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Publishers, Io8 Cowley Road, Oxford OX4 iJF, UK and 238 Main Street, Cambridge, MA 02I42, USA. 

EQUILIBRIUM IN EVOLUTIONARY GAMES: 
SOME EXPERIMENTAL RESULTS* 

Daniel Friedman 

Evolutionary game theory informs the design and analysis of 26 experimental sessions using normal 
form games with 6-24 players. The state typically converges to the subset of Nash equilibria called 
evolutionary equilibria, especially under conditions of mean matching and history. Mixed strategy 
equilibria are explained better by 'purification' strategies than by homogenous independent 
individual randomisation. The risk dominance criterion fares poorly in some coordination game 
environments. With small player populations and large gains to cooperative behaviour, some 
players apparently attempt to influence other players' actions, contrary to a key theoretical 
assumption. 

Strategic interaction over time can be modelled as an evolutionary game if the 
players do not systematically attempt to influence other players' future actions 
and if the distribution of players' actions changes gradually. Evolutionary 
games first appeared in the theoretical biology literature (Maynard Smith and 
Price, I973; Maynard Smith, I982) but in recent years several leading game 
thcorists have used evolutionary games to address longstanding foundational 
issues of equilibrium selection and convergence (e.g. Binmore, I987-8; 
Fudenberg and Kreps, I988; Selten, I989). Economists are beginning to notice 
that the evolutionary approach has unique implications for economic 
applications. For example, historical accidents may have permanent effects 
when there are multiple equilibria, and ordinary ('complete information') 
Nash equilibrium may describe economic outcomes even when decision makers 
know very little about others' payoffs or strategies (e.g. Crawford, I99I; 

Friedman and Fung, forthcoming). Empirical evidence clearly is required to 
assess the economic relevance of evolutionary game theory. 

For more than 40 years, laboratory experiments have been the predominant 
empirical method for testing game theoretic propositions. The laboratory 
studies necessarily examine strategic interaction over time. In most contexts, 
the subjects seldom try to influence other subjects' future actions and the action 
distributions change gradually.' Evolutionary game theory therefore is the 

* Support by the US National Science Foundation under grant SES-9o23945 made this work possible. 
The final revision owes much to the hospitality of WiThI at the University of Bonn, and to the careful 
readings of two anonymous referees and the editor of thisJouRNAL. I am grateful to Debbie Carson and Carl 
Plat for their patient research assistance, to Tim Kolar and Thanh Lim for programming assistance, and to 
seminar participants at Caltech and UCLA and at the University Pompeu Fabra, WEA and ESA sessions 
for useful comments and encouragement. 

' Some studies investigate trigger strategies or other strategies designed to influence other players' future 
actions. The theory of repeated games is more appropriate than evolutionary game theory for such purposes. 
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natural theoretical framework. Nevertheless, laboratory studies up to the early 
i99oS relied mainly on orthodox static game theory to define the issues and to 
structure the design and data analysis. 

The research reported here explores the ability of evolutionary game theory 
to explain laboratory behaviour. The central question is whether behaviour 
converges to Nash equilibrium for a variety of payoff matrices under various 
environmental conditions. The exploratory nature of the paper dictates a 
rather broad set of treatments and rather heavy reliance on descriptive (as 
opposed to inferential) statistics. The work includes some follow-up experiments 
and some inferential statistics, but the reader should expect mainly broad 
tentative findings rather than narrow definitive results.2 

The most relevant previous research is reported in Van Huyck et al. (I992). 
The authors examine generalised two-person divide-the-dollar games, using 
laboratory procedures similar to the random-pairwise, No History, one- and 
two-population protocols defined below. They test the predictive power of 
evolutionary equilibrium (also defined below) as a Nash equilibrium selection 
criterion for their games, with generally positive results. 

The current paper sketches the basic theory of evolutionary games in Section 
I, beginning with the simplest i-dimensional case of single population, two- 
action linear games. Such games are classified into three types, each with a 
2-dimensional analogue. The sketch then mentions theoretical and practical 
problems that may prevent convergence to either pure strategy (corner) 
equilibria or to mixed strategy (interior) equilibria. Readers familiar with 
evolutionary game theory may wish to skip this section. 

Section II explains the basic laboratory procedures for the evolutionary 
game experiments, and introduces the main treatments: the payoff matrices for 
one and for two populations, the matching protocols (either random pairwise 
or mean matching), and the information regarding the distribution of other 
players' choices in previous periods (either provided to all players or to none). 
Section III presents the results, beginning with graphical summaries of two 
early sessions. A statistical summary of convergence behaviour in all 26 sessions 
then follows. 

The results are largely consistent with theory and intuition about which 
treatments and payoff matrices best promote convergence. The limits of 
applicability for evolutionary game theory are probed, and apparent attempts 
to influence other players' future behaviour are documented for small 
populations (four or fewer players) and for extreme choices of payoff matrices. 
The results generally support the "purification' view of Harsanyi (I973) and 
Fudenberg and Kreps (I 993) that mixed strategy Nash equilibria are achieved 
mainly through heterogeneous individual behaviour rather than through 
homogeneous mixed behaviour. Perhaps the most surprising finding concerns 
the risk dominance criterion favoured in recent years by some theorists for 
equilibrium selection in coordination and other games (or economies) with 

2 A companion paper, Cheung and Friedman (I 994), focuses on the dynamics of the adjustment process. 
It tests the explanatory power of a parametric learning model against several alternative adjustment models 
with generally positive results. It also surveys some of the recent empirical literature. 
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multiple equilibria. Risk dominance fares poorly in some of the environments 
tested here, apparently because players' deviations are not random trembles 
but rather may be deliberate attempts to persuade other players to seek Pareto 
superior outcomes. 

The last section offers a summary and concluding remarks. 

I. THEORETICAL BACKGROUND 

This section provides a brief introduction to the theory of one and two 
dimensional linear evolutionary games. See Weibull (I995) and Friedman 
(I99I, I992) for more general introductions.3 The essential elements are one or 
two populations of players, e.g. row players as buyers and column players as 
sellers; a payoff matrix (or bimatrix); and an adjustment dynamic that 
specifies how the state (i.e. the distribution of actions within each population) 
responds to current conditions. The theory identifies the (locally asympto- 
tically) stable steady states, here called evolutionary equilibria (EE), and the 
basin of attraction of each EE, i.e. the set of states that converge to the EE. 

I.A. Linear One-dimensional Games 
Let A = ((aij)) be a 2 X 2 matrix specifying the payoff to a player choosing 
action i (= I for top row and = 2 for bottom row) when matched with a second 
player choosing action j (= I for left column and= 2 for right column). 
Assume all players come from the same population and perceive the same 
strategic situation - they all think of themselves as choosing rows. Then the 
second player's payoff is aji and the bimatrix (A, A') specifies the game. But it 
is redundant to write out the transpose A', so a single matrix A will specify a 
game when there is only one population. 

The current state s = (p, I-p) specifies the fraction p of players in the 
population currently choosing action I and the fraction I-p choosing 
action 2. The state space is the one dimensional line segment (or simplex) 
S = {(p, I-p) eR2 :o p < I}. The expected payoff to a player choosing 
mixed strategy r = (x, I- x) when matched with a random opponent given 
state s is rAs'. 

A central idea in evolutionary game theory is that higher payoff strategies 
become more prevalent over time.4 That is, the direction of change in s = 
(p, I-p) is governed by the payoff difference d(s) = (i, o)As'- (o, i)As' 
between the first action r = (i, o) and the second r = (o, I). If d(s) > o 
then p increases and s moves towards the first pure strategy (i, o), while if 

3 Some of the material in Subsections L.A and I.B below is adapted from the latter reference. For a good 
sample of recent theoretical research and some introductory material, see the special issues of Games and 
Economic Behavior on evolutionary games (3: I, i 99 I) and on adjustment dynamics (5: 3-4, I 993). The reader 
should be warned that terminology is not yet standardised; for example, evolutionary equilibrium can mean 
different things to different authors. 

4 This 'survival of the fittest' principle is straightforward when there are only two alternative strategies, 
as in most of the games examined here. With three or more alternatives the principle can be interpreted in 
several different ways, e.g. that rates of change or growth rates of strategy prevalence have the same ordering 
as strategy payoffs, or perhaps only that they are positively correlated. See the general references for extended 
discussions. 

( Royal Economic Society I996 
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d(s) > o then p decreases and s moves towards the second pure strategy (o, i), 
i.e. the dynamic is assumed to be sign preserving. Write the payoff differential 
as 

D(p) = d[s(p)] = (i, -i) A(p, i-p)' 
= (i -p) (al2-a22)-p (a2l-all) = (i -p) a-pb, 

where the reduced parameters are a = a12 -a22 and b = a2l -all. Then the 
graph of D(p) is a straight line with intercept a at p = o and value - b at 
p = i. The result is that (apart from the degenerate case a = b = o in which a 
player is always indifferent between her two actions) each payoff matrix falls 
into one of three qualitatively different types as shown in Fig. i. 

a 
Type 1 D(p) 
a, b>O 

-b - 
- - - - - - - - - - - 

-b ---------------------- 
Type 2 
a, b <O P 

O 4i NE <>P 

a 00pD 

Type 3a Type 3b -b ---------- 
as. 0 0b b <O< a a D(p) 

C.S. 0 .1 c.s. o 
a 

-b 

Fig. i. Linear One-dimensional Evolutionary Games. Notes: For payoff matrix 

A- (all a::) 
a21 a22 

define a= a12-a22 and b = a21-all. The point s(p) = (p, I-p) represents the current 
evolutionary state for o < p < i. The current payoff difference between the two pure strategies is 

D(p) = (i -p) a-pb. 

Type i: If a, b > o then the unique root of D(p) = o isp* = a/(a+b). It is 
immediate from the definitions that p* is a symmetric mixed strategy Nash 
equilibrium (NE) of the 2-player bimatrix game (A; A'), and it is the only NE. 
More importantly for present purposes, D is downward sloping so p increases 
(decreases) whenever it is below (above) p*. Hence p* is the unique 
? Royal Economic Society I996 
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evolutionary equilibrium. That is, for any sign-preserving continuous-time 
dynamic s = F(s) we have s,-+s* = (p*, I-p*) as t-- oo from any initial 
state so. The same conclusion also holds for discrete time (t = 0, I, 2, ...) 

dynamics Ast = acF(st) on S if we add the proviso that the adjustment rate 
parameter c > o is not too large. (We can get unstable oscillations ifpt+l jumps 
too far over p*.) Familiar type i games include versions of Matching Pennies 

(e.g., A =( ) so a = b= 2) and Hawk-Dove 

( A -I 2) (e.g. A=( soa=b= i). 

Type 2: For a, b < o, the rootp* = a/(a+b) of D(p) = o is still a NE of the 
associated bimatrix game, but now both pure strategies p = o and p = i are 
also NE. As Fig. I makes clear, D(p) slopes upward and is negative (positive) 
for p < p* (p > p*), so p* is an unstable 'source' separating the basins of 
attraction of the two evolutionary equilibria p = o and p = i. An economic 
interpretation is that each pure strategy has increasing returns in type 2 games 
and decreasing returns in type i games. Type 2 games are often called 
symmetric coordination games. 

Type 3: If D(p) lies above (below) the p-axis for all pe (o, i), then the 
second pure strategy p = I (the first pure strategy p = o) is dominant. Of 
course, the dominant strategy is the unique NE of the bimatrix game and the 
unique evolutionary equilibrium for any sign-preserving dynamic F. This type 
of game is characterised by ab < o (and lal + Ibl > o). The most interesting 
example is Prisoner's Dilemma, in which payoffs decrease as the dominant 
strategy becomes more prevalent, e.g. 

A = ( )so a =-b =-I. 
2 0 

I.B. More Complex Evolutionary Games 

There are two different ways to get a two dimensional state space. If each 
player in a single population of strategically identical players has three 
alternative actions, then the payoff matrix A is 3 x 3 and the current state is a 
point in two dimensional simplex 

S= {(p,q, i-p-q) eR3:p, q > o,p+ q <4. 

Fig. 2 illustrates a version of the 'Hawk-Dove-Bourgeois' game, which has a 
corner NE at (p, q) = (o, o) and an edge NE at (2, 3). Under standard dynamics 
(e.g. replicator dynamics; see Weibull for a simple exposition), the corner NE 
is an evolutionary equilibrium and the edge NE is a saddle point. 

Much of the work reported here uses a second way to get a two dimensional 
state space. Suppose there are two strategically distinct populations, each with 
two alternative actions. Then the state for each population can be represented 
by a point in the unit interval [o, i] so the overall state for the two populations 

C Royal Economic Society I996 
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(,1) /-2 8 3 
A= 0 4 2 

-1 6 4/ 

q 

(2/3, 1/3) 

(0, 0) (1,0) 
p 

Fig. 2. The Hawk-Dove-Bourgeois game. Notes: Unstable (source), saddle and stable (evolutionary 
equilibria) are indicated respectively by open (0), crossed (0) and solid (0) dots. The equations 
p = (i,o, o)As - (, ', ')'As and q-(o, i, o)'As - ( ,. ,. )'As characterise the dynamics in the 

interior of the simplex. 

can be represented by a point (p, q) in the unit square [o, i ] x [o, I ]. If the 
expected payoff to a player in the first (respectively second) population 
depends only on the distribution of actions S2 = (q, i- q) in the other 
population (respectively s, = (p, i-p)), then the payoffs have a bimatrix 
representation rAs' for player i (respectively rBs' for player 2), where r is 
the player's own mixed strategy and A and B are given 2 X 2 matrices. 

For example, consider an asymmetric version of the Battle of the Sexes game 
with 

A=(I 2) and B=(3 I) 

The arrows in Fig. 3 a are vectors (D(q), D(p)) for this payoff bimatrix. Battle 
of the Sexes is a two-dimensional analogue of a coordination (Type 2) game in 
that it has two pure-strategy NE (at p = q = o and at p = q = i) both of which 
are also evolutionary equilibria for any sign-preserving dynamic, and one 
mixed NE whose stable saddle path separates the two basins of attraction. 

Fig. 3b illustrates a Buyer-Seller game (Friedman, i99i, p. 64I) with 
bimatrix 

A=(2 ) and B=(2 4). 

This two dimensional game is analogous to Hawk-Dove (Type i) because it 
has a unique, interior NE. It can be shown that this NE is an EE under some 
reasonable dynamics (e.g. fictitious play) but not under others (e.g. Cournot). 

Fig. 3c illustrates the bimatrix game 

A=(' 4) and B=(3 ) 
2 -I 2 0 

The first action (top row) is dominant for population 2 players, and the second 
action (bottom) is the best reply by population i players. Hence the corner 
(p, q) = (o, i) is the unique NE, analogous to type 3 games. This NE is 
automatically an EE because it is a solution by iterated elimination of 
dominated strategies (e.g. Weibull 1995) 
( Royal Economic Society I996 
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t, "'re t /'tt t - *,,,~~t tt t / 

::t,:: ''it 

t tt t 

. . . . . . . . . . . . . . 

Fig. 3. Some two dimensional evolutionary games. (a) Battle of the sexes. (b) Buyer-seller. (c) 
Iterated dominated strategies. Note: The horizontal axis is p, the fraction of population iplayers 
choosing their first action, and the vertical axis is q, the fraction of population 2 players choosing 
their first action. The arrows are vectors with components (D (q), D (p)), where D (q) = (i, - i 
A (q, i- q)' and D (p) = (i, - i) B(p, i-p)' are the payoff differences for population iand 

population 2 respectively. The matrices A and B are listed in Table i. 

Table i summarises these linear i and 2 dimensional examples, which are 
the basis for the experiments reported below. Some confusion may be averted 
by noting that the two population game (A; A') need not be the same type as 
the one dimensional game A. For example, the HD matrix in the first line of 
Table i defines a i -dimensional game with a unique NE (and EE) at 

*= a/ (a +b) = [o- (- 2 )] /{[o- (- 2 )] +(8 -4)}1 = 2 /3.- 

Hence HD is of type i. However, the 2-dimensional game HD2, defined in line 
6 of the table, is not a type i analogue; it has an interior NE at (p, q) = (2/3, 

2/3) but also has two corne'r NE at (p, q) = (i, o) and at (o, i). Straightforward 
analysis discloses that for any sign-preserving dynamic on the square, the 
corner NE are both EE but the interior NE is not an EE. Hence HD2 turns out 
to be a Type 2 analogue. The intuition is that a stable mixture of hawks and 
doves will evolve in a single population, but with two interacting populations, 
one will become all hawks and the other all doves. 

Many more general sorts of evolutionary games may be of interest in some 

applications, but will not be analysed here. For example, when there are own- 

? Royal Economic Society 1996 
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Table i 

Some Payoff Matrices 

Name Matrix Type NE EE 

I. Hawk-Dove (HD) -2 8 I p= 2/3 p= 2/3 
0 4 

2. Coordination (Co) 5 -I 2 p = 2/3, o, I P=o, I 
4 ' 

3. Weak Prisoner's Dilemma 4 0 3 p = o p = o 
(WPD) 5 I 

A B 
4. Buyer-Seller (B-S) 2 0 2 3 I a (p, q) = 1/4, 1/2) (p, q) = 1/4, 1/2)? 

3 -I -I 4 
A B 

5. Battle of the Sexes (BoS) I -I 3 -I 2a (p, q) = (I/3, 3/5), (p, q) = (i, o), (o, I) 
(I, 0) (0, I) 

A B 
6. Two-population HD -2 8 -2 8 2a (p, q) = (2/3, 2/3), (p, q) = (i, o), (o, i) 

(HD2) 0 4 0 4 (I, o), (0, I) 
A B 

7. Iterated dominated strats I 4 3 I 3a (p, q) = (o, i) (p, q) = (o, i) 
(IDS) 2 -I 2 0 

-2 8 3 
8. Hawk-Dove-Bourgeoise 0 4 2 S = (2/3, 1/3, o), s = (o, o, I) 

(HDB) -I 6 4 (0, 0, I) 

Notes: The matrices appear here in the same format as on random pairwise (RP) screens: the player 
chooses the row and her opponent chooses the column. The usual convention in game theory literature shows 
the bimatrix as (A; B'). Matrix types are defined in Fig. I and in the text. Some variants of Co called CoI 
and CO2 and variants of WPD called PD are also discussed in the text. Matrix 8 (HDB) has no one- 
dimensional analog. The NE and EE columns respectively list all Nash equilibria and evolutionary equilibria 
for the matrix. The '?' after the Matrix 4 indicates that this state is an EE for some but not all adjustment 
dynamics. 

population effects (e.g. the payoff to players in population i depends on the 
distribution of actions in population i as well as in population 2) then the state 
space is still 2 dimensional but larger bimatrices are required to specify a linear 
game. Nonlinear games and higher dimensional games may also be of interest 
in applications; the interested reader should consult papers cited in Weibull 
(I 995) and Friedman (I992). 

I. C. Convergence Issues 
The theory reviewed briefly in the previous two subsections uses a simple sign- 
preserving assumption to predict the asymptotic stability or instability of 
various NE. Several issues arise in applying the theory to laboratory 
experiments. First, only modest numbers of players and amounts of time are 
feasible in the laboratory, not the large populations and infinite time horizon 
typically assumed in the theory. Friedman (I992) argues that the main 
substantive reason for assuming a large population is to ensure that each player 
perceives that his current action has a negligible impact on other players' future 
actions, so in effect she is playing a 'game against Nature'. To have a 'large' 

( Royal Economic Society I996 
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population in this sense does not necessarily require very many actual players. 
For example, 3 to 4 buyers and 3 to 4 sellers are large numbers in double 
auction market games (Smith, I982), and 3 sellers appears to be a large 
number in the oligopolistic industries studied by Bresnahan and Reiss (i99i). 

How can we detect violations of the 'large numbers' assumption that players 
respond only to their own current payoff differential, e.g. to D(p)? An 
alternative assumption is that some players believe that if they try to increase 
the average payoff then others will follow suit. Specifically, given a 2 X 2 matrix 
A defending a i dimensional linear game, call a player Kantian (after 
Immanuel Kant's famous 'categorical imperative' to act as you wish everyone 
else to act) if she maximises the mean payoff M(p) = (p, i -p) A(p, I-p)', 
i.e. chooses the first (second) action when M(p) is increasing (decreasing) at the 
current state s(p). We can look for changes in the prevalence of Kantian play 
and other changes in behaviour as we vary the number of players in a 
population and as we vary the payoff matrix so as to alter the individual and 
group incentives, D(p) and the slope of M(p). 

A second issue concerns convergence to pure strategy NE. Experimentalists 
going back at least to Siegel (I96I) have noted that subjects resist excessive 
repetition. Recently McCabe, Michelitsch and Smith have begun to study 
performance on a task analogous to playing dominant strategies, and they find 
5-I3 % deviant responses asymptotically, depending on the environment and 
rewards (Michelitsch, I992). At mixed NE, deviations can have either sign and 
hence may largely cancel in the aggregate. At pure-strategy NE, by contrast, 
deviations are all of the same sign, so we might expect that here convergence 
will remain incomplete. 

A final issue concerns convergence to mixed strategy NE. Since the I950S 

experimentalists have reported difficulty in obtaining convergence to a mixed 
NE; see the Rappoport and Orwant (I962) survey, for example. More 
recently, J. Friedman and R. Rosenthal (I986) report behavioural steady 
states displaced from mixed strategy NE. Harsanyi (I 973), Selten (I988) and 
Jordan (I99I), among others, present theoretical arguments for the stability 
of mixed NE. Crawford (I985) and Jordan (I993), among others, present 
arguments against stability that appear to apply at least to mixed NE for two 
population games like Buyer-Seller. Harsanyi's argument is called 'purifica- 
tion' and, roughly speaking, says that players each choose pure strategy best 
responses after privately observing independent tiny random perturbations 
of their payoffs; typically an outside observer of one-shot games cannot 
distinguish the result of the perturbed games from the mixed strategy NE of the 
original game. Fudenberg and Kreps (I993) extend this idea to prove that a 
learning process can converge to mixed NE. The other authors propose vary 
different approaches that I will not attempt to explain here. 

To summarise, there is a body of theory which identifies the behaviour one 
should eventually observe in simple strategic interactions among players 
belonging to one or two populations. Assuming the dynamic adjustment 
process is sign-preserving and convergent, the eventual behaviour is charac- 
terised by the evolutionary equilibria (EE), a subset of the Nash equilibria 

K Royal Economic Society I996 
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(NE) associated with the payoff functions. The same set of ideas leads to the 
classification of bimatrix games into a few basic types. The empirical relevance 
of this evolutionary theory can be questioned on several grounds: time and 
populations are finite and discrete, not infinite and continuous; corner EE (i.e. 
pure strategy NE) may not quite be reachable; and interior EE (i.e. mixed 
strategy NE) may be unstable, especially in two population games. Empirical 
work clearly is in order. 

II. LABORATORY PROCEDURES 

II.A. Basic Procedures 

The experiments consist of 6o-I20 minute laboratory sessions using profit- 
motivated subjects. Payoffs are calibrated to produce average earnings of about 
US$io per hour per subject. Realised earnings depend sensitively on chosen 
actions and typically vary from $8 to $32 per subject in a two hour session. All 
subjects receive written instructions (available from the author on request) and 
about 2 hour training on the computer prior to participation in a session. Each 
session consists of 60-200 periods of strategic interaction among 6-24 
undergraduate subjects, the players. In each period the players, seated at 
visually isolated terminals, review historical data and the payoff function, and 
choose an action from a menu of two or three possible actions. The choices of 
all players are sent to a central processor (a Sun workstation) that computes the 
outcomes and notifies all players. Then players receive updated histories in 
preparation for the next period. All these features are publicly announced. 

Fig. 4 illustrates the players' screen displays under the alternative matching 
p,rotocols, RP in Panel A and MM in panel B, explained below. In either case, 
the player enters and confirms her current action (a or b) at the keyboard. The 
action is displayed on the screen in the lower left box, and the possible outcomes 
are highlighted in the payoff box on the right. When all players have chosen 
and confirmed their actions, the realised payoff appears at the intersection of 
the highlights in the payoff box and then is displayed in the upper right box 
along with other historical data. 

II.B. Treatments 

The experiments seek to identify conditions under which evolutionary game 
theory adequately characterises actual play in a diverse set of simple games. 
Diversity is achieved by varying the treatments, or environmental conditions, 
across and within experimental sessions. The main treatments are the payoff 
function, the matching rules, and the information conditions. 

Table I lists the eight basic payoff functions used in the experiments. Note 
that all three types of linear I -dimensional payoff functions are represented, as 
well as their 2-dimensional analogues. The Coordination matrix is a bit special 
in that the two pure strategy NE satisfy conflicting selection criteria (Harsanyi 
and Selten, I 989): p = I is payoff dominant (all players get 5 per period versus 
I per period in the other pure NE), while p = o is risk-dominant (an opponent's 
deviation actually increases a player's payoff by 3 versus a decrease by 6 in the 
first NE). The third matrix in the table, Weak Prisoner's dilemma (WPD), is 

C Royal Economic Society I996 
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(a) 
,?- I i 
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Fig. 4. Players' screens. (a) random pairwise matching. (b) Mean matching. 

one of the more interesting Type 3 games in that the dominant strategy is just 
barely so (payoffs of 5 or I versus 4 or o for the alternative action) and the NE 

payoff of I is far less than the 'cooperative' payoff of 4. The two dimensional 
analogue IDS is also chosen to challenge the theory: the dominant strategy 
(q = I) for the second population is just barely so, and p = o becomes a best 
response for the first population only when q > 5/6. 

The experiments examine two alternative procedures for matching players. 
Under the random pairwise (RP) procedure, the computer randomly picks a 

matching scheme independently in each period, each admissible scheme being 
equally likely. For example, in a I X I2 Hawke-Dove game, the single 
population of players might be paired {o, 2}, {I, 9}, {3, I I}, {4, 5}, {6, Io) and 
{7, 8} in the third period. The payoff matrix appears on the right side of the 
player's screen in this treatment, as shown in Fig. 4a. The convention is that 
every player sees herself as choosing the row and her opponent as choosing the 
column. 
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Under random pairwise matching for payoff matrix A, a player's expected 
payoff is rAs' if he chooses strategy r and the distribution of actions by 
potential opponents is s. However, his actual payoff depends on the action 
taken by his actual opponent, and so has some variance around its expectation. 
The variance is eliminated in the alternative matching procedure, called mean 
matching (MM). Here each player is matched once against each possible 
opponent in each round and receives the average (mean) payoff. Fig. 4b 
illustrates mean matching with I 2 players and the Hawk-Dove payoff matrix 

A 2 80 

For example, if 6 of I 2 players choose the first action then the state is (p, i -p) 
= (o s,o 5) and the payoff is (i,o) A(o s,o 5)' = 3-o for the first action and is 
(o, i) A(o05, o05)' = 2-0 for the second action. 

From the viewpoint of standard game theory, the matching protocols define 
quite different games. RP approximates a series of 2-player non-repeated 
games, while MM defines a single repeated n-player game, where n is the sum 
of the population sizes. From the viewpoint of evolutionary game theory, 
however, the protocols define games which are equivalent except that RP adds 
sampling error to the payoff function rAs'. 

The third major treatment variable is the amount of historical information 
to appear in the upper left box on each player's screen. In the minimum level 
No Hist-the player receives no historical information other than what she could 
tabulate herself: her own action and actual payoff in previous periods. In the 
usual level, Hist, the box contains a list of the actual state of the relevant 
population in previous periods. In Fig. 4a for example, the player can see that 
9 of I 2 players took action A in period i, then 8 in period 2, and so forth, for 
an average of 7-2 in periods I-5. The evolutionary game literature contains 
many papers that implicitly or explicitly assume information conditions 
corresponding to Hist and many others corresponding to No Hist, so both 
treatments are worth a look and the comparison is interesting. Of course, in 
every treatment the actions and identities of individual opponents remains 
confidential. 

Two other treatment variables deserve brief mention. Population sizes are 
varied to test for the presence of small numbers effects such as Kantian 
behaviour in Prisoner's Dilemma or Coordination experiments. The number of 
players varies across sessions - e.g. perhaps I 2 players in one session and I6 in 
another. Some sessions employ split groups in some periods - e.g. all i 6 players 
belong to a single population in the first 40 periods, then are divided into two 
separate 8-player groups (no pairing or mean-matching across the two groups) 
for the next 8o periods, and reunited into a single group for the last 40 periods 
of a i 6o period session. 

The final treatment variable is run length. A run of several periods (all 
treatments held constant) is required to test for convergence for a given payoff 
matrix and player population. Runs are separated by obvious changes in the 
player population and/or the payoff matrix, the least significant being an 
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Table 2 

Experimental Design Summary 

Payoff Matrix No. of populations x Runs x Other 
Session Name (type) population size run length treatments 

exp I* WPD I X 12 6x io MM/RP 
exp 2* WPD I X 12 8xIo MM/RP 
exp 3 HD, Co I X 12 12 X 10 MM/RP 
exp 4 WPD I X I6/2 12 X 10 MM/RP 
exp 5 B-S 2 x 6 12 X 10 MM/RP 
exp 6 HD, Co I X 12 ioxi6 MM/RP 
exp 7 BoS 2 X 5 I2 X IO MM/RP 
exp 8* Co, HD I X 12 12 X 14 MM/RP; Hist/No 
exp 9 HD, Co i x io 14X i6 Hist/No 
exp Io* HD, (HD)2 I X I6/2, 2x8 12 X I6 Hist/No 
exp ii HDB I X 12/2 II x 15 MM/RP, Hist/No 
exp I 2 WPD I X 12/2, 4, 6 24X 10 Hist/No 
exp 13 BoS, B-S 2 X 8 i6 x 12 Hist/No, 
exp 14 HD, (HD)2 I x I6/2, 2 x 8 6 x i6 MM/RP; Hist/No 
exp I5 HD, Co I X 12 I8 x Io MM/RP 
exp i6* Co I X 12/2, 3, 4, 6 12 X 10 MM/RP 
exp I 7 HD, BoS I X I6/2, 2 X 8 15 X 10 none 
exp i8 Co I X I6/2, 4, 8 i6x io MM/RP 
exp I9 BoS, B-S, (HD)2 2 x 6 I8X Io MM/RP 
exp 20 Co I X 12 12 X 10 MM/RP 
exp 2I HD, Co I X 12/2 i8 x Io MM/RP; Hist/No 
exp 22 HD, HD2 I X 12, 2 x 6 I8 x Io MM/RP, Hist/No 
exp 23 HD, HD2, B-S, BoS I X 12, 2 x 6 i6 x i6 MM/RP; Hist/No 
exp 24 HD, Co, PD I x i6/2 20 X IO MM/RP; Hist/No 
exp 25 HD, Co, PD I X I2 20X 10 none 

exp 26 HD, Co, PD, HD2 I X I2/2, 2 X 6 21 X IO MM/RP; Hist/No 
exp 27 B-S, BoS, IDS 2 X 8 I9 x IO MM/RP; Hist/No 
exp 28 B-S, BoS, IDS 2 x 8 20X IO MM/RP; Hist/No 
exp 29 B-S, BoS, IDS, HD2 2 X 8 I8X Io MM/RP; Hist/No 
exp 30 B-S, BoS, IDS, HD2 2 X 8 20X IO MM/RP; Hist/No 

Notes: An asterisk after the session number indicates that some periods of the session had erroneous 

displays and therefore the data are excluded from the main analysis. The full matrix names, e.g. Weak 
Prisoner's Dilemma for WPD, are given in Table i. The notation I x I6/2 in the third column means that 
the i6 players in a single population are split into two non-interacting 8-player groups in some runs. A run 
is a set of consecutive periods with no changes in payoff matrix, group composition or other treatments. For 

example, the entry 6 x IO in column 4 means that the 6o periods in that session constituted 6 runs each Io 

periods long. The default values of the other treatments are the mean matching protocol (MM) and the 

provision of historical information on population distributions (Hist); the alternative values of random 

pairwise matching (RP) and no historical information (No) are mentioned in the last column when 

applicable. 

interchange of payoff matrix rows and columns. The history box also is erased 
at the beginning of a new run. If runs are too short then convergence will never 
be clear, but if runs are too long then players may respond to boredom (or 
possibly to repeated matching) rather than to current payoffs. Typical run 
lengths are io or i6 periods, and behaviour is also compared across half-runs 
of 5 or 8 periods. 

Table 2 sketches the experimental design by session. For example, in the 
third session, exp 3, a single population of I2 individuals played I2 ten-period 
runs, some runs using Hawk-Dove payoffs and some using Coordination 

?) Royal Economic Society I996 



I4 THE ECONOMIC JOURNAL [JANUARY 

payoffs. Some runs used the MM matching protocol and some used RP. Other 
sessions differed in various ways. Exp 4, for example, featured a single I 6-player 
population in half the runs and two non-interacting 8-player populations 
('split groups') in the other runs. In general, treatments were varied in each 
session in a balanced fashion to avoid confounding the variables. 

II.C. Testable Hypotheses 

The data analysis emphasises convergence behaviour. The state might 
converge to a population distribution s - call this a behavioural equilibrium 
(BE) - that may or may not coincide with a theoretical equilibrium, Nash 
(NE) or evolutionary (EE). The formal data analysis begins by proposing 
empirical criteria for convergence and coincidence, and then uses the criteria 
to test the following hypotheses: 

(i) Some BE is typically achieved by the second half of a (i o-i 6 period) run. 
(2) BE typically coincides with NE. 
If a payoff matrix admits several NE, some of which are EE and some of 

which are not, then we have the more refined hypothesis: 
(3) BE typically coincides with EE, especially those with larger basins of 

attraction and/or those whose basins of attraction contain the initial state of the 
run. 

A second goal of the data analysis is to compare convergence behaviour 
across treatments. The relevant hypotheses include: 

(4) No 'small-group' effects appear for population sizes six or larger. 
(5) Convergence to BE is faster in the mean-matching (MM) than in the 

random-pairwise (RP) treatment. 
(6) Convergence to BE is faster in the usual Hist treatment than in the 

alternative No Hist treatment. 
In addition I test the convergence-related hypothesis: 
(7) Individual behaviour at a mixed strategy BE is better explained by 

idiosyncratic 'purification' strategies than by identical mixed strategies. 

III. RESULTS 

III.A. Overview 

Fig. 5 charts the time path of the state st in the first four runs of exp 3, a 
successful I 2 player session consisting of I 2 runs each I o periods long.5 The first 
four runs use Hawk-Dove payoffs, with a unique mixed strategy Nash 
equilibrium at s* = 2/3 = 8/I2. That is, in NE 8 of I2 players choose the first 
strategy (or 4 of I 2 when the matrix rows and columns are interchanged as in 
runs 2 and 3). The graphs show a tolerance of I player in the band around NE, 
SO 7, 8 or 9 players choosing the first strategy (or 3, 4 or 5 players when the 
matrix is interchanged) in any given period counts as a 'hit' for the 
Hawk-Dove NE. The time paths in the first four runs suggest that the NE 

5 Sessions expi and eXp2 were invalidated by computer program glitches that scrambled the payoff 
matrices, so the data are omitted from subsequent analysis. The intended matrices were type 3 (Weak 
Prisoners' Dilemma). Most valid runs saw convergence to the NE. 
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Evgame experiment: exp 3 run 3 Evgame experiment: exp 3 run 1 
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Fig. 5. Session exp 3: runs 1-4. 

attracts states st outside the tolerance band s* + I / I 2, but there is considerable 
behavioural noise so hits occur in only about 50 %0 of the periods.6 

Fig. 6 graphs behaviour in the first four runs of exp 5, the first 2-population 
session. All periods use the Buyer-Seller matrix from Table I or its interchange, 
so the unique NE is at (p, q) = (o025, o0so) or, for the interchanged version, at 
(o075, o0so). The graphs show the time path of the state st in its space, the unit 
square. The time path is smoothed by a 2-period moving average, so the point 
graphed actually is (St-, + St) /2. The time path in first run looks like an unstable 
counterclockwise spiral diverging from the NE. The second run looks like a tidy 
counterclockwise double loop around the NE, neither converging nor 
diverging. The third run uses the RP matching protocol; at best there is a weak 

6 Graphs of the remaining runs, suppressed here to conserve space, can be summarised as follows. Run 5, 
the first of four Coordination runs, appears to represent slow, incomplete convergence from the theoretically 
unstable mixed strategy NE towards the risk-dominant (and Pareto inferior) NE S* = o. Run 6, quite 
surprisingly, appears to represent convergence to the theoretically unstable mixed strategy NE. Run 7 shows 
clear convergence to the risk-dominant NE S* = I22/I2 after the matrix interchange. Perhaps due to 
hysteresis, run 8 convergences quickly to S* = I2/I2, now the payoff-dominant NE because the matrix 
interchange was negated. The last 4 runs of the session again are Hawk-Dove. Now there seems to be less 
behavioural noise and most periods are hits. The session as a whole provides little evidence that the matching 
procedure (MM or RP) has any effect. 
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Fig. 6. Session exp 5: runs I-4. 

tendency to drift towards the NE. The fourth run reverts to MM and looks like 
a counterclockwise spiral converging to the NE.7 

Looking at a large number of such graphs, one gets the general impression 
that behaviour tends to settle down to a BE under all treatments, more rapidly 
and closer to EE in some treatments than in others. None of the testable 
hypotheses seem grossly inconsistent with the graphs. The rest of this section 
examines the hypotheses more quantitatively. 

III.B. Convergence Criteria 
The general criterion for convergence is that deviations from a given steady 
state s* are small. Specifically, for a pre-selected tolerance bound b > o, say 
that the state converged to s* in run (or half-run) r with L periods if 

L s,-s* | b,(I 
ter 

The remaining 8 runs in the session seem to tell much the same story: slow approximate convergence 
to the NE via counterclockwise spirals, with perhaps larger and more biased deviations in the RP runs than 
in the MM runs. Complete graphs of all sessions are available on request at reproduction cost. 
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i.e. if the mean absolute deviation from se does not exceed the tolerance bound 
in a given run or half-run. In 2-population games the norm 1 l in inequality 
(i) is interpreted as the sup norm - i.e. the larger absolute deviation of the two 
populations. Behavioural equilibrium (BE) now can be defined operationally 
for any run or half-run as convergence to the median state, i.e. inequality (I) 

holds for s* = the soth percentile of states realised in the given run or half run. 
The operational definition for convergence to NE or EE is simply that 
inequality (I) holds with s* equal to a given NE or EE state. 

The summary data discussed below use two tolerance bounds. In the 'tight 
criterion' b = I/N, and in the 'loose criterion' b = 2/N, where Nis the number 
of players in each population. For example, in a two population game with 8 
players in each population, the tolerance bounds are O*I25 (tight) and o025 

(loose). 
Table 3 reports instances of convergence by half-run. For example, in a IO 

period run the two half-runs are periods I-5 and periods 6-IO. In the 355 first 
half-runs, BE is achieved over 92 0 of the time by the loose criterion and over 

460% by the tight criterion. In the 353 second half-runs (computer crashes 
wiped out two second half-runs), the convergence percentage rises to over 98 % 
(loose) and 70 0 (tight). The majority of BE coincide with NE; in second half- 
runs, for example, about 79 0 (= 77 5/98 3) of the loose BE are loose NE. Only 
a very few NE are not EE, but this empirical result is unsurprising because for 
many of the payoff matrices investigated here all NE automatically are EE. 

The statistics in Table 3 are intended mainly to detect regularities for further 
investigation. A more detailed look at convergence for each type of game is now 
in order. 

III.C. Behaviour in Type i Games 
Recall that HD and other Type I matrices have a unique NE. It lies in the 
interior of the state space [o, i], and is an EE. Evolutionary game theory 
predicts convergence to this NE since it is an EE, but some game theorists 
predict nonconvergence because the NE is in mixed strategies. Row 3 of Table 
3 at first seems to give support to both views because it reports a loose 
convergence rate of over 87 % but a tight convergence rate of less than 33 0 0. 

The underlying data show that tight convergence is at least 50 0 more frequent 
in second half runs than in first half runs, and under MM than under RP. 
Convergence is also more frequent under Hist than under No Hist. My 
conclusion is that the state indeed converges to the unique NE but that 
convergence can be slow, especially under the RP matching protocol and the 
No Hist information treatment. 

Does the state converge to the NE because individual players adopt the 
mixed NE strategy? In that case we would expect to observe loose but not tight 
convergence, as in fact we usually do.8 A closer look at the raw data, however, 

8 To simplify the calculation a bit, suppose the symmetric equilibrium strategy is to play each 
pure strategy with probability 0o5 and that the median state is s* = o 5, and suppose there are I 2 players. 
We need the probabilities that the mean absolute deviation (MAD) of the states St from the median s* is 
less than I/I2 = 0o083 and 2/I2 = O-I67, when each state is the average of I2 independent 
Bernoulli trials with p = 05. Back-of-envelope calculations give approximate mean and variance for 
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Table 3 
Convergence Percentage by Half Run 

Tight criterion (%) Loose criterion (%) 

Runs Nobs BE NE EE BE NE EE 

i. First-half 355 46.2 I8 9 I5-6 92 I 64 5 46.5 
2. Second-half 353 70?4 394 36.7 98-3 77-5 65-o 
3. HD I56 551I 32 7 32 7 96 2 87.2 87.2 

4. Coordinate I I6 79 7 40?5 25.9 98.3 69.4 4I8 
5. WPD 24 95-8 64 6 64 6 95.8 9I17 9I.7 
6. HDB 24 50-0 33 3 33-3 79-2 37-5 37-5 
7. IDS 6o 350 ? I0-0 I0-0 9I57 30 0 30 0 

8. BoS I28 6I-7 40 6 391I 93-0 75.8 56.3 
9. HD' 92 52.2 I 6.3 I4 98-9 8I.5 26-I 

i o. B-S 84 274 8.3 8.3 88- I 56.o 56.o 
I I. MM I 74 60-9 42-0 40?2 93 7 77 0 70'4 

I2. RP 206 718 30 I 23 3 98-5 77-7 57-0 

I 3. Hist I 8o 66- i 331 3 4 98.3 72.2 6I*9 

I4. No Hist I28 65.2 2I-9 I8-8 97 7 80-I 57.8 

Note: The table is based on all data from sessions 3-30 of Table 2 with the exception of sessions 8 and I6 
(scrambled matrices), the MM/split group runs of session I 7 (data not recorded properly), and sessions I 2 

and i 8 (small groups used). Session i i involves a qualitatively different (3 action) environment and so is 
excluded from the first two lines of the table. The last two pairs of lines are based on (approximately) 
balanced subsamples drawn entirely from sessions in which both of the alternative treatments were used. 
Specifically, lines I I-I2 (MM vs. RP) are based on sessions 3, 4, 5, 7, I4, I5, I9-24 and 26, and lines I3-I4 

(Hist vs. No Hist) are based on sessions 9, I0, I3, I4, I9-24 and 26. When players are split into two non- 
interacting groups, each group's outcome has weight 0-5 SO the number of observations (Nobs) is I o for each 
half-run. 

casts doubt on that view; it appears that some players usually play 'Hawk', 
some usually play 'Dove' and others switch back and forth. This is exactly the 
pattern that Harsanyi's purification approach would suggest if players draw 
the main component of their idiosyncratic perturbations once per run. The 
idea is that players may have slight homegrown preferences for 'Hawk' or 
'Dove' and that Harsanyi's argument shows how this can lead to the mixed NE 
in the population.9 

A formal test of the purification approach employs the null hypothesis that 
all players independently choose 'Hawk' with NE probability p = 2/3 in each 
period, and examines the one-sided alternative hypothesis that players change 
their action less frequently across periods. Each i o period x I 2 player run, 
for example, gives I 2o actions and 9 X I2 = io8 opportunities for a player 
to change her action. We use the standard (but not eponymous) runs test 
(Conover, i980, p. 349) under the conservative convention that counts a 

ISt-s* of O'II3 and O'OII5 in each period. Let 4)(x) be the unit normal cumulative distribution 
function evaluated at x. Then the probabilities of tight and loose convergence in a 5 period half 
run are approximately I'o-'[V\5(0'II3-0-083)\VooII5)] = I-o-(o-626) = I0-0734 = 0-26, and 

I-o-4[V5(0I I3-o-I67)/\O-OII5)] = I-O = (-I-I26) = o-87. That is, if players independently ran- 

domise then we would expect to see tight convergence in only about one quarter of the half-runs, but would 
see loose convergence in about 7/8 of them. 

9 Fudenberg and Kreps (I993) assume that perturbations are independent each period. Clearly more 
persistent perturbations would work in a population (as opposed to individualistic) interpretation of their 
model. 
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change of action when the last period action of one player differs from the first 
period action of the next player. In each of the 99 Hawk-Dove runs we observe 
fewer changes of action than predicted under the null hypothesis; typically 
changes are about half as frequent as predicted. The null hypothesis can be 
rejected in favour of the purification alternative at the p = o OI level in 75 0 

of the runs and usually at the p = oooo I level. Exceptions seem more frequent 
in non-convergent runs. 

Could this result be due merely to player inertia rather than to small 
differences in players' tendencies to play Hawk or Dove? Cochrane's Qstatistic 
(Conover p. I96) tests whether players' dichotomous actions are homogeneous 
random processes. In IO of I3 sessions with Hawk-Dove runs the null 
hypothesis of player homogeneity is rejected at the o oooI level in favour of the 
purification alternative that some players are more likely than others to play 
Hawk. Even in the three exceptional sessions the evidence on balance favours 
the alternative hypothesis. I conclude that the Harsanyi purification approach 
explains the data much better than the classical mixed strategy approach. 

The Buyer-Seller (B-S) game is a 2-dimensional analogue of Hawk-Dove. 
Line I o of Table 3 shows a healthy 880% rate of loose convergence to BE of 
which about 2 are loose NE. Tight convergence is much less frequent; BE is 
achieved in only about 27 %0 of the half runs and of these less than ' are NE. 
To interpret these numbers, note first that the loose target has area (2b)2/b2 = 4 
times the area of the tight target, and that the loose NE frequency (47 of 84) 
is more than four times the tight convergence frequency (7 of 84). Tight 
convergence is a bit more frequent in second half runs than in first half, and is 
quite rare under either RP or No Hist. Visual inspection of the graphs shows 
that typically the state spirals in counterclockwise towards the NE but there is 
little tendency to complete convergence once the state gets within loose 
tolerance. I conclude that the NE is behaviourally stable in the weak sense that 
the state typically converges to a (2/N)-neighbourhood of the NE. Perhaps 
decision costs (or lack of payoff dominance) preclude tighter convergence. 

III.D. Behaviour in Type 2 Games 
Recall that type 2 games (such as the Coordination game in Table I) have 
three NE, two of which are endpoint EE and the third of which is interior, 
separating the basins of the EE. Line 4 of Table 3 indicates that in the 
experiments with such games behaviour usually settles down: BE convergence 
percentages are almost 8o0% with the tight and over 98% with the loose 
criterion. Convergence to (any) NE is surprisingly infrequent given that the 
three NE targets have total width 4b (width b for each EE and 2 b for the 
interior NE), so the targets cover 4(2/ I 2) = 2/3 of the state space [o, I] under 
the loose criterion and 4(I/I2) = I/3 under the tight. Thus the actual NE 
convergence rates of 69 0 and 40 0 are close to what one would expect if the 
asymptotic state were uniformly distributed, and the EE convergence rates of 
about 420% and 260% are only slightly better. What is going on? 

The data underlying Table 3 reveal that tight convergence to an EE is about 
twice as frequent in second half-runs as in first half-runs and under Hist than 
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under No Hist, and somewhat more frequent under MM than under RP. Still, 
tight convergence to EE remains rather infrequent under any of these 
conditions. A possible clue is that, despite a smaller basin of attraction, the 
payoff-dominant EE (the PDNE) accounts for i 8 instances of tight convergence 
and the risk-dominant NE (the RDNE) accounts for only two instances. The 
RDNE does have almost as many instance of loose-but-not-tight convergence 
(5) as the PDNE (6), but the net result remains anomalous: convergence 
(especially tight convergence) is rare for the EE with the larger basin of 
attraction. 

A second anomaly is that the state sometimes converges to the interior NE, 
an event not predicted by evolutionary (or traditional) theory.10 Overall, 24 
(resp. i8) of the 94 full group half-runs converge loosely (resp. tightly) to the 
mixed strategy equilibrium (MNE). A closer look at the graphs of half-runs 
deemed loosely but not tightly convergent to MNE suggests that many of these 
actually represent slow divergence from MNE. Likewise, many of the half-runs 
deemed BE but not NE seem to represent slow or incomplete convergence to 
an EE, usually the RDNE. 

The first step in following up on these observations is to see if there is any 
empirical difference between convergence to the interior NE of a Type i game 
(theoretically stable) and of a Type 2 game (theoretically unstable). The 

regression pt -Pt-_l =(pMNE -Pt-,) +et yields the parameter estimate f= 
o65 + 0 io and R2 = 03 I for data from Coordination runs that converged 
tightly to MNE (D.F. = 96), but yields fi = o 96 + oo6 and R2 = o049 for data 
from convergent Hawk-Dove runs (D.F. = 273). Thus, even selecting the most 
favourable runs, we find that convergence to the interior NE in Coordination 
games is significantly slower and less reliable than convergence to the interior 
EE in Hawk-Dove games. 

The fact that there is even occasional convergence to the interior NE in 
Coordination games suggests that there may be forces at work beyond the 
payoff differential recognised by evolutionary game theory. Do some players 
use forward-looking or altruistic strategies? Some responses to exit question- 
naires in Exp 24, the last Co session, suggest that they might: '[I] chose the 
result that would be most beneficial to everyone...', and, from another player, 
'I made choices that would raise the total score of the group.' Perhaps some 
players are Kantian and choose actions so as to increase the mean payoff 
M(p) = (p, I -p) A (p, i -p)'. The standard Type 2 matrix from Table i is 

Co ( ) 4I 

for which M(p) = 3p2+p+ I is increasing in p. Kantian players therefore 
would avoid the low payoff RDNE action (p = o) in this game. Risk-averse 

10 Hysteresis potentially provides an evolutionary game theoretical explanation, because sometimes the 
run immediately follows a Hawk-Dove run in which the interior NE is an EE. Of the I 8 Coordination half- 
runs immediately following HD runs, only three were tightly convergent to the interior NE. This is about 
the same proportion as for all Coordination half-runs. I conclude that hysteresis plays at best a minor part 
in explaining the anomaly. 
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players, on the other hand, might stick with the RDNE action until well inside 
the PDNE basin, hence producing a BE near the MNE. Hence both 
behavioural anomalies potentially arise from some Kantian behaviour. 

To test this qualification to evolutionary theory, I used the modified 
Coordination matrices 

CoI = (5 ) and CO2 = (5 ) 
3 3 ? 4 

in some runs of sessions 20, 2 I, 24 and 26. The basins of attraction for the EE 
are the same in Coi as in Co, but M(p) is decreasing in the first half [o, I/3) 
of the RDNE basin of attraction [o, 2/3). The RDNE basin [o, 6/II) for C02 
is smaller than for Co, but M(p) decreases in [0, 5/I I), most of the basin. 
Therefore the presence of Kantian players would make convergence to the 
RDNE more likely with Coi and C02 than with the standard coordination 
payoff matrix Co. The data strongly confirm the prediction: we have four half- 
runs loosely convergent to the RDNE and i9 to the PDNE with Co versus 25 

and I 2 with the modified matrices. The associated chi-squared statistic of I4-30 
is significant at least at the o-ooi level. 

Recall that BoS and HD2 both are two-dimensional analogues of Type 2 

games. Each has three NE, two EE at diagonally opposite corners of the square 
and an interior NE at the saddle-point of the separatrix between the two EE 
basins of attraction. Line 8 of Table 3 suggests that evolutionary theory 
accounts well for the BoS data. Despite the small area b2 of each corner EE 
relative to the target area 4b2 of the interior (non-EE) NE, 50 of the 52 half- 
runs that converged tightly to some NE actually converged tightly to an EE. 
Line 9 of the table suggests that HD2 runs had considerably more noise but 
roughly similar behaviour. 

III.E. Behaviour in Type 3 Games 
In WPD and other Type 3 games the players have a dominant strategy, so 
there is a unique NE (and EE) at one endpoint of the state space [o, i ]. Table 
3 shows that in sessions where there are always 6 or more players in a group, 
the state virtually always converges tightly to a BE and loosely to the NE. Even 
the tight NE convergence frequency is an impressive 64%. The underlying 
data show that, unlike Type i and 2 games, the tight NE convergence 
frequency in WPD is lower under MM than under RP. 

Group size appears to have a significant effect. Some WPD and PD sessions 
involve I 2 players that always remain in the same group and some involve i6 
players sometimes split into two player 8 groups. In these sessions the mean 
deviations from NE consistently were small, e.g. OI2 in the 8 player split 
groups. Deviations were much more variable and usually much larger in 
sessions involving runs with smaller groups of 2, 4 and 6 players. Line i a-c of 
Table 4 summarise the results. The mean deviation from NE (i.e., the fraction 
of players choosing the dominated 'cooperative' action) rises to o028 with two 
6 player groups, to 0o29 with three 4 player groups, and to 0o39 with six 2 player 
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Table 4 

Significance Tests 

Deviations from NE Hit Frequency 
Pools (X vs. Y) [Nobs] Means 

sessions (S.D.) Wilcoxon Pooled t x2 Pooled t 

i. Group Size (WPD and PD) 
exp 4, I 2, 24, 26 

(a) 6 vs. 8 player groups 0-28, 0-I2 8-84** IO0I** II 44 34I** 

[I82, 340] (0-23, 01I5) 

(b) 4 vs. 8 player groups 0-29, 0-I2 5.78** 839** 0-04 O-I9 

[I20, 340] (029, o I5) 
(C) 2 vs. 8 player groups 0-39, OI 2 6-52** II-38** 4 79 -21I9 

[546, 340] (0-42, O- I 5) 
2. RP vs. mean matching 

exp 3, 4, I4, I5, 2I, 22, 23, 24, 26 

(a) HD runs 014, OIO 377** 3-94** I440** 3-82** 

[420, 272] (0-I2, O-IO) 

(b) WPD and PD runs 014, 0-I4 -095 -053 3.82 - *96 

[260, 2IO] (o-i6, O-I5) 
3. No history vs. history 

exp 9, I1, I4, 2I, 22, 23, 24, 26 

(a) HD runs o-i6, 0-I3 3-o8** 3-48** 3.64 I-9I 

[426, 446] (0- I 2, O-I I) 

(b) WPD and PD runs o i6, 0-20 3I2** -2.43 I 8-49** -4-43** 

[I30, I6o] (O-I6, O-I5) 

4. No hist/RP vs. hist/MM 
exp 27-30 (B-S and IDS runs) 0-37, 0-27 5-55** 4-62** 38-20** 6.44** 

[23I, 222] (0.2 I, 0.23) 

Notes: The statistics compare performance in Pool X to performance in Pool Y. For example in Line I b, 
PoQl Y = runs with I 6 subjects split into two non-interacting groups, each with 8 subjects and Pool X = runs 
with I 2 subjects separated into three non-interacting groups with four subjects each. The number of periods 
(Nobs) appears in brackets. The second column records the mean absolute deviations from NE for Pools X 
and Y (and the standard deviation of the deviations). The next two columns report the statistics for the 
standard Wilcoxon and t-tests for the null hypothesis that both pools have the same distribution for NE 
deviations. The last two columns report statistics for the standard X and t statistics for the null hypothesis that 
both pools have the same hit frequency, where a period is counted as a hit if the deviation from NE does not 
exceed i /group size. Negative statistics indicate smaller deviations or higher hit frequency in pool X. Two 
asterisks (**) indicate that the null hypothesis is rejected at the p = O-OI level. 

(repeated matched pairs) groups." These deviations are significantly larger 
than those for the 8 player groups according to standard t and Wilcoxon tests, 
as indicated in the middle columns of the table. The last two columns of the 
table compare the hit frequencies, i.e. the fractions of periods in which the 
deviation is within tolerance, using the conservative convention that the 
tolerance bound is b = i /group size. This convention makes it easier for smaller 
groups to record a 'hit'. Even so, line i a shows that the fraction of 6 player 
groups hitting NE is significantly lower than the fraction of 8 player groups. 
The hit rates differ insignificantly for 4 and 8 player groups, and are 
significantly higher for the two player groups. I conclude that small group 

" Perhaps it should be mentioned that deviations remain large in these sessions even when the players are 
regrouped into a single I 2 player group; the mean deviation in such runs is 0-24. This is a vivid illustration 
of the general tendency for behaviour to be influenced by all treatments employed in within-groups sessions. 
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effects, here in the form of playing the dominated 'cooperative' strategy, are 
definitely present in the 2, 4 and 6 player groups. 

Scrambled matrices provide unsought opportunities to investigate other 
Type 3 games. Experiment 8 uses a matrix that has a dominant strategy which 
also gives the highest mean payoff; players in this session chose the 
dominant/Kantian action a remarkable 99 6 % of the time. 

Recall that IDS is a 2-dimensional analogue of Type 3 games; it has a unique 
NE = EE at one corner of the square state space. The convergence rates 
reported in line 7 of Table 3, e.g. 30 0 loose and I0 0o tight EE convergence, 
at first might seem rather low. Recall, however, that the matrix entries for IDS 
were chosen to make convergence difficult and that the target area for a corner 
equilibrium is only b2. Moreover, half the IDS runs used the RP/No Hist 
treatment for which convergence rates generally are low. Inspection of the time 
graphs under the more favourable treatment MM/Hist shows a consistent 
tendency for the state to converge towards the EE, interrupted by occasional 
loops back into the interior when a player in the second population chooses the 
dominated action. I conclude that the IDS data on closer examination are well 
explained by evolutionary game theory. 

III.F. Other Findings 
Only one session explored behaviour in HDB, a I -population 3-action game 

with a triangular state space and with one corner NE (an EE with target area 
b2) and one edge NE (not an EE but with target area 2b2). Row 6 of Table 3 
indicates loose (tight) convergence to some BE in I 9 (I 2) of 24 half-runs, tight 
convergence to the EE in 8 half-runs, and no loose or tight convergence to the 
edge NE despite its larger area. The data are sparse but consistent with 
evolutionary game theory. 

The last four lines of Table 3 and the last three lines of Table 4 indicate the 
overall effects of the matching (MM or RP) and the feedback (Hist or No Hist) 
protocols. Table 3 indicates that tight NE and EE convergence is somewhat 
more frequent under MM and under Hist, and Table 4 confirms that hits are 
significantly more frequent and deviations from NE significantly smaller under 
MM. However, the size of the effects is not very impressive. 

Do the evolutionary treatments MM and Hist together make much 
difference? Any tendency to speed convergence would be more noticeable in a 
two-population game, and should be confirmed in a balanced within-groups 
design. These considerations lead to the design of sessions 27-30. The last line 
of Table 4 shows that the IDS and B-S runs of these sessions had significantly 
smaller deviations from the unique NE and significantly higher hit rates under 
Hist/MM than under No Hist/RP. The BoS and HD2 runs are omitted from 
the table because their multiple NE make deviations more difficult to define 
clearly, but these data also appear to strongly support the same conclusion. 

IV. DISCUSSION 

Evolutionary game theory offers a simple classification of bimatrix games, 
suggests laboratory protocols, and suggests hypotheses regarding convergence 
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behaviour in bimatrix games. The evidence from a diverse set of laboratory 
games generally supports the seven hypotheses listed at the end of Section II. 
For all three types of one dimensional games and their two dimensional 
analogues, the states reliably achieve a loose behavioural equilibrium (BE) 
even within the first half-run of 5 periods. Most of the loose BE are also tight 
BE, the main exceptions occurring in two dimensional games with unique Nash 
equilibria (NE). Most BE coincide with NE, and most of the observed NE are 
indeed evolutionary equilibria (EE). In general,12 the 'evolutionary' treat- 
ments of mean-matching (MM) and feedback (Hist) appear to improve 
convergence to EE. Thus the main tendencies of the convergence data are 
consistent with evolutionary game theory. 

Two of the hypotheses deserve further discussion. The seventh hypothesis is 
concerned with the stability of mixed (or interior) NE. It states that such 
equilibria are achieved not by independent randomisations by each player, but 
rather by slight idiosyncratic preferences for pure strategies by individual 
players. The individual player data clearly favour this version of the 
'purification' hypothesis. The group data also lend indirect support: as the 
hypothesis implies, we usually do see convergence to the interior NE = EE in 
one population games of Type i, and less precise convergence in analogous two 
population games. 

The fourth hypothesis is concerned with the range of applicability for 
evolutionary game theory. It states that players seldom will attempt to 
influence others' future behaviour ('small group effects') when there are at 
least 6 players in each group. The relevant data from Prisoner's dilemma 
experiments suggests that 6 is near the boundary. Cooperative ('Kantian') 
behaviour is considerably more prevalent in sessions which have runs splitting 
the players into groups of size 2 or 4, and it is especially prevalent in the runs 
with the smaller groups. Such behaviour is notably less frequent in sessions 
where the minimum group size remains above 6. 

Perhaps the most surprising finding concerns another boundary for 
evolutionary game theory. Pilot experiments and other investigators had 
seemed to confirm the theoretical view that in simple coordination games with 
two pure strategy (corner) NE = EE and one interior NE, the 'risk-dominant' 
corner EE is most likely to be observed because it has the larger basin of 
attraction. (Indeed, Kandori et al. I 993, and Young, I 993 argue in influential 
theoretical papers that only the risk-dominant EE will be observed in the 
relevant limiting case.) My data strongly support the contrary theoretical view 
of Bergin and Lipman (I995) that one can bias convergence towards the other 
('payoff-dominant') EE by increasing the potential gains to cooperation, even 
holding constant the basins of attraction for the two EE. The underlying 
behaviour can be regarded as Kantian. It remains to be seen whether other 
subject pools are as Kantian as mine, but it now appears that in some 
applications evolutionary game theory may have to be supplemented by a 

12 The main exception seems to be that when other conditions favour Kantian play (e.g. small numbers 
of WPD players), the MM treatment can further encourage this sort of deviation from NE. 
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theory of trembles (or 'mutations') that allows for forward-looking attempts to 
influence others' behaviour. 

University of California, Santa Cruz 

Date of receipt offinal typescript: June 1995 
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