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EVOLUTIONARY GAMES IN ECONOMICS 

BY DANIEL FRIEDMAN 1 

Evolutionary games are introduced as models for repeated anonymous strategic 
interaction. The basic idea is that actions (or behaviors) which are more "fit," given the 
current distribution of behaviors, tend over time to displace less fit behaviors. Simple 
numerical examples motivate the key concepts of fitness function and compatible dynam- 
ics, and illustrate the relation to previous biological models. Cone fields are introduced to 
characterize the continuous-time dynamical processes compatible with a given fitness 
function. The analysis focuses on dynamic steady state equilibria and their relation to the 
static equilibria known as NE (Nash equilibrium) and ESS (evolutionary stable state). For 
large classes of dynamics it is shown that all stable dynamic steady states are NE and that 
all NE are dynamic steady states. The biologists' ESS condition is less closely related to 
the dynamic equilibria. The paper concludes with a brief survey of economic applications. 

KEYWORDS: Evolutionary games, evolutionary stable strategies, cone field dynamics. 

1. INTRODUCTION 

IN AN EVOLUTIONARY GAME each individual chooses among alternative actions 
or behaviors whose payoff or fitness depends on the choices of others. Over time 
the distribution of observed behavior in a population evolves, as fitter strategies 
become more prevalent. The very prevalence of a behavior can make it (and 
other behaviors) more fit or less fit, so dynamics can be quite complex. One can 
ask which behaviors become extinct and which survive over time, whether the 
system approaches some stable steady-state, and so forth. 

The present paper has two goals. The first is to propose a tractable frame- 
work for evolutionary games which incorporates the relevant previous work by 
John Maynard Smith and his collaborators in biology and mathematics, but 
which is suitable for economic applications. The second goal is to derive 
substantive results on the relation between evolutionary steady states and static 
equilibria of the payoff or fitness function. Meeting these goals should encour- 
age economists to employ evolutionary models in serious applied work. 

The biologists emphasize pairwise interactions of individuals drawn randomly 
from a single population and center their analysis on a static equilibrium 
concept known as ESS, for "evolutionarily stable" strategy or state. The inequal- 
ities defining ESS are intended to capture the intuition of an "uninvadable" 
state of the population: if the population is in an ESS then a small minority 
employing any deviant behavior (an "invasion of mutants") will eventually 
disappear under natural selection. Mathematicians, beginning with Taylor and 

1 My thanks to audiences at UCLA and the Santa Fe Institute for useful suggestions. I especially 
wish to thank Jack Hirshleifer for getting me to think about this topic, for introducing me to the 
literature, and for many stimulating exchanges of views. I also wish to thank Nirvikar Singh, John 
Riley, and Eric Rasmusen for their constructive comments, Joel Yellin for useful discussions on 
technique, and a co-editor and two anonymous referees for generous editorial advice. The usual 
caveat shields them all. 
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Jonker (1978), confirmed that ESS was sufficient (although not necessary) for 
stability under natural selection dynamics. 

Economists and other social scientists can, I believe, usefully employ many of 
the ideas introduced by the biologists, but the biologists' formal structure needs 
to be adapted and extended. A fundamental point is that biologists almost 
always deal with the genetic mechanism of natural selection. This mechanism 
admits a simple, canonical dynamical representation, which I refer to below as 
the Malthusian dynamic.2 For economists the social mechanisms of learning and 
imitation are usually more important than the genetic mechanism. A wide 
variety of learning and imitation processes are conceivable and the appropriate 
dynamical representation seems to be highly context-dependent. To deal com- 
pactly with a diverse set of possible dynamics my formal analysis employs the 
device of cone fields, introduced by Smale (1976). It is not my purpose to 
propose any general theory of learning, so I rely on examples and references to 
existing literature to suggest specific dynamical processes which may be of 
interest. 

Two other, less fundamental extensions are worth noting briefly. Most of the 
existing biological models consider the evolution of a single species rather than 
the coevolution of several distinct species. My basic model, by contrast, features 
interactions of several strategically distinct populations, so as to represent 
economic relationships between buyers and sellers, or between residents in 
different jurisdictions, etc. Most biological models have (bi)linear specifications 
and are interpreted in terms of interactions between randomly matched individ- 
uals. By contrast, my basic model allows some nonlinearities to capture possible 
interactions with a whole population, a possibility biologists refer to as "playing 
the field." 

Evolutionary games as presented here are quite distinct from supergames and 
from differential games, even though all three examine the dynamics of re- 
peated strategic interaction. Differential games allow payoffs to depend on the 
time paths of all individual players' actions, and supergames allow strategies 
defined on time paths even though current payoffs depend only on current 
actions. Such intertemporal strategies and payoffs are ruled out in evolutionary 
games. Thus a natural interpretation is of essentially anonymous interactions, in 
which the individuals -one deals with today are not recognizably the same as 
those dealt with yesterday. Another distinction is that my analysis of evolution- 
ary games focuses on the distribution of behaviors in populations rather than on 
the behavior of rational individuals.3 

From the standpoint of an economist specializing in game theory, the static 
features of my formal model are minor variants of standard normal form games, 

2 These dynamics are also referred to as replicator dynamics or as (the radial projection onto the 
simplex of) the Lotka-Volterra equations. 

3That is, I interpret the evolving state as a distribution of strategies across a population. One 
could also interpret it as the evolving (virtual or actual) mixed strategy employed by an individual, 
but one must then deal with some deep issues regarding rationality. In Section 4 I will cite some 
recent papers that employ this individualistic interpretation. 
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but the dynamic features and evolutionary perspective will perhaps seem novel. 
Even for an economist interested only in long run equilibrium outcomes, a 
dynamic approach offers important benefits. First, one can distinguish stable 
from unstable equilibria. More generally, one can find the basins of attraction, 
i.e., the regions of initial conditions that eventually lead to a given equilibrium. 
Thus in principle one can identify which equilibrium point (if any4) is relevant. 

The next section briefly presents the formal ingredients of the model: spaces 
of states and strategies, fitness functions (variants of payoff functions) to specify 
strategic interaction, and systems of ordinary differential equations to specify 
dynamics. I then provide five simple examples. The first two are intended to give 
the reader an intuitive grasp of evolutionary games' structure and behavior and 
to motivate the pivotal concept of compatibility. The remaining examples make 
connections to previous literature from biology and elsewhere. Next I show how 
compatible dynamics can be summarized as cone fields, and end the section by 
defining static and dynamic equilibrium concepts. 

The analytic results are collected in Section 3. The most important demon- 
strate a close general relationship between the dynamic equilibria and the Nash 
equilibria (NE) of a fitness function-viz: all NE are compatible dynamic 
equilibria (Proposition 3.2) and all compatible dynamic stable equilibria are NE 
(Proposition 3.3). Of secondary interest is the relationship between ESS and the 
dynamic equilibria. The ESS are always a subset of the NE, so to the extent that 
Maynard Smith correctly identifies the dynamically stable equilibria in terms of 
his ESS criteria, he provides game theorists with an appealing refinement of 
NE. Unfortunately in general ESS is neither necessary nor sufficient for compat- 
ible dynamic stability, although there are some interesting special cases for 
which it is (Proposition 3.4 and counterexamples). Section 4 briefly summarizes 
the argument, points to some possible generalizations of the model, and surveys 
some recent and prospective applications of evolutionary games. Notational 
conventions, technical definitions, and proofs are collected in an Appendix. 

2. THE MODEL 

2.1. Basic Elements 

Consider a set of interacting populations, indexed k = 1,..., K. A member of 
each population k has available a finite number of actions (sometimes called 
"behaviors" or "strategies") indexed i = 1..., N. (The increased generality in 
allowing N to depend on k is negligible and not worth the increased notational 
burden.) Any point rk in the N-simplex ,k {X = (X1,..., XN): Xi > 0, EXi = 1} 
represents a possible mixed strategy for an individual member of population k. 
Any point Sk in the same simplex also represents the fractions of population k 
employing each available strategy. Hence the Cartesian product of K copies of 

4In general dynamical systems, the state ultimately may approach a limit cycle or chaotic 
attractor rather than an equilibrium point. The analysis in the present paper, however, focuses on 
equilibrium points. 
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the simplex, S = s1 x ... x SK, is the set of strategy profiles and also is the 
state space under the maintained interpretation that interactions are anony- 
mous. It will be used for both purposes below.5 

Strategic interaction is summarized in a fitness function which specifies for 
individuals in each population the evolutionarily relevant payoff as a function of 
own strategy and current state. Formally a fitness function consists of maps f k: 

Sk x S -* R, k = 1, ..., K, which are assumed linear in the first (own strategy) 
argument rk e Sk and continuously differentiable in the second (population 
state) argument s E s.6 The fitness function can be written more compactly as 
f: S x S -* RK, with f(r s) (f'l(rl s) fK(rK, s)). The linearity in x = r 
can be regarded as a "large numbers" assumption: for large populations the 
fitness of a mixed strategy is the expected fitness of its component pure 
strategies. This linearity permits an alternative representation in terms of the 
fitness gradient vector fk(s) E RN for population k individuals given state s e S, 
with x .fk(s) =f k(x, s) for all x ES 

The final basic model element is a dynamical structure specifying how a state 
s evolves over time. In continuous time7 one specifies the time derivatives s = 

(s . ..., sK), with sk= (k,... ., Sk):= (dsk/dt,.. ., dsk/dt), by means of some 
function F: S -*> RNK. Thus 

(2.1) s = F(s) 

is an autonomous system of ordinary differential equations whose solution curve 
s(t) from given initial conditions s(0) E S describes the evolution of all popula- 
tions beginning at any state of interest. Some restrictions are required for 
legitimate dynamics. Say that F: S -* RNK is admissible if: 

N 

(a) E Fk(s) = 0 for all s E S and k= l,...,N; 
i=l 

(b) Si/ = 0 implies Fk(s) = 0, and 

(c) F is continuous and piecewise differentiable on S. 

The first two conditions ensure that Sk doesn't leave the simplex Sk: by (a) the 

5The dual role of S and its relation to the anonymous population interpretation will be discussed 
further in the last section. 

6Crawford (1989) shows that assuming continuity of the fitness function (in its second argument) 
has real bite. It may be worth mentioning that although the fitness function is closely related to the 
traditional payoff function of normal form games, there are formal and (in some contexts) 
conceptual differences. In the special case that fk depends perhaps on the state of other 
populations s-k but does not depend on own population 5k, the standard payoff function g with 
components gk(5 fkX) := f k(X, S) is equivalent to the fitness function f. Own population effects and 
some conceptual distinctions will be illustrated in Examples 3 and 5 of the next subsection. 

7 I will not analyze discrete time dynamics (difference equations) in this paper. Apart from some 
minor but annoying technicalities concerning behavior at the boundary of the simplex, it appears to 
be a routine exercise to obtain discrete time analogs for most of my results. Indeed Nachbar (1989) 
and Samuelson (1987), working independently and using different techniques, obtain difference 
equation analogues of (the order-compatible version of) my Propositions 3.2 and 3.3 for fairly 
general fitness functions. 
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TABLE I 
PAYOFF BIMATRIX FOR BASIC BUYER / SELLER GAME 

Seller: 1 ("honest") 2 ("cheat") 

Buyer: 1 ("inspect") (3,2) (2,1) 
2 ("don't") (4,3) (1,4) 

population fractions will continue to sum to unity, and (b) prevents fractions 
from becoming negative. Also (b) prevents the revival of extinct strategies.8 
Condition (c) is a mild technical condition to help ensure "well-behaved" 
solutions; actually, the weaker assumption of Lipshitz continuity guarantees 
unique solution curves and would suffice for most purposes. An admissible F 
henceforth will be referred to as a dynamical system (or, simply, a dynamic) 
on S. 

2.2. Some Simple Examples 

EXAMPLE 1: Basic ideas. Consider a stylized interaction between two popula- 
tions, called "buyers" (k = 1) and "sellers" (k = 2). Each seller has available 
two possible actions or strategies, "honest" (i = 1) and "cheat" (i = 2); and each 
buyer also has two alternative strategies, "inspect" (i = 1) and "don't inspect" 
(i = 2). Since the strategy/state simplices here are 1-dimensional the state 
S = ((s, S2), (S2, S2)) can be described by a point (p, q) in the square [0, 1] x [0, 1], 
with sl =p as the fraction of buyers who inspect and S2 = q as the fraction of 
honest sellers, so s5 = 1 -p and s2 = 1 - q. 

The populations interact in an unorganized market in which individual buyers 
and sellers of, say, used cars meet and participation is occasional so reputational 
effects, etc., are negligible. The fitness of a strategy depends on the population 
mix of chosen strategies, e.g., cheating is less attractive to sellers when more 
buyers inspect, but otherwise matters are as simple as possible (e.g., random 
matching, no externalities, and risk neutrality). Specifically, assume that the 
fitness function is bilinear and given by the bimatrix of Table I.9 Thus for a 
buyer the fitness of e1 = (1,0) = inspect with probability 1, is f'(e1; s) = 3q + 
2(1 - q) = q + 2 (independent of p) and f 1(e2; s) = 4q + (1 - q) = 3q + 1 is the 
fitness of not inspecting. Likewise f2(el; s) = 3 - p is the fitness for a seller of 
being honest with probability 1 and f2(e2; s) = 4 - 3p is the fitness of cheating. 

8 Presumably imitation and perhaps simple versions of Bayesian learning would not permit the 
revival of extinct strategies, but more flexible ideas of learning might well permit it. The direct 
restriction (b) has no bite in stability analysis, since all strategies, extinct or otherwise, are 
contemplated in a general small perturbation. See also Remark 3.2 below. 

9 The table entries are from Game 72 of Rapoport and Guyer (1966). Pitchik and Schotter (1987) 
analyze essentially the same strategic situation in greater depth. However, their comparative static 
results implicitly assume that the interior NE is stable, and the analysis to follow shows that this 
assumption is problematic. See also Frank (1987) for a single-population game with a similar flavor. 
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q=1 

.q=1/2Q 

0 * 
0 p=1/2 p=1 

FIGURE 1 

As for dynamics, assume with Malthus that the growth rate of a strategy is 
proportional to or (with an appropriate choice of time scale) equal to its relative 
fitness. That is, the growth rate of inspection (ln 'p) = p/p is equal to its fit- 
ness f'(e';s) less the population average fitness among buyers f'(p;s)= 
pf '(e; s) + (1 -p)f '(e2; s). Hence, 

(2.2) p =p(1 -p)(1 - 2q). 

The growth rate q/q of honesty among sellers is its relative fitness f2(e'; s) - 
f2(q; s) = (1 - q)(2p - 1), so 

(2.3) q = q(1 - q)(2p - 1). 

It is easy to check that the system (2.2)-(2.3) of coupled differential equations 
has five fixed points (i.e., steady-states), at the center and at the four corners of 
the p - q square. It can be shown (see the Appendix) that all other points are 
on periodic trajectories circling counterclockwise, as shown in Figure 1. Thus 
under Malthusian dynamics the four corner fixed points are unstable and the 
center point is neutral, neither asymptotically stable nor unstable. 

EXAMPLE 2: Alternative dynamics. Economically plausible alternatives to 
Malthusian dynamics can be constructed from specific models of imitation and 
learning. For example, suppose that each used car buyer transacts only once; 
before making his or her own choice, the buyer observes the choice of a single, 
randomly selected previous buyer and, with a small exogeneous probability a, 
also observes the predecessor's payoff. Assuming that all participants are 
Bayesians with diffuse priors over p and q and with common knowledge of the 
information structure, it evidently is rational for the new buyer to imitate the 
predecessor's choice when the outcome is not observed, and to make a "best 
reply" to the inferred seller choice when the outcome is observed. This behavior 
yields the discrete-time dynamic Jp = a(- q + [1 - q]). Choosing the time scale 
so that At = 2a and taking the limit as the information lag At -O 0 one obtains 
the differential equation P = - q. By strict analogy the sellers' population 
obeys the differential equation q =p 2v 
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q=i 

q=1/2 

0 p=1/2 p=1 

FIGURE 2 

One can also directly postulate linear dynamics by setting the rate of change 
(not the growth rate as in Malthus) of a strategy equal to its fitness relative to 
the simple average (not population-weighted average) of all strategies currently 
employed.10 From the Table I fitness function one calculates 

p5 = f '(el; s) - 2 [ f (el; s) +f l(e 2; S)] 

= 2f 't(el; 5) - f l(e 2; 5)], i.e., 

(2.4) p= - q 

and similarly, 

(2.5) q=p - 2 

for (p, q) in the interior of the square. To keep p and q in [0, 1], override (2.4) 
and (2.5) by 

(2.6) pb=Oifp=0,1; q=Oif q=0,1. 

Clearly the piecewise linear system (2.4)-(2.6) has exactly the same fixed 
points as the system (2.2)-(2.3), and trajectories near (1, 2) are counter-clock- 
wise concentric circles. The main qualitative difference from the Malthusian 
version is that strategies can become extinct in finite time. 

One can imagine many other sorts of dynamics, but it is reasonable to require 
compatibility with the fitness function in the sense that fitter strategies should 
increase relative to less fit strategies. In the present example inspection is fitter or 
less fit for buyers, i.e., f'(e1; s) tf (e2; s), as q > 2; and similarly f2(el; s) 
f2(e2; s) as p 1 

2. Thus the requirement is that all dynamical systems compati- 
ble with the fitness function of Table I will specify tangent vectors (pb, q) such 
that pb ; 0 as q > 2 and q Q 0 as p ; 2. The set of all such tangent vectors form 
the cones sketched at a few points in Figure 2. Compatible dynamics evidently 
all have the same five fixed points, the four corner points being saddles. The 
center point could be stable or unstable depending on which specific compatible 
dynamic is chosen. Using the static equilibrium concepts defined in the next 

10 These linear dynamics were developed jointly with Jack Hirshleifer. 
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q1 - = 

o p=1 
FIGURE 3 

subsection it is easy to show that the center point is the unique NE and that no 
ESS exists for the present fitness function. 

The remaining examples mainly illustrate relationships to previous literature 
and can be skipped with little loss of continuity. 

EXAMPLE 3: Other two-strategy games. Any 2 x 2 bimatrix game can be 
analyzed in exactly the same way as above. For instance, a version of the Battle 
of the Sexes"1 has the payoff bimatrix 

{2,2 3,48 
\4,3 1,1J 

The phase portrait under Malthusian dynamics is symmetric with a saddle point 
at the center, "sources" at (0, 0) and (1, 1) and "sinks" at (1, 0) and (0, 1), as 
shown in Figure 3. The linear dynamics produce a very similar phase portrait. 
Indeed, it is not difficult to check that the compatibility condition defines cones 
in the four quadrants of the state space such that any compatible dynamic 
produces a phase portrait qualitatively similar to Figure 3. In terms of the story 
usually told about this game, the present analysis therefore suggests that the 
populations evolve so that the sex which initially was more insistent on getting 
its own way will ultimately always get its way and the other sex ultimately will 
always accommodate. Of course, to be consistent with my interpretation of 
evolutionary games as anonymous interactions of populations, the story should 
be about socially acceptable behavior on first dates and not about ongoing 
behavior in marriage. 

Fitness functions obtained in this way from bimatrices have no own-popula- 
tion effects, but can readily be modified to incorporate them. For example, in 
the buyers and sellers story, widespread inspection (high values of p) might tie 
up sellers and hence impose external costs on buyers. Similarly sellers could also 
suffer from negative own-population effects. Thus one could justify appending a 
term - ap to the f1 and a term - bq to the f2 from Example 1, for small 
positive constants a and b. It can be shown that in this case the central fixed 
point becomes stable, but other fixed points (and static equilibria) do not change 
status. 

11 Biologists use the same name to refer to a quite different game. 
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There is no need to limit the number of interacting populations to two. For 
example, one could augment the basic buyer/seller game by adding a popula- 
tion of regulators, who can either be active (achieving the same detection rate of 
dishonesty, say, as buyers who inspect) or inactive. With plausible assignments 
of payoffs for regulators one obtains phase portraits on the unit cube in which 
inspection eventually disappears among buyers, and cheating by sellers and 
activity by regulators cycles around a neutrally stable point; this point becomes 
stable in the presence of appropriate external costs. 

EXAMPLE 4: A K = 1, N = 3 game from biology. A single population can 
interact with itself, so that only own-population effects are present. The 
interaction can be specified as a bimatrix game with an arbitrary number of pure 
strategies, as long as the payoff matrix for the "row" player A = (aij) is the 
transpose of the payoff matrix for the "column" player. The transpose restric- 
tion ensures that row and column players are strategically identical, and so can 
be regarded as in the same population. For example, consider the standard 
interpretation for bimatrix games in biology, that a given individual (the "row 
player") playing pure strategy i, is paired with another individual (the "column 
player") drawn randomly from the same population. The row player receives a 
when the column player plays j. If the column player is strategically the same, 
her payoff must be a1p. 

For example, Maynard Smith (1982, p. 22) specifies a territorial contest for 
some animal species in which three behaviors (strategies) are available: i = 1 
or H ("Hawk"), i = 2 or D ("Dove"), and i = 3 or B ("Bourgeois"). The 
state/strategy space S is the 2-dimensional unit simplex in R3 with vertices 
e= (L,O,0), e2 = (0, 1,0), and e3= (0,0, 1). After rescaling, the payoff matrix 
(for the row player) in this game is: 

-2 4 1 
A= 0 2 1). 

-1 3 2 

Thus, an H player gets a payoff of -2 against another H, but + 4 against D 
and + 1 against B. The fitness function here is f(x, s) = =lxisjai =x -As, 
the expected payoff to mixed strategy x when matched with an opponent drawn 
randomly from a population at state s. It can be shown directly from the 
definitions that the two NE are s^:= (,1 2, 0) and e3, and that e3 is the only ESS 
for this fitness function. 

As usual, Malthusian dynamics are defined by equating for each strategy i the 
growth rate Jil to the relative fitness f(ei, s) - f(s, s). Hence one obtains the 
polynomial (cubic) equations 

(2.7) 9i=sj(e' As-s As), i= 1,2,3. 

As shown in Figure 4, the fixed points are el and e2 (unstable, sources), s^ 
(unstable, a saddle), and e3 (stable, a sink). The latter is a global attractor: from 
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e3 (B) 

(H)el e2 (D) 

FIGURE 4 

almost any initial state there is a transient tendency for the proportions of H 
and D to equalize, but ultimately the state evolves to 100% B. 

EXAMPLE 5: A migration process.2 Consider again two populations (row 
players and column players) each with two pure strategies, and let the matrix 

A = 0 4) 

describe the dollar outcomes of the interaction. For x denoting the point 
(x, 1 - x) in the 2-simplex, one sees that h(x, q) =x Aq is the expected payoff 
for a row player (resp. h(x, p) for a column player) employing the first strategy 
with probability x E [0, 1] when q (resp. p) is the fraction of column (resp. row) 
players employing their first strategy in random pairings. One can verify that the 
NE for h (or A) are (0, 1), (1, 0) and (0.25, 0.25). 

Now, following James Friedman and Robert Rosenthal (1986), assume a 
migration dynamic for each population with the emigration rate from a strategy 
proportional to the difference between the overall maximum payoff and the 
expected payoff for the given strategy. Specifically, the maximum payoff is 12, so 
the row player emigration rates are mi(q):= (12 - ail)q + (12 - ai2)(1 - q) = 

12 - h(2 - i, q) for strategy i = 1, 2, and mi(p) gives the column player emigra- 
tion rates. Consequently the population of row players is described by the 
differential equation 

(2.8) p = -pml(q) + (1 -p)m2(q), 

the two terms representing emigration from and immigration to the first 
strategy. The column population obeys the same equation with p and q 
interchanged. One can verify that the NE (0.25,0.25) is not a fixed point of this 
dynamic on the square; indeed, the only symmetric fixed point is at approxi- 
mately (0.42,0.42), and it is stable. 

Here the payoff function h is not a fitness function because the migration 
dynamic itself also affects survivability of a strategy. Specifically, one has the 
"decreasing returns" effect that as prevalence of a strategy increases, emigra- 

12 My thanks to David Kreps for suggesting this sort of example. 
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tion from it increases and immigration to it decreases, other things equal. 
The dynamics (2.8) are compatible with the fitness function f 1(x, p, q) = xL 
pj(h(x, q) - 12). 

2.3. Compatibility 

A given fitness function can give rise to many sorts of dynamics. Perhaps 
individuals change strategies when realized fitness falls below some threshold, 
as in Nelson and Winter (1982) or as in numerous adjustment cost models. 
Perhaps individuals are able to observe a sample of contemporaneous interac- 
tions and (subject to sampling error) imitate the apparently fitter strategies.13 
Perhaps rational (Bayesian) individuals gradually learn the full structure of the 
fitness function and the distributions of strategy choices in the populations (see 
Shefrin (1981) for a model with this flavor). Or perhaps, as in Crawford (1989), 
players employ adaptive strategies because of strategic uncertainty. As long as 
some sort of adjustment cost or informational imperfection or imperfect ratio- 
nality precludes simultaneous jumps in behavior by a positive fraction of the 
population, it makes sense to describe the (co)evolution of population(s) with 
dynamics defined by a system of differential equations. Unfortunately in eco- 
nomic applications the precise specification of evolutionary dynamics seems very 
context-specific. 

However, evolutionary dynamics are not completely arbitrary. The evolution- 
arily relevant aspect of a strategic interaction is not some subjective utility but 
rather the objective survivability or fitness it awards to a strategy. It is therefore 
axiomatic that for any dynamic compatible with a properly specified fitness 
function fitter strategies should increase relative to less fit strategies. 

To formalize compatibility it is convenient to denote the set of extinct 
strategies in population k by the index set I'(sk) = {i: Sik = 0) and the other 
(nonextinct, S/k > 0) strategies by I(Sk). Say the dynamic F: S -* RNK iS order 
compatible with a fitness function f if, for each k = 1,... , K, we have Fik(s) > 
Fk(S) if fk(ei, s) >fk(ei, s) for all i, j E I(Sk), and Fik(S) = 0 for i E I,(Sk ). The 
last qualification applies the ordinal relationship only to nonextinct strategies, 
and repeats the admissibility condition (b) that F can't revive extinct strategies. 

An alternative, less stringent requirement is that there is just a positive 
correlation between the components of the velocity vector gk = (5k,..., 5k ) and 
those of the fitness gradient f k(S) = (f k(el, s), .. ., f k(eN, s)). Formally, say the 
dynamic F: S -- RNK is weak compatible with a fitness function f if, for all 
k = 1, ..., K, and s E S, we have F k(S)=ON iff fk(ei, s) =a for some a E R1 
and all i E I(Sk), and otherwise Fk(s) fk(s) > 0. The first part of the definition 
allows the tangent vector to be zero only where all nonextinct strategies are 
equally fit; elsewhere the tangent vector FI(s) and the fitness vector fkC make 
an angle of less than 900. 

13 My thanks to John Riley for suggesting this interpretation. 
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Compatible Dynamics 
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Order Compatible fk (a) Weak Compatible 
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FIGURE 5 

Both concepts of compatibility are illustrated in Figure 5. A point x = sk in 
the interior of the unit 3-simplex Sk is chosen for reference, and the isoquant 
(a) through 5k as well as two nearby isoquants (a + e) are shown for some 
fitness function fk. Order compatible dynamics will have solution curves with 
tangent vectors at 5k which lie inside the cone sketched on the left of Figure 5. 
Here fk(ei, s) >fk(el ,s) >fk(ei, s) so the cone is open, bounded by the rays 
[e1 = el > e'] and [e1 > e1 = ei], and contains the projection X7T of fk(s) onto the 
tangent plane. Similarly, the diagram to the right of the simplex shows the open 
half-space of weak compatible admissible tangent vectors for fk at 5k. Thus 
weak-compatible dynamics will have trajectories which move towards higher 
isoquants.'4 

In some contexts one might prefer to impose compatibility conditions on the 
growth rates (ln 'sk) = S//sk rather than directly on the rates of change 5k of 
population fractions. Thus, let G: S -* RNK be differentiable and let D(s) 
represent the NKXNK diagonal matrix with the components of the vector 
s E RNK down the diagonal. Suppose Gk(s) is perpendicular to 5k for each k, 
and G is compatible (order or weak) with a fitness function f. Then F: 
S -* RNK, defined by F(s):= D(s)G(s), will be a (n admissible) dynamic whose 
growth rates by construction are compatible with f. I will refer to differentiable 
functions G: S -* RNK with Gk perpendicular to Sk as predynamics for this 
reason. 

A compact summary of all compatible dynamics greatly simplifies proofs of 
the main results. As illustrated in Figure 5, the admissible tangent vectors that 
are order (or weak) compatible with a given fitness function at a given state 
form a cone in the tangent space of S at that state. This observation suggests 

140f course, as s = s(t) evolves, f k(, s) and its isoquants will shift. 
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that the technical device of cone fields, introduced in the context of exchange 
dynamics by Smale (1976), will be equally useful in the present context of game 
dynamics. In each version of compatibility (order or weak, dynamics or predy- 
namics) one specifies for each population k and each state s in S a subset of 
tangent vectors (a cone Z) that are admissible and compatible in the appropri- 
ate sense. The Appendix contains formal definitions. 

Two specific compatible dynamics obtained directly from the fitness function 
are worth mentioning. The first merely sets Fk(s) equal to the orthogonal 
projection of fk(s) onto the tangent space of the (sub)simplex. Hence if f is 
bilinear this dynamic is piecewise linear, and linear on each open subsimplex. 
Intuitively, its trajectories head straight up the "fitness hill" on each Sk (or on 
the appropriate subsimplex, if some strategies are extinct in population k). We 
encountered this dynamic in Example 2, equations (2.4)-(2.6). I will denote it by 
Lf and call it the linear dynamic. 

The other dynamic, denoted Mf, is analogous for growth rates. Intuitively, 
one renormalizes the fitness vector so it is a predynamic and then the corre- 
sponding dynamic will feature strategy growth rates equal to relative strategy 
fitness-that is, we obtain the Malthusian dynamic. Since Mf works with growth 
rates, strategies never become extinct in finite time in the trajectories it defines, 
while they certainly can under the Lf dynamic. The precise construction of Lf 
and Mf for an arbitrary fitness function f can be found in the Appendix. 

2.4. Equilibrium Concepts 

Two static concepts of equilibrium can be defined directly from the fitness 
function. Say that s is a Noncooperative (or Nash) equilibrium point for the 
fitness function f, and write s E NE(f ), if f k(X, s) <f k(Sk, s) for all x E Sk, 
k = 1,..., K. The intuition is the same as in standard game theory: the inequal- 
ity says that 5k is a (weak) best reply against s for all k. Say that s is an 
evolutionary stable state for the fitness function f, and write s E ESS(f ), if for 
each k=1,...,K and x 5skCE sk, we have either (a) f k(X,s)< f k(Sk,s) or 
(b) f k(X, s) =fk(sk, s) and fk(X, SJkXe) <f k(sk, SJkX8) for e > 0 sufficiently 
small. The notation SlkX means (s1,..., 5k-1 , X, sk+1, ... . SK), and SlkX, means 
(1 - e)s + e(slkX), i.e., a slight perturbation of 5k towards x. Of course, in the 
case that f is bilinear, the references to e can be dropped from the definition. 

REMARK 2.1: Obviously ESS is a refinement of NE, i.e., ESS(f ) c NE(f ). 

REMARK 2.2: An equivalent definition for ESS is simply that f k(x, slkxE) < 
f k(Sk, slkX,) for e > 0 sufficiently small. However, a two-part definition is 
traditional, and helps distinguish two useful cases. 

REMARK 2.3: Maynard Smith's intuition, explained at length in his 1982 book, 
is that ESS is a stability condition. Think of x as a mutant strategy, so slkXE is 
the state after a small invasion of population k mutants. The inequalities 
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defining ESS say that mutants are less fit than the dominant group (and hence 
presumably will disappear) either because (a) they do less well in encounters 
with the dominant group or (b) they do equally well in encounters with the 
dominant group but less well in encounters with other mutants. I will refer to an 
assertion that ESS is necessary or sufficient for dynamic stability as a Maynard 
Smith conjecture. 

REMARK 2.4: Nash equilibrium points exist for every fitness function. The 
proof is a minor variant on the standard existence proof for NE in normal form 
games, using the Kakutani fixed point theorem. 

REMARK 2.5: NE states can be characterized as those whose "extinct" strate- 
gies (i.e., i such that Sk = 0) are no more fit than nonextinct strategies (Sk > 0) 

and whose nonextinct strategies are equally fit. Formally, we have the following: 

Let axk := max{f k(ei, s): i = 1,.. ., N). Then s is a Nash equilibrium point iff, 
for each k, f k(ei, s) = ak for all i such that sk > 0. 

The proof again is standard, with details available from the author. 

REMARK 2.6: It is tempting in light of the previous remark to conjecture that 
ESS are the subset of NE for which extinct strategies are strictly less fit than 
nonextinct strategies for each population, and for which the nonextinct strate- 
gies reach peak fitness in some sense (say a negative-definiteness condition). 
Taylor and Jonker (1978) show that this conjecture is almost but not quite true. 
Following their approach, define s* E S to be a regular ESS if (a) f k(ei, s*) < 
a :=fk(s*k, s*) for all i such that Sk = O, and (b) the matrix Ak = 
((fk(ei, s*)/Idsk)) is negative definite on the tangent space at sk {z e RN: 

Ezi = 0, and S*k = 0= zj = 0), for each k = 1,..., K. Taylor and Jonker argue 
that every regular ESS is an ESS, and almost every ESS is regular.15 

The dynamic equilibrium concepts are conceptually straightforward: we seek 
to characterize steady states, and states to which the dynamic process returns 
following a small perturbation. Such equilibria are defined in terms of the 
function F that specifies the dynamical system on S. Say that s is a fixed point 
(a.k.a. steady state or equilibrium point) for the dynamic F, and write s E FP(F), 
if all components of F(s) are 0. Such states are steady in that s(t) = s(O) for all 
t E [0, co) iff s(O) E FP(F). Say that s is an evolutionary equilibrium (a.k.a. stable 
equilibrium or persistent state) for F, and write s eEE(F), if s is a locally 
asymptotically stable fixed point, i.e., if s is a fixed point and it has some open 
neighborhood N c S such that s(t) ->s as t -* oo wherever s(O) E N. Thus all 
states near an evolutionary equilibrium will eventually evolve towards it. 

15 The matrix could be only negative semi-definite, yet the inequality in part (b) of the ESS 
definition might still hold because of higher-order terms. The regularity condition rules out this 
unlikely situation. The condition will be used only in Proposition 3.4. 
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3. RESULTS 

Given the four equilibrium concepts just defined, the theorist will instinctively 
ask about their relationships. The applied researcher investigating a specific 
fitness function f and compatible dynamic F also has a stake in the question. 
Evolutionary equilibria of F, as the persistent states of the model, provide the 
basic predictions for observables, but these equilibria may be difficult to 
compute directly and need not exist. The more convenient static equilibria of f 
take on added interest once the investigator has theoretical reassurance of their 
relationships to evolutionary equilibria. 

For standard biological models the relationships among the equilibria are by 
now well known: for the Malthusian dynamic Mf of a bilinear single-population 
fitness function f we have 

ESS(f) CEE(Mf) cNE(f) CFP(Mf); 

see van Damme (1987) for instance. In particular, the static ESS concept is 
sufficient and NE is necessary for evolutionary equilibrium in standard biologi- 
cal models. 

This section will show that the last two inclusions are quite general: for any 
dynamic F even weakly compatible with a given (possibly nonlinear and multi- 
population) fitness function f, the evolutionary equilibria of F must all be NE 
of f (Proposition 3.2) and all NE of f must be fixed points of the dynamic F. 
These results allow the researcher to confidently apply known existence results 
for NE and simple computational devices for FP. On the other hand, the first 
inclusion does not generalize as well (Proposition 3.4 and counterexamples), so 
the researcher can avoid possibly misleading analyses of ESS. 

We begin with the preliminary result that, as Figure 5 and the choice of 
terminology suggest, order compatibility implies weak compatibility. The result 
streamlines the statement and proof of the main propositions. 

PROPOSITION 3.1: For every fitness function f, for every state s in S, and for 
k = 1,..., K, the order compatible cones Zk (f, s) for dynamics and Zk (f,s ) for 
predynamics are subsets of the corresponding weak compatible cones Zkc(f, s) and 
Zk (f,s). 

See the Appendix for a proof of this and the other propositions. 
The next result confirms that a static equilibrium concept (NE) is a sufficient 

condition for dynamic equilibrium (FP) for any compatible dynamic. Existence 
of dynamic equilibrium is a corollary. The proposition also shows that the static 
and dynamic concepts actually coincide for interior equilibria, i.e., equilibria 
with no extinct strategies. 

PROPOSITION 3.2: Let the dynamic F be weak compatible with the fitness 
function f. Alternatively, let the predynamic G be weak compatible with f and let 
F(s) = D(s)G(s). In either case, all Nash equilibria are fixed points and all in- 
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terior fixed points are Nash equilibria, i.e., NE(f ) cFP(F) and NE(f ) n S? = 

FP(F) n SO. 

COROLLARY 3.2.1: Proposition 3.2 also holds with "order compatible" replac- 
ing "weak compatible." 

PROOF: Follows directly from Proposition 3.1. 

COROLLARY 3.2.2: Let the dynamic F be weak or order compatible with some 
fitness function f. Alternatively, let F(s) = D(s)G(s) with G weak or order 
compatible with f. Then F has an equilibrium point, i.e., FP(F) * 0. 

PROOF: Follows from Remark 2.4, Proposition 3.2, and Corollary 3.2.1. 

As a complement to the previous proposition, the next result confirms that 
the evolutionary equilibria (EE) are always NE for a corresponding fitness 
function. 

PROPOSITION 3.3: Let the dynamic F be weak compatible with the fitness 
function f, or alternatively let F(s) = D(s)G(s) and let G be a predynamic which 
is weak compatible with f. Then all stable equilibria of F are Nash equilibria, i.e., 
EE(F) cNE(f). 

COROLLARY 3.3.1: Proposition 3.3 also holds with "order compatible" replac- 
ing "weak compatible." 

PROOF: Follows directly again from Proposition 3.1. 

REMARK 3.1: By analogy with the last part of Proposition 3.2, one migir 
wonder if EE(F) sometimes coincides with NE(f). In particular, for SE= 

{el, ... ., eN}K representing the extreme points of S (i.e., each population adopts 
a single strategy with probability 1) it is reasonable to conjecture that NE(f ) n 
SE = EE(F) n SE for F compatible with f, so strict NE implies ESS. It is not 
difficult to see that the conjecture is true if the values fk(ei, s) are distinct 
(across i) for s E SE, which usually (i.e., for generic f ) is the case. 

REMARK 3.2: One could weaken the definition of admissibility, so that extinct 
strategies i e I'(s) could be revived (without perturbing the state) and only 
further decreases for such strategies (i.e., choice by a negative fraction of a 
population) are excluded. Weakening admissibility means reducing the number 
of fixed points, since F(s) 0 0 is possible more often. Indeed, under the 
weakened definition NE(f ) = FP(F) and examples of unstable fixed points are 
harder to come by. No similar modification seems appropriate for the growth 
rate case, since it employs no boundary condition. 
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REMARK 3.3: It can be shown that Propositions 3.2 and 3.3, together with 
Remark 2.5 and the definitions, offer convenient computational algorithms for 
equilibria of evolutionary games, particularly when the fitness function is bilin- 
ear. In this case, the definition of FP provides for each subsimplex a square 
system of linear equations stating that the fitnesses of nonextinct strategies are 
equal, and that points lie in the relevant subsimplex. Solutions to the system can 
be tested for the additional NE, ESS, and EE properties. For details, see 
Friedman (1987) and the biological literature, especially Haigh (1975). 

The last proposition collects positive results concerning Maynard Smith 
conjectures. If one is interested only in linear or Malthusian dynamics, or if one 
has a symmetric fitness function, then the conjectures are mostly correct. The 
conjectures evidently arose from consideration of a bilinear fitness function for 
one population and two strategies (illustrated in Figure 6 below and discussed in 
the last proof in the Appendix), so it is no surprise that they also hold in this 
case. 

PROPOSITION 3.4: Let s be a regular ESS for some fitness function f. Then: (a) s 
is an EE under Malthusian and also under linear dynamics; (b) if s E So and f is 
bilinear, then ESS(f ) =EE(Mf ) = EE(Lf ) = {s); (c) if N = 2, K = 1, and f is 
bilinear, then ESS(f ) = EE(F) for all weak compatible dynamics F; and (d) if f 
is symmetric, then s E EE(F) for any dynamic F which is weak or order compati- 
ble with f. 

REMARK 3.4: The symmetry condition in Proposition 3.4(d) of course is that 
f(r, s) =f(s, r), suggesting team games. Readers acquainted with the biological 
literature might be confused on this point because Maynard Smith refers to the 
single population case (K = 1) as the "the symmetric case" and to certain 
special cases of K> 1 as "the asymmetric case." 16 

REMARK 3.5: I suspect that Proposition 3.4 holds even if the ESS is not 
regular, but I have not been able to find a proof for part (a) when s is not 
interior. 

I conclude this section with three counterexamples that show that ESS is 
neither necessary nor sufficient for the dynamic stability of a fixed point of a 
compatible dynamic, and that ESS and EE do not always exist. See Friedman 
(1987) for details. 

16 Maynard Smith applies the term "asymmetric case" to a single genetic population whose 
members sometimes play different "roles" (e.g., owner or intruder in a territorial contest) and have 
role-dependent strategy sets. The most natural way to formalize this idea in the present framework 
is to write an underlying general fitness function with K = the number of possible roles, and then 
reduce it (by taking the expectation with respect to role probabilities) to a single-population fitness 
function defined on role-contingent strategies. See Selten (1980) for a different formal approach. 
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COUNTEREXAMPLE 1 (from Taylor and Jonker (1978, p. 153)): Let K = 1 and 
N = 3, with f bilinear and represented by the matrix 

(2 1 5 
A= 5 1 0 

1 4 3 

One readily confirms that s = 35 -1 (15, 11, 9) is a NE point for A, with 
a = 86/35. For x = 35 -1 (18,17, 0) we have f(x, s) = f(s, s) = a and f(s, x) = 
35-2 2746 <f(x, x) = 35-2 2773 so s E/-ESS(f). However, one can show that 
the eigenvalues for DLf(s) restricted to the tangent space H(13) are A = 

- 2(1 + i101) SO s E EE(Lf). Taylor and Jonker show that s E EE(Mf). Hence 
ESS is not necessary for dynamic stability.17 

17 The biggest surprise in this counterexample is that even with Malthusian dynamics, stability is 
possible when certain types of mutant invasion are successful (i.e., when the ESS conditions fail). As 
Taylor and Jonker point out, the intuitive explanation is that ESS, which is essentially a negative- 
definiteness property, requires (Malthusian) trajectories to approach a fixed point directly, while the 
correct dynamic stability criterion allows trajectories to spiral in elliptically. An analogous confusion 
arose 40 years ago among economic theorists when Hicks tried to characterize the stability of 
multiple-market competitive equilibrium in terms of the negative definiteness of the gross substitu- 
tion matrix A = ((dqi/dp1)). Paul Samuelson (1948) pointed out that the correct characterization of 
stability under tatonnement dynamics is that A have eigenvalues with negative real parts. In 
general, negative definiteness is too strong; but in the symmetric case (e.g., no income effects) the 
two characterizations are the same. 
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COUNTEREXAMPLE 2: Again, let f be bilinear with K = 1 and N = 3, but now 
set 

-5 34 -29 
A= -26 -5 311. 

31 -29 -2 

The example is constructed with the convenient properties that s = (3, 3, 3) E 

NE(f ) and that average fitness is zero. It can be shown that A is a negative 
definite quadratic form on the tangent space H(13), so s is a regular ESS. 
Nevertheless order compatible (not to mention weak compatible) dynamics F 
can be constructed for which s 0 EE(F). Basically one computes the order 
compatible cones shown in Figure 7, and notes that by always picking tangent 
vectors close to the outer edge of the cones, one can intersect each of the lines 
at a point increasingly distant from s, i.e., one can obtain a dynamic F whose 
trajectories spiral rapidly outwards from s. Hence ESS is not sufficient for 
dynamic stability. 

COUNTEREXAMPLE 3 (Sigmund, et al., reported in Zeeman (1979, pp. 
483-484)): Again f is bilinear and K = 1 but N = 4 and 

(0 1 E O 

A=(oE 0 0 14 

1 E O O 

Consider s = (4j, 4, 4, 4). For 1 > E > 0, {s} = ESS(f) = EE(Lf) = EE(Mf). 
However, for small E <O, s is a saddle point and ESS(f) = EE(Lf) = 

EE(Mf) = 0. There is a stable limit cycle with a shape in S (here 3-dimen- 
sional) like the seam of a baseball. 
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4. DISCUSSION 

4.1. Interpretations and Extensions 

The results of the last section indicate that NE is a very useful static concept 
for analyzing steady states of evolutionary games. Whether one works with a 
specific dynamic, such as the Malthusian or the linear, or knows only that the 
dynamic is compatible (even just weakly compatible) with a fitness function f, 
the results of the last section ensure that there is always a nonempty set NE(f) 
of points all of which are steady states and which contain all dynamically stable 
steady states. 

An important message of the results is that ESS has no such general 
usefulness. There are special cases, as indicated in Proposition 3.4, in which 
ESS's (if they exist) will be dynamically stable steady states and therefore 
represent an interesting refinement of NE. However, the counterexamples show 
that in general the ESS property is neither necessary nor sufficient for dynamic 
stability of order compatible (much less weak compatible) evolutionary pro- 
cesses. 

The evolutionary framework suggests some NE refinements with greater 
general appeal than ESS. Larry Samuelson (1987) shows for bilinear K = 2 
discrete time games that convergent evolutionary processes obeying a somewhat 
stronger condition than order compatibility will converge to perfect NE, and 
that even nonconvergent processes will lead to asymptotic extinction of nonra- 
tionalizable strategies. Nachbar (1989) establishes in somewhat greater general- 
ity that the NE refinement dominance solvability (and, in some cases, weak 
dominance solvability) suffices to ensure the convergence of order-compatible 
dynamics. 

Significantly sharper refinements may not be possible. Given the variety of 
economically plausible dynamics, it seems unreasonable to expect any static 
definition to pick out precisely the economically relevant equilibria. From an 
evolutionary perspective the quest for the ideal (static) NE refinement thus 
appears futile. A search for useful classes of learning and imitation dynamics 
seems more promising because ambiguities vanish regarding the relevant equi- 
librium once the dynamics (and initial conditions) are determined. 

The formal framework employed here can be modified in several ways. For 
example, I have assumed that the evolution of the system is everywhere 
governed by a given compatible dynamic F, so that s = F(s) E Z(f, s). Instead 
one could merely require that s E Z(f, s), i.e., allow the learning rule to vary 
over time and state. Such "nondeterministic" or "differential inclusion" dynam- 
ics allow self-intersecting trajectories, but it is reasonable to conjecture that the 
main results will still hold, given the results of Friedman (1979) and Aubin and 
Cellina (1984). 

A more substantial generalization of the present framework allows analysis of 
nonanonymous strategic interaction. The idea is that fitness could depend on 
which agents employ the various strategies, and not just on the population 
distributions of strategies. Hines (1980) takes a step in this direction. Building 
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on the biologists' distinction between monomorphic models (all individuals play 
the same mixed strategy except for a small subpopulation of mutants who all 
deviate to some other mixed strategy) and polymorphic models (all individuals 
play pure strategies which may differ across individuals), Hines regards states as 
distributions of mixed strategies (i.e., measures on S rather than points in S). 
He shows that the population mean evolves under Malthusian dynamics in a 
manner similar to that of the basic model (in essence one replaces the fitness 
matrix A by CA where C is the population covariance matrix), but that ESS is 
necessary for stability in this state space. 

Schmeidler (1973) provides the static elements for general nonanonymous 
evolutionary games: a continuum of agents t E T = [0, 1] and Lebesgue-measur- 
able strategy profiles x mapping T into the N-simplex. The state space is the 
set of all such strategy profiles and the payoff function is assumed linear in own 
(mixed) strategy and continuous in the state. Masso (1988) employs these static 
elements together with "memory strategy" dynamics adapted from Smale (1980). 
Both authors focus on existence of NE and emphasize the special "anonymous" 
case (Masso, Assumption A.2, page 61) in which the payoff depends on the state 
x only through its mean JTX. In the anonymous case the Schmeidler payoff 
function and auxiliary function reduce respectively to a fitness function f and 
fitness vector f as defined in Section 2.1 above. Schmeidler and Masso each 
show that under the anonymity assumption any NE is implementable in pure 
strategy choices for each player t E T. 

The general nonanonymous model in my view will be useful when the number 
of strategically distinct types of interacting agents is unbounded; otherwise the 
evolutionary game framework of Section 2, taking K as the bound on the 
number of types, seems adequate. Infinite-dimensional state spaces can also 
arise when there are infinitely many pure strategies, as in games of timing; for 
example, see Riley (1979) who also discusses the effects of finite population size 
in biological models. 

4.2. Applications 

The applications to substantial questions in economics and other social 
sciences will ultimately measure the value of evolutionary games. Here I will 
briefly and nonsystematically survey some recent applications related-to evolu- 
tionary games, and then suggest some new areas of application. Several more 
systematic surveys are now available. Hines (1987) is a relatively recent and 
mathematically sophisticated summary of the biological ESS literature. Chapter 
9 of van Damme (1987) provides a compact summary of game theoretic results 
relating to ESS and an introduction to Malthusian dynamics. Hofbauer and 
Sigmund (1988) is a delightful compendium of biological applications of dy- 
namic systems theory, whose "red thread" is Malthusian dynamics. A recent 
brief theoretical survey can be found in Nachbar (1989). 

Conlisk (1980) provides an early evolutionary approach using discrete time 
dynamics with lags and stochastic components. He postulates two pure strate- 
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gies, "optimization" and "imitation," and looks for an equilibrium population 
ratio of these two strategies where a quadratic loss function for nonoptimizers 
must balance a constant positive cost to optimization. The main result is that 
the fraction of optimizers in the population does not asymptotically converge to 
1 as long as imitation is fitter than optimization when the population is almost 
all optimizers. Clearly this conclusion would also follow for any true order 
compatible dynamics. 

The question of whether an investor should purchase securities information 
or just rely on (nearly?) efficient asset prices has a similar flavor to Conlisk's 
optimization vs. imitation discussion. Cornell and Roll (1981) answer this 
question in terms of an interior ESS of a model formally equivalent to the 
biologists' simplest (K = 1, N = 2) static territorial conflict model. They also 
discuss biologists' "asymmetric" models as a device to explain the seniority 
system in hierarchical organizations. 

James Friedman and Robert Rosenthal (1986) introduce migration dynamics 
for bilinear K = 2 games with no externalities, in order to explain deviations 
from NE observed in laboratory oligopolies and similar experiments. For 
reasons discussed in Example 2.5 above, the NE of their payoff functions are 
not typically dynamic equilibria. 

Schofield (e.g., 1978) studies dynamic games of social choice, inspired more by 
nontatonnement processes than by evolutionary considerations. The idea is that 
at each point of policy space individual preferences and the choice rules (e.g., 
majority vote) define policy increments that are feasible and preferred by a 
relevant coalition (e.g., a majority); such increments form a cone in the tangent 
space at that point. Schofield shows that piecewise smooth paths (called "opti- 
mizing" curves for some reason) whose tangent vector at each point lies in the 
cone need not converge. Indeed, given a condition called "null dual" that is 
often satisfied, optimizing curves exist between most pairs of points so cycles are 
very common. By contrast, Smale (1976) and followers (e.g., Friedman (1979)) 
obtain quite strong convergence results for cone field dynamics in exchange 
economies. 

Recently several authors have begun to model dynamic games with an 
evolutionary perspective on individual (not population) choice. Skyrms (1986) 
discusses some philosophical issues regarding rationality in games, and intro- 
duces a virtual "deliberational dynamic" (describing the adjustment of the 
mixed strategy contemplated by an individual) that seems formally equivalent to 
the linear dynamic. Binmore (1987/88) points out several other problems with 
rationality in the static specification of games; he emphasizes extensive-form 
games of imperfect information but some of the problems also arise in standard 
normal-form games with several NE. He suggests a dynamic resolution to the 
problems, and distinguishes between "eductive" processes (reminiscent of 
Skyrms) and "evolutive" processes in which some sort of selection mechanism 
operates on boundedly-rational automated players. Possibly the general non- 
anonymous model sketched above will be useful in pursuing the individualistic 
interpretation of evolutionary games. 
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Crawford (1989) examines laboratory games in which subjects are motivated 
to match the minimum or median contribution towards a public good (so the 
payoff is not bilinear; these are "playing the field" fitness functions). He 
sketches an adaptive model inspired by ESS literature (evidently a stochastic 
version of the linear dynamic) that seems capable of explaining the data. The 
paper more generally shows the promise of laboratory experiments as an 
empirical tool for finding specific evolutionary dynamics of economic interest. 

A computerized tournament in which several game theorists submitted auto- 
mated strategies for the repeated prisoners' dilemma, reported in Axelrod and 
Hamilton (1981), spawned an extensive and fascinating body of literature. I will 
not attempt a survey; see Axelrod and Dion (1988). Marks (1989) also contains a 
recent review that draws connections to the Holland (1980) "genetic algorithm." 
The tournament does not fit neatly into the present framework since it in- 
volves a supergame viz., nonanonymous repeated encounters in the Prisoner's 
Dilemma. However, Hirshleifer and Martinez-Coll (1987) re-express this su- 
pergame as an evolutionary game and show that "tit-for-tat" is not as robust a 
strategy as some authors have claimed. 

Arthur (1989) employs a stochastic version of Malthusian dynamics arising 
from a learning algorithm rather than from the genetic mechanism. He shows 
that the limit points must be NE. Boyd and Richerson (1985) explore a variety 
of models that contrast and often combine genetic and social selection mecha- 
nisms. Inasmuch as economists regard a single generation of 30 years as 
"long-run" or "very long-run," the time scales in the latter article are exceed- 
ingly long for economic applications. 

New potential economic applications of (population) evolutionary games 
include monetary theory, industrial organization, and international economics."8 
A recurrent question in the first field is how a medium of exchange might 
emerge in a laissez-faire barter economy with transactions costs-e.g., see Jones 
(1976) and the recent survey by Cowen and Kroszner (1987). It seems natural to 
address this question in terms of an evolutionary game with pure strategies 
representing an agent's willingness to accept specific goods he does not ulti- 
mately wish to hold; one looks for the presence of corner EE and absence of 
interior EE to justify a single medium of exchange.19 

In industrial organization, one might study the "fitness" of alternative strate- 
gies such as independent entry, franchising, and merger under specific assump- 
tions regarding product pricing.20 One might also usefully consider K = 2 
models for worker and firm populations, in which one could consider issues 
regarding unionization, apprenticeship vs. other methods of acquiring specific 

18 This list of topics is certainly not exhaustive. For example, the perspectives in Hirshleifer 
(1977) indicate that the economics of law is a natural area for applied models of evolutionary games. 

19 I was pleased to discover recently that Marimon, McGrattan, and Sargent (1989) take just such 
an approach to the issue, using dynamics based on Holland's genetic and classifier algorithms. 

20 It might be amusing to model Porter's (1980) popular "generic competitive strategies" (cost 
leadership, differentiation, and focus) in an evolutionary game and see whether an interior EE is 
possible. 
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skills, and compensation methods. For instance, with regard to the last issue, 
one wonders whether Weitzman's (1984) proposed share economy is dynami- 
cally stable, given workers' incentive not to dilute their ownership shares; one 
could use an evolutionary model to test the conjecture that firms which promise 
not to dilute might successfully invade an industry of Weitzmanian firms. 

In international economics, one could consider the sectoral investment choices 
of entrepreneurs in autarky as a K= 1 model. Then, for n countries, one 
obtains a K = n evolutionary model by coupling the autarky models under some 
(not necessarily free) trading regime. Such a model may be useful for discussing 
the dynamic impact of trade and capital restrictions on sectoral investment and 
output. 

Another potentially fruitful avenue of investigation can be taken in conjunc- 
tion with applications such as those just described or on its own: the systematic 
exploration of specific learning and imitation rules and their dynamic implica- 
tions. 

Department of Economics, University of California, Santa Cruz, CA 95064, 
U.S.A. 

Manuscript received April, 1988; final revision received April, 1990. 

APPENDIX 

A. 1. Notation and Definitions 

Rn denotes Euclidean space of finite dimension n > 1 with the usual basis ell...Ie , where 
e' = (0, . . ., 1, . . .0, ), the 1 being in the ith place. Vectors, denoted x, v, e', etc., are column vectors 
for purposes of matrix calculations but usually are written as row vectors as above to simplify 
typography. The symbol = means "is defined as." For vectors or scalars x1,... I xm and y, the 
notation Ik refers to replacement of the kth component; e.g., if x = (x1I...,xm), then XlkY = 

(x1 . . ., xk-i y, xk+. x1m). X0 denotes the (relative) interior of a set XcRn. For I a finite set, 
#I is the number of elements of I. 

The usual inner product is denoted by a dot, i.e., x Y y EIXi y1 for x =(x1,xn) and 
Y = (Y1 . y . ) E Rn. H(x, a):= {v E Rn: v x = a) is the (n - 1 dimensional) hyperplane with nor- 
mal x E Rn translated from the origin On = (..., 0) along x for the distance a E R1. The 
corresponding closed and open positive half-spaces are H+(x, a) := {v E Rn: v x > a) and 
H?(x, a) := {v E Rn: v x > a). Negative half-spaces H_ are analogously defined. H(x):= H(x, 0) 
and similarly for the half-spaces. The positive orthant thus is R+:= n U =lH+(e'), and the unit 
simplex is A = H(1, 1) n R n, where 1n = (1. 1) E Rn is the diagonal vector. 

For s EA, let I(s) = {i = 1. N: s' > 01 and F(s):= {i: s' = 0), and let RI(S) be the subspace of 
RN spanned by {e': i E I(s)). Then s is in the subsimplex AI(S) H(lN, 1) + R Its tangent space 
is H(lN) n R (s). The order-cone for x E Rn is 

C(x) := { y E Rn: yJ < y iff xj < x, for i, j =1. n}. 

Note for later reference that y E C(x) iff x E C(y), and in particular On Ee C(1n) = {yln: y E R'}. 
A careful inspection of the definitions in the body of the paper discloses that a differentiable 

function F: S -* RNK is a dynamic which is order compatible with the fitness function f iff 
Fk(S) E C( fk(s)) n H(lN) n RI(Sk) for all s E S and all k. Hence define the order compatible cone 
for f at s 

ZOk(f,s) =C( f k(s)) n H(1N) n RI(sk) (k = 1. K). 
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Likewise, G is an order compatible predynamic if Gk(S) E C(fk(s)) n H(sk) n RI(Sk) so the latter 
expression defines the order compatible predynamics cone for f at s, Zk (f, s). For weak compatibil- 
ity, one replaces C(f k(s)) by H+(f k(s)) when fk(S) a5l k, and by ON otherwise. The resulting 
cones of weak compatible dynamics and predynamics tangent vectors are denoted ZC and Zp 
respectively. 

Given a fitness function f, define the linear dynamic Lf: S -* RNK by Lf (s) D(1s)(f(s) - a(s)), 
where a(s) E RKN has (all N of) its k components equal to (#I(sk)) -El E E (Sk) f k(e' s), the simple 
average fitness of nonextinct population k strategies. Recall ls has zero components wherever 
sk = 0 with unit components elsewhere. Obviously Lf is order compatible with f and satisfies 
admissibility conditions (a) and (b). However, Lf may be discontinuous on the boundaries of 
(sub)simplicies, so it is a slight abuse of terminology to call it a dynamic. Care is taken in the proofs 
involving Lf to ensure that they remain valid. 

Given a fitness function f, define the Malthusian dynamic Mf: S - RNK by Mf(s) D(sXf(s) - 

a*(s)), where a*(s) E RKN has its k-components (all N of them) equal to f k(Sk, s) = Eskfk(e', s), 
the population-weighted average fitness of population k strategies. It is immediate that s *(f(s)- 
a*(s)) = 0 so f(s) - a*(s) is indeed a predynamic which is order-compatible rwith f. If f is bilinear, 
then Mf will specify differential equations of degree 3. 

A. 2. Proofs 

Before presenting proofs of the Propositions, I sketch the analysis behind Example 1 and Figure 
1 for readers who are interested. The center point and the four corner points are clearly the only 
solutions to 0 = p = 4 in equations (2.2) and (2.3). Summarizing the equations as (p, 4) = F(p, q), 
one readily calculates the Jacobian 

DF ) (1 
- 

12 p)( 1- 2q) -2 p(l1-p) ) DF(p, q) - 

2q(l - q) (1 - 2q)(2p -1) 

Hence, at the corners (p, q = 0 or 1) we have 

DF(p,q) = +( 1 0) 

which implies that these are all saddle points. At the center point we have 

DF(2,)t 
2 

whose eigenvalues are purely imaginary at +i/2, so up to first order the trajectories are (counter- 
clockwise) concentric circles of period 4wr. The higher order terms could stabilize or destabilize this 
fixed point, so further analysis is required. One employs new variables that translate the fixed point 
to the origin, x =p - 2, Y =q - 2, and re-expresses equations (2.2)-(2.3) as x =X(x, y):= 
-2y( -x2) and y = Y(x, y) := 2x(+y2). Observe that dx/d(-t) = -X(x, y) =X(x, -y) and 
dy/d(- t) = -Y(x, y) = -Y(x, -y). Hence for initial conditions x(0) = x0 > 0 and y(0) = 0, the 
solution curve satisfies x(t) =x(-t) and y(t) = -y(-t) for all t E R. In particular, y(to) = 0 for 
some smallest to > 0 (for x0 small, to = 2wr) by the first order approximation, so the solution curve is 
a closed loop of period 2to which has x = 0 as an axis of symmetry. Similarly, y = 0 is also an axis of 
symmetry, and a simple argument shows that x = y and x = -y are further axes of symmetry. 
Alternatively, one observes that the function H(p, q) =pq(1 -p)(1 - q) is constant on solution 
curves and has closed isoquants. Consequently the phase portrait is the same (up to time 
reparameterization) as the isoquant map. Re-expressing the equations in the polar coordinates 
x = rcos 0, y = r sin 0, one finds that r = 1/2r3 sin 40 and 0 = 1/2 - r2(1 - cos40), which yield the 
squarish trajectories of Figure 1. 

REMARK A.1: It is not always the case that the order cone of a vector lies in its own positive 
half-space. For instance, take x = (1, 2, 3) so for y = ( - 3, - 2, - 1) we have y E C(x) but y e H+(x). 
Consequently the proof of Proposition 3.1 uses the following lemma. 
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LEMMA A.1: For N > 2, let x, y c H(lN) and y E C(x). Then x y > 0 unless x = y = ON 

PROOF: Define lix II:= max{ 1x,1: i = 1,..., N}-the "sup norm," and set U:={x E RN: llxii = 1} 

-the unit vectors. Let v = (1,2,...,N) and Z:= C(V) n H(N) n U. Inspection of the extreme 
points of Z discloses that inf{x y: x, y c Z} is achieved for x and y at the "diagonally opposite 
corners," viz, 

X*=( 1,Nl1.N-1) and Y ( N-1 N-1') 

But 

2 N-2 N 
X* Y=N- 1 (N-1) (N -1 

Note that for any x E RN, the cone C(x) is isometric to C(v) (possibly with N replaced by n < N) 
so the inequality is quite general. Indeed, for x, y in H(l N), if x = ON and y 0 ON, then 
x y > iIxi * IIYIIN/(N-1)2 > 0. If X = ON then C(x) = {a1N: a C R1} so Y = 1N for a such that 
O = 1-N Y = alNl 1N = a N, i.e., a = 0 and Y = ON. Since y C(x) iff x E C(y), we also conclude 
that y = ON implies x = ON. Hence either x = ON and x = y = ON, or else x / ON and x y > 0. 

REMARK A.2: The same conclusion can be established by essentially the same argument when 
x, y a H(w) n RI) for given w c Sk. One takes a w-weighted sup norm (that is, w, Ix, I replaces 
ix, I) and replaces x * and y * by appropriate functions of w. 

PROPOSITION 3.1: For every fitness function f, for every state s in S, and for k-1,...,K, the order 
compatible cones Zkc f, s) for dynamics and Zkp f, s) for predynamics are subsets of the correspond- 
ing weak compatible cones Z; W(f, s) and ZWPff, s). 

PROOF: If N = 1, the state space is a singleton and the cones are all the zero vector. For given 
N > 2, fix f, s, and k. Set y =fk(s) and let x OZHkc(f, s) = C(y) n H(ON) nRI(sk). If X = ON then 
(by definition of order-cones) it must be the case that y = alk; hence x c Zk (f, s). On the other 
hand, if x k ON the lemma implies that x c Ho so again x c Zkc4(f, s). This establishes the desired 
conclusion for dynamic cones. For predynamics cones one repeats the same argument using the 
extension of the lemma noted in Remark A.2 with w = s Q.E.D. 

PROPOSITION 3.2: Let the dynamic F be weak compatible with the fitness function f. Alternatively, 
let the predynamic G be weak compatible with f and let F(s) = D(s)G(s). In either case, all Nash 
equilibria are fixed points and all interior fixed points are Nash equilibria, i.e., NE(f) c FP(F) and 
NE(f)nSo=FP(F)nSO. 

PROOF: Let s a NE(f) and fix k. By Remark 2.5 a :=f k(Sk, S) f k(e, s) for all i c I(Sk), so 
f k(S) = 

alsk and consequently Fk(s) ON. Alternatively, if the predynamic G is weak compatible, 
then the relevant cone is Zk (f,s)-C(0 ) H(sk) =(01 In either case we conclude that 
s c FP(F). 

For the last part of the proof, let s E FP(F) n So. Then {ON) a C(fk(s) E H(l9 for each k by 
the compatibility condition for F. The properties of order cones noted after their definition now 
imply f k(S) = Y1N for some y c R1. Alternatively if G is compatible, then ON = Fk(s) = D(sk)Gk(s) 

since s e FP(F), and so ON = Gk(s) since D(sk) is invertible for s a So. But then fk(5) E C(ON) So 
again f k(S) = Y1N. Thus in either case we have fk(eI, s) = y =fk(sk, s) for all i = 1..N. Since 
this is true for each k = 1. K, we conclude from Remark 2.5 that s c NE(f). Q.E.D. 

PROPOSITION 3.3: Let the dynamic F be weak compatible with the fitness function f, or alternatively 
let F(s) = D(s)G(s) and let G be a predynamic which is weak compatible with f. Then all stable 
equilibria of F are Nash equilibria, i.e., EE(F) c NE(f ). 
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PROOF: Let s e EE(F). Since s e FP(F), the last argument in Proposition 3.2 tells us that 
f k(e', s) = a for all i E I(sk) for some a E R1. Suppose 3 := max {f k(e', s): i= 1. N) > a. Then 
set J,'= {i: f k(e, s) = ,3) and J {i: f k(e', s) <,3) D I(Sk). Thus 

C = {r e S: fk(e', r) >fk(el, r) Vj eJ, Vi cJ'} 

is a cone in S, which (since f is continuous) is an open neighborhood of s e S. For r e C n SO we 
have Fik(r) > FJ(r) for all i EJ' and j EJ so E > 0> L if F is compatible, or 
alternatively YE ,(lhrl)> 0 if G is compatible. Hence YE, yr (or alternatively T rr/) is a 
positive increasing function of time for all r(O) E C n SO. Since this function is 0 at r = s, it follows 
that s is not stable, i.e. s i EE(F). Consequently, the supposition that ,3 > a is false. We conclude 
that 

N 

f(x,s)= Exjf(e',s)<aEx,=a= E Skf(et, s) = f (Sk, S), 

i.e., s E NE(f Q.ED. 

PROPOSITION 3.4: Let s be a regular ESS for some fitness function f. Then: (a) s is an EE under 
Malthusian and also under linear dynamics; (b) if s e SO and f is bilinear then ESS(f) = EE(Mf) = 

EE(Lf ) = {s); (c) if N = 2, K = 1, and f is bilinear, then ESS(f ) = EE(F) for all weak or order 
compatible dynamics F; and (d) if f is symmetric, then s e EE(F) for any dynamic F which is weak or 
order compatible with f. 

PROOF: First suppose s e ESS(f) n SO, and define the function V: S -> R1 by V(r) = (r -s) 

(r - s). Clearly V is minimized (strictly) on S at s, so it will follow that s E EE(L ) if one can show 
that V< 0 on S, i.e., that V is a Liapunov function for L (cf. Hirsch and Smale, {heorem 9.3.1, for 
instance). Let A Df`(s). Thus, the NK x NK matrix A has entries 

d 
alj kf(e,r 

dJ r =s 

For r ES, let ak(r) = 1N fk(r)/1N N = N- 2f k(e', r) and let a(r):= (al(r)1N, ... ak(r)1N) E 
RNK. Then up to first order for r near s we have r = Lf (r) = Ar - a(r), and 

V(r) = (r-s) *z r (r-s) * (Ar - a(r)) = (r-s) * Ar = (r-s) * A(r-s). 

The last two equalities use the facts that rk . 1N= 1 = 5k. 1N (since s and r are in the simplex) and 
As = a(s) (since s E FP(Lf ) by Proposition 3.1). Since s E NE(f ) the initial hypothesis together with 
Remark 2.5 tells us that condition (b) of the definition of ESS holds for each k, so rAs = sAs and 
rAr < sAr for all r # s E S. Consequently, V(r) = rAr - rAs - sAr + sAs = rAr - sAr < 0, so s E 
EE(Lf). This argument can be extended as in Taylor and Jonker (1978) to establish the same 
conclusion if s is a regular, noninterior ESS. That is, by renumbering so that entries iEI(s k) 

appear first, one can write each block Ak as an upper block triangular matrix whose lower right 
block is diagonal with negative entries and whose upper right block can be shown negative definite 
by use of the same Liapunov function employed in the proof above. 

As for Mf, the proof of Zeeman (1980), or Taylor and Jonker (1978), for the case K = 1 can be 
directly extended to the case K> 1: one shows in essence that V(r) = K 

I yNISk log r/k is a 
Liapunov function under Malthusian dynamics if s is an ESS. This establishes part (a) of the 
Proposition. Note that the Liapunov functions are defined on all of So if s (E S0 n ESS(f ) and the 
"first order approximations" in the previous paragraph are exact if f is bilinear. Hence using 
Theorem 9.3.2 of Hirsch and Smale one can show that there is no other point in EE(Mf) or 
EE(Lf ) in this case, so (using part (a) of the Proposition) part (b) follows. 

When N= 2 the simplexes Sk are 1-dimensional for each k, so weak and order compatibility 
coincide. When K = 1 also, the function s(p) = peI + (1 - p)e2 defines an isomorphism between s 
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in S and p in [0, 1]. If f is bilinear in this case then it has the matrix representation (a,), i, j = 1, 2. 
Define a = a12 - a22 and b = a2l - all, and set p* = a/(a + b). It is well known that ESS(f) and 
EE(Mf ) are always the same subset Q of {s(p*), el, e2}, where Q depends on the signs of a and b 
as indicated in Figure 6; this result can be easily verified for arbitrary compatible F by direct 
calculation of the fitness functions at s(p). 

Suppose finally that f is symmetric and s is a given regular ESS. Now f must be bilinear, so 
f(s) =As. Since fk is independent of rm for m # k, it must also be independent of st for m # k. 
Thus A is a symmetric block diagonal matrix. The argument in the first paragraph of this proof 
establishes that A is negative definite on H(1N)K. For V(r):= - 'rAr we have 

Lf(r)=Lf(r-s)=A(r-s)-a(r-s)=A(r-s)= -grad V(r-s), 

i.e., W(r) V(r - s) is a potential function for Lf . Consequently, by Theorem 9.4.3 of Hirsch and 
Smale, the trajectories of linear dynamics cross the level surfaces of W(r) orthogonally, with W < 0. 
If F is weak compatible with f, then F(r) Lf (r) > 0 so W is a Liapunov function for any weak (or, 
by Proposition 3.1, any order) compatible dynamics F, and therefore s E EE(F). Q.E.D. 

Details for counterexample 2: Figure 7 shows the cones of (admissible and) compatible tangent 
vectors for f projected on the xl - x2 plane. On the lines FW(x) = F(x) the cone is a single ray; e.g., 
at the point labelled x we have F3(x) > F2(x) = F1(x) since at that point e3Ax > e2Ax = e1Ax. Since 

0Fj - O by admissibility, we must have F1(x) =F2(x) = - 'F3(x) <0, giving the indicated ray. 
Similarly one defines the cones at points such as x on the other lines defined by e Ax = e'Ax, i j. 
Between such lines the cone is an open 2-dimensional cone bounded by the rays defined at the 
adjacent lines, e.g., at the point labelled y the cone is bounded by the rays obtained from x and x. 
For x E S, e'Ax > e2Ax as 

-5x1 + 34x2 - 29(1-x1-x2) >-26x,-5x2 + 31(1-x1-x2) 

as 13x,+7x2>20/3, 

so the line F1(x) = F2(x) passes through s = (3, 3, 3) and has slope (after projection into the xl -x2 
plane) of - 13/7 - 1.86. Similarly, the lines FW(x) = F3(x) and F2(x) = F3(x) also pass through s 
and have slopes 37/50 = 0.74 and 50/43 = 1.16 respectively. 

Evidently, by always picking tangent vectors close to the outer edge of the cones, one can 
intersect each of these lines at a point increasingly distant from s, i.e., one can obtain a compatible 
dynamic F whose trajectories spiral rapidly outwards from s. Specifically, one can choose a 
partition of unity (see, e.g. Rudin (1966, pg. 40)) subordinate to the cover of S consisting of the six 
open regions bounded by the lines F' = F' together with open epsilon neighborhoods of the lines. 
This partition of unity can be used to piece together local dynamics which take on the value of Lf at 
the nearest point on the clockwise boundary line in the regions, and take on the value of Lf at the 
nearest point on the line in the neighborhoods of the F' = F' lines. For epsilon sufficiently small, 
such a dynamic will be arbitrarily close to the unstable dynamic whose trajectories have tangents at 
the outer edge of the cones. 
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