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Abstract

A predictor is asked to rank eventualities according to their plau-
sibility, based on past cases. We assume that she can form a ranking
given any memory that consists of Þnitely many past cases. Mild con-
sistency requirements on these rankings imply that they have a numer-
ical representation via a matrix assigning numbers to eventuality-case
pairs, as follows. Given a memory, each eventuality is ranked accord-
ing to the sum of the numbers in its row, over cases in memory. The
number attached to an eventuality-case pair can be interpreted as the
degree of support that the past lends to the plausibility of the eventual-
ity. Special cases of this result may be viewed as axiomatizing kernel
methods for estimation of densities and for classiÞcation problems.
Interpreting the same result for rankings of theories or hypotheses,
rather than of speciÞc eventualities, it is shown that one may ascribe
to the predictor subjective conditional probabilities of cases given the-
ories, such that her rankings of theories agree with rankings by the
likelihood functions.
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1 Introduction

Prediction is based on past cases. As Hume (1748) argued, �From causes

which appear similar we expect similar effects. This is the sum of all our ex-

perimental conclusions.� Over the past decades Hume�s approach has found

re-incarnations in the artiÞcial intelligence literature as reasoning by analo-

gies, reasoning by similarities, or case-based reasoning. (See Schank (1986)

and Riesbeck and Schank (1989).) Many authors accept the view that analo-

gies, or similarities to past cases hold the key to human reasoning. Moreover,

the literature on machine learning and pattern recognition deals with using

past cases, or observations, for predicting or classifying new data. (See, for

instance, Forsyth and Rada (1986) and Devroye, GyorÞ, and Lugosi (1996).)

But how should past cases be used? How does, and how should one resolve

conßicts between different analogies? To address these questions, let us Þrst

consider a few examples.

Example 1: A die is rolled over and over again. One has to predict

the outcome of the next roll. As far as the predictor can tell, all rolls were

made under identical conditions. Also, the predictor does not know of any a-

priori reason to consider any outcome more likely than any other. The most

reasonable prediction seems to be the mode of the empirical distribution,

namely, the outcome that has appeared most often in the past. Moreover,

empirical frequencies suggest a plausibility ranking of all possible outcomes,

and not just a choice of the most plausible ones.1

Example 2: A physician is asked by a patient if she predicts that a

surgery will succeed in his case. The physician knows whether the procedure

succeeded in most cases in the past, but she will be quick to remind her

patient that every human body is unique. Indeed, the physician knows that

1The term �likelihood� in the context of a binary relation, �at least as likely as�, has
been used by de Finetti (1937) and by Savage (1954). It should not be confused with
�likelihood� in the the context of likelihood functions, also used in the sequel. At this
point we use �likelihood� and �plausibility� informally and interchangeably.
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the statistics she read included patients who varied in terms of age, gender,

medical condition, and so forth. It would therefore be too naive of her to

quote statistics as if the empirical frequencies were all that mattered. On

the other hand, if the physician considers only past cases of patients that are

identical to hers, she will probably end up with an empty database.

Example 3: An expert on international relations is asked to predict

the outcome of the conßict in Kosovo. She is expected to draw on her vast

knowledge of past cases, coupled with her astute analysis thereof, in forming

her prediction. As in Example 2, the expert has a lot of information she

can use, but she cannot quote even a single case that was identical to the

situation at hand. Moreover, as opposed to Example 2, even the possible

eventualities are not identical to outcomes that occurred in past cases.

We seek a theory of prediction that will make use of the available infor-

mation, but will allow different past cases to have differential relevance to the

prediction problem. SpeciÞcally, we consider a prediction problem for which

a set of possible eventualities is given. This set may or may not be an ex-

haustive list of all conceivable eventualities. We do not model the process by

which such a set is generated. Rather, we assume the set given and restrict

attention to the problem of qualitative ranking of its elements according to

their likelihood.

The prediction rule Consider the following prediction rule, say, for

Example 2. The physician considers all known cases of successful surgery.

She uses her subjective judgment to evaluate the similarity of each of these

cases to the patient she is treating, and she adds them up. She then does the

same for unsuccessful treatments. It seems reasonable that the outcome with

the larger aggregate similarity value will be her prediction. This generalizes

frequentist ranking to a �fuzzy sample�: in both examples, likelihood of an

outcome is measured by summation over cases in which it occurred. Whereas

in Example 1 the weight attached to each past case is 1, in this example this

weight varies according to the physician�s subjective assessment of similarity
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of the relevant cases. Rather than a dichotomous distinction between data

points that do and those that do not belong to the sample, each data point

belongs to the sample to a certain degree, say, between 0 and 1.

The prediction rule we propose can also be applied to Example 3 as

follows. For each possible outcome of the conßict in Kosovo, and for each

past case, the expert is asked to assess a number, measuring the degree of

support that the case lends to this outcome. Adding up these numbers, for all

known cases and for each outcome, yields a numerical representation of the

likelihood ranking. Thus, our prediction rule can be applied also when there

is no structural relationship between past cases and future eventualities.

Formally, let M denote the set of known cases. For each c ∈M and each

eventuality x, let v(x, c) ∈ R denote the degree of support that case c lends
to eventuality x. Then the prediction rule ranks eventuality x as more likely

than eventuality y if and only if

(◦) P
c∈M v(x, c) >

P
c∈M v(y, c).

Axiomatization The main goal of this paper is to axiomatize this rule.

We assume that a predictor has a ranking of possible eventualities given any

possible memory (or database). A memory consists of a Þnite set of past

cases, or stories. The predictor need not envision all possible memories. She

might have a rule, or an algorithm that generates a ranking (in Þnite time)

for each possible memory. We only rely on qualitative plausibility rankings,

and do not assume that the predictor can quantify them in a meaningful

way. Cases are not assumed to have any particular structure. However, we

do assume that for every case there are arbitrarily many other cases that

are deemed equivalent to it by the predictor (for the prediction problem at

hand). For instance, if the physician in Example 2 focuses on Þve parameters

of the patient in making her prediction, we can imagine that she has seen

arbitrarily many patients with particular values of the Þve parameters. The

equivalence relation on cases induces an equivalence relation on memories

(of equal sizes), and the latter allows us to consider replication of memories,
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that is, the disjoint union of several pairwise equivalent memories.

Our main assumption is that prediction satisÞes a combination axiom.

Roughly, it states that if an eventuality x is more likely than an eventuality

y given two possible disjoint memories, then x is more likely than y also given

their union. For example, assume that the patient in Example 2 consults two

physicians, who were trained in the same medical school but who have been

working in different hospitals since graduation. Thus, the physicians can

be thought of as having disjoint databases on which they can base their

prediction, while sharing the inductive algorithm. Assume next that both

physicians Þnd that success is more likely than failure in the case at hand.

Should the patient ask them to share their databases and re-consider their

predictions? If the inductive algorithm that the physicians use satisÞes the

combination axiom, the answer is negative.

We also assume that the predictor�s ranking is Archimedean in the follow-

ing sense: if a databaseM renders eventuality x more likely than eventuality

y, then for every other database N there is a sufficiently large number of

replications of M , such that, when these memories are added to N , they

will make eventuality x more likely than eventuality y. Finally, we need an

assumption of diversity, stating that any list of four eventualities may be

ranked, for some conceivable database, from top to bottom. Together, these

assumptions necessitate that prediction be made according to the rule sug-

gested by the formula (◦) above. Moreover, we show that the function v in
(◦) is essentially unique.
This result can be interpreted in several ways. From a descriptive view-

point, one may argue that experts� predictions tend to be consistent as re-

quired by our axioms (of which the combination is the most important), and

that they can therefore be represented as aggregate similarity-based predic-

tions. From a normative viewpoint, our result can be interpreted as sug-

gesting the aggregate similarity-based predictions as the only way to satisfy

our consistency axioms. In both approaches, one may attempt to measure
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similarities using the likelihood rankings given various databases.

Observe that we assume no a priori conceptual relationship between cases

and eventualities. Such relationships, which may exist in the predictor�s

mind, will be revealed by her plausibility rankings. Further, even if cases

and eventualities are formally related (as in Example 2), we do not assume

that a numerical measure of distance, or of similarity is given in the data.

Axiomatization of kernel methods A well-known statistical problem

is the estimation of a density function, based on a Þnite sample of observa-

tions. In this case, a common statistical technique is kernel estimation (see

Akaike (1954), Rosenblatt (1956), Parzen (1962), and Silverman (1986) and

Scott (1992) for recent texts): a kernel function k(x, y) is chosen, and the

estimated density, based on observations {xi}ni=1, is f(y) =
Pn

i=1 k(xi, y). In

other words, every observation xi is assumed to make every y in its vicinity

(as deÞned by the kernel function k) more likely.

Kernel estimation of density functions is a special case of our model.

Thus, when our model is applied to the special structure above, it can be

viewed as axiomatizing this estimation method. This may serve as a norma-

tive justiÞcation for this method, as well as a deÞnition of the kernel function

in terms of qualitative plausibility rankings.

Kernel methods have also been applied to classiÞcation problems. In

such a problem a classiÞer is equipped with a set of data points for which the

correct class is given, and it is asked to classify the next data point. Kernel

methods employ a kernel function deÞned on pairs of data points, and, for

each possible class, compute the sum, over all examples of this class, of the

kernel function between these known examples and the new data point. A

maximizer of this sum is chosen as the classiÞcation of the new data point.

Clearly, kernel classiÞcation methods are a special case of our prediction

rule. Indeed, our description of the prediction rule in Example 2 can be

viewed as a generalization of kernel classiÞcation to a situation where the

data need not be points in a Euclidean space, and where distance, similarity,
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or kernel functions are not given a-priori.

When applied to the special case of classiÞcation problems, our result can

be used to derive an axiomatization of kernel methods. This can be used to

justify these methods, and to deÞne a subjective kernel function based on

qualitative plausibility rankings.

Axiomatization of maximum likelihood Prediction is not restricted

to single cases. Often one is asked to choose not only the most plausible

outcome in a given instance, but the most plausible theory, or hypothesis.

How should we use cases in this problem?

We argue that our axioms are reasonable for this case as well. Indeed,

the main axiom is that, if, based on each of two disjoint databases, we tend

to prefer theory T to theory T 0, we should have the same preference based

on the union of the databases. Hence our rule is also a reasonable suggestion

for ranking theories given data: every theory and every case are ascribed a

number, and the plausibility of a theory is measured by the summation of

the numbers corresponding to it, over all cases in memory.

Let us suppose that the numbers assigned to theory-case pairs are neg-

ative. They can then be viewed as the logarithms of the conditional prob-

abilities of cases given theories. Summing up these numbers over all cases

corresponds to multiplying the conditional probabilities. In other words, the

numerical function that measures the plausibility of a theory is simply the

log-likelihood function.

Thus our theorem can be viewed as an axiomatization of likelihood rank-

ing. Given a qualitative �at least as plausible as� relation between theories

we derive numerical conditional probabilities for each theory and each case,

together with the algorithm that ranks theories based on their likelihood

function, under the assumption that all cases were statistically independent.

While the conditional probabilities we derive are unique only up to certain

transformations, our result does provide a compelling reason to use likelihood

rankings.
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Methodological remarks The Bayesian approach (Ramsey (1931), de

Finetti (1937), and Savage (1954)) holds that all prediction problems should

be dealt with by a prior subjective probability that is updated in light of

new information via Bayes� rule. This requires that the predictor have a

prior probability over a space that is large enough to describe all conceivable

new information. We Þnd that in certain examples (as above) this assump-

tion is not cognitively plausible. By contrast, the prediction rule (◦) requires
the evaluation of support weights only for cases that were actually encoun-

tered. For an extensive methodological discussion, see Gilboa and Schmeidler

(2001).

Since the early days of probability theory, the concept of probability

serves a dual role: one relating to empirical frequencies, and the other �

to quantiÞcation of subjective beliefs or opinions. (See Hacking (1975).) The

Bayesian approach offers a uniÞcation of these roles employing the concept

of a subjective prior probability. Our approach may also be viewed as an

attempt to unify the notions of empirical frequencies and subjective opinions.

Whereas the axiomatic derivations of de Finetti (1937) and Savage (1954)

treat the process of the generation of a prior as a black box, our rule aims to

make a preliminary step towards the modeling of this process.

Thus, our approach is complementary to the Bayesian approach at two

levels: Þrst, it may offer an alternative model of prediction, when the in-

formation available to the predictor is not easily translated to the language

of a prior probability. Second, our approach may describe how a prior is

generated. (See also Gilboa and Schmeidler (1999).)

The rest of this paper is organized as follows. Section 2 presents the for-

mal model and the main results. Section 3 discusses the relationship to kernel

methods and to nearest neighbor approaches. Section 4 discusses the deriva-

tion of maximum likelihood rankings. Section 5 contains a critical discussion

of the axioms, attempting to outline their scope of application. Finally,

Section 6 brießy discusses alternative interpretations of the model, and, in
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particular, relates it to case-based decision theory. Proofs are relegated to

the appendix.

2 Model and Result

2.1 The framework

The primitives of our model consist of two non-empty sets X and C. We
interpret X as the set of all conceivable eventualities in a given prediction

problem, p, whereas C represents the set of all conceivable cases. To sim-
plify notation, we suppress the prediction problem p whenever possible. The

predictor is equipped with a Þnite set of cases M ⊂ C, her memory, and her
task is to rank the eventualities by a binary relation, �at least as likely as�.

While evaluating likelihoods, it is insightful not only to know what has

happened, but also to take into account what could have happened. The

predictor is therefore assumed to have a well-deÞned �at least as likely as�

relation on X for many other collections of cases in addition to M itself.

Let M be the set of Þnite subsets of C. For every M ∈ M, we denote the
predictor�s �at least as likely as� relation by %M ⊂ X ×X.
Two cases c and d are equivalent, denoted c ∼ d, if, for everyM ∈M such

that c, d /∈M , %M∪{c}=%M∪{d}. To justify the term, we note the following.
Observation: ∼ is an equivalence relation.
Note that equivalence of cases is a subjective notion: cases are equivalent

if, in the eyes of the predictor, they affect likelihood rankings in the same

way. Further, the notion of equivalence is also context-dependent: two cases

c and d are equivalent as far as a speciÞc prediction problem is concerned.

We extend the deÞnition of equivalence to memories as follows. Two

memories M1,M2 ∈ M are equivalent, denoted M1 ∼ M2, if there is a bijec-

tion f : M1 → M2 such that c ∼ f(c) for all c ∈ M1. Observe that memory

equivalence is also an equivalence relation. It also follows that, if M1 ∼M2,

then, for every N ∈M such that N ∩ (M1 ∪M2) = ∅, %N∪M1=%N∪M2 .
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Throughout the discussion, we impose the following structural assump-

tion.

Richness Assumption: For every case c ∈ C, there are inÞnitely many
cases d ∈ C such that c ∼ d.
A note on nomenclature: the main result of this paper is interpreted as

a representation of a prediction rule. Accordingly, we refer to a �predictor�

who may be a person, an organization, or a machine. However, the result may

and will be interpreted in other ways as well. Instead of ranking eventualities

one may rank decisions, acts, or a more neutral term, alternatives. Cases,

the elements of C, may also be called observations or facts. A memory M
in M represents the predictor�s knowledge and will be referred to also as a

database.

2.2 The axioms

We will use the four axioms stated below. In their formalization let ÂM and

≈M denote the asymmetric and symmetric parts of %M , as usual. %M is

complete if x %M y or y %M x for all x, y ∈ X.
A1 Order: For every M ∈M, %M is complete and transitive on X.

A2 Combination: For every disjoint M,N ∈ M and every x, y ∈ X, if
x %M y (x ÂM y) and x %N y, then x %M∪N y(x ÂM∪N y).
A3 Archimedean Axiom: For every disjoint M,N ∈ M and every x, y ∈
X, if x ÂM y, then there exists l ∈ N such that for any l-list (Mi)

l
i=1 of

pairwise disjoint Mi�s in M, where for all i ≤ l, Mi ∼ M and Mi ∩ N = ∅,
x ÂM1∪...∪Ml∪N y holds.

Axiom 1 simply requires that, given any conceivable memory, the predic-

tor�s likelihood relation over eventualities is a weak order. Axiom 2 states

that if eventuality x is more plausible than eventuality y given two disjoint

memories, x should also be more plausible than y given the union of these

memories. Axiom 3 is states that if, given the memory M , the predictor
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believes that eventuality x is strictly more plausible than y, then, no matter

what is her ranking for another memory, N , there is a number of �repetitions�

of M that is large enough to overwhelm the ranking induced by N .

Finally, we need a diversity axiom. It is not necessary for representation

of likelihood relations by summation of real numbers. Theorem 1 below is an

equivalence theorem, characterizing precisely which matrices of real numbers

will satisfy this axiom.

A4 Diversity: For every list (x, y, z, w) of distinct elements of X there

exists M ∈ M such that x ÂM y ÂM z ÂM w. If |X| < 4, then for any

strict ordering of the elements of X there exists M ∈ M such that ÂM is

that ordering.

2.3 The main results

For clarity of exposition, we Þrst formulate the key result.

Result: Let there be given X, C, and {%M}M∈M satisfying the richness
assumption and A1-A4. Then there is a matrix v : X ×C→ R such that:

(∗)
 for every M ∈M and every x, y ∈ X,

x %M y iff
P

c∈M v(x, c) ≥
P

c∈M v(y, c) .

In other words, axioms A1-A4 imply that {%M}M∈M follow our prediction
rule for an appropriate choice of the matrix v. Not all of these axioms are,

however, necessary for the representation to obtain. Indeed, the axioms imply

special properties of the representing matrix v. First, it can be chosen in such

a way that equivalent cases are attached identical columns. Second, every

four rows of the matrix satisfy an additional condition. Existence of a matrix

v satisfying these two properties together with (∗) does imply axioms A1-
A4. Finally, the matrix v is essentially unique. Theorem 1 below states the

exact characterization and uniqueness results. Before stating the theorem,

we present two additional deÞnitions.
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DeÞnition: A matrix v : X×C→ R respects case equivalence (with respect
to {%M}M∈M) if for every c, d ∈ C, c ∼ d iff v(·, c) = v(·, d).
When no confusion is likely to arise, we will suppress the relations {%M}M∈M

and will simply say that �v respects case equivalence�.

The following deÞnition applies to real-values matrices in general. It will

be used for the matrix v : X × C→ R in the statement of the theorem, but
also for another matrix in the proof. It deÞnes a matrix to be diversiÞed if no

row in it is dominated by an affine combination of any other three (or less)

rows. Thus, if v is diversiÞed, no row in it dominates another. Indeed, the

property of diversiÞcation can be viewed as a generalization of this condition.

DeÞnition: A matrix v : X × Y → R, where |X| ≥ 4, is diversiÞed if there
are no distinct four elements x, y, z, w ∈ X and λ, µ, θ ∈ R with λ+µ+θ = 1
such that v(x, ·) ≤ λv(y, ·)) + µv(z, ·) + θv(w, ·). If |X| < 4, v is diversiÞed
if no row in v is dominated by an affine combination of the others.

We can Þnally state

Theorem 1 : Let there be given X, C, and {%M}M∈M satisfying the rich-
ness assumption as above. Then the following two statements are equivalent:

(i) {%M}M∈M satisfy A1-A4;

(ii) There is a diversiÞed matrix v : X × C→ R that respects case equiva-
lence and such that:

(∗)
 for every M ∈M and every x, y ∈ X,

x %M y iff
P

c∈M v(x, c) ≥
P

c∈M v(y, c) ,

Furthermore, in this case the matrix v is unique in the following sense:

v and u both satisfy (∗) and respect case equivalence iff there are a scalar
λ > 0 and a matrix β : X × C → R with identical rows (i.e., with constant
columns), that respects case equivalence, such that u = λv + β.
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Observe that, by the richness assumption, C is inÞnite, and therefore

the matrix v has inÞnitely many columns. Moreover, the theorem does not

restrict the cardinality of X, and thus v may also have inÞnitely many rows.

2.4 Notes on the proof

The Result is part of Theorem 1, and was stated only for expository purposes.

We therefore prove only Theorem 1.

The notion of case equivalence allows us to reduce the discussion to vec-

tors of non-negative integers. We deÞne the set of types of cases to be the

∼-equivalence classes: T = C/ ∼. Assume, for simplicity, that there are
Þnitely many types and Þnitely many eventualities. Rather than referring

to sets of speciÞc cases (memories M), we focus on vectors of non-negative

integers. Such a vector I : T→ Z+ represents many equivalent memories by
counting how many cases of each type are in each of these memories. Thus,

instead of dealing with subsets of the set C, most of the discussion will be
conducted in the space ZT+. Next, using the combination axiom, we extend
the family rankings {ºI} from I ∈ ZT+ to I ∈ QT+.
Focusing on two eventualities, x and y, we divide the vectors I ∈ QT+ to

those that render x more likely than y, and to those that induce the opposite

ranking. Completeness and combination are the key axioms that allow us to

invoke a separating hyperplane theorem. With the aid of the Archimedean

axiom, one can prove that the separating hyperplane precisely characterizes

the memories for which x is (strongly or weakly) more likely than y.

If one has only two eventualities, the proof is basically complete. Most of

the work is in showing that the hyperplanes, which were obtained for each

pair of eventualities, can be represented by a single matrix. More concretely,

the separation theorem applied to a pair x, y yields a vector vxy, unique up

to multiplication by a positive constant, such that x is at least as likely as y

given memory I iff vxy · I ≥ 0. One now wishes to Þnd a vector vx for each
eventuality x such that vxy is a positive multiple of (vx−vy) (simultaneously
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for all x, y).

This can be done if and only if there is a selection of vectors {vxy}x,y
(where each is given only up to a multiplicative constant) such that vxz =

vxy + vyz for every triple x, y, z. It turns out that, due to transitivity, this

can be done for every triple x, y, z separately. The diversity axiom guarantees

that this can also be done for sets of four eventualities, and the proof proceeds

by induction.

The Þnal two steps of the proof deal with extensions to inÞnitely many

types and to inÞnitely many eventualities.

2.5 Mathematical comments

Given any real matrix of order |X| × |C| , one can deÞne for every M ∈ M
a weak order on X through (∗). It is easy to see that it will satisfy A1 and
A2. If the matrix also respects case equivalence, A3 will also be satisÞed.

However, these conditions do not imply A4. For example, A4 will be violated

if a row in the matrix dominates another row. Since A4 is not necessary for

a representation by a matrix v via (∗) (even if it respects case equivalence),
one may wonder whether it can be dropped. The answer is given by the

following.

Proposition 2 Axioms A1, A2, and A3 do not imply the existence of a

matrix v that satisÞes (∗).
Some remarks on cardinality are in order. Axiom A4 can only hold if the

set of types, T = C/ ∼, is large enough relatively to X. For instance, if there
are two distinct eventualities, the diversity axiom requires that there be at

least two different types of cases. The following remark states that six types

suffice for X to have the cardinality of the continuum.

Remark 3 For any T such that |T| ≥ 6, there exists X with cardinality ℵ
and {%M}M∈M that satisfy A1-4.
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Finally, one may wonder whether (∗) implies that v respects case equiv-
alence. The negative answer is given below.

Remark 4 Condition (∗) does not imply that v respects case equivalence.

3 Axiomatization of Kernel Methods

3.1 Estimation of a density function

Assume that X is a continuous random variable taking values in Rm. Having
observed a Þnite sample (xi)i≤n, one is asked to estimate the density func-

tion of X. Kernel estimation (see Akaike (1954), Rosenblatt (1956), Parzen

(1962), and Silverman (1986) for a survey) suggests the following. Choose a

(so-called �kernel�) function k : Rm × Rm → R+ with the following proper-
ties: (i) k(x, y) is a non-increasing function of kx− yk; (ii) for every x ∈ Rm,R
Rm k(x, y)dy = 1.

2 Given the sample (xi)i≤n, estimate the density function

by

f(y|x1, ..., xn) ≡ 1
n

P
i≤n k(xi, y).

The estimated density function f quantiÞes likelihood differences between

(small neighborhoods of) various points y. Let us now assume that, given

the sample x ≡ (xi)i≤n, the predictor is only asked to provide qualitative

�at least as likely as� relations {%x} on Rm, where y Âx z is interpreted to
mean that (a small neighborhood of) y is more likely than (the corresponding

neighborhood of) z given the sample x. Assume that the order of observations

in x = (xi)i≤n does not affect the ranking %x. In this case a vector x can
be identiÞed with a Þnite set of observations, each of which is an element of

Rm. To allow repetitions, one deÞnes C = Rm × N, where a case (z, j) ∈
Rm × N is interpreted as the j-th appearance of z in x = (xi)i≤n. For any

2More generally, the kernel may be a function of transformed coordinates. The following
discussion does not depend on assumptions (i) and (ii) and they are retained merely for
concreteness.
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Þnite M ⊂ C, %M is deÞned as follows: %M=%x for some x = (xi)i≤n such
that, for every z ∈ Rm, #{i ≤ n | xi = z} = #{(z, j) | (z, j) ∈M}.
Our axioms appear to be rather plausible in this set-up. Thus, the

theorem suggests that there are numbers, v(y, x), such that %x is repre-
sented by gx(y) =

P
i≤n v(y, xi). Up to normalization by a factor of n,

the function v can serve the role of the kernel function. That is, setting

k(x, y) = k(y, x) = nv(y, x), the function gx (deÞned via v) coincides with

the function f (deÞned via k).

One may impose additional conditions on the collection of relations {%x}
such that the derived function v is (i) bounded; (ii) decreasing in distance;

(iii) continuous in x for every y. Such axioms would employ the special

structure of cases in this application. For instance, one may require that, if

kxi − yk = kx0i − y0k and kxi − zk = kx0i − z0k for every i ≤ n, then y %x z
iff y0 %x z0. Similarly, the natural topology on Rm can be used to state that
the set of observations x ∈ (Rm)n, for which y Âx z, is open for all y, z ∈ Rm.
Deriving speciÞc results on kernel functions is beyond the scope of this

paper. At this point, we wish to point out that our theorem can be inter-

preted as a normative justiÞcation of kernel estimation, as well as a way to

calibrate the appropriate kernel function based on intuitive likelihood judg-

ments. Importantly, the kernel function k (or v) in our model is derived from

these qualitative judgments, rather than assumed primitive.

3.2 Kernel classiÞcation

Kernel methods are also used for classiÞcation problems. Assume that a

classiÞer is confronted with a data point y ∈ Rm, and it is asked to guess
to which member of a Þnite set A it belongs. The classiÞer is equipped

with a set of examples M . Each example is a data point x ∈ Rm, with a
known classiÞcation in A. Kernel classiÞcation methods would adopt a kernel

function a above, and, given the point y, would guess that y belongs to a

class a ∈ A that maximizes the sum of k(x, y) over all x�s in memory that
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were classiÞed as a.

Our general framework can accommodate classiÞcation problems as well.

The special feature of classiÞcation problems is that each past cases speci-

Þes one of the objects to be ranked, namely, the classes, interpreted as the

�correct� answer. To allow repetitions, we deÞne the set of cases C to be
Rm ×A×N. Thus, an example (x, a) that appears in memory twice will be
coded as a pair of cases, (x, a, 1) and (x, a, 2), in each of which a data point

x in Rm was encountered, and its correct classiÞcation is known to have been
a ∈ A.
For the purpose of axiomatization, we assume that, for each data point

y, the classiÞer can rank all possible classes, given every possible memory.3

That is, for a given (Þnite) memoryM ⊂ Rm×A×N, classes in A are ranked
by %M,y⊂ A × A. We will assume that (x, a, i) ∼ (x, a, j) for all x ∈ Rm,
a ∈ A, and i, j ∈ N. Our main result suggests that, if {%M,y}M satisfy A1-4,

then there is a matrix v ≡ vy : A × (Rm × A × N) → R, respecting case
equivalence, such that %M,y is represented by vy as follows:

a %M,y b iff
P

(x,d,i)∈M vy(a, (x, d, i)) ≥
P

(x,d,i)∈M vy(b, (x, d, i)).

This formulation allows an example of class d /∈ {a, b} to affect the ranking
of class a vs. class b for a given y. There may be situations where one may

wish to allow such linkages. For instance, in classiÞcation of visual inputs

into the Latin alphabet, it is possible that similar data points that are known

to represent lower case �o� may make upper case �O� more likely than, say,

upper case �A�. Yet, one may also impose an additional speciÞcity axiom,

stating that the ranking between classes a and b depends solely on examples

of a or of b. For example, one may state the following axiom:

3Admittedly, a standard classiÞcation problem is less demanding in that it only requires
a choice of one class, and not a complete ordering of all classes. See the discussion of scoring
rules in voting theory in Section 6 below, and the comparison of our result to those of
Young (1975) and Myerson (1995).
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A5 SpeciÞcity: For every y, x ∈ Rm, M ∈ M, distinct a, b, d ∈ A, and
i ∈ N, a %M,y b iff a %M∪{(x,d,i)},y b.
This axiom yields a more compact representation:

Proposition 5 Assume that {ºM,y}M∈M satisfy A1-4 and thus have a rep-
resentation as in Theorem 1 by a matrix vy. Then A5 is satisÞed iff there

exists a function sy : Rm × A→ R such that

vy(a, (x, b, i)) = sy(x, a)1a=b

(where 1a=b is 1 if a = b and zero otherwise.)

Moreover, in this case the function sy is unique up to multiplication by

a positive constant.

This formulation is very similar to kernel classiÞcation methods. One

obvious difference is that the function sy above may depend not only on past

examples x, but also on the class considered a. This ßexibility might be

useful. For instance, in the example above, one may wish to give the letter

�e� precedence, as a potential classiÞcation, over the letter �o�. However,

should one wish to rule out this possibility, one may impose an additional

symmetry axiom on classes. It states that a permutation of the classes in the

examples results in the corresponding permutation in the ranking of these

classes for the new data point. Formally, let π : A → A be a permutation.

For M ∈ M, deÞne π(M) ∈ M by (x, a, i) ∈ M iff (x, π(a), i) ∈ π(M) for
every (x, a, i) ∈ C. Using this notation, we write
A6 Symmetry: For every permutation π, everyM ∈M, and every a, b ∈ A,
a %M b, iff π(a) %π(M) π(b).

Proposition 6 Assume that {ºM,y}M∈M satisfy A1-4 and thus have a rep-
resentation as in Theorem 1 by a matrix vy. Then A5 and A6 are satisÞed

iff there exists a function sy : Rm → R such that

vy(a, (x, b, i)) = sy(x)1a=b.
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In particular, under A1-A6,

for every M ∈M and every a, b ∈ A,

a ºM,y b iff
P

(x,a,i)∈M sy(x) ≥
P

(x,b,i)∈M sy(x)

Moreover, in this case the function sy is unique up to multiplication by

a positive constant.

It is only left to deÞne k(x, y) = sy(x) to obtain the familiar kernel

formulation. Observe, however, that the kernel function is given up to a

separate multiplicative constant for every y. In particular, k need not be

symmetric. It can be shown (see Gilboa and Schmeidler (1995)) that k(·, y)
may be re-scaled (separately for each y) to become symmetric if, for every

x, y, z ∈ Rm,

k(x, y)k(y, z)k(z, x) = k(x, z)k(z, y)k(y, x).

As above, this axiomatization can be viewed as a normative justiÞcation of

kernel methods, and also as a way to elicit the �appropriate� kernel function

from qualitative ranking data. Again, our approach does not assume that a

kernel function is given, but derives such a function together with the kernel

classiÞcation rule.

3.3 Comparison with nearest-neighbor approaches

A popular alternative to kernel classiÞcation methods is offered by nearest

neighbor methods. Given a new instance y, rather than ranging over all past

cases of all classes, a (single) nearest neighbor approach suggests to Þnd an

example (x, a) in memory that minimizes a distance function d(x, y), and to

select a as the class to which y probably belongs.4 This algorithm appears

to be somewhat extreme: a single most-similar case belonging to class a

may outweigh dozens of slightly less similar cases all belonging to class b.

4As in the case of kernel functions, we discuss the simplest version of nearest neighbors
methods for simplicity.
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Thus, the nearest neighbor methodology was generalized to use several (k)

nearest neighbors (Fix and Hodges (1951, 1952)). In this approach, a simple

majority vote among the k nearest neighbors generates the prediction for

each case. Further, one may extend the decision rule to a weighted majority

vote (Royall (1966)), in which, among the k nearest neighbors, those that

are closer to the case at hand are weighted more heavily. One of the merits

of the nearest neighbor approaches is that one can bound their asymptotic

probability of error, relative to that of a Bayesian decision (Cover and Hart

(1967)). Further, k-nearest neighbors rules in which k tends to inÞnity with

the number of observations n but does so slowly (k/n → 0) enjoy universal

consistency: their probability of error tends to that of the Bayesian decision

for any underlying distribution from which the data are drawn (Stone (1977);

see Devroye, GyorÞ, and Lugosi (1996)).

As kernel classiÞers, nearest neighbor classiÞers are designed to select one

possible class for a new data point, rather than to rank all possible classes.

Yet it is straightforward to extend them to generate complete rankings: after

choosing the most plausible class by a vote among the nearest neighbors, one

can ignore all past cases of this class and use the remaining database to select

among the other categories, and so forth.

Our axioms provide a new perspective for the comparison of kernel classi-

Þers and nearest neighbor classiÞers. First, we observe that nearest neighbor

classiÞers do not satisfy our Archimedean axiom. A single case that is clos-

est to the problem at hand will outweigh less similar cases, no matter how

many replications of these have been observed. Whether this is a merit or

a ßaw of the nearest neighbor approach is probably a matter of taste. It

should be observed, however, that the Archimedean axiom is not very cru-

cial to the core of our theory. Dropping this axiom, one may still use a

separating theorem, with the modiÞcation that the separating hyperplane it-

self is not unambiguously categorized. Moreover, one may use lexicographic

separation, or separation by non-standard numbers. Correspondingly, one
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may obtain variations of Theorem 1 in which the numerical representation is

lexicographic or employs non-standard numbers.

A more interesting perspective for comparison is suggested by the combi-

nation axiom. A nearest neighbor approach employing but a single neighbor

satisÞes this axiom. Indeed, a 1-nearest neighbor ranking conforms with the

numerical representation of Theorem 1 provided that nonstandard numbers

are allowed. By contrast, for k > 1 a majority vote among the k-nearest

neighbors violates the combination axiom. Take, for concreteness, k = 3

(avoiding possible ties). Assume that a physician classiÞes a patient as �sick�

or �healthy� according to the majority among the 3 closest known cases. Fur-

ther, assume that for a given patient there are six relevant cases, denoted

{a, b, c, d, e, f}. Cases a, d are of distance 1 from the case at hand, and in-

volved healthy patients, while cases b, c, e, f are of distance 2, and involved

sick patients. Given each of the databases {a, b, c} and {d, e, f}, the physi-
cian would classify the patient as sick. Given their union, she would conclude

that the patient is healthy. It appears that this violation of the combination

axiom is counter-intuitive.

If k grows with the number of observations n, our physician may use

more cases out of a database containing six cases than out of each of the

two databases containing three. Yet, k-nearest neighbors with k > 1 are

in fundamental conßict with the combination axiom. Intuitively, the reason

is that in these approaches the weight assigned to a past case depends not

only on the inherent similarity between it and the case at hand, but also

on its relative ranking, among other past cases, in terms of similarity. By

contrast, our approach gives each case a weight that depends only on itself,

irrespective of how many or which other cases are being taken into account.
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4 Axiomatization of Maximum Likelihood Rank-

ing

So far, the main interpretation of our model deals with ranking eventualities

in a speciÞc prediction problem. But the model can also interpreted as refer-

ring to ranking of theories or hypotheses given a set of observations. Observe

that the axioms we formulated apply to this case as well. In particular, our

main requirements are that theories be ranked by a weak order for every

memory, and that, if theory x is more plausible than theory y given each

of two disjoint memories, x should also be more plausible than y given the

union of these memories.

Assume, therefore, that Theorem 1 holds. Suppose that, for each case c,

v (x, c) is bounded from above, and choose a representation v where v(x, c) <

0 for every theory x and case c. DeÞne p (c|x) = exp (v (x, c)), so that

log (p (c|x)) = v (x, c). Our result states that, for every two theories x, y:
(∗) x %M y iff

P
c∈M v(x, c) ≥

P
c∈M v(y, c),

which is equivalent to

exp
¡P

c∈M v(x, c)
¢ ≥ exp ¡Pc∈M v(y, c)

¢
or Q

c∈M p (c|x) ≥
Q
c∈M p (c|y)

In other words, should a predictor rank theories in accordance with A1-

A4, there exist conditional probabilities p (c|x), for every case c and theory
x, such that the predictor ranks theories as if by their likelihood functions,

under the implicit assumption that the cases were stochastically independent.

On the one hand, this result can be viewed as a normative justiÞcation of

the likelihood rule: any method of ranking theories that is not equivalent

to ranking by likelihood (for some conditional probabilities p (c|x)) has to
violate one of our axioms. On the other hand, our result can be descriptively
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interpreted, saying that likelihood rankings of theories are rather prevalent.

One need not consciously assign conditional probabilities p (c|x) for every
case c given every theory x, and one need not know probability calculus

in order to generate predictions in accordance with the likelihood criterion.

Rather, whenever one satisÞes our axioms, one may be ascribed conditional

probabilities p (c|x) such that one�s predictions are in accordance with the
resulting likelihood functions. Thus, relatively mild consistency requirements

imply that one predicts as if by likelihood functions.

Finally, our result may be used to elicit the subjective conditional proba-

bilities p (c|x) of a predictor, given her qualitative rankings of theories. How-
ever, our uniqueness result is somewhat limited. In particular, for every case

c one may choose a positive constant βc and multiply p (c|x) by βc for all the-
ories x, resulting in the same likelihood rankings. Similarly, one may choose

a positive number α and raise all probabilities {p (c|x)}c,x to the power of
α, again without changing the observed ranking of theories given possible

memories. Thus there will generally be more than one set of conditional

probabilities {p (c|x)}c,x that are consistent with {%M}M∈M.
The likelihood function relies on independence across cases. Conceptually,

stochastic independence follows from two assumptions in our model. First,

we have deÞned {%M}M∈M where each M is a set. This implicitly assumes

that only the number of repetitions of cases, and not their order, matters.

This structural assumption is reminiscent of de Finetti�s exchangeability con-

dition (though the latter is deÞned in a more elaborate probabilistic model).

Second, our combination axiom also has a ßavor of independence. In partic-

ular, it rules out situations in which past occurrences of a case make future

occurrences of the same case less likely.
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5 Discussion of the Axioms

We argue that our axioms are generally rather plausible and that the predic-

tion rule that they axiomatize is reasonably intuitive. The fact that this rule

generalizes rankings by empirical frequencies may also serve as an argument

in its favor. Moreover, it turns out that our key axioms are satisÞed by well-

known methods for various problems of learning, prediction, or inference, as

shown in the previous two sections. This fact can also be cited as a piece of

evidence that the axioms are indeed plausible.

But there are applications in which the axioms do not appear compelling.

We discuss here several examples, trying to delineate the scope of applicabil-

ity of the axioms, and to identify certain classes of situations in which they

may not apply. In these situations one should take the linear aggregation

rule with a grain of salt, for descriptive and for normative purposes alike.

In the following discussion we do not dwell on the Þrst axiom, namely,

that likelihood rankings are weak orders. This axiom and its limitations

have been extensively discussed in decision theory, and there seems to be no

special arguments for or against it in our speciÞc context. We also have little

to add to the discussion of the diversity axiom. While it does not appear

to pose conceptual difficulties, there are no fundamental reasons to insist on

its plausibility either. One may well be interested in other assumptions that

would allow a representation as in (∗) by a matrix v that is not necessarily
diversiÞed. We therefore focus on the combination and the Archimedean

assumptions.

Mis-speciÞed cases Consider a cat, say Lucifer, who every so often dies

and then may or may not resurrect. Suppose that, throughout history, many

other cats have been observed to resurrect exactly eight times. If Lucifer had

died and resurrected four times, and now died for the Þfth time, we�d expect

him to resurrect again. But if we double the number of cases, implying that

we are now observing the ninth death, we would not expect Lucifer to be

with us again. Thus, one may argue, the combination axiom does not seem
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to be very compelling.

Obviously, this example assumes that all of Lucifer�s deaths are equiva-

lent. While this may be a reasonable assumption of a naive observer, the cat

connoisseur will be careful enough to distinguish �Þrst death� from �second

death�, and so forth. Thus, this example suggests that one has to be careful

in the deÞnition of a �case� (and of case equivalence) before applying the

combination axiom.

Mis-speciÞed theories Suppose that one wishes to determine whether

a coin is biased. A memory with 1,000 repetitions of �Head�, as well as a

memory with 1,000 repetitions of �Tail� both suggest that the coin is indeed

biased, while their union suggests that it is not. As mentioned above, our

combination axiom makes an implicit assumption of stochastic independence.

Under this assumption, it is highly unlikely to observe such memories. That

is, adopting the combination axiom entails an implicit assumption that such

anomalies will not occur. But this example also shows that ambiguity in the

formulation of theories may make us reject the combination axiom. SpeciÞ-

cally, the theory that the coin is �biased�, without specifying in what way it

biased, may be viewed as a mis-speciÞed theory.

Theories about patterns A related class of examples deal with concepts

that describe, or are deÞned by patterns, sequences, or sets of cases. Assume

that a single case consists of 100 tosses of a coin. A complex sequence of 100

tosses may lend support to the hypothesis that the coin generates random

sequences. But many repetitions of the very same sequence would undermine

this hypothesis. Observe that �the coin generates random sequences� is

a statement about sequences of cases. Similarly, statements such as �The

weather always surprises� or �History repeats itself� are about sequences

of cases, and are therefore likely to generate violations of the combination

axiom.

Overwhelming evidence There are situations in which a single case

may outweigh any number of repetitions of other cases, in contradiction to the
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Archimedean axiom. For instance, a physician may Þnd a single observation,

taken from the patient she is currently treating, more relevant than any

number of observations taken from other patients.5 In the context of ranking

theories, it is possible that a single case c constitutes a direct refutation of

a theory x. If another theory y was not refuted by any case in memory, a

single occurrence of case c will render theory x less plausible than theory y

regardless of the number of occurrences of other cases, even if these lend more

support to x than to y.6 In such a case, one would like to assign conditional

probability of zero to case c given theory x, or, equivalently, to set v(x, c) to

−∞. More generally, one may extend Theorem 1 to provide representations

by non-standard numbers, allowing several levels of impossibility as well.

Second-order induction An important class of examples in which we

should expect the combination axiom to be violated, for descriptive and

normative purposes alike, involves learning of the similarity function. For in-

stance, assume that one database contains but one case, in which Mary chose

restaurant x over y.7 One is asked to predict what John�s decision would be.

Having no other information, one is likely to assume some similarity of tastes

between John and Mary and to Þnd it more plausible that John would prefer

x to y as well. Next assume that in a second database there are no observed

choices (by anyone) between x and y. Hence, based on this database alone,

it would appear equally likely that John would choose x as that he would y.

Assume further that this database does contain many choices between other

pairs of restaurants, and it turns out that John and Mary consistently choose

different restaurants. When combining the two databases, it makes sense to

predict that John would choose y over x.

This is an instance in which the similarity function is learned from cases.

Linear aggregation of cases by Þxed weights embodies learning by a similarity

5Indeed, the nearest neighbor approach to classiÞcation problems violates the
Archimedean axiom.

6This example is due to Peyton Young.
7This is a variant of an example by Sujoy Mukerji.
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function. But it does not describe how this function itself is learned. In

Gilboa and Schmeidler (2001) we call this process �second-order induction�

and argue that the linear formula should only be taken as a very rough

approximation when such a process is involved.

Combinations of inductive and deductive reasoning Another im-

portant class of examples in which the combination axiom is not very rea-

sonable consists of prediction problems in which some structure is given.

Consider a simple regression problem where a variable x is used to predict

another variable y. Does the method of ordinary least squares satisfy our

axioms? The answer depends on the unit of analysis. If we consider the

regression equation y = a + bx and attempt to predict the values of a and

b given a sample {(xi, yi)}i≤n, the answer is in the affirmative. The least
squares estimators of the parameters a and b are maximum likelihood esti-

mators in the standard statistical model of regression analysis. If we deÞne

%M by the likelihood function for this model, the collection {%M}M will sat-

isfy the combination axiom. But if the units of analysis are the particular

values of y for a new value of x, the answer is negative.

The reason is that the regression model is structured enough to allow

some deductive reasoning. In ranking the plausibility of values of y for a

given value of x, one makes two steps. First, one uses inductive reasoning

to obtain estimates of the parameters a and b. Then, espousing a belief

in the linear model, one uses these estimates to rank values of y by their

plausibility. This second step involves deductive reasoning, exploiting the

particular structure of the model. While the combination axiom is rather

plausible for the Þrst, inductive step, there is no reason for it to hold also for

the entire inductive-deductive process.8

To consider another example, assume that a coin is about to be tossed

in an i.i.d. manner. The parameter of the coin is not known, but one knows

8One may also view the examples discussed above under �theories about patterns� and
under �overwhelming evidence� as special cases of structured inference.
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probability rules that allow one to infer likelihood rankings of outcomes given

any value of the unknown parameter. Again, when one engages in inference

about the unknown parameter, one performs only inductive reasoning, and

the combination axiom seems plausible. But when one is asked about partic-

ular outcomes, one uses inductive reasoning as well as deductive reasoning.

In these cases, the combination axiom is too crude.9

In conclusion, there are classes of counterexamples to our axioms that re-

sult from under-speciÞcation of cases, of eventualities, or of memories. There

are others that are more fundamental. Among these, two seem to deserve

special attention. First, there are situations where second-order induction

is involved, and the similarity function itself is learned. Indeed, our model

deals with accumulated evidence but does not capture the emergence of new

insights. Second, there are problems where some theoretical structure is as-

sumed, and it can be used for deductive inferences. Our model captures some

forms of inductive reasoning, but does not provide a full account of inferential

processes involving a combination of inductive and deductive reasoning.

6 Other Interpretations

Decisions Theorem 1 can also have other interpretations. In particular, the

objects to be ranked may be possible acts, with the interpretation of ranking

as preferences. In this case, v(x, c) denotes the support that case c lends to

the choice of act x. The decision rule that results generalizes most of the

decision rules of case-based decision theory (Gilboa and Schmeidler (2001)),

as well as expected utility maximization, if beliefs are generated from cases

in an additive way (see Gilboa and Schmeidler (1999)). Gilboa, Schmeidler,

and Wakker (1999) apply this theorem, as well as an alternative approach,

to axiomatize a theory of case-based decisions in which both the similarity

9We have received several counterexamples to the combination axiom that are, in our
view, of this nature. In particular, we would like to thank Bruno Jullien, Klaus Nehring,
and Ariel Rubinstein.
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function between problem-act pairs and the utility function of outcomes are

derived from preferences. This model generalizes Gilboa and Schmeidler

(1997), in which the utility function is assumed given and only the similarity

function is derived from observed preferences.

Voting Another interpretation is the derivation of scoring rules in voting

theory, where cases are replaced by ballots, and eventualities � by candi-

dates. Scoring rules have been axiomatized by Smith (1973), Young (1975),

and Myerson (1995). Whereas these models bear similarity to ours, several

differences exist. First, Smith and Young restrict the set of ballots to the per-

mutations of the set of candidates. Myerson allows an abstract set of ballots,

but employs a neutrality axiom, which relates the set of candidates to the

set of ballots. By contrast, our model does not presuppose any relationship

between cases and eventualities. This allows very different interpretations as

in Sections 3 and 4 above, as well as scoring rules that do not satisfy sym-

metry. Second, while Smith assumes that selection is a complete ordering of

the candidates, Young and Myerson assume only a choice correspondence.

Our model, like Smith�s, therefore assumes that more information is given

in the data. On the other hand, we derive an almost-unique matrix v and

can thus claim to provide a deÞnition of the scoring weights by in-principle

observable qualitative plausibility rankings.

Expected utility One may also use our result to derive a utility func-

tion in a two-person game, or in a �game against nature�, that is, in a

decision problem. Assume that a decision matrix, or a two-person game,

is given, where the outcomes are abstract entities. Suppose that, for each

mixed strategy of nature, the decision maker has a ranking over her pure

strategies. Should these preferences satisfy our axioms (with some obvious

modiÞcations), one may attach a number to each outcome in the matrix such

that preferences are given by maximization of the expectation of these num-

bers. Of course, these �utility� numbers will be unique only up to additions

of numbers to columns, and multiplication of the entire matrix by a positive
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constant. Indeed, these are transformations that do not change the structure

of the best response correspondence is a game. (See Gilboa and Schmei-

dler (1999) for more details and for comparison with the axiomatization of

expected utility maximization by von Neumann and Morgenstern (1944).)

Probabilities The main contribution of Gilboa and Schmeidler (1999) is

to generalize the scope of prediction from eventualities to events. That is, in

that paper we assume that the objects to be ranked belong to an algebra of

subsets of a given set. Additional assumptions are imposed so that similarity

values are additive with respect to the union of disjoint sets. Further, it is

shown that ranking by empirical frequencies can also be axiomatically char-

acterized in this set-up. Finally, tying the derivation of probabilities with

expected utility maximization, one obtains a characterization of subjective

expected utility maximization in face of uncertainty. As opposed to the be-

havioral axiomatic derivations of de Finetti (1937) and Savage (1954), which

infer beliefs from decisions, this axiomatic derivation follows a presumed cog-

nitive path leading from belief to decision.

Appendix: Proofs

Proof of Observation:

It is obvious that ∼ is reßexive and symmetric. To show that it is tran-
sitive, assume that c ∼ d and d ∼ e for distinct c, d, e. Let M be such that

c, e /∈ M . If d /∈ M , then %M∪{c}= %M∪{d} by c ∼ d and %M∪{d}= %M∪{c}
by d ∼ e, and %M∪{c}= %M∪{e} follows. If d ∈ M , deÞne N = M\{d}.
Since c, d /∈ N ∪ {e}, c ∼ d implies %N∪{e}∪{c}= %N∪{e}∪{d}. Similarly, since
d, e /∈ N∪{c}, d ∼ e implies %N∪{c}∪{d}=%N∪{c}∪{e}. It follows that %M∪{c}=
%N∪{c,d}= %N∪{c,e}= %N∪{d,e}= %M∪{e}.¤

Proof of Theorem 1:

Let T = C/ ∼ be the set of types of cases.10 We prove the theorem in

three steps. First we assume that there are Þnitely many types, that is, that

10C/ ∼ is the set of equivalence classes of ∼.
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|T| <∞. In this case the proof relies on an auxiliary result that is of interest
in its own right. Since the proof of this theorem applies to an inÞnite set of

eventualities X, we do not restrict the cardinality of X in this case. Step 2

proceeds to deal with the case in which |T| is unrestricted, but X is Þnite.

Lastly, Step 3 deals with the general case in which both |X| and |T| are
unrestricted.

In all three steps, memories in M are represented by vectors of non-

negative integers, counting how many cases of each type appear in memory.

Formally, for every T ⊂ T deÞne JT = ZT+ = {I | I : T → Z+} where Z+
stands for the non-negative integers. I ∈ JT is interpreted as a counter
vector, where I(t) counts how many cases of type t appear in the memory

represented by I. For I ∈ JT , if {t | I(t) > 0} is Þnite, deÞne %I ⊂ X ×X
as follows. Choose M ∈ M such that M ⊂ ∪t∈T t (recall that t ⊂ C is an
equivalence class of cases) and I(t) = #(M ∩ t) for all t ∈ T , and deÞne
%I=%M . Such a set M exists since, by the richness assumption, |t| ≥ ℵ0
for all t ∈ T. For this reason, such a set M is not unique. However, if both

M1,M2 ∈ M satisfy these properties, then M1 ∼ M2 and %M1=%M2 . Hence

%I is well-deÞned.
Moreover, this deÞnition implies the following property, which will prove

useful in the sequel: if I ∈ JT and I 0 ∈ JT 0 where T ⊂ T 0, I 0(t) = I(t) for

t ∈ T and I 0(t) = 0 for t ∈ T 0\T , then %I=%I0 . Another obvious observation,
to be used later, is that for every M ∈ M there exist a Þnite T ⊂ T and
I ∈ JT such that M ⊂ ∪t∈T t and I(t) = #(M ∩ t) for all t ∈ T .
Step 1: The case |T| <∞.
Denote the set of all counter vectors by J = JT= ZT+. For I ∈ J, deÞne

%I ⊂ X ×X as above. We now re-state the main theorem for this case, in

the language of counter vectors. In the following, algebraic operations on J
are performed pointwise.

A1* Order: For every I ∈ J, %I is complete and transitive on X.
A2* Combination: For every I, J ∈ J and every x, y ∈ X, if x %I y
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(x ÂI y) and x %J y, then x %I+J y (x ÂI+J y).
A3* Archimedean Axiom: For every I, J ∈ J and every x, y ∈ X, if

x ÂI y, then there exists l ∈ N such that x ÂlI+J y.
Observe that in the presence of Axiom 2, Axiom 3 also implies that for

every I, J ∈ J and every x, y ∈ X, if x ÂI y, then there exists l ∈ N such
that for all k ≥ l, x ÂkI+J y.
A4* Diversity: For every list (x, y, z, w) of distinct elements of X there

exists I ∈ J such that x ÂI y ÂI z ÂI w. If |X| < 4, then for any strict

ordering of the elements of X there exists I ∈ J such that ÂI is that ordering.

Theorem 7 : Let there be given X, T, and {%I}I∈J as above. Then the
following two statements are equivalent:

(i) {%I}I∈J satisfy A1*-A4*;

(ii) There is a diversiÞed matrix v : X × T→ R such that:

(∗∗)
 for every I ∈ J and every x, y ∈ X,

x %I y iff
P

t∈T I(t)v(x, t) ≥
P

t∈T I(t)v(y, t) ,

Furthermore, in this case the matrix v is unique in the following sense: v

and u both satisfy (∗∗) iff there are a scalar λ > 0 and a matrix β : X×T→ R
with identical rows (i.e., with constant columns) such that u = λv + β .

Theorem 7 is reminiscent of the main result in Gilboa and Schmeidler

(1997). In that work, cases are assumed to involve numerical payoffs, and

algebraic and topological axioms are formulated in the payoff space. Here,

by contrast, cases are not assumed to have any structure, and the algebraic

and topological structures are given by the number of repetitions. This fact

introduces two main difficulties. First, the space of �contexts� for which

preferences are deÞned is not a Euclidean space, but only integer points

thereof. This requires some care with the application of separation theorems.
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Second, repetitions can only be non-negative. This fact introduces several

complications, and, in particular, changes the algebraic implication of the

diversity condition.

Before proceeding with the proof, we Þnd it useful to present a condition

that is equivalent to diversiÞcation of a matrix. We will use it both for the

matrix v : X × T → R of Theorem 7 and the matrix v : X × C → R of

Theorem 1. We therefore state it for an abstract set of columns:

Proposition 8 Let Y be a set. Assume Þrst |X| ≥ 4. A matrix v : X×Y →
R is diversiÞed iff for every list (x, y, z, w) of distinct elements of X, the

convex hull of differences of the row-vectors (v(x, ·)−v(y, ·)), (v(y, ·)−v(z, ·)),
and (v(z, ·) − v(w, ·)) does not intersect RY−. Similar equivalence holds for
the case |X| < 4.
Proof : We prove the lemma for the case |X| ≥ 4. The proof for |X| < 4

is similar. Assume Þrst that a matrix v is diversiÞed. Assume that the con-

clusion does not hold. Hence, there are distinct x, y, z, w ∈ X and α, β, γ ≥ 0
with α+ β + γ = 1 such that

α(v(x, ·)− v(y, ·)) + β(v(y, ·)− v(z, ·)) + γ(v(z, ·)− v(w, ·)) ≤ 0.

If α > 0, then

v(x, ·) ≤ α−β
α
v(y, ·) + β−γ

α
v(z, ·) + γ

α
v(w, ·)

which means that v(x, ·) is dominated by an affine combination of {v(y, ·), v(z, ·), v(w, ·)},
in contradiction to the fact that v is diversiÞed. If α = 0, then, by a similar

argument, if β > 0, then v(y, ·) is dominated by an affine combination of
{v(z, ·), v(w, ·)}. Finally, if α = β = 0, then v(z, ·) is dominated by v(w, ·).
For the converse direction, assume that the convex hull of {(v(x, ·) −

v(y, ·)), (v(y, ·)−v(z, ·)), (v(z, ·)−v(w, ·))} (over all lists (x, y, z, w) of distinct
elements in X) does not intersect RY− but that, contrary to diversity of v,
there are distinct x, y, z, w ∈ X and λ, µ, θ ∈ R with λ+µ+ θ = 1 such that
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(+) v(x, ·) ≤ λv(y, ·) + µv(z, ·) + θv(w, ·).
Since λ + µ + θ = 1, at least one of λ, µ, θ is non-negative. Assume,

w.l.o.g., that θ ≥ 0. Hence λ+ µ = 1− θ ≤ 1. This means that at least one
of λ, µ cannot exceed 1. Assume, w.l.o.g., that λ ≤ 1. Inequality (+) can be
written as

v(x, ·)− λv(y, ·)− µv(z, ·)− θv(w, ·) ≤ 0

or, equivalently,

(v(x, ·)− v(y, ·))+ (1−λ)(v(y, ·)− v(z, ·))+ (1−λ−µ)(v(z, ·)− v(w, ·)) ≤ 0.

Since 1 − λ ≥ 0 and 1 − λ − µ = θ ≥ 0, dividing by the sum of the

coefficients yields a contradiction to the convex hull condition.¤
Proof of Theorem 7: We present the proof for the case |X| ≥ 4. The

proofs for the cases |X| = 2 and |X| = 3 will be described as by-products

along the way.

We start by proving that (i) implies (ii). We Þrst note that the following

homogeneity property holds:

Claim 1 For every I ∈ ZT+ and every k ∈ N, %I=%kI .
Proof: Follows from consecutive application of the combination axiom. ¤
In view of this claim, we extend the deÞnition of %I to functions I whose

values are non-negative rationals. Given I ∈ QT+, let k ∈ N be such that

kI ∈ ZT+ and deÞne %I= %. %I is well-deÞned in view of Claim 1. By the

deÞnition and Claim 1 we also have:

Claim 2 (Homogeneity) For every I ∈ QT+ and every q ∈ Q , q > 0 :

%qI= %I .

Claim 2, A1*, and A2* imply:
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Claim 3 (The order axiom) For every I ∈ QT+ , %I is complete and tran-
sitive on X, and (the combination axiom) for every I, J ∈ QT+ and every
x, y ∈ X and p, q ∈ Q , p, q > 0: if x %I y (x ÂI y) and x %J y, then
x %pI+qJ y (x ÂpI+qJ y) .
Two special cases of the combination axiom are of interest: (i) p = q = 1,

and (ii) p+ q = 1. Claims 2 and 3, and the Archimedean axiom, A3*, imply

the following version of the axiom for the QT+ case:

Claim 4 (TheArchimedean axiom) For every I, J ∈ QT+ and every x, y ∈
X, if x ÂI y, then there exists r ∈ [0, 1) ∩Q such that x ÂrI+(1−r)J y.
It is easy to conclude from Claim 3 and 4 that for every I, J ∈ QT+

and every x, y ∈ X, if x ÂI y, then there exists r ∈ [0, 1) ∩ Q such that

x ÂpI+(1−p)J y for every p ∈ (r, 1) ∩Q.
The following notation will be convenient for stating the Þrst lemma. For

every x, y ∈ X let

Axy ≡ {I ∈ QT+ | x ÂI y} and
Bxy ≡ {I ∈ QT+ | x %I y}.

Observe that by deÞnition and A1*: Axy ⊂ Bxy, Bxy ∩ Ayx = ∅, and
Bxy ∪ Ayx = QT+. The Þrst main step in the proof of the theorem is:

Lemma 1 For every distinct x, y ∈ X there is a vector vxy ∈ RT such that,
(i) Bxy = {I ∈ QT+ | vxy · I ≥ 0};
(ii) Axy = {I ∈ QT+ | vxy · I > 0};
(iii) Byx = {I ∈ QT+ | vxy · I ≤ 0};
(iv) Ayx = {I ∈ QT+ | vxy · I < 0};
(v) Neither vxy ≤ 0 nor vxy ≥ 0;
(vi) −vxy = vyx.

Moreover, the vector vxy satisfying (i)-(iv), is unique up to multiplication by

a positive number.
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The lemma states that we can associate with every pair of distinct even-

tualities x, y ∈ X a separating hyperplane deÞned by vxy · ξ = 0 (ξ ∈ RT),
such that x %I y iff I is in the half space deÞned by vxy · I ≥ 0. Observe

that if there are only two alternatives, Lemma 1 completes the proof of suf-

Þciency: for instance, one may set vx = vxy and vy = 0. It then follows that

x %I y iff vxy · I ≥ 0, i.e., iff vx · I ≥ vy · I. More generally, we will show in
the following lemmata that one can Þnd a vector vx for every alternative x,

such that, for every x, y ∈ X, vxy is a positive multiple of (vx − vy).
Before starting the proof we introduce additional notation: let bBxy andbAxy denote the convex hulls (in RT) of Bxy and Axy, respectively. For a

subset B of RT let int(B) denote the set of interior points of B.

Proof of Lemma 1: We break the proof into several claims.

Claim 5 For every distinct x, y ∈ X, Axy ∩ int( bAxy) 6= ∅ .
Proof: By the diversity axiom Axy 6= ∅ for all x, y ∈ X, x 6= y. Let I ∈
Axy ∩ ZT+ and let J ∈ ZT+ with J(t) > 1 for all t ∈ T. By the Archimedean
axiom there is an l ∈ N such that K = lI + J ∈ Axy. Let (ξj)2|T|j=1 be the

2|T| distinct vectors in RT with coordinates 1 and −1. For j, (j = 1, ..., 2|T|),
deÞne ηj = K + ξj . Obviously, ηj ∈ QT+ for all j. By Claim 4 there is an

rj ∈ [0, 1) ∩ Q such that ςj = rjK + (1 − rj)ηj ∈ Axy (for all j). Clearly,
the convex hull of { ςj | j = 1, ..., 2|T|}, which is included in bAxy, contains an
open neighborhood of K. ¤

Claim 6 For every distinct x, y ∈ X, bByx ∩ int( bAxy) = ∅ .
Proof: Suppose, by way of negation, that for some ξ ∈ int( bAxy) there are
(ηi)

k
i=1 and (λi)

k
i=1, k ∈ N such that for all i, ηi ∈ Byx, λi ∈ [0, 1], Σki=1λi = 1,

and ξ = Σki=1λiηi. Since ξ ∈ int( bAxy), there is a ball of radius ε > 0 around ξ
included in bAxy. Let δ = ε/(2Σki=1||ηi||) and for each i let qi ∈ Q∩ [0, 1] such
that |qi− λi| < δ , and Σki=1qi = 1. Hence, η = Σki=1qiηi ∈ QT+ and ||η−ξ|| < ε,
which, in turn, implies η ∈ bAxy ∩QT+. Since for all i : ηi ∈ Byx, consecutive

36



application of the combination axiom (Claim 3) yields η = Σki=1qiηi ∈ Byx.
On the other hand, η is a convex combination of points in Axy ⊂ QT+ and thus
it has a representation with rational coefficients (because the rationals are

an algebraic Þeld). Applying Claims 3 consecutively as above, we conclude

that η ∈ Axy � a contradiction.¤
The main step in the proof of Lemma 1: The last two claims imply that

(for all x, y ∈ X, x 6= y) bBxy and bAyx satisfy the conditions of a separating
hyperplane theorem. (Namely, these are convex sets, where the interior of

one of them is non-empty and does not intersect the other set.) So there is

a vector vxy 6= 0 and a number c so that

vxy · I ≥ c for every I ∈ bBxy
vxy · I ≤ c for every I ∈ bAyx .

Moreover,

vxy · I > c for every I ∈ int( bBxy)
vxy · I < c for every I ∈ int( bAyx) .

By homogeneity (Claim 2), c = 0. Parts (i)-(iv) of the lemma are

restated as a claim and proved below.

Claim 7 For all x, y ∈ X, x 6= y: Bxy = {I ∈ QT+ | vxy · I ≥ 0}; Axy = {I ∈
QT+ | vxy ·I > 0}; Byx = {I ∈ QT+ | vxy ·I ≤ 0}; and Ayx = {I ∈ QT+ | vxy ·I <
0}.
Proof: (a) Bxy ⊂ {I ∈ QT+ | vxy · I ≥ 0} follows from the separation result

and the fact that z = 0.

(b) Axy ⊂ {I ∈ QT+ | vxy · I > 0}: assume that x ÂI y, and, by way of
negation, vxy · I ≤ 0. Choose a J ∈ Ayx∩ int( bAyx). Such a J exists by Claim
5. Since z = 0, J satisÞes vxy · J < 0. By Claim 4 there exists r ∈ [0, 1) such
that rI+(1−r)J ∈ Axy ⊂ Bxy. By (a), vxy ·(rI+(1−r)J) ≥ 0. But vxy ·I ≤ 0
and vxy · J < 0, a contradiction. Therefore, Axy ⊂ {I ∈ QT+ | vxy · I > 0}.
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(c) Ayx ⊂ {I ∈ QT+ | vxy ·I < 0}: assume that y ÂI x and, by way of nega-
tion, vxy ·I ≥ 0. By Claim 5 there is a J ∈ Axy with J ∈ int( bAxy) ⊂ int( bBxy).
The inclusion J ∈ int( bBxy) implies vxy · J > 0. Using the Archimedean ax-
iom, there is an r ∈ [0, 1) such that rI + (1 − r)J ∈ Ayx. The separation
theorem implies that vxy ·(rI+(1−r)J) ≤ 0, which is impossible if vxy ·I ≥ 0
and vxy ·J > 0. This contradiction proves that Ayx ⊂ {I ∈ QT+ | vxy · I < 0}.
(d) Byx ⊂ {I ∈ QT+ | vxy · I ≤ 0}: assume that y %I x, and, by way

of negation, vxy · I > 0. Let J satisfy y ÂJ x. By (c), vxy · J < 0. DeÞne
r = (vxy ·I)/(−vxy ·J) > 0. By homogeneity (Claim 2), y ÂrJ x. By Claim 3,
I + rJ ∈ Ayx. Hence, by (c), vxy · (I + rJ) < 0. However, direct computation
yields vxy · (I + rJ) = vxy · I + rvxy · J = 0, a contradiction. It follows that
Byx ⊂ {I ∈ QT+ | vxy · I ≤ 0}.
(e) Bxy ⊃ {I ∈ QT+ | vxy · I ≥ 0}: follows from completeness and (c).

(f) Axy ⊃ {I ∈ QT+ | vxy · I > 0}: follows from completeness and (d).

(g) Ayx ⊃ {I ∈ QT+ | vxy · I < 0}: follows from completeness and (a).

(h) Byx ⊃ {I ∈ QT+ | vxy · I ≤ 0}: follows from completeness and (b). ¤
Completion of the proof of the Lemma.

Part (v) of the Lemma, i.e., vxy /∈ RT+ ∪ RT− for x 6= y, follows from

the facts that Axy 6= ∅ and Ayx 6= ∅. Before proving part (vi), we prove

uniqueness.

Assume that both vxy and uxy satisfy (i)-(iv). In this case, uxy · ξ ≤ 0

implies vxy · ξ ≤ 0 for all ξ ∈ RT+. (Otherwise, there exists I ∈ QT+ with
uxy · I ≤ 0 but vxy · I > 0, contradicting the fact that both vxy and uxy

satisfy (i)-(iv).) Similarly, uxy · ξ ≥ 0 implies vxy · ξ ≥ 0. Applying the

same argument for vxy and uxy, we conclude that {ξ ∈ RT+ | vxy · ξ = 0} =
{ξ ∈ RT+ | uxy · ξ = 0}. Moreover, since int( bAxy) 6= ∅ and int( bAyx) 6= ∅,
it follows that {ξ ∈ RT+ | vxy · ξ = 0} ∩ int(RT+) 6= ∅. This implies that
{ξ ∈ RT | vxy · ξ = 0} = {ξ ∈ RT | uxy · ξ = 0}, i.e., that vxy and uxy have
the same null set and are therefore a multiple of each other. That is, there

exists α such that uxy = αvxy. Since both satisfy (i)-(iv), α > 0.
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Finally, we prove part (vi). Observe that both vxy and −vyx satisfy (i)-
(iv) (stated for the ordered pair (x, y)). By the uniqueness result, −vxy =
αvyx for some positive number α. At this stage we redeÞne the vectors

{vxy}x,y∈X from the separation result as follows: for every unordered pair

{x, y} ⊂ X one of the two ordered pairs, say (y, x), is arbitrary chosen and

then vxy is rescaled such that vxy = −vyx. (If X is uncountable the axiom of

choice has to be used.)¤

Lemma 2 For every three distinct eventualities, x, y, z ∈ X, and the corre-
sponding vectors vxy, vyz, vxz from Lemma 1, there are unique α, β > 0 such

that:

αvxy + βvyz = vxz .

The key argument in the proof of Lemma 2 is that, if vxz is not a linear

combination of vxy and vyz, one may Þnd a vector I for which ÂI is cyclical.
If there are only three alternatives x, y, z ∈ X, Lemma 2 allows us to

complete the proof as follows: choose an arbitrary vector vxz that separates

between x and z. Then choose the multiples of vxy and of vyz deÞned by the

lemma. Proceed to deÞne vx = vxz, vy = βvyz, and vz = 0. By construction,

(vx−vz) is (equal and therefore) proportional to vxz, hence x %I z iff vx ·I ≥
vz · I. Also, (vy − vz) is proportional to vyz and it follows that y %I z iff
vy · I ≥ vz · I. The point is, however, that, by Lemma 2, we obtain the
same result for the last pair: (vx − vy) = (vxz − βvyz) = αvxy and x %I y iff
vx · I ≥ vy · I follows.
Proof of Lemma 2:

First note that for every three distinct eventualities, x, y, z ∈ X, if vxy
and vyz are colinear, then for all I either x ÂI y ⇔ y ÂI z or x ÂI y ⇔
z ÂI y. Both implications contradict diversity. Therefore any two vec-

tors in {vxy, vyz, vxz} are linearly independent. This immediately implies the
uniqueness claim of the lemma. Next we introduce
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Claim 8 For every distinct x, y, z ∈ X, and every λ, µ ∈ R, if λvxy+µvyz ≤
0, then λ = µ = 0.

Proof: Observe that Lemma 1(v) implies that if one of the numbers λ,

and µ is zero, so is the other. Next, suppose, per absurdum, that λµ 6= 0,and
consider λvxy ≤ µvzy. If, say, λ, µ > 0, then vxy ·I ≥ 0 necessitates vzy ·I ≥ 0.
Hence there is no I for which x ÂI y ÂI z, in contradiction to the diversity
axiom. Similarly, λ > 0 > µ precludes x ÂI z ÂI y; µ > 0 > λ precludes

y ÂI x ÂI z; and λ, µ < 0 implies that for no I ∈ QT+ is it the case that
z ÂI y ÂI x. Hence the diversity axioms holds only if λ = µ = 0. ¤
We now turn to the main part of the proof. Suppose that vxy, vyz, and

vzx are column vectors and consider the |T| × 3 matrix (vxy, vyz, vzx) as a
2-person 0-sum game. If its value is positive, then there is an ξ ∈ ∆(T) such
that vxy · ξ > 0, vyz · ξ > 0, and vzx · ξ > 0. Hence there is an I ∈ QT+ ∩∆(T)
that satisÞes the same inequalities. This, in turn, implies that x ÂI y, y ÂI z,
and z ÂI x - a contradiction.
Therefore the value of the game is zero or negative. In this case there are

λ, µ, ζ ≥ 0, such that λvxy + µvyz + ζvzx ≤ 0 and λ + µ + ζ = 1. The claim
above implies that if one of the numbers λ, µ and ζ is zero, so are the other

two. Thus λ, µ, ζ > 0. We therefore conclude that there are α = λ/ζ > 0

and β = µ/ζ > 0 such that

(1) αvxy + βvyz ≤ vxz

Applying the same reasoning to the triple z, y, and x, we conclude that

there are γ, δ > 0 such that

(2) γvzy + δvyx ≤ vzx.

Summation yields

(3) (α− δ)vxy + (β − γ)vyz ≤ 0.
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Claim 8 applied to inequality (3) implies α = δ and β = γ. Hence

inequality (2) may be rewritten as αvxy + βvyz ≤ vxz, which together with

(1) yields the desired representation.¤
Lemma 2 shows that, if there are more than three alternatives, the like-

lihood ranking of every triple of alternatives can be represented as in the

theorem. The question that remains is whether these separate representa-

tions (for different triples) can be �patched� together in a consistent way.

Lemma 3 There are vectors {vxy}x,y∈X,x6=y, as in Lemma 1, such that for
any three distinct acts, x, y, z ∈ X, the Jacobi identity vxy + vyz = vxz holds.
Proof : The proof is by induction, which is transÞnite ifX is uncountably

inÞnite. The main idea of the proof is the following. Assume that one has

rescaled the vectors vxy for all alternatives x, y in some subset of acts A ⊂ X,
and one now wishes to add another act to this subset, w 6∈ A. Choose x ∈ A
and consider the vectors vxw, vyw for x, y ∈ A. By Lemma 2, there are unique
positive coefficients α, β such that vxy = αvxw + βvwy . One would like to

show that the coefficient α = αy does not depend on the choice of y ∈ A.
We will show that, if αy did depend on y, one would Þnd that there are

x, y, z ∈ A such that the vectors vxw, vyw, vzw are linearly dependent, and

this would contradict the diversity axiom.

Claim 9 Let A ⊂ X, |A| ≥ 3, w ∈ X\A. Suppose that there are vectors
{vxy}x,y∈A,x6=y, as in Lemma 1, and for any three distinct acts, x, y, z ∈ X,
vxy+vyz = vxz holds. Then there are vectors {vxy}x,y∈A∪{w},x6=y, as in Lemma
1, and for any three distinct acts, x, y, z ∈ X, vxy + vyz = vxz holds.
Proof : Choose distinct x, y, z ∈ A. Let �vxw,�vyw, and �vzw be the vectors

provided by Lemma 1 when applied to the pairs (x, w), (y, w), and (z, w),

respectively. Consider the triple {x, y, w}. By Lemma 2 there are unique
coefficients λ({x,w}, y),λ({y,w}, x) > 0 such that
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(I) vxy = λ({x, w}, y)�vxw + λ({y, w}, x)�vwy

Applying the same reasoning to the triple {x, z, w}, we Þnd that there
are unique coefficients λ({x, w}, z),λ({z,w}, x) > 0 such that

vxz = λ({x,w}, z)�vxw + λ({z, w}, x)�vwz.

or

(II) vzx = λ({x, w}, z)�vwx + λ({z, w}, x)�vzw.

We wish to show that λ({x, w}, y) = λ({x, w}, z). To see this, we con-
sider also the triple {y, z, w} and conclude that there are unique coefficients
λ({y,w}, z),λ({z, w}, y) > 0 such that

(III) vyz = λ({y, w}, z)�vyw + λ({z,w}, y)�vwz.

Since x, y, z ∈ A, we have

vxy + vyz + vzx = 0

and it follows that the summation of the right-hand sides of (I), (II), and

(III) also vanishes:

[λ({x, w}, y)− λ({x,w}, z)]�vxw + [λ({y, w}, z)− λ({y, w}, x)]�vyw+
[λ({z, w}, x)− λ({z, w}, y)]�vzw = 0.

If some of the coefficients above are not zero, the vectors {�vxw, �vyw, �vzw}
are linearly dependent, and this contradicts the diversity axiom. For instance,

if �vxw is a non-negative linear combination of �vyw and �vzw, for no I will it be

the case that y ÂI z ÂI w ÂI x.
We therefore obtain λ({x, w}, y) = λ({x, w}, z) for every y, z ∈ A\{x}.

Hence for every x ∈ A there exists a unique λ({x, w}) > 0 such that, for
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every distinct x, y ∈ A vxy = λ({x,w})�vxw + λ({y,w})�vwy. DeÞning vxw =
λ({x, w})�vxw completes the proof of the claim.¤
To complete the proof of the lemma, we apply the claim consecutively.

In case X is not countable, the induction is transÞnite (and assumes that X

can be well ordered).¤

Note that Lemma 3, unlike Lemma 2, guarantees the possibility to rescale

simultaneously all the vxy-s from Lemma 1 such that the Jacobi identity will

hold on X.

We now complete the proof that (i) implies (ii). Choose an arbitrary act,

say, g in X. DeÞne vg = 0, and for any other alternative, x, deÞne vx = vxg,

where the vxg-s are from Lemma 3.

Given I ∈ QT+ and x, y ∈ X we have:

x %I y ⇔ vxy · I ≥ 0⇔ (vxg + vgy) · I ≥ 0⇔
(vxg − vyg) · I ≥ 0⇔ vx · I − vy · I ≥ 0⇔ vx · I ≥ vy · I

The Þrst implication follows from Lemma 1(i), the second from the Jacobi

identity of Lemma 3, the third from Lemma 1(vi), and the fourth from the

deÞnition of the vx-s. Hence, (∗∗) of the theorem has been proved.

It remains to be shown that the vectors deÞned above are such that

conv({vx − vy, vy − vz, vz − vw}) ∩ RT− = ∅. Indeed, in Lemma 1(v) we have
shown that vx − vy /∈ RT−. To see this one only uses the diversity axiom for

the pair {x, y}. Lemma 2 has shown, among other things, that a non-zero
linear combination of vx−vy and vy−vz cannot be in RT−, using the diversity
axiom for triples. Linear independence of all three vectors was established

in Lemma 3. However, the full implication of the diversity condition will be

clariÞed by the following lemma. Being a complete characterization, we will

also use it in proving the converse implication, namely, that part (ii) of the

theorem implies part (i). The proof of the lemma below depends on Lemma

1. It therefore holds under the assumptions that for any distinct x, y ∈ X
there is an I such that x ÂI y.
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Lemma 4 For every list (x, y, z, w) of distinct elements of X, there exists

I ∈ J such that

x ÂI y ÂI z ÂI w iff conv({vxy, vyz, vzw}) ∩ RT− = ∅ .

Proof: There exists I ∈ J such that x ÂI y ÂI z ÂI w iff there exists I ∈ J
such that vxy · I, vyz · I, vzw · I > 0. This is true iff there exists a probability
vector p ∈ ∆(T) such that vxy · p, vyz · p, vzw · p > 0.
Suppose that vxy, vyz, and vzw are column vectors and consider the |T|×3

matrix (vxy, vyz, vzw) as a 2-person 0-sum game. The argument above implies

that there exists I ∈ J such that x ÂI y ÂI z ÂI w iff the maximin in this
game is positive. This is equivalent to the minimax being positive, which

means that for every mixed strategy of player 2 there exists t ∈ T that

guarantees player 1 a positive payoff. In other words, there exists I ∈ J such
that x ÂI y ÂI z ÂI w iff for every convex combination of {vxy, vyz, vzw} at
least one entry is positive, i.e., conv({vxy, vyz, vzw}) ∩ RT− = ∅. ¤
This completes the proof that (i) implies (ii). ¤

Part 2: (ii) implies (i)

It is straightforward to verify that if {%I}i∈QT+ are representable by {vx}x∈X
as in (∗∗), they have to satisfy Axioms 1-3. To show that Axiom 4 holds, we
quote Lemma 4 of the previous part. ¤
Part 3: Uniqueness

It is obvious that if ux = αvx+ β for some scalar α > 0, a vector β ∈ RT,
and all x ∈ X, then part (ii) of the theorem holds with the matrix u replacing
v.

Suppose that {vx}x∈X and {ux}x∈X both satisfy (∗∗), and we wish to
show that there are a scalar α > 0 and a vector β ∈ RT such that for all
x ∈ X, ux = αvx + β. Recall that, for x 6= y, vx 6= λvy and ux 6= λuy for all
0 6= λ ∈ R by A4.
Choose x 6= g (x, g ∈ X, g satisÞes vg = 0). From the uniqueness part of

Lemma 1 there exists a unique α > 0 such that (ux−ug) = α(vx−vg) = αvx.
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DeÞne β = ug.

We now wish to show that, for any y ∈ X, uy = αvy + β. It holds for

y = g and y = x, hence assume that x 6= y 6= g. Again, from the uniqueness

part of Lemma 1 there are unique γ, δ > 0 such that

(uy − ux) = γ(vy − vx)
(ug − uy) = δ(vg − vy) .

Summing up these two with (ux − ug) = α(vx − vg), we get

0 = α(vx − vg) + γ(vy − vx) + δ(vg − vy) = αvx + γ(vy − vx)− δvy.

Thus

(α− γ)vx + (γ − δ)vy = 0 .

Since vx 6= vg = 0, vy 6= vg = 0, and vx 6= λvy if 0 6= λ ∈ R, we
get α = γ = δ. Plugging α = γ into (uy − ux) = γ(vy − vx) proves that
uy = αvy + β. ¤
This completes the proof of Theorem 7. ¤¤
We now turn to complete the proof of Step 1. First we prove that (i)

implies (ii). Assume that {<M}M satisfy A1-A4. It follows that {<I}I
satisfy A1*-A4*. Therefore, there is a representation of {<I}I by a matrix
v : X × T → R as in (∗∗) of Theorem 7. We abuse notation and extend

v to speciÞc cases. Formally, we deÞne v : X × C → R as follows. For

x ∈ X and c ∈ C, deÞne v(x, c) = v(x, t) for t ∈ T ≡ C/ ∼ such that

c ∈ t. With this deÞnition, (∗) of Theorem 1 holds. Obviously, c ∼ d

implies v(·, c) = v(·, d). The converse also holds: if v(·, c) = v(·, d), (∗)
implies that c ∼ d. Finally, observe that, for every distinct four eventualities
x, y, z, w ∈ X, the vectors v(x, ·), v(y, ·), v(z, ·), v(w, ·) ∈ RC are obtained
from the corresponding vectors in RT by replication of columns. Since v :
X × T→ R is diversiÞed, we also get that v : X × C→ R is diversiÞed.
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We now turn to prove that (ii) implies (i). Assume that a diversiÞed

matrix v : X × C→ R, respecting case equivalence, is given. One may then
deÞne v : X × T → R by v(x, t) = v(x, c) for t ∈ T = C/ ∼ such that c ∈ t,
which is unambiguous because v(·, c) = v(·, d) whenever c ∼ d. Obviously,

(∗∗) of Theorem 7 follows from (∗) of Theorem 1, and v : X × T → R is
diversiÞed as well. DeÞning {<I}I by the matrix v : X×T→ R and (∗∗), we
Þnd that {<I}I satisfy A1*-A4*. Also, <M=<IM for every M ∈ M. Hence
{<M}M satisfy A1-A4.

To see that uniqueness holds, assume that v, u : X ×C→ R both satisfy
(∗) of Theorem 1, and respect case equivalence. DeÞne v, u : X × T→ R as
above. The uniqueness result in Theorem 7 yields the desired result. ¤¤

Step 2: The case of arbitrary |T| and Þnite |X|.
We Þrst prove that (i) implies (ii). Observe that a representation as in (ii)

is guaranteed for every Þnite T ⊂ T, provided that T is rich enough to satisfy
the diversity axiom A4. We therefore restrict attention to such sets T , and

show that the representations obtained for each of them can be �patched�

together.

For every ordered list (x, y, z, w) ∈ X, choose M ∈ M such that x ÂM
y ÂM z ÂM w. Such an M exists by A4. Let M0 be the union of all sets M

so obtained. Since X is Þnite, so is M0, i.e., M0 ∈ M. Let T0 be the set of
types (equivalence classes) of cases in M0. Choose g ∈ X. Apply Theorem
7 to obtain a representation of {<I}I∈JT0 by vT0 : X × T0 and (∗∗) for all
I ∈ JT0 ≡ ZT0+ , such that vT0(g, ·) = 0. For every Þnite T ⊂ T such that
T0 ⊂ T , apply Theorem 7 again to obtain a representation of {<I}I∈JT by
vT : X × T and (∗∗) for all I ∈ JT ≡ ZT+, such that vT (g, ·) = 0 and such

that vT extends vT0 . vT is uniquely deÞned by these conditions. Moreover,

if T ⊂ T1 ∩ T2, T0 ⊂ T , and T1 and T2 are Þnite, then the restriction of vT1
and of vT2 to T coincide. The union of {vT}|T |<∞ deÞnes v : X × T → R
satisfying (∗∗) for all I ∈ JT for some Þnite T ⊂ T. DeÞning v on X × C
as above yields a function that satisÞes (∗) of Theorem 1 and that respects
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case equivalence.

We now turn to prove that (ii) implies (i). Given a representation via

a matrix v : X × C → R as in (∗), it follows that {<M}M satisfy A1 and

A2. A3 also holds since v respects case equivalence. It remains to show

that the above, for a diversiÞed v, imply A4. Assume not. Then there are

distinct (x, y, z, w) ∈ X such that for no Þnite memory M is it the case that

x ÂM y ÂM z ÂM w. We wish to show that this condition contradicts the

fact that v is diversiÞed.

By diversiÞcation of v we know that

conv{(v(x, ·)− v(y, ·)), (v(y, ·)− v(z, ·)), (v(z, ·)− v(w, ·))} ∩RC− = ∅.

This implies that, for every vector (α, β, γ) in the two-dimensional simplex

∆2, it is not the case that

α(v(x, ·)− v(y, ·)) + β(v(y, ·)− v(z, ·)) + γ(v(z, ·)− v(w, ·)) ≤ 0.

In other words, for every (α, β, γ) ∈ ∆2 there exists a case c ∈ C such
that

α(v(x, c)− v(y, c)) + β(v(y, c)− v(z, c)) + γ(v(z, c)− v(w, c)) > 0.

Thus

{ (α, β, γ) ∈
∆2|α(v(x, c)− v(y, c)) + β(v(y, c)− v(z, c)) + γ(v(z, c)− v(w, c)) > 0}c∈C

is an open cover of ∆2 in the relative topology. But ∆2 is compact in this

topology. Hence it has an open sub-cover. But this implies that there is a

Þnite memory M ∈M such that, restricting v to X ×M ,

conv{(v(x, ·)− v(y, ·)), (v(y, ·)− v(z, ·)), (v(z, ·)− v(w, ·))} ∩RM− = ∅.

Let T be the set of types of cases appearing inM . DeÞne v : X ×T → R
as above. It also follows that
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conv{(v(x, ·)− v(y, ·)), (v(y, ·)− v(z, ·)), (v(z, ·)− v(w, ·))} ∩RT− = ∅.

By Theorem 7 this implies that there exists I ∈ JT for which x ÂI y ÂI
z ÂI w. LetM 0 be a set of cases such that I(t) = #(M 0∩t), andM 0 ⊂ ∪t∈T t.
It follows that x ÂM 0 y ÂM 0 z ÂM 0 w, a contradiction.

Finally, uniqueness follows from the uniqueness result in Step 1. ¤¤

Step 3: The case of inÞnite X, T.
We Þrst prove that (i) implies (ii). Choose e, f, g, h ∈ X. For A0 =

{e, f, g, h} there exists a diversiÞed function vA0 : A0×C→ R satisfying (∗)
and respecting case equivalence, as well as vA0(e, ·) = 0. Moreover, all such
functions differ only by a multiplicative positive constant. Fix such a functionbvA0 . For every Þnite set A ⊂ X such that A0 ⊂ A, there exists a diversiÞed
function vA : A × C → R satisfying (∗) and respecting case equivalence.
Moreover, there exists a unique vA that extends bvA0 . Let us denote it by bvA.
We now deÞne v : X × C → R. Given x ∈ X, let A be a Þnite set such

that A0∪{x} ⊂ A. DeÞne v(x, ·) = bvA(x, ·). This deÞnition is unambiguous,
since, for every two Þnite sets A1 and A2 such that A0∪{x} ⊂ A1, A2, we havebvA1(x, ·) = bvA1∪A2(x, ·) = bvA2(x, ·). To see that v satisÞes (∗), choose x, y ∈ X
and consider A = A0 ∪ {x, y}. Since v(x, ·) = bvA(x, ·), v(y, ·) = bvA(y, ·) andbvA satisÞes (∗) on A, v satisÞes (∗) on X. Next consider respecting case
equivalence, namely, that v(·, c) = v(·, d) iff c ∼ d. The �if� part follows

from the fact that, if c ∼ d, then for every Þnite A, bvA(·, c) = bvA(·, d). As
for the �only if� part, it follows from the representation by (∗) as in Step 1.
Finally, to see that v is diversiÞed, let there be given x, y, z, w and choose

A = A0 ∪ {x, y, z, w}. Since bvA is diversiÞed, the desired conclusion follows.
The that (ii) implies (i) is follows from the corresponding proof in Step 2,

because each of the axioms A1-A4 involves only Þnitely many eventualities.

Finally, uniqueness is proven as in Step 1. ¤¤¤

Proof of Proposition 2 � Insufficiency of A1-3:

48



We show that without the diversity axiom representability is not guaran-

teed. We provide two counterexamples. The Þrst is combinatorial in nature.

The second highlights the role of the diversity axiom in obtaining separability.

Example 1: Let X = { a, b, c, d }, T = {1, 2, 3} and C = T× N. DeÞne
the vectors in R3:
vab = (−1, 1, 0); vac = (0,−1, 1); vad = (1, 0,−1);
vbc = (2,−3, 1); vcd = (1, 2,−3); vbd = (3,−1,−2) ,
and vxy = −vyx and vxx = 0 for x, y ∈ X.
For x, y ∈ X and I ∈ Z3+ deÞne: x %I y iff vxy · I ≥ 0 . For M ∈ M, let

IM ∈ Z3+ be the corresponding count vector: IM(i) = #{(i, j) | (i, j) ∈ M}
for i ∈ T, and deÞne %M=%I .
It is easy to see that with this deÞnition the axioms of continuity and

combination, and the completeness part of the order axiom hold. Only tran-

sitivity requires a proof. This can be done by direct veriÞcation. It suffices

to check the four triples (x, y, z) where x, y, z ∈ X are distinct and in alpha-

betical order. For example, since 2vab+ vbc = vac, a %I b and b %I c imply a
%I c.
Suppose by way of negation that there are four vectors in R3, va, vb, vc, vd

that represent %I for all I ∈ J as in Theorem 1. By the uniqueness of rep-

resentations of half-spaces in R3, for every pair x, y ∈ X there is a positive,

real number λxy such that λxyvxy = (vx − vy). Further, λxy = λyx.
Since (va − vb) + (vb − vc) + (vc − va) = 0 , we have λab(−1, 1, 0) +

λbc(2,−3, 1) + λca(0, 1,−1) = 0 . So, λbc = λca, and λab = 2λbc. Similarly,

(va − vb) + (vb − vd) + (vd − va) = 0 implies λab(−1, 1, 0) + λbd(3,−1,−2) +
λda(−1, 0, 1) = 0, which in turn implies λab = λbd and λda = 2λbd. Finally,
(va − vc) + (vc − vd) + (vd − va) = 0 implies λac(0,−1, 1) + λcd(1, 2,−3) +
λda(−1, 0, 1) = 0. Hence, λac = 2λcd and λda = λcd .
Combining the above equalities we get λac = 8λca, a contradiction.

Obviously the diversity axiom does not hold. For explicitness, consider

the order (b, c, d, a). If for some I ∈ J, say I = (k, l,m), b ÂI c and c ÂI d,
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then 2k−3l+m > 0 and k+2l−3m > 0. Hence, 4k−6l+2m+3k+6l−9m =

7k − 7 úm > 0. But d ÂI a means m− k > 0, a contradiction.
The above shows that the relations {%M}M∈M deÞned by {%I}I∈Z3+ can-

not be represented by v that respects equivalence. We now need to show

that a matrix v that does not respect case equivalence cannot represent

{%M}M∈M either. Assume that such a matrix existed. Consider memories
Mj = {(1, j), (2, 1)}. For every j ∈ N, a ≈Mj

b. Hence v(a, (1, j)) is indepen-

dent of j. By similar arguments one shows that v respects case equivalence.

Example 2 : Let X = [0, 1]2 and let %L be the lexicographic order
on X. DeÞne, for every non-empty M ∈ M, %M=%L, and %∅= X × X.
It is easy to see that {%M}M∈M satisfy A1-3. However, there cannot be a
representation as in (∗) since for any non-emptyM , %M is not representable

by a real-valued function.¤

Proof of Remark 3: In light of the proof of Theorem 1, it suffices to

prove the corresponding remark in the framework of Theorem 7.

Assume that |T| = 6. (The proof for |T| > 6 will follow trivially.) Let

T = {1, 2, 3, 4, 5, 6} and X = R+. We deÞne a matrix v : T×X → R as

follows. For x ∈ X deÞne the row corresponding to x in the matrix v to be

vx = (−x3,−x2,−x, x, x2, x3). DeÞne ºI by the matrix v via (∗∗). It suffices
to show that v is diversiÞed.

Let there be given distinct x, y, z, w ≥ 0. Assume that, contrary to

diversiÞcation, there are nonnegative numbers α, β, γ, with α + β + γ = 1,

such that

α(vx − vy) + β(vy − vz) + γ(vz − vw) ≤ 0.

Comparing the Þrst and the last components of the vector on the left

hand side, we obtain

α(x3 − y3) + β(y3 − z3) + γ(z3 − w3) = 0

or
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αx3 + (β − α)y3 + (γ − β)z3 − γw3 = 0.

Similarly, the second and the Þfth inequalities yield

αx2 + (β − α)y2 + (γ − β)z2 − γw2 = 0.

Finally, the third and fourth inequalities imply

αx+ (β − α)y + (γ − β)z − γw = 0.

Case 1: Assume Þrst that α 6= 0. Then there are λ = 1 − β
α
, µ = β−γ

α
,

and ν = γ
α
such that

λyn + µzn + νwn = xn

for n = 1, 2, 3. Since we also have λ+ µ+ ν = 1, it follows that
1 1 1
y z w
y2 z2 w2

y3 z3 w3


 λ
µ
ν

 =


1
x
x2

x3

 .

(∗).

By the van der Monde theorem, the matrix 1 1 1
y z w
y2 z2 w2


is of full rank. Hence, (y3, z3, w3) is spanned by {(yn, zn, wn)}n=0,1,2.

That is, there are a, b, c ∈ R such that

(y3, z3, w3) = a(1, 1, 1) + b(y, z, w) + c(y2, z2, w2).

Combining this equality with (∗) yields x3 = a + bx + cx2. Hence

(x3, y3, z3, w3) is a linear combination of {(xn, yn, zn, wn)}n=0,1,2. But this
means that the matrix
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1 1 1 1
y z w x
y2 z2 w2 x2

y3 z3 w3 x3


has determinant zero, a contradiction.

Case 2: Assume next that α = 0. We then obtain βyn+(γ−β)zn−γwn =
0 for n = 1, 2, 3. That is,

1 1 1
y z w
y2 z2 w2

y3 z3 w3


 β
γ − β
−γ

 =


0
0
0
0

 .

In particular, (β, γ − β,−γ) is a solution to the system 1 1 1
y z w
y2 z2 w2

 β
γ − β
−γ

 =

 0
0
0

 .

Due to the van der Monde theorem again, this can only hold if (β, γ −
β,−γ) = (0, 0, 0), i.e., if β = γ = 0, in contradiction to the assumption that
α+ β + γ = 1.¤

Proof of Remark 4:

Consider an example in which {%M}M rank eventualities by relative fre-

quencies, with a tie-breaking rule that is reßected by small additions to the

value of v. These small additions, however, vary from case to case and their

sum converges. SpeciÞcally, let X = {1, 2, 3, 4}. DeÞne T = {1, 2, 3, 4}. T
will indeed end up to be the set of types of cases, as will become clear once

we deÞne {%M}M . For the time being we will abuse the term and will refer

to elements of T as �types�. Let the set of cases be C ≡ T× N. We now
turn to deÞne v : X × C→ R. For x ∈ X, t ∈ T, and i ∈ N, if x 6= t,

v(x, (t, i)) = 0. Otherwise (i.e., if x = t), if x ∈ {1, 2, 3}, then v(x, (t, i)) = 1.
Finally, v(4, (4, i)) = 1 + 1

2i
for i ∈ N. DeÞne {%M}M by v via (∗).
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We claim that two cases (t, i), (s, j) ∈ T× N are equivalent ((t, i) ∼ (s, j))
iff t = s. It is easy to see that if t 6= s, then (t, i) and (s, j) are not equivalent.
(For instance, t Â{(t,i)} s but s Â{(s,j)} t.) Moreover, if t = s ∈ {1, 2, 3}, then
v(·, (t, i)) = v(·, (s, j)). By (∗), (t, i) ∼ (s, j). It remains to show that, for all
i, j ∈ N, (4, i) ∼ (4, j) despite the fact that v(·, (4, i)) 6= v(·, (4, j)).
Observe, Þrst, that {%M}M agree with relative frequency rankings. Specif-

ically, consider a memoryM ∈M. Let IM ∈ Z4+ be deÞned by IM(t) = #{ i ∈
N | (t, i) ∈M } for t ∈ {1, 2, 3, 4}. For any s, t ∈ {1, 2, 3, 4}, if IM(t) > IM(s),
it follows that t ÂM s. Also, if IM(t) = IM(s) and s, t < 4, then t ≈M s.

Finally, if, for t ∈ {1, 2, 3}, IM(t) = IM(4), then 4 ÂM t.
Let there be given M ∈ M such that (4, i), (4, j) /∈ M . The memories

M∪{(4, i)} andM∪{(4, j)} agree on relative frequencies of the types, that is,
IM∪{(4,i)} = IM∪{(4,j)}. Hence %M∪{(4,i)}=%M∪{(4,j)} and (4, i) ∼ (4, j) follows.
Thus v satisÞes (∗) but does not respect case equivalence.11¤
Proof of Proposition 5: Assume a representation of {ºM}M∈M by

v = vy as in (∗) of Theorem 1 that respects case equivalence. It is easy to

see that A5 is necessary for the representation we seek. To prove sufficiency,

we Þrst claim that for every x ∈ Rm, every distinct a, b, d ∈ A, and every
i ∈ N, vy(a, (x, d, i)) = vy(b, (x, d, i)). To see this, assume, to the contrary,
that vy(a, (x, d, i)) > vy(b, (x, d, i)). Consider M such that b ÂM a (such an

M exists due to the diversity axiom). Adding enough cases of type (x, d) to

M will generate a memory M 0 such that, by (∗), a ÂM 0 b, in contradiction

to A5.

Since the column vectors vy(·, (x, d, i)) may be shifted by a possibly dif-
ferent constant for each type of cases (x, d), there exists a representation

vy such that vy(a, (x, b, i)) = 0 for a 6= b. Moreover, this representation

11Observe that the relations {%M}M satisfy A1 and A2 (as they do whenever they are
deÞned by some v via (∗)), as well as A4, but not A3. Indeed, such an example cannot be
generated if A3 holds as well. SpeciÞcally, one can prove the following result: if {%M}M
are deÞned by v via (∗), and satisfy A3 and A4, then v(x, c)− v(y, c) = v(x, d)− v(y, d)
whenever c ∼ d. If, for instance, v(e, ·) ≡ 0 for some e ∈ X, then v respects case
equivalence.
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is unique up to multiplication by a positive scalar. It remains to deÞne

sy(x, a) ≡ vy(a, (x, a, i)) for some i ∈ N. ¤
Proof of Proposition 6: A6 is obviously implied by the numerical

representation we seek. We turn to prove that it is also sufficient. For x ∈ Rm
consider the memory M = {(x, a, 1) | a ∈ A}. The symmetry axiom implies

that a ∼M b for every a, b ∈ A. But this is possible only if sy(x, a) = sy(x, b)
for every a, b ∈ A. ¤
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