilities that minimizes the resource cost of doing so. This immediately implies the uniform

commodity taxation theorem.

We make two distinct contributions to public finance. The first contribution is that

we find a general role for positive capital income taxes in a Pareto optimum.5 Here, we find

that thinking based only on representative agent models can be misleading. It is the dynamic

4See Kocherlakota (1998) and Mulligan and Sala-i-Martin (1999) for a similar intuition in a two-period
context.

5Aiyagari (1995) argues that positive capital income taxes are optimal in an incomplete markets setting.
However, he considers only steady-states, rules out markets in an ad hoc basis, and allows only for linear
taxes. In contrast, we consider all possible allocations that are feasible and incentive-compatible in a given
environment, and thus allow for all possible taxation schemes.
Garriga (2001) shows that in overlapping generations contexts, the optimal linear tax on capital income

may be non-zero.
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evolution of idiosyncratic shocks that makes positive capital income taxes optimal.

The second is that we greatly generalize the applicability of the uniform commodity

taxation theorem. The standard proof of this result is based on much stronger assumptions.

Atkinson and Stiglitz’s (1976) argument is made in a setting without capital or informational

evolution. Moreover, the argument is made under restrictive assumptions: optimal taxes are

differentiable and a first-order approach is valid. Both assumptions are typically satisfied

only under highly restrictive conditions. We simplify the proof and thereby greatly broaden

the range of environments to which it applies.

The rest of the paper is structured as follows. In the next section, we describe the

class of model environments. In Section 3, we demonstrate the optimality of positive capital

income taxation. In Section 4, we generalize the uniform commodity taxation theorem. We

defer a complete discussion of the related literature until Section 5; the discussion clarifies

why we are able to prove our results in such generality. Finally, we conclude in Section 6.

2. Setup

The economy lasts for T periods, where T may be infinity, and has a unit measure

of agents. The economy is endowed with K∗
1 units of the single capital good. There are J

consumption goods, which are produced by capital and labor at N different tasks. The agents

have identical preferences. The preferences of a given agent are von Neumann-Morgenstern,

with cardinal utility function:

TX
t=1

βt−1U(ct, lt), 1 > β > 0
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where ct ∈ RJ+ is the agent’s consumption in period t, and l ∈ RN+ is the amount of time spent

working in period t by the agent at the N different tasks. We assume that U is bounded from

above or bounded from below; this guarantees that the utility from any consumption/labor

process is well-defined as an element of the extended reals.

The agents’ skills at the N different tasks differ across agents and over time. We model

this cross-sectional and temporal heterogeneity as follows. Let Θ be a Borel set in RN+ , and

let µ be a probability measure over the Borel sets that are subsets of ΘT . At the beginning

of time, an element θT of ΘT is drawn for each agent according to the measure µ; the draws

are independent across agents. This random vector θT is the agent’s type; its t-th component

θt is the agent’s skill vector in period t. We assume that a law of large numbers applies: the

measure of agents in the population with type θT in Borel set B is given by µ(B).

What makes the information problem dynamic is that a given agent privately learns

his θt at the beginning of period t and not before. Thus, at the beginning of period t, an

agent knows his history θt of current and past skill vectors but not his future skill vectors.

We represent this information structure formally as follows. Define Pt : ΘT → Θt to be the

projection operator: Pt(θ1, ..., θT ) = (θ1, ..., θt). Then, define a σ-algebra Ωt = {P−1t (B)|B ⊂

ΘT is Borel}. An agent’s information evolution can then be represented by the sequence

(Ω1,Ω2, ...,ΩT ) of σ-algebras.

Notice that this stochastic specification allows for virtually arbitrary dynamic evolu-

tion of an agent’s skills. For example, the agent’s skills could be constant over time (which

is the traditional public finance assumption). Alternatively, the skills could follow stationary

or nonstationary stochastic processes over time. The only real restriction is that the skill

processes are independent across agents.
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What is the economic impact of these skill vectors? An agent with type θt produces

effective labor ynt in task n according to the function:

ynt = θntlnt

where lnt is the amount of time spent working at task n. Effective labor ynt is observable, but

actual labor lnt is not.

Along with the consumption goods, there is an accumulable capital good. We define

an allocation in this society to be (c, y,K) = (ct, yt, Kt+1)
T
t=1 where for all t:

Kt+1 ∈ R+

ct : Θ
T → RJ+

yt : Θ
T → RN+

(ct, yt) is Ωt-measurable

Here, ynt(θ
T ) is the amount of effective labor at task n produced by a type θT agent in period

t, cjt(θ
T ) is the amount of the jth consumption good given to a type θT agent in period t,

and Kt+1 is the amount of capital carried over from period t into period (t+ 1).

LetG : RJ+2+N+ → R be strictly increasing and continuously differentiable with respect

to its first (J + 1) arguments, and strictly decreasing and continuously differentiable with

respect to its (J +2)th argument. This function tells us which vectors of capital input, labor

inputs and consumption outputs are technologically available. Specifically, we assume that
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the initial endowment of capital is K∗
1 , and define an allocation (c, y,K) to be feasible if:

(
Z
ctdµ,

Z
ytdµ) ∈ RJ+N+ for all t

G(
Z
ctdµ,Kt+1, Kt,

Z
ytdµ) ≤ 0 for all t

K1 = K∗
1

The first requirement is that ct and yt be integrable for all t.

Because θT is unobservable, allocations must respect incentive-compatibility condi-

tions. A reporting strategy σ is a mapping from ΘT into ΘT such that for all t, σt is Ωt-

measurable. Let Σ be the set of all possible reporting strategies, and define:

W (.; c, y) : Σ→ R

W (σ; c, y) =
TX
t=1

βt−1
Z
U(ct(σ), (ynt(σ)/θnt)

N
n=1)dµ

to be the utility from reporting strategy σ, given an allocation (c, y). Let σ∗ be the truth-

telling strategy (σ∗(θT ) = θT for all θT ). Then, an allocation (c, y,K) is incentive-compatible

if:

W (σ∗; c, y) ≥W (σ; c, y) for all σ in Σ

An allocation which is incentive-compatible and feasible is said to be incentive-feasible.6

We allow for the possibility that the planner weights agents differently based on their

6We restrict attention to direct mechanisms. By the Revelation Principle, this is without loss of generality.
As well, we restrict attention to mechanisms in which an individual’s consumption and output depend only
on his own announcements. This is without loss of generality because there is a continuum of agents with
independent shock processes.
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initial skill levels. Specifically, let χ1 : Θ
T → R+ be Ω1-measurable, and suppose thatR

χ1dµ = 1. Then, we define the following programming problem, P1(K1), for an arbitrary

level K1 of initial capital:

V ∗(K1) = sup
c,y,K

TX
t=1

βt−1
Z
U(ct, (ynt/θnt)

N
n=1)χ1dµ

s.t. G(
Z
ctdµ,Kt+1, Kt,

Z
ytdµ) ≤ 0 for all t

W (σ∗; c, y) ≥W (σ; c, y) for all σ in Σ

K1 given

ct ≥ 0, yt ≥ 0, Kt ≥ 0 for all t and almost all θT

We say that (c∗, y∗, K∗) solves P1(K1) if (c∗, y∗, K∗) lies in the constraint set of P1(K1) and:

V ∗(K1) =
TX
t=1

βt−1
Z
U(c∗t , (y

∗
nt/θnt)

N
n=1)χ1dµ

In the actual model economy, there are initially K∗
1 units of capital. Hence, the

planner’s problem is to solve P1(K∗
1 ). We assume throughout that there is a solution to

P1(K∗
1 ) and that |V ∗(K∗

1)| <∞. Any solution to P1(K∗
1 ) is a Pareto optimum.

7

Note that the planner’s maximized objective V ∗ is weakly increasing. In our analysis,

we will often require that V ∗ is strictly increasing. The following lemma shows that, under

a mild regularity condition, V ∗ is strictly increasing if U is additively separable between

consumption and leisure. (In the remainder of the paper, as is standard, we use the terms

7Specifically, any solution to P1(K∗
1 ) is interim Pareto optimal, conditional on the realization of θ1. If

χ = 1, the solutions to P1(K∗
1 ) are symmetric ex-ante Pareto optima.
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for almost all θT and almost everywhere (or a.e.) equivalently.)

Lemma 1. Let U(c, l) = u(c)− v(l), where u is strictly increasing and continuously differen-

tiable. Suppose that for any (c∗, y∗, K∗) that solves P1(K∗
1), there exists some t and positive

scalars c+, c+ such that c+ ≥ c∗jt ≥ c+ a.e. for all j. Then, V ∗(K1) < V
∗(K∗

1 ) for all K1 < K
∗
1 .

Proof. In Appendix.

The proof of the lemma works as follows. Suppose the planner has not used up all

initial capital. Because utility is additively separable, the planner can distribute the extra

resources across agents so as to add the same amount of utility to every type. Thus, if initial

capital is not exhausted, the planner can construct a welfare-improving incentive-compatible

redistribution of the extra resources.

3. Capital Income Taxes

To obtain results about the intertemporal characteristics of optimal taxation, we sim-

plify the model. We set the number of consumption goods J = 1, and set:

G(Ct, Yt,Kt, Kt+1) = Ct +Kt+1 −Kt(1− δ)− F (Kt, Yt)

where F is strictly increasing and continuously differentiable in its first argument. (These

restrictions on J and G do not apply in the next section.) Throughout the section, we assume

that the partial derivative Uc exists and is continuous in its first argument over the positive

reals. We proceed by first providing a partial characterization of Pareto optima, and then

establishing the implications of this characterization for capital income tax rates.
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A. Characterizing Pareto Optima

The main result in this section is a restriction on the intertemporal behavior of indi-

vidual consumption. The result is similar to (but much more general than) that derived by

Rogerson (1985a) for optimal contracts in relationships with repeated moral hazard.

We begin by stating the result. We use the notation E{.|Ωt} to denote the conditional

expectation operator.

Theorem 1. Let U(c, l) = u(c) − v(l). Suppose (c∗, y∗,K∗) solves P1(K∗
1 ), and that there

exist t < T and scalars c+, c+ such that c+ ≥ c∗t , c∗t+1, K∗
t+1 ≥ c+ > 0 a.e. Then:

β(1− δ + FK(K∗
t+1,

Z
y∗t+1dµ)) = E{u0(c∗t )/u0(c∗t+1)|Ωt}

Proof. In Appendix.

The proof of the theorem runs roughly as follows. We know from Lemma 1 that

any solution (c∗, y∗, K∗) to P1(K∗
1 ) must also solve a dual problem, in which the planner

chooses an incentive-feasible allocation so as to minimize the initial resources necessary to

deliver a given ex-ante objective value. This implies, a fortiori, that (c∗, y∗, K∗) must also

solve any version of the dual problem which has a strictly smaller constraint set that includes

(c∗, y∗,K∗).

We construct a particular constraint set reduction. First, we fix y∗. Then, we include

only the feasible consumption/capital allocations (c0, K 0) such that:

∞X
t=1

βt−1u(c0t(θ
T )) =

∞X
t=1

u(c∗t (θ
T )) for all θT
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Note the absence of any expectation operators: in words, we look at allocations (c0, K 0) that

deliver the same ex-post lifetime utility as c∗ to all possible types θT . The crux of the proof

lies in showing that this is in fact a reduction of the constraint set - that is, in proving

that (c0, y∗) is incentive-compatible. We can then derive the theorem by using the first-order

necessary conditions to this version of the dual with a smaller constraint set.

It is important to note that even if θT is public information (so that there is no

incentive problem), Theorem 1 is still valid. In this case, full insurance is possible and u0(c∗t )

is deterministic. Theorem 1 immediately implies the standard first order condition:

u0(c∗t ) = β(1− δ + FK(K∗
t+1,

Z
y∗t+1dµ))u

0(c∗t+1)

Thus, the incentive problem does not create the restriction in Theorem 1. Rather, the

incentive problem determines the variance of the marginal utility process that gets plugged

into the formula in Theorem 1.

This kind of thinking informs the next two corollaries. The first concerns the (typical)

case in which u0(c∗t ) is not perfectly predictable.

Corollary 1. Let U(c, l) = u(c)− v(l). Suppose (c∗, y∗,K∗) solves P1(K∗
1), and that there

exist t < T and scalars c+, c+ such that c+ ≥ c∗t , c∗t+1, K∗
t+1 ≥ c+ > 0 a.e. Suppose also thatR

[V ar(u0(c∗t+1)|Ωt)]dµ > 0. Then with positive probability:

u0(c∗t ) < β(1− δ + FK(K∗
t+1,

Z
y∗t+1dµ))E{u0(c∗t+1)|Ωt}

Proof. Simply apply Jensen’s inequality to the condition in Theorem 1.
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This corollary says that if u0(c∗t+1) is not predictable given Ωt, the expected marginal

utility of investing in capital is higher than the marginal utility of current consumption. Note

that this lack of predictability is to be expected in general because the planner wants to elicit

high labor from high skill types.

It is interesting to contrast Corollary 1 with the results concerning optimal linear

taxation of capital and labor income in a representative agent economy. Chamley (1986) and

Judd (1985) prove for a general specification of u that it is optimal in the long run to eliminate

the wedge between expected marginal utility of investing in capital and the marginal utility

of current consumption. Indeed, when u(c) = c1−σ/(1−σ), Chamley proves an even stronger

result: it is optimal for the wedge to be zero for all t, not just in the long run. In contrast, we

find that for any specification of u, as long as u0(c∗t+1) is not predictable given Ωt, the wedge

in period t should be non-zero.

There are special circumstances in which the inequality in Corollary 1 becomes an

equality instead. In particular, if agents have fixed skills over time, then the Pareto optimal

allocations display no wedge between the marginal utility of consumption and the expected

marginal utility of investment.

Corollary 2. Suppose that µ(B) > 0 only if µ(B) = µ{θT ∈ B|θt = θ1 for all t}. Let

U(c, l) = u(c) − v(l). Suppose (c∗, y∗,K∗) solves P1(K∗
1 ), and that there exist t < T and

scalars c+, c+ such that c+ ≥ c∗t , c∗t+1, K∗
t+1 ≥ c+ > 0 a.e. Then:

βu0(c∗t+1)(1− δ + FK(K∗
t+1,

Z
y∗t+1dµ))/u

0(c∗t ) = 1a.e.

This corollary follows from the fact that θt is perfectly predictable, given θ1. In fact,
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using a similar approach as in Theorem 1, we can prove (at least when Θ is finite) that

even if preferences are non-separable between consumption and labor, we obtain a version of

Chamley-Judd’s classic result for this case of fixed skills.

Proposition 1. Suppose T = ∞, Θ is finite, and that µ{θ∞} > 0 iff θt = θ1 for all t.

Suppose that V ∗(K1) < V
∗(K∗

1) for all K1 < K
∗
1 . Let a strictly positive allocation (c

∗, y∗,K∗)

solve P1(K∗
1 ), and suppose that for all θ1, the sequence {c∗t (θ1), y∗t (θ1), K∗

t }∞t=1 converges to a

positive limit (css(θ1), yss(θ1),Kss). Then:

β−1 = 1 + FK(Kss,
Z
yssdµ)− δ

Proof. We claim that (c∗, K∗) solves the following minimization problem:

min
c,(Kt)∞t=1

K1

s.t.
Z
ctdµ+Kt+1 = Kt(1− δ) + F (Kt,

Z
y∗t dµ) for all t

∞X
t=1

βt−1U(ct(θ1), (
y∗nt(θ1)

θ̂n1
)Nn=1) =

∞X
t=1

βt−1U(c∗t (θ1), (
y∗nt(θ1)

θ̂n1
)Nn=1) for all θ1, θ̂1

Kt ∈ R+, ct ≥ 0 for all t

Suppose not. Then, there exists nonnegative (c0, K 0) such that K 0
1 < K

∗
1 and:

Z
c0tdµ+K

0
t+1 = K 0

t(1− δ) + F (K 0
t,
Z
y∗t dµ) for all t

∞X
t=1

βt−1U(c0t(θ1), (
y∗nt(θ1)

θ̂n1
)Nn=1) =

∞X
t=1

βt−1U(c∗t (θ1), (
y∗nt(θ1)

θ̂n1
)Nn=1) for all θ1, θ̂1

It is clear that (c0, y∗, K 0) is feasible; (c0, y∗) is incentive-compatible because we have kept
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the utility of all announcement/true type pairs the same. This allocation solves P1(K1), for

K1 < K
∗
1 , which violates the assumption that V

∗ is strictly increasing.

Now, we can characterize (c∗, y∗, K∗) using the first order conditions to this problem.

Let λt be the multiplier on the period t feasibility constraint and let γ(θ1, θ̂1) be the multiplier

on the appropriate utility constraint.

Abusing notation slightly, we use µ(θ1) to denote µ{(θ1, θ1, θ1, ...)}. Differentiating

with respect to ct(θ1) for any θ1, we obtain:

X
θ̂1

γ(θ1, θ̂1)β
t−1Uc(c∗t (θ1), (

y∗nt(θ1)

θ̂n1
)Nn=1) = λtµ(θ1)

where Uc is the partial derivative of U with respect to c. Differentiating with respect to Kt+1

we obtain:

λt = λt+1(1 + FK(Kt+1,
Z
y∗t+1dµ)− δ)

The assumption that (ct(θ1), yt(θ1), Kt) converges to a positive limit for all θ1 guar-

antees that:

lim
t→∞λt/λt+1 = 1/β

lim
t→∞λt/λt+1 = (1 + FK(Kt+1,

Z
y∗t+1dµ)− δ)

This implies the proposition.

15



B. Capital Trading and Capital Income Taxes

The above results concern the wedges (or lack thereof) between marginal rates of

substitution and transformation in Pareto optima. We now want to translate these results

about wedges into results about taxes. Many of the mechanisms that implement the Pareto

optimum operate by requiring agents to sign exclusive contracts with a planner or interme-

diary (see Prescott and Townsend (1984) or Atkeson and Lucas (1992)). In these kinds of

mechanisms, the implication for taxes is that agents should face an infinite tax if they engage

in any side-trading of capital and consumption.

We instead allow agents to (non-exclusively) trade consumption and capital in a se-

quence of competitive markets. We prove that in this sequential markets setting, our previous

results about wedges translate directly into conclusions about capital income taxes (as long

as utility is additively separable). We assume throughout this subsection that F is strictly

concave in its first argument, that T is finite, and that Θ is finite. (We believe, though, that

the results are robust to relaxing the latter two assumptions.)

We do not address the question of how to design a labor income tax schedule that

supports the socially optimal allocation. The obvious construction would involve setting

a marginal tax rate for each agent that equates his marginal rate of substitution between

consumption and time to his marginal rate of transformation. There are two problems with

this approach. The first is that the resultant tax schedule may give rise to a non-convex

decision problem for the agent. This means that even though his first order conditions are

satisfied by the social optimum, he may not find it optimal to make choices consistent with

the social optimum.

The second problem is peculiar to the dynamic setting. It is conceivably optimal for
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the planner to condition an agent’s second period effective labor on the agent’s report θ1, but

not condition the agent’s first period effective labor on that report. This would mean that

the tax schedule must be a function of reports, not of effective labor.

For these reasons, it is useful to isolate our questions about optimal capital income

taxes from questions about optimal labor income taxes. To do so, we consider a class of

capital-trading mechanisms that work as follows. In each period, each agent makes a report

from the set Θ to a social planner. Based on the history of these reports, each agent receives

some amount of consumption as after-tax income and is told what vector of effective labor

to provide.

Up until this point, the capital-trading mechanisms are standard direct mechanisms.

The difference is that agents need not consume their income processes. Instead, they can

exchange capital and consumption, and rent out capital services, in a sequence of competitive

markets. In each period, an agent faces a linear tax on his capital rental income; the tax rate

may be a function of his history of reports.

The other side of the capital rental market is assumed to be a single representative

firm. The firm is also partially centralized, because it is simply endowed with a sequence

of effective labor which it cannot alter. However, the firm can freely rent capital from the

agents; firm profits are split evenly among the agents in the economy.

Thus, under a capital-trading mechanism, labor and after-tax income are allocated

according to a direct mechanism. However, agents are allowed to engage in decentralized

trade in capital markets. The only restriction is that they face (possibly report-contingent)

tax rates on their capital income.

Formally, a capital-trading mechanism is a specification (z, y, τ ) = (zt, yt, τ t)Tt=1 such
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that:

zt : Θ
T → R+

yt : Θ
T → RN+

τ t : Θ
T → R

(zt, yt, τ t+1) is Ωt-measurable

Here, we interpret z as an after-tax income process, y as an effective labor process, and τ as

the tax rate on capital income. Thus, given (z, y, τ ), and a rental rate sequence r ∈ RT+, a

typical agent, initially endowed with K∗
1 units of capital, solves the problem:

max
(c,k,σ)

Z TX
t=1

βt−1U(ct, (ynt(σ)/θnt)Nn=1)dµ

s.t. ct + kt+1 ≤ kt(1 + rt(1− τ t(σ))− δ) + zt(σ)

ct ≥ 0, kt ≥ 0, k1 = K∗
1

ct, kt+1 Ωt-measurable

σ ∈ Σ

Note that agents take into account their ability to trade in the sequential capital markets

when they are making their reports about their types. Their after-tax incomes and their

capital income tax rates depend on their reports.

There is a representative firm which operates every period. Given y, and a rental rate
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sequence r, the firm solves the following deterministic maximization problem:

max
Kt≥0

F (Kt,
Z
ytdµ)− rtKt

in each period. We assume that firm profits are split evenly among the agents, and so are

embedded directly into zt.

Given a capital-trading mechanism (z, y, τ ), (c, k, r,K) is a sequential markets equilib-

rium if it satisfies three conditions. First, (c, k, σ∗) solves the agent’s problem given (z, y, τ , r).

(Recall that σ∗ is the truth-telling strategy in Σ.) Second, K solves the firm’s problem, given

(y, r). Finally, markets clear in every period:

Z
ctdµ+Kt+1 = F (Kt,

Z
ytdµ) + (1− δ)KtZ

ktdµ = Kt

We now prove two results about capital-trading mechanisms. Both require the as-

sumption that utility is additively separable. The first result is that any incentive-feasible

allocation is a sequential markets equilibrium of some capital-trading mechanism. The key

to the result is that all agents, regardless of their type, have the same preferences over con-

sumption processes.

Proposition 2. Let U(c, l) = u(c) − v(l), where u0,−u00 > 0. Suppose (c∗, y∗, K∗) is

incentive-feasible and (c∗t , K
∗
t+1) > 0 for all t. Then, there exists (k, r, z, τ ) such that (c

∗, k, r,K∗)

is an equilibrium of a capital-trading mechanism (z, y∗, τ).
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Proof. Given (c∗, y∗, k∗), define:

kt = K
∗
t

rt = FK(K
∗
t ,
Z
y∗t dµ)

τ t+1 = 1− (−1 + δ + u0(c∗t )/[βE{u0(c∗t+1)|Ωt}])/rt+1

zt = c
∗
t +K

∗
t+1 −K∗

t (1 + rt(1− τ t)− δ)

K is clearly optimal for the firm given the rental rate sequence r and the (aggregate) effec-

tive labor sequence
R
ydµ. We need to show that (c∗, k∗) solves the agent’s problem given

(z, y∗, τ , r).

To do so, fix any reporting strategy σ. Conditional on this strategy, the agent faces

the decision problem:

max
(c,k)

TX
t=1

βt−1
Z
u(ct)dµ

s.t. ct + kt+1 = kt(1 + rt(1− τ t(σ))− δ) + zt(σ)

ct, kt+1 Ωt-measurable

ct ≥ 0, kt ≥ 0, k1 = K∗
1

We claim that the solution to this problem is to set kt = K∗
t and ct = c

∗
t . The choice set is

convex. Clearly, these choices satisfy the agent’s intertemporal first order conditions. They

also satisfy his flow budget constraints because of the definition of zt(σ).

Now, which reporting strategy does the agent use? Conditional on any σ, the agent

receives the allocation (c∗t (σ), y
∗
t (σ)). But because (c

∗, y∗) is incentive-compatible, it is at
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least weakly optimal for the agent to choose σ∗.

Because (c∗, y∗, K∗) is feasible, the sequential markets clear.

Proposition 2 demonstrates that when we optimize over incentive-feasible allocations

(as in Theorem 1), we are implicitly optimizing over capital-trading mechanisms. The fol-

lowing converse proposition shows that in any sequential markets equilibrium, the sign of the

capital income taxes is the same as the sign of the wedge between intertemporal marginal

rates of substitution and transformation.

Proposition 3. Let U(c, l) = u(c)− v(l), where u0,−u00 > 0. Suppose (c, k, r,K), kt > 0 for

all t, is a sequential markets equilibrium of a capital-trading mechanism (z, y, τ). Then:

(1 + FK(Kt+1,
Z
yt+1dµ)(1− τ t+1)− δ) = u0(ct)/βE{u0(ct+1)|Ωt}.

Proof. Individual optimality and firm optimality imply that:

rt = FK(Kt,
Z
ytdµ)

u0(ct) = (1 + rt+1(1− τ t+1)− δ)βE{u0(ct+1)|Ωt}

which in turn implies the proposition.

Combining Propositions 2 and 3 with Corollary 1, we conclude that it is typically

Pareto optimal for capital income taxes to be positive.
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4. Uniform Commodity Taxation

In this section, we prove the uniform commodity taxation theorem. We return to

the general setup described in the first section (with multiple commodities and a general

production structure), except that we assume that utility is weakly separable:

U(c, l) = V (u(c), l), u : RJ+ → R+

We also assume that u is strictly increasing and is continuously differentiable over the positive

orthant of RJ . The notation uj and Gj represents the partial derivatives of those functions

with respect to their jth arguments.

Theorem 2. Suppose V ∗(K1) < V
∗(K∗

1 ) for all K1 < K
∗
1 . Let (c

∗, y∗,K∗) solve P1(K∗
1) and

suppose that there exist some t and scalars c+, c+ such that c+ > c∗jt(θ
T ) > c+ > 0 for all j

and for almost all θT . Then, if J > 1,

uj(c
∗
t (θ

T ))/uk(c
∗
t (θ

T ))

= Gj(
Z
c∗tdµ,K

∗
t+1, K

∗
t ,
Z
y∗t dµ)/Gk(

Z
c∗tdµ,K

∗
t+1,K

∗
t ,
Z
y∗t dµ)

for all j, k and almost all θT .

Proof. In Appendix.

Thus, in a Pareto optimum, the marginal rate of substitution between two consumption

goods is equalized to the marginal rate of transformation between those two goods. The key

to the proof is that the consumption goods enter both sides of the incentive constraints only

through the sub-utility u(c). Hence, it is optimal for the planner to deliver this sub-utility
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from consumption in a way that minimizes the resource cost of doing so.

Theorem 2 establishes a result about marginal rates of substitution and transformation.

However, we can follow the line of attack in Section 3B to translate it into a statement about

taxes. In particular, suppose agents can trade consumption goods in a competitive spot

market in each period. Then, Theorem 2 implies that it is suboptimal for them to face taxes

or subsidies in those markets that differ across consumption goods.

5. Related Literature

A key property of the model is that the typical agent’s willingness to substitute between

consumption goods (within a period or over time) is public information. This aspect of

the model implies that it is useful to divide the prior literature into two groups of papers.

The first group of papers analyze models in which agents have private information about

their willingness to substitute between consumption goods (over time or within a period).

We show below that our results do not extend into models of this kind. In contrast, the

second group of papers is like ours: it analyzes models in which the agents’ willingness to

substitute between consumption goods is common knowledge. Our results can be viewed as

(considerable) generalizations of those in this literature.

A. Privately Known Intertemporal MRS

There are now many papers on efficient dynamic insurance in the presence of hidden

idiosyncratic shocks to endowments or marginal utilities of consumption (see, among others,

Townsend (1982), Green (1987), Thomas and Worrall (1990), Atkeson and Lucas (1992),

Khan and Ravikumar (2001)). These kinds of shocks mean that a typical agent is privately

informed about his marginal rate of substitution between period t consumption and period
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(t+ 1) consumption.

A key result that runs through this dynamic insurance literature is that in Pareto

optimal allocations, the typical agent’s shadow interest rate is no larger than the societal

shadow interest rate. This result is similar to our Corollary 1.

However, unlike our Corollary 1, the result from the dynamic insurance literature

depends crucially on the nature of the shock process to endowments or tastes. To see this

point, consider a two-period economy with a continuum of agents who have a utility function:

u(c1) + u(c2)

over sequences of consumption. The typical agent’s endowment is ((1 + θ), (1 + θ)2), where

θ is random with positive support; the endowments are private information. The society can

borrow and lend from an outside lender at a net rate of return r.

In this economy, agents with high first-period endowments have high growth rates

of endowments. One can show that in an optimal allocation, agents’ shadow interest rates

are higher than r. Intuitively, with hidden endowments, the direction of the gap depends

on whether the agents who need insurance payments are more or less willing to substitute

current for future consumption.

In our model, we are able to implement socially optimal allocations using report-

contingent taxes (see Section 3B). This approach does not work when agents are privately

informed about their intertemporal marginal rates of substitution. To be concrete, again

consider a two-period setting with a continuum of agents who have a utility function u(c1) +

u(c2). The society faces an outside net rate of return r. In period 1, half of the agents receive an
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endowment θH , and half of the agents receive an endowment θL, where θH > θL. These first-

period endowments are private information. All agents have endowments θ2 = (θH + θL)/2

in period 2.

In the Pareto optimal allocation, a type i agent receives a consumption stream (ci1, ci2),

where i = H,L. These streams must satisfy three conditions:

u0(cH1)/u0(cH2) = (1 + r)

u0(cL1)/u0(cL2) > (1 + r)

u(cH1) + u(cH2) = u(θH − θL + cL1) + u(cL2)

The last equality is that the type H’s incentive constraint is satisfied with equality.

Can we implement a Pareto optimal allocation using a mechanism akin to that in

Section 3B? Suppose that an agent who announces i receives a sequence of transfers (ci1 −

θi, ci2 − θ2) and can borrow and lend at a rate ri = u0(ci1)/u0(ci2)− 1. Given that the agents

report truthfully, the borrowing-lending opportunity is constructed so that they will not

deviate. However:

u(cH1) + u(cH2) = u(θH − θL + cL1) + u(cL2)

< max
s
u(θH − θL + cL1 − s) + u(cL2 + (1 + rL)s)

because u0(θH − θL + cL1)/u0(cL2) < (1 + rL). It is no longer optimal for type H’s to tell

the truth, once they are allowed to borrow and lend at a type-specific interest rate. So, the

allocation cannot be implemented using this kind of borrowing/lending mechanism.

25



Why doesn’t this analysis apply to our framework? In our setup, agents’ true types

do not affect their willingness to borrow and lend. Hence, if a type i doesn’t want to deviate

from a consumption scheme by borrowing and lending at rate ri, then no other type j will

either.

B. Publicly Known Intertemporal MRS

As mentioned above, in our paper, agents’ intertemporal marginal rates of substitution

are publicly known. There are many other papers which also adopt this modelling strategy.

For example, Diamond and Mirrlees (1978, 1986) consider a special case of our general setup.

In their model, agents are long-lived and can be disabled or not. Disabled agents are un-

productive; able agents have known productivities. Once disabled, the agent stays disabled;

the probability of an able agent becoming disabled is exogenous. The informational problem

is that the disability status of the agent is known only to the agent. Diamond and Mirrlees

prove that in the social optimum, the shadow societal interest rate is higher than the private

shadow interest rate. They argue explicitly that this result implies that capital income taxa-

tion is socially optimal. Our contribution over their work is that we generalize their positive

capital income taxation result to a much larger class of individual skills processes.

There are several papers on the properties of efficient allocations in the presence of

repeated moral hazard (see, among others, Rogerson (1985a), Phelan and Townsend (1991),

Phelan (1994)). Again, in these settings the optimal allocations have the property that agents’

shadow interest rates are higher than the societal shadow interest rate. The intuition behind

this result is essentially the same as that behind Corollary 1. However, in this literature, the

idiosyncratic output shocks are restricted to be independently and identically distributed; we
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instead allow for a much wider range of skill processes.

We were originally motivated to write this paper by the work of da Costa and Werning

(2001). They examine optimal monetary policy in two models (a cash-credit good framework

and a shopping-time setup) in which agents are privately informed about their fixed skills.

In the cash-credit good framework, da Costa and Werning prove that if preferences are

weakly separable between consumption and leisure, then the Friedman Rule (zero nominal

interest rates) is socially optimal. This is essentially an implication of the uniform commodity

taxation theorem, and so we conjecture that this result could be established in our more

general setup. They also consider how deviations from weak separability of preferences affect

optimal monetary policy.

In a paper written at the same time as ours, but independently, Werning (2001)

analyzes the properties of optimal capital income taxes in a model economy with unobservable

and heterogeneous fixed skills. Like us (Corollary 2), he finds that it is optimal for capital

income taxes to be zero in this setting.

6. Conclusion

In this paper, we consider the problem of optimal taxation when individual skills

are unobservable, evolve stochastically over time, and are multi-dimensional. We show that

when utility is weakly separable between consumption and leisure, it is optimal to equate

the marginal rate of substitution between consumption goods for any agent to the marginal

rate of transformation between those goods. It follows that Pareto optimal allocations are

consistent with uniform taxation of all consumption goods.

We consider the intertemporal structure of optimal taxation when there is only a sin-
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gle consumption good and utility is additively separable between consumption and leisure.

In this case, if the optimal allocation requires future consumption to be random given cur-

rent information, then individuals face distorted consumption paths. We show that these

distortions are consistent with the presence of positive capital income taxes.

Given additive separability of preferences between consumption and labor, the uniform

commodity taxation theorem is generally valid, but the zero capital income taxation theorem

is generally not. The reason for this distinction is that over time, individuals are acquiring

information about their types. It is this idiosyncratic uncertainty that generates positive

capital income taxes. In particular, if individuals knew their entire sequence of skills in

period 1, then we could use exactly the same reasoning as in Theorem 2 (or Corollary 2) to

conclude that Pareto optimal allocations are consistent with zero capital income taxation.

We are able to prove the theorems in a highly general setting. We allow for a multi-

dimensional specification of skills. Individual skills are independent over a continuum of

individuals but follow arbitrary stochastic processes over time. Nonetheless, it is possible to

push this generality still further: We can allow any additional private information as long

as individuals’ willingness to substitute consumption over time is common knowledge. This

means, for example, that we could allow agents to secretly accumulate human capital, and

thereby endogenize skills.

The paper abstracts from government purchases. This is merely for notational conve-

nience. The results can be easily extended to two kinds of model economies with government

purchases. The first is one in which per-capita government purchases are a deterministic

stream that the government must fund using taxes. The second is one in which government

purchases are a choice variable for the social planner. In both kinds of models, the results
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are all valid regardless of how government purchases affect production or enter preferences.
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Appendix

In this appendix, we collect the proofs of the main results.

A1. Proof of Lemma 1

Suppose V ∗(K1) = V ∗(K∗
1) for some K1 < K∗

1 . Let (c
∗, y∗, K∗) solve P1(K1) and

also P1(K∗
1 ). Without loss of generality, assume that c

∗
1 satisfies the uniform boundedness

conditions. Define c011(θ
T , ε) to be the solution to the equation:

u(c011(θ
T , ε), (c∗1j(θ

T ))j 6=1)− u(c∗1(θT )) = ε for all θT

for ε nonnegative. Here, c011(θ
T , ε) is the amount of consumption good 1 that gives a type

θT agent ε more utiles than c∗1. Clearly, c
0
11 is Ω1-measurable with respect to θ

T , and is

continuous with respect to ε.

From the mean value theorem, for ε small, we know that:

|c011(θT , ε)− c∗11(θT )| = ε/u1(c011(θT , ε0), (c∗1j(θT ))j 6=1), 0 < ε0 < ε

where u1 is the partial of u with respect to its first argument. From the regularity conditions

on c∗, we know that there exists M > 0 such that:

|c011(θT , ε)− c∗11(θT )| < Mε for ε small

Hence, for ε small, c011(θ
T , ε) is integrable as a function of θT . Moreover, adding ε to initial

consumption is feasible for initial capital K∗
1 , as long as ε is sufficiently small. That is, for
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sufficiently small ε,

G(
Z
c01(θ

T , ε)dµ,K∗
2 , K

∗
1 ,
Z
y∗dµ) < 0

where c01(θ
T , ε) ≡ (c011(θ

T , ε), (c∗1j(θ
T ))j 6=1). Thus, (c0, y∗,K∗) is feasible, given initial capital

K∗
1 .

For all θT ,

u(c01(θ
T , ε))− v((y∗n1(θT )/θn1)Nn=1)

= u(c∗1(θ
T )) + ε− v((y∗n1(θT )/θn1)Nn=1)

≥ u(c∗1(θ
T 0)) + ε− v((y∗n1(θT 0)/θn1)Nn=1)

= u(c01(θ
T 0, ε))− v((y∗n1(θT 0)/θn1)Nn=1)

which proves that (c0, y∗) is incentive-compatible (the inequality is implied by the incentive-

compatibility of (c∗, y∗)). It follows that (c∗, y∗) cannot be a solution to P1(K∗
1 ).

A2. A Technical Lemma

We use the following notation:

L∞(Ωt) = {x Ωt-measurable|∃A ∈ Ωt such that sup
θT∈A

|x| <∞, and µ(A) = 1}

Let ||.|| denote the usual ess-sup norm on L∞(Ωt).

The proofs of Theorems 1 and 2 use two technical results. The first is Theorem 1,

p. 243 of Luenberger (1969). This theorem assumes that in an optimization problem with

equality constraints, the objective and constraints are continuously Frechet differentiable in
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the neighborhood of a local optimum. It then proves that this local optimum must satisfy

analogs of the usual Lagrangian first-order conditions.

The second key result is the following lemma. It establishes that as long as c∗t is

bounded from above and below, the constraints in the minimization problems in the proofs

of Theorems 1 and 2 are defined by a function that is continuously Frechet differentiable in

a neighborhood of c∗t .

Lemma 2. Let u : R+ → R be C1 and let c∗t be an element of L
∞(Ωt). Suppose there exist

scalars c+ and c+ such that c+ ≥ c∗t ≥ c+ > 0. Define U : L∞(Ωt)→ L∞(Ωt) by:

U(ct)(θ
T ) = u(ct(θ

T ))

Then U is continuously Frechet differentiable in a neighborhood of c∗t .

Proof. Note that u0 is uniformly continuous over the interval [c+/2, 3c+/2]. Let {∆nt}∞n=1 be

an arbitrary sequence in L∞(Ωt) such that:

lim
n→∞ ||∆nt|| = 0

Then:

lim
n→∞ ||u(c

∗
t +∆nt)− u(c∗t )− u0(c∗t )∆nt||/||∆nt||

= lim
n→∞ ||u

0(c∗t +∆
0
nt)∆nt − u0(c∗t )∆nt||/||∆nt||, 0 ≤ ∆0nt ≤ ∆nt

≤ lim
n→∞ ||u

0(c∗t +∆
0
nt)− u0(c∗t )||(||∆nt||/||∆nt||)
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= lim
n→∞ ||u

0(c∗t +∆
0
nt)− u0(c∗t )||

= 0

The first step follows from the mean value theorem and the last step from the uniform

continuity of u0 over [c+/2, 3c+/2].

It follows that in a neighborhood of c∗t , the Frechet derivative of U is well-defined

and given by U 0(ct)(∆) = u0(ct)∆ for all ∆ in L∞(Ωt). The norm of this linear operator is

given by ||u0(ct)||. Let ||ct − c∗t || < c+/2 and let {∆nt}∞n=1 be a sequence in L∞ such that

limn→∞ ||∆nt|| = 0. Then:

lim
n→∞ ||u

0(ct +∆nt)− u0(ct)|| = 0

because u0 is uniformly continuous over [c+/2, c+/2 + c+/2]. So U is continuously Frechet

differentiable in a neighborhood of c∗t .

We can now turn to the proof of Theorems 1 and 2.

A3. Proof of Theorem 1

The proof has two distinct parts.

Part 1: Constructing a Minimization Problem

In the first part of the proof, we construct a particular class of two-period deviations

from the candidate optimum. The class of possible deviations satisfies two requirements.

First, the deviations are required to deliver the same utility to all types as does the candidate

optimum. Second, the deviations are required to satisfy resource-feasibility in all periods.

Obviously, the first requirement means that all of these deviations provide the same
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objective value to the planner. As well, the first requirement implies that all of the devia-

tions are incentive-compatible. Hence, we now have a necessary condition for the candidate

optimum: it must use fewer initial resources than any of these possible deviations.

More precisely, consider the following minimization problem MIN1:

min
ηt,εt+1,ζt

[ζt +
Z
ηtdµ]

s.t.Z
εt+1dµ = F (K

∗
t+1 + ζt,

Z
y∗t+1dµ)− F (K∗

t+1,
Z
y∗t+1dµ) + (1− δ)ζt

u(c∗t + ηt) + βu(c
∗
t+1 + εt+1) = u(c

∗
t ) + βu(c

∗
t+1) a.e.

c∗t + ηt ≥ 0, c∗t+1 + εt+1 ≥ 0 , K∗
t+1 + ζt ≥ 0 a.e.

ηt ∈ L∞(Ωt), εt+1 ∈ L∞(Ωt+1), ζt ∈ R

The objective of this problem is to minimize the resources used in period t. The first constraint

requires that feasibility be satisfied in period (t+1). The second constraint requires that utility

to all types be kept the same under the deviation plan as under the candidate optimum.

We claim that MIN1 is solved by setting (ηt, εt+1, ζ t) = 0. Suppose not, and that

there exists some element (ηt, εt+1, ζt) of the constraint set which generates a negative value

for the objective. There exists a subset B of ΘT such that µ(B) = 1 and:

u(c∗t (θ
T ) + ηt(θ

T )) + βu(c∗t+1(θ
T ) + εt+1(θ

T ))

= u(c∗t (θ
T )) + βu(c∗t+1(θ

T )) for all θT in B
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Define (c0, K 0) so that c0 = c∗ and K 0 = K∗ except that:

c0t(θ
T ) = c∗t (θ

T ) + ηt(θ
T ) for all θT in B

c0t+1(θ
T ) = c∗t+1(θ

T ) + εt+1(θ
T ) for all θT in B

K 0
t+1 = K∗

t+1 + ζt

We claim that (c0, y∗,K 0) is incentive-feasible, delivers the same value of the planner’s

objective as (c∗, y∗,K∗) and uses fewer resources. The allocation (c0, y∗,K 0) is obviously

feasible because:

Z
c0tdµ+K

0
t+1 =

Z
c∗tdµ+K

∗
t+1 + ζ t +

Z
ηtdµ

<
Z
c∗tdµ+K

∗
t+1

We next want to show that the allocation (c0, y∗, K 0) is incentive-compatible. By construction:

u(c0t(θ
T )) + βu(c0t+1(θ

T ))

= u(c∗t (θ
T )) + βu(c∗t+1(θ

T )) for all θT

(not just θT in B). Then, we know that for any σ in Σ and for all θT :

TX
s=1

βs−1u(c0s(σ(θ
T )))

=
t−1X
s=1

βs−1u(c∗s(σ(θ
T ))) + βt−1[u(c0t(σ(θ

T ))) + βu(c0t+1(σ(θ
T )))] +

TX
s=t+2

βs−1u(c∗s(σ(θ
T )))

=
t−1X
s=1

βs−1u(c∗s(σ(θ
T ))) + βt−1[u(c∗t (σ(θ

T ))) + βu(c∗t+1(σ(θ
T )))] +

TX
s=t+2

βs−1u(c∗s(σ(θ
T )))
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=
TX
s=1

βs−1u(c∗s(σ(θ
T )))

This means that for any σ, agents get the same utility from c0 as from c∗. It follows that

(c0, y∗) is incentive-compatible:

Z TX
t=1

βt−1[u(c0t)− v((y∗nt/θnt)Nn=1)]dµ

=
Z TX

t=1

βt−1[u(c∗t )− v((y∗nt/θnt)Nn=1)]dµ

≥
Z TX

t=1

βt−1[u(c∗t (σ))− v((y∗nt(σ)/θnt)Nn=1)]dµ for any σ

=
Z TX

t=1

βt−1[u(c0t(σ))− v((y∗nt(σ)/θnt)Nn=1)]dµ

The inequality comes from the fact that (c∗, y∗) is incentive-compatible.

Hence, (c0, y∗,K 0) uses fewer resources, is incentive-compatible, and delivers the same

value of the objective to the planner. This violates Lemma 1. We can therefore characterize

(c∗, K∗) using the first order conditions of MIN1.

Part 2: Deriving the First Order Conditions

The second part of the proof is purely technical: in it, we verify that the theorem’s

implication is in fact a first-order condition for MIN1.

Suppose we enlarge the constraint set by dropping the non-negativity constraints.

The non-negative orthant of L∞(Ωt) has a non-empty interior. Hence, 0 must also be a local

minimum of the enlarged minimization problem without the non-negativity constraints.

Note that the Frechet derivative U 0(c∗t ) maps L
∞(Ωt) onto L∞(Ωt). Hence, (0, 0, 0) is

a regular point of the constraint set. From Lemma 2 and Luenberger (1969; Theorem 1, page

36



243), we can conclude that there exist z∗t+1 ∈ L∞∗(Ωt+1) (the dual of L∞(Ωt+1)) and λ∗t ∈ R

such that 0 is a stationary point of the following Lagrangian.

L(ζt, ηt, εt+1)

= ζt +
Z
ηtdµ+ λ

∗
t [
Z
εt+1dµ− (1− δ)ζt − F (K∗

t+1 + ζt, Y
∗
t+1)]

− hz∗t+1, u(c∗t + ηt) + βu(c∗t+1 + εt+1)i

(Here, as is standard, we use the notation hz, ui to denote the result of applying a linear

operator z to the random variable u.) In other words:

1− λ∗t (1− δ)− FK(K∗
t+1, Y

∗
t+1)λ

∗
t = 0Z

ηtdµ− hz∗t+1, u0(c∗t )ηti = 0 for all ηt in L∞(Ωt)

λ∗t
Z
εt+1dµ− hz∗t+1, βu0(c∗t+1)εt+1i = 0 for all εt+1 in L∞(Ωt+1)

It follows that:

Z
η0t/u

0(c∗t )dµ = hz∗t+1, η0ti for all η0t in L∞(Ωt)

β−1λ∗t
Z
ε0t+1/u

0(c∗t+1)dµ = hz∗t+1, ε0t+1i for all ε0t+1 in L∞(Ωt+1)

λ∗t = [1− δ + FK(K∗
t+1, Y

∗
t+1)]

−1

and so:

β−1[(1− δ + FK(K∗
t+1, Y

∗
t+1)]

−1
Z
η0t/u

0(c∗t+1)dµ =
Z
η0t/u

0(c∗t )dµ for all η
0
t in L

∞(Ωt)
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Recall that y = E(x|Ωt) if y is Ωt-measurable and R x1Adµ = R
y1Adµ for all A in Ωt. Theorem

1 follows.

A4. Proof of Theorem 2

We proceed much as in the proof of Theorem 1. Again, we construct a particular class

of deviations from the candidate optimum. In particular, we focus on deviant allocations

that deliver the same sub-utility in all states as the optimal allocation.

Thus, we claim that c∗ solves the following optimization problem MIN2:

min
c
G(
Z
ctdµ,K

∗
t+1, K

∗
t ,
Z
y∗t dµ)

s.t. u(ct) = u(c
∗
t ) a.e.

s.t. ct ∈ L∞(Ωt)

s.t. ct ≥ 0 a.e.

Suppose not. Then, there exists a nonnegative c0t in L
∞(Ωt) such that:

G(
Z
c0tdµ,K

∗
t+1,K

∗
t ,
Z
y∗t dµ) < 0

and u(c0t(θ
T )) = u(c∗t (θ

T )) for all θT in A ⊆ ΘT , where µ(A) = 1. Let c00t (θT ) = c0t(θT ) for all

θT in A and c00t (θ
T ) = c∗t (θ

T ) for all θT not in A. Let c00 = (c00t , c
∗
−t).

Clearly, (c00, y∗, K∗) is feasible. As in Theorem 1, this allocation is also incentive-

compatible because:

W (σ∗; c00, y∗)
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= W (σ∗; c∗, y∗)

≥ max
σ∈Σ

W (σ; c∗, y∗)

= max
σ∈Σ

W (σ; c00, y∗)

Thus, (c00, y∗, K∗) also solves P1(K∗
1). However, because G is strictly increasing in Kt+1,

and strictly decreasing in Kt, there exists K 0 such that (c00, y∗, K 0) solves P1(K1) for some

K1 < K
∗
1 . But this means that V

∗(K1) = V
∗(K∗

1 ) which is a contradiction.

Thus, c∗ solves the above minimization problem. The rest of the proof is simply

technical: establishing that the solution to the minimization problem satisfies the first-order

conditions in the theorem.

Note that Lemma 2 can easily be extended to the case in which c∗t is a finite-dimensional

random vector. As in the proof of Theorem 1, if we drop the non-negativity constraints from

the minimization problem, we know that c∗t is a local minimum in the resulting problem,

and that it is a regular point in the constraint set. From Lemma 2, and Luenberger (1969;

Theorem 1, p. 243), we know that there exists z∗t ∈ L∞∗(Ωt) such that c∗t is a stationary

point of the Lagrangian:

L(ct) = G(
Z
ctdµ,K

∗
t+1,K

∗
t , Y

∗
t )− hz∗t , u(ct)i

In other words:

0 = Gj(
Z
c∗tdµ,K

∗
t+1, K

∗
t , Y

∗
t )
Z
∆dµ− hz∗t , uj(c∗t )∆ifor all ∆ in L∞(Ωt)

0 = Gk(
Z
c∗tdµ,K

∗
t+1,K

∗
t , Y

∗
t )
Z
∆dµ− hz∗t , uk(c∗t )∆i for all ∆ in L∞(Ωt)
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It follows that:

0 = Gj(
Z
c∗tdµ,K

∗
t+1,K

∗
t , Y

∗
t )
Z
{∆0/uj(c∗t )}dµ− hz∗t ,∆0i for all ∆0 in L∞(Ωt)

0 = Gk((
Z
c∗tdµ,K

∗
t+1,K

∗
t , Y

∗
t )
Z
{∆0/uk(c∗t )}dµ− hz∗t ,∆0i for all ∆0 in L∞(Ωt)

and so:

0 =
Z
[Gj(

Z
c∗tdµ,K

∗
t+1, K

∗
t , Y

∗
t )/uj(c

∗
t )−Gk(

Z
c∗tdµ,K

∗
t+1, K

∗
t , Y

∗
t )/uk(c

∗
t )]∆

0dµ for all ∆0 in L∞(Ωt)

The theorem follows by setting:

∆0 = Gj(
Z
c∗tdµ,K

∗
t+1, K

∗
t , Y

∗
t )/uj(c

∗
t )−Gk(

Z
c∗tdµ,K

∗
t+1, K

∗
t , Y

∗
t )/uk(c

∗
t )
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