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A THEORY OF DYNAMIC OLIGOPOLY, I: OVERVIEW AND 
QUANTITY COMPETITION WITH LARGE FIXED COSTS 

BY ERIC MASKIN AND JEAN TIROLE' 

The paper introduces a class of alternating-move infinite-horizon models of duopoly. 
The timing is meant to capture the presence of short-run commitments. Markov perfect 
equilibrium (MPE) in this context requires strategies to depend only on the action to which 
one's opponent is currently committed. The dynamic programming equations for an MPE 
are derived. 

The first application of the model is to a natural monopoly, in which fixed costs are so 
large that at most one firm can make a profit. The firms install short-run capacity. In the 
unique symmetric MPE, only one firm is active and practices the quantity analogue of limit 
pricing. For commitments of brief duration, the market is almost contestable. We conclude 
with a discussion of more general models in which the alternating timing is derived rather 
than imposed. 

Our companion paper applies the model to price competition and provides equilibrium 
foundations for kinked demand curves and Edgeworth cycles. 

KEYwoRDs: Markov perfect equilibrium, short-run commitment, reaction, natural mo- 
nopoly, contestability, endogenous timing. 

INTRODUCTION 

IN THIS PAIR of papers, we present a theory of how oligopolistic firms behave 
over time. One of our goals is- to study certain well-known concepts, such as 
contestability and the kinked demand curve, that are implicitly dynamic but have 
usually been discussed in static models. The main ingredient of our study is the 
idea of reactions based on short-run commitments. 

When we say that firm 1 is committed to a particular action in the short- 
run-whether a quantity or a price-we mean that it cannot change that action 
for a finite (although possibly brief) period, during which time other firms might 
act. By firm 2's reaction to 1 we mean the response it makes, possibly after some 
lag, to l's chosen action. Short-run commitment ensures that, by the time firm 2 
reacts, firm 1 will not already have changed its action.2 

To formalize the idea of reaction based on commitment, we introduce a class 
of infinite-horizon sequential duopoly games. In the simplest version of these 
games (the exogenous timing framework), the two firms move alternatingly. 
Firms maximize their discounted sum of single-period profits, and our goal is to 
characterize the perfect equilibria. The fact that, once it has moved, a firm cannot 
move again for two periods implies a degree of commitment. 

1 This work was supported by grants from the NSF and the Sloan Foundation. We thank Peter 
Diamond, David Kreps, Reinhard Selten, Robert Wilson, two referees, and especially John Moore for 
helpful discussions and comments. 

2 It is useless to respond (in our sense of the term) to another's action if, by the time one has done 
so, the other firm has already moved again. That is why our conception of reaction is intimately tied 
to commitment. It may be worthwhile reacting to a firm's move because the firm is committed to that 
move, at least for a time. 
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We have in mind primarily exogenous or technological reasons for commit- 
ment, e.g., installed capital that has little scrap value, or lags in producing and 
disseminating price lists. Alternatively, short-term contracts might serve to bind 
the firm temporarily.3 

We suppose that each firm uses a strategy that makes its move in a given 
period a function only of the other firm's most recent move. Our primary 
justification for this simplifying assumption-we provide a lengthier discussion 
below-is that it makes strategies dependent only on the physical state of the 
system, those variables that are directly payoff-relevant. Consequently, we can 
speak legitimately of a firm's reaction to another's action, rather than to an entire 
history of actions by both firms. 

Section 2 derives the dynamic programming equations associated with an 
equilibrium in strategies of this sort, i.e., with a "Markov perfect equilibrium" 
(MPE). Then, in Section 3, we begin the formal analysis of our project with a 
study of models where firms compete in capacities (quantities) and in which fixed 
costs are so large that only one firm can make a profit. For the exogenous timing 
version of the model, we show that there exists a unique symmetric MPE. In this 
equilibrium, only one firm produces (thus the model may be considered more an 
example of monopoly than duopoly) and, furthermore, for discount factors that 
are not too low, operates above the pure monopoly level in order to deter entry. 
Such behavior can be thought of as the quantity-analogue of limit pricing 
behavior (see Gaskins (1971), Kamien and Schwartz (1971), and Pyatt (1971)). 
Moreover, as the discount factor tends to one, so that future profits become 
increasingly important, the entry-deterring quantity approaches the competitive 
(i.e., zero-profit level) quantity, a result much in the spirit of the recent contest- 
ability literature (see, for example, Baumol, Panzar, and Willig (1982)). 

Of course, the assumption that firms' moves necessarily alternate is artificial; 
one might wonder why we did not suppose that moves are simultaneous. To 
provide proper foundations for our alternating move hypothesis, therefore, we 
consider a more elaborate class of models where firms can, in principle, move at 
any time they choose (Section 4). Yet, as before, once a firm selects a move, it 
remains committed to that action for a finite length of time. When we restrict 
attention to strategies that are functions only of the physical state, we find that, 
in a number of cases of interest (in particular, the models studied in these two 
papers) the equilibrium behavior in endogenous timing models closely parallels 
that in the games where alternation is imposed. 

3Here, however, we are on weaker ground theoretically because, once we admit the possibility of 
contractual commitment, we have to explain why commitments of indefinite duration are impossible 
or too costly, a knotty question. One explanation may be transaction costs-the expense of drawing 
up a complex contract of infinite length. A second (related) reason is the difficulty of foreseeing all 
possible later contingencies that might arise. A third is the possibility of renegotiation; the contract- 
ing parties' ability to replace their original contract with a new one at a later date limits the 
commitment value of the former. See also the discussion in Section 9 of our companion paper, which 
suggests that in some settings, oligopolists would not opt for lengthy contracts even if these were not 
subject to the difficulties we have mentioned. 
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Our companion paper (Maskin-Tirole (1988)) studies models of price competi- 
tion in markets with undifferentiated commodities. We show that two classical 
phenomena, the kinked demand curve equilibrium and the Edgeworth cycle, arise 
naturally as equilibria of our models. 

The third paper in this series (Maskin-Tirole (1987)) considers competition in 
the absence of fixed costs (Cournot competition), and develops differential 
methods for studying equilibrium (such techniques do not apply in the first two 
papers, where the models are highly discontinuous). 

2. THE GENERAL MODEL WITH FIXED TIMING 

We next present the basic features of the simpler (exogenous timing) class of 
models that we analyze below. 

A. The Model 

We consider a duopoly; the model can be generalized to more than two firms 
but at the expense of simplicity. Each firm i (i = 1,2) chooses actions a' from a 
bounded action space A (we assume that the action space is bounded so that 
dynamic programming is applicable). Depending on the interpretation of the 
model the variable a' could represent the choice of a price, quantity, location, 
etc. It could even represent a vector of choices. Firms act in discrete time, and the 
horizon is infinite. Periods are indexed by t (t = 0,1,...) and T is the time 
between two consecutive periods. At time t firm i's instantaneous profit g' is a 
function of the current actions of the two firms but not of time: 

7Ti _ T'(a', a2). 

Firms discount future profits with the same interest rate r. Thus their discount 
factor is 

8 = exp (-rT). 

Firm i's intertemporal profit can then be written 

00 

Il= i8v(al, a2) 
t =0 t=O 

As mentioned in the introduction, we wish to model the ideas that (a) firms are 
committed to their actions for a finite length of time, during which time other 
firms might move, and that (b) they react to the current actions of other firms. 
The simplest way of accomplishing both objectives is to assume, following Cyert 
and DeGroot (1970), that firms move sequentially. In odd-numbered periods 
(t = 1, 3, 5, ... ) firm 1 chooses an action to which it is committed for two periods. 
That is, a 2k +2= alk+ for all k. Similarly, firm.2 moves in even-numbered 
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periods (t = 0,2, 4,...) and ak =a22k. Thus there is a lag T between a firm's 
actions and its rival's reaction.4 

The model ignores the issue of who moves first (we might suppose for 
completeness that the first mover is determined by historical accident). Instead, 
we are interested in the long-run properties of the model, those that are 
independent of what happens at the beginning of the game. Indeed, in the 
applications of our model provided in these two papers, steady-state is always 
reached regardless of initial conditions. Moreover, the nature of steady-state is 
independent of the initial conditions (modulo possibly relabeling the firms). 

We require equilibrium of this model to be perfect. That is, starting from any 
point in the game tree, the firm to move selects the action that maximizes its 
intertemporal profit given the subsequent strategies of its rival and itself. We do 
not accept any perfect equilibrium, however, but just those whose strategies 
depend only on the " payoff-relevant" history. Specifically, at time t = 2k, the 
only aspect of history that has any "direct" bearing on current or future payoffs 
is the value of a'k 1' for only this variable, among all those before time 2k, 
enters any instantaneous profit function from time 2k on. Thus, if the equi- 
librium is to depend only on payoff-relevant history, firm 2's strategy at time 2k 
must depend only on a'2k-1. That is, 

a2k =R 2k(a2k-l)- 

Moreover, because the future appears the same starting from any time period, 
time itself is not a payoff-relevant variable, and so above we can drop the 
subscript "2k" from R. Thus, we can represent the firms' behavior-their 
strategies-by a pair of dynamic reaction functions:5 

R': A -*A 

and 

R2: A -*A. 

Actually, although it will not play a major role in this paper, we must allow for 
the possibility that R1 and R2 are random functions, so that R1(a2) and R2(a') 
are, in general, random variables. 

Because dynamic reaction functions depend only on the payoff-relevant state 
of the system, they might alternatively be called "Markov strategies." A pair of 
reaction functions (R', R2) forms a Markov perfect equilibrium (MPE) if and 
only if (i) a2k = R2(ak-l) maximizes firm 2's intertemporal profit at any time 
2k, given al k- 1 and assuming that henceforth each firm i will move according to 
R'; and (ii) the analogous condition holds for firm 1. Of course, if R1 and R2 are 

4 Notice that we are supposing that firms' actions are equally spaced. Although this assumption 
does not affect the most salient qualitative features of equilibrium in Section 3 and the models of our 
companion piece, it does considerably simplify the analysis of equilibrium. 

5 We use the modifier "dynamic" to distinguish this concept from the "reaction functions" of 
static Cournot analysis. 
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random functions we must replace (i) by the statement that each possible 
realization of R2(a'k-1) maximizes firm 2's expected intertemporal profit (we 
assume risk neutrality). The following proposition is a simple consequence of the 
theory of dynamic programming. 

PROPOSITION 1: A Markov perfect equilibrium is a perfect equilibrium. That is, 
given that its rival ignores all but the payoff-relevant history, a firm can just as well 
do the same. 

We have several reasons for restricting our attention to Markov strategies. 
Their most obvious appeal is their simplicity. Firms' strategies depend on as little 
as possible while still being consistent with rationality. 

More relevant from our perspective is that Markov strategies seem at times to 
accord better with the customary conception of a reaction in the informal 
industrial organization literature than do, say, the reactions emphasized in the 
repeated game (or "supergame") tradition, the best-established formal treatment 
of dynamic oligopoly to date. In supergames, reactions are, typically, threats 
made to dissuade the rival firm from selecting certain actions. The idea that 
reacting is following through on a threat is very different from the reasoning 
behind, say, the kinked-demand curve story. In the kinked-demand curve world, 
cutting one's own price in response to another firm's price cut is not carrying out 
a threat at all. It is merely an act of self-defense, an attempt to regain lost 
customers. Put another way, the reaction is a response only to the other firm's 
price cut and not to earlier history or to one's own past prices. 

In our companion piece we discuss some well-known methodological difficul- 
ties with the supergame approach (e.g., the large number of equilibria, and the 
nonrobustness of equilibrium to the horizon). Because we do not know how 
successfully our alternative framework of short-run commitments and Markov 
strategies overcomes these problems in general, we limit our comparison of the 
two approaches to the simple price and quantity settings that have been the 
source of most applications of supergames to industrial organization. 

The reader may wonder whether focussing attention on the payoff-relevant 
states buys us anything in more general models. After all, most past actions are 
likely to have at least some influence on current and future payoffs. Yet, if we 
make strategies contingent on all past actions, the Markov restriction has no 
bite. This is certainly an apt criticism of the formal Markov assumption. But it 
neglects our preoccupation with short-run commitment. Such commitment im- 
plies that recent actions have a stronger bearing on current and future payoffs 
than those of the more distant past. A natural hypothesis posits that past actions 
having only a small influence on payoffs have a correspondingly circumscribed 
effect on current behavior. The Markov assumption captures this hypothesis, 
albeit through the crude device of supposing literally no impact on payoffs by 
actions before the recent past. 
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B. Markov Perfection and Dynamic Programming 

We can solve for a Markov perfect equilibrium by invoking the game theoretic 
analogue of dynamic programming. To this end, we define four value functions. 
Given an equilibrium pair of Markov strategies (R1, R2) let V1(a2) be the 
present discounted value of firm l's profits given that last period firm 2 played a 2 

and that henceforth both firms play optimally, i.e., according to their Markov 
strategies, and let Wl(al) be the present discounted value of firm l's profits given 
that last period firm 1 played a' and that henceforth both firms play optimally. 
V2(a1) and W2(a2) are defined symmetrically. 

These value functions must be consistent with the reaction functions. Specifi- 
cally, given that firm i's choice of ai is restricted to a bounded set, the following 
are necessary and sufficient conditions for the reaction and value functions to 
correspond to an equilibrium: 

V1(a2) = max { 7T(al, a2) + 3W1(al)} 
al 

= 7rT(Rl(a2), a2) + SW1(R1(a2)) 

and 

W1(al) = g1(al, R2(a')) + SV'( 2(a')), 

(with analogous equations for V2 and W2), where expectation operators should 
appear before the expressions on the right-hand side if R1 and R2 are random 
functions. 

3. Quantity Competition with Large Fixed Costs: Fixed Timing 

We turn next to a specific application of our general model, the analysis of 
markets with large fixed costs. For this purpose, we shall take quantities to be 
firms' strategy variables. One should interpret a choice of quantity as that of a 
scale of operation or capacity. We shall express profit as a direct function of 
quantities/capacities. Our profit function is, therefore, a reduced form, which 
subsumes instantaneous price competition. 

The industrial organization literature has traditionally distinguished among 
three types of costs of production. Variable costs are incurred only during the 
period of production and are directly related to the level of operation. Fixed costs 
(measured as a flow) persist only as long as production continues, but are, strictly 
speaking, independent of scale. Pure sunk costs (again, considered as a flow) 
continue as a liability forever. That is, they are incurred with or without 
production. 

Both fixed and sunk costs have been regarded as barriers to entry. The 
entry-deterring role of sunk costs is not controversial. When sunk costs take the 
form of an irreversible investment in nondepreciable capital, a firm's variable 
cost curves may be forever changed, giving it a permanent advantage over 
potential entrants or later rivals. This effect has been studied by Spence (1977, 
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1979), Dixit (1979), and Fudenberg and Tirole (1983). Even when capital is not 
infinitely durable it may still deter entry as argued by Eaton and Lipsey (1980).6 

The deterrent that fixed costs create is one of the subjects of the "natural 
barriers to entry" literature (see Scherer (1980) for a survey). A firm in an 
oligopolistic industry (one with large fixed costs) can, by virtue of its in- 
cumbency, deter entry since the revenue available to a potential entrant does not 
outweigh the high fixed costs it has to bear. This view has recently been 
challenged by Grossman (1981) and Baumol, Panzar, and Willig (1982), who 
maintain that incumbency gives a firm no privileged position per se if its costs 
are merely fixed rather than sunk. Such a firm ought not be able to earn 
substantial monopoly profit while its potential competitors earn nothing. These 
authors feel that the threat of entry should drive the profit of the incumbent to 
zero, the "competitive" level. We shall attempt in this section and the next to 
reconcile these conflicting views. 

Returning to the model of Section 2, we shall suppose that two identical firms 
move alternately and choose nonnegative quantities (more accurately, capacities), 
q. They maximize the discounted sum of instantaneous profits, with discount 
factor 3. If q is chosen to be strictly positive, we shall assume that the firm incurs 
a fixed cost F. We shall suppose that this cost is incurred up-front. But, since the 
firm is committed to the capacity q for two periods, we can think of f = F/(1 + 8) 
as the per-period or flow equivalent of F. Viewed this way, the fixed cost can be 
thought of as a "short-term" sunk cost. To simplify matters, we assume that 
variable costs are linear: variable cost of q = cq; and that demand is also linear: 
price = 1 - (ql + q2), where q' is firm i's choice7 of q. Thus, firm l's instanta- 
neous profit is 

(1) X (q'q)I=(?( ql -q 2cql -f, if ql > 0 
(1) IT 1 (q9q2 , 2 {( f 0 

and firm 2's profit is symmetric. 
We shall assume that fixed costs are so large that one but not two firms can 

operate profitably. Specifically, let 7Tm = d 2/4, where d = 1 - c (7T m is just 
monopoly profit gross of fixed costs). Then our profitability assumption requires 

(2) 2f> 7T>f. 

(Actually, as a referee pointed out, we could probably replace the left inequality 
with the assumption that f exceeds Cournot profit.) 

For comparison, we first consider what these demand and cost assumptions 
imply about equilibrium in the traditional static Cournot model. In that model, a 
pair of quantities (q1, q2) is an equilibrium if, for each firm i, q1 = qi maximizes 

6Although our model shares with that of Eaton and Lipsey the property that capital is not 
infinitely durable, our conclusions about the nature of equilibrium under the threat of entry differ 
markedly from theirs. See the discussion following Proposition 2. 

7 To ensure the applicability of dynamic programming we shall restrict ql to a large but bounded 
set (see Section 2). 
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IT given qi- (j* i). One can easily verify that, given our demand and cost 
assumptions, there are three equilibria: (qm, 0), (0, qm) (where qm denotes the 
monopoly level d/2), and a mixed strategy equilibrium in which each firm sets 
q = Jf with probability a and with probability 1 - a produces nothing, where 
a = (d/f)-2. 

None of these three equilibria really models the idea that the threat of entry 
should drive an incumbent's profit to zero. The two monopolistic equilibria 
obviously do not: the presence of a second firm has no effect at all. One can 
maintain that such equilibria are unconvincing because, were the other firm to 
enter, the incumbent would not keep q at the monopolistic level. But such 
dynamic considerations are attacks not so much against the equilibria but rather 
against the static nature of the game itself. There is simply no opportunity in a 
one-shot, simultaneous move game to react. 

The mixed strategy equilibrium perhaps comes closer to capturing the zero- 
profit story. At least the two identical firms are treated symmetrically and earn 
zero profits on average. Of course, the equilibrium also has the unfortunate 
property that, with positive probability, neither firm or both firms operate. 

In view of the shortcomings of the static quantity model, we turn to an analysis 
of the equilibrium of our dynamic model. Throughout we make the cost and 
demand assumptions (1) and (2). Our main goal is to exhibit, for each possible 
value of the discount factor 8, the unique symmetric Markov perfect equilibrium, 
i.e., the unique MPE such that R1 = R2. Our emphasis on symmetric equilibrium 
is meant to underscore the idea that the firms are inherently identical, so that, 
placed in the same circumstances, they should behave the same way (i.e., the 
firms will react identically to a given quantity level q of the other firm). Given the 
large fixed costs, of course, only one firm will end up operating, but, in symmetric 
equilibrium, that firm will be determined by historical accident (e.g., it was lucky 
enough to get there first) rather than by basic strategic differences between firms. 

Here is an outline of the steps leading to the characterization theorem, 
Proposition 2. We first show (Lemma 1) that equilibrium reaction functions are 
downward sloping, as in the static Cournot model. We then demonstrate (Lemma 
4) that, in a symmetric equilibrium, there exists a deterrence level q-, i.e., a level of 
operation above which one's rival is deterred from entering and below which the 
rival will enter with positive probability. To do so, we establish (Lemma 3) that if 
a firm reacts to q by operating at a positive level, then that level must exceed q. If 
instead the firm chose a level r < q, it would induce its rival to produce a level r 
greater than r, which in turn would lead the firm to operate below r. Continuing 
iteratively, we find that in every period the firm produces less than its rival, 
implying that its profit must be negative, an impossibility. 

These results straightforwardly imply that if a firm operates at all, it does so at 
or above the deterrence level (Lemma 5). Thus in equilibrium a firm either drops 
out of the market forever or induces the other firm to do so. 

LEMMA 1: Equilibrium dynamic reaction functions Ri are nonincreasing. That is, 
if q > q^ and r and r^ are realizations of Ri(q) and Ri(q^) respectively, then r < r^. 
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REMARK: Lemma 1, which does not assume symmetry, is a result that obtains 
much more generally than in this specific model. The only property of 'ri it 
requires is that the cross partial derivative '1i2 be nonpositive and, for q > 0, 
strictly negative. See Section 8 of our companion article for a discussion of the 
role the cross partial assumption plays in our results. 

PROOF: Suppose that, contrary to our assertion, q > q4 but r > rP, where, r and 
r are realizations of, say, R2(q) and R2(q) (recall that the R"s may be random 
functions). By definition of R2, r is a best response to q. Thus 

(3) IT2(q, r) + 3W2(r) ? 'i2(q,?) + rW2(?) 

Similarly, 

(4) T2 (A P2 ) + 3W2(r) > XT2( r) + 8W2(r). 

Adding (4) to (3), we obtain 

V 2(q, r) - q, r) - '2(q, r) + 7( q) 0, 

which can be rewritten as 

(5) T2(X,Y) dydx > 0. 
q r 

But because r 2 (x, y) is nonpositive and, for y > 0, strictly negative, inequality 
(5) is impossible. Q.E.D. 

By "dropping out of the market" we mean choosing q= 0. We next show that 
if firm 1 drops out of the market with positive probability in response to a 
(positive) move by firm 2 that was, in turn, an optimal reaction to a previous 
move by firm 1, then firm 1 in fact drops out of the market with probability 1. 

LEMMA 2: In any Markov perfect equilibrium, if 0 is a realization of Rl(q) and 
q > 0 is a realization of R2(q) for some q, then Rl(q) = 0. 

PROOF: Because reaction functions are nonincreasing and 0 is a realization of 
Rl(q), firm 1 must react to any quantity above q by setting 0 with probability 1. 
Thus, Rl(q + A) = 0 for anyA > 0. Now if Rl(q)> 0 with positive probability, 
W2(q + A) > W2(q) for sufficiently small A because q + A induces firm 1 to 
drop out with probability 1, whereas q does not. Thus for sufficiently small A, 
playing q earns firm 2 a strictly lower payoff than q + A, a contradiction of the 
optimality of q. Q.E.D. 

Henceforth we shall confine our attention to symmetric equilibrium (ones 
where R1 = R2). We first establish Lemma 3. 

LEMMA 3: In a symmetric MPE, if r is a positive realization of R(q) (we can 
drop the superscripts from reaction functions because of symmetry) r > q. 
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PROOF: Suppose first that 0 < r < q. From Lemma 1, R(r) > r. Moreover, for 
any realization of r^ of R(r), there exists a realization r^ of R(r^) such that 
P <R(r). Continuing iteratively we find that the firm who responds to q can 
continue to act optimally in such a way that it always produces no more than the 
other firm. Thus, in any period where it produces positively, it must lose money 
-in particular, when it produces r. Since it can ensure itself zero profit by 
dropping out, operating at a positive level cannot be optimal. Hence r < q is 
impossible. 

Next suppose that r = q. If 0 is a realization of R(r), then from Lemma 2, 
R(r) = 0, an impossibility since R(r) = R(q). Thus all realizations of R(r) must 
be positive. From the preceding paragraph, r < R(r). Thus, repeating the argu- 
ment of that paragraph, we can once again show that the firm that responds to q 
can always act optimally in ways such that it produces no more than the other 
firm, which gives us the same contradiction as before. Q.E.D. 

We next show that in a symmetric equilibrium, there exists a deterrence level. 

LEMMA 4: In a symmetric MPE there exists q-> 0 such that, for all q> q, 
R(q) = 0, and, for all q < q-, there exists a positive realization of R(q). 

PROOF: Consider a sequence { qn} tending monotonically to infinity. Suppose 
that for all n there exists a positive realization rn of R(qn). From the definition of 
7IT, { rn } must be bounded, otherwise instantaneous payoffs become unboundedly 
negative.8 Hence for sufficiently large n, qn> rn, a contradiction of Lemma 3. 
There consequently exists q4 > 0 such that for all q > q4, R(q) = 0. Let q- be the 
infimum of all such qc. Then for all q > q, R(q) = 0 and, for all q < q, there exists 
a positive realization of R(q). It remains to show that q > 0. Assume therefore 
that q = 0. Choose e > 0 so small that 7Tl(qm, ?) > 0, where qm is the monopoly 
quantity. Because q= 0, then R(e) = 0, and so firm 1 earns zero profit the first 
period after firm 2 has played ?. Moreover, firm 1 can earn no more than 
monopoly profit (the theoretical maximum) in any subsequent period. However if 
firm 1 responds to - by playing qm, it earns positive profit the first period, and, if 
it continues to play qm, monopoly profit thereafter. Hence R(e) 0, and so 

> 0. Q.E.D. 

A firm "takes over the market" if it operates at a level that induces the other 
firm to drop out. We next demonstrate that, in response to q > 0, a firm either 
takes over or drops out of the market. 

LEMMA 5: In a symmetric MPE, for all q and allpositive realizations r of R(q), 
R(r) = 0. 

8 This argument may seem to rely on prices becoming negative. However, as long as the marginal 
cost c is positive, profit is unbounded from below even if the price is bounded below by zero. Firm 
i's set of possible quantities must be big enough to include all the rn's. 
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PROOF: Suppose that, contrary to the Lemma, there exists a positive realiza- 
tion r' of R(r). From Lemma 3, r > q and r^ > r, a contradiction of Lemma 1. 

Q.E.D. 

We are nearly ready to establish our main proposition, which asserts that, for 
any 8 > 0, there exists a unique symmetric MPE and exhibits that equilibrium 
explicitly. To state the proposition, we consider the equations 

3 
(6) r(q, q) + _ (q,?) = O, 

(7) T(q) = argmax ( r(4, q) + 8rr(q, 0) }, 

32 

(8) gT( q, q ) + SJ( q,O?) + - 7Tm_ , 

32 

(9) r(T(q), q) + Sr (T(q), 0) + 1 ; m - f ) 0 

where 7T(x, y) = 7T1(x, y) and r m is d2/4. 

PROPOSITION 2: There exist numbers 81, 2 E (0,1) such that, if 8 is the firms' 
discount factor, the unique symmetric MPE of the game with instantaneous profit 
given by (1) and (2) is 

0, q > q* 
(10) R(q)= if i< 8 <1, 

q*, q < q* 

0,,q>q** 

(11) R(q) = q**,q q<q** if 82 8<;1, 

T(q), q < q 

and 

0, q> q*** 
(12) R(q) = if 0<8<32, 

tT(q), q< q*** 

where q* q** and q*** are the largest of the roots of (6), (8), and (9) respectively, 
and q solves T(q)= q**. 

PROOF: Let q be the deterrence level of Lemma 4. 

CASE I: q- > q m. If q < 4 then there exists a positive realization r of R (q). 
From Lemma 5, R(r) = 0. Hence from the definition of 4, r > q-. We have 

V(q) =igr(r, q) + ?W(r). 
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If r > 4, suppose that a firm responds to q with (r + 4)/2 rather than r. Since 
q > qm, 7r((r + 4)/2, q) > 7r(r, q). Furthermore, since (r + q)72 > 4, R((r + 
q)72) = 0, and so W((r + q-)/2) > W(r). Therefore (r + q)/2 generates higher 
profit than r, a contradiction. We conclude that for q < q, the only positive 
realization of R(q) is 4. Hence, from Lemma 1, R(q) = q for all q < q. From 
Lemma 5, R(i) = 0. Therefore, V(#) = 0. Now for q < q, 

1-3 

Because 7T(q, q) is decreasing in q, we have V(q) > 0 for all q < q. Furthermore, 
for all q > q we must have 

3 
7T(qg q) + i 7rT(q,0) < 0, 

1 -3 

otherwise R(q) # 0. Hence q must equal q*, the greatest root of (6). From (6) 

d+ Vd 2- 4(2-38)f 
(13) q* 2(-3 

Thus because 4 > qm = d/2, (13) implies 

(14) V 2d2-(2d2+4f)8+8fS0. 

Notice that because d2 > 4f, (14) holds for 8 = 1. Since it clearly does not hold 
for 8 = 0, there exists 81 E (0,1) such that it holds if and only if 8 E [81, 1). Thus 
q > qm implies that 8 E [81, 1) and that (10) holds. Furthermore it is clear that for 
8a < 8 < 1, (10) defines an MPE. 

CASE II: q4 < qm. By the same argument as in case I, R(q) > q for all q < q. 
In particular, since monopoly profit is the highest conceivable profit level per 
period, R(O) = qm 

Now suppose that for q < q, r is a realization of R(q) but r # max { T(q), q}, 
where T(q) is given by (7). Then r # T(q), because r > q. But since 

32 

V(q) = 7T(r, q) + 87T(r,0) +o (7Tm -f ) 

it is clear that discounted profit could be raised by choosing rP(> 4) equal to q or 
T(q). We conclude that 

R(q) =max{ ,T(q)} 

for q < q. 

SUBCASE A: j> T(q). Then, for q less than q, 
32 

(15) r(4, q) + 87r(40) + 1 ;(m -f ) > ?. 

The inequality reverses for q > 4. Hence 4 = q**, where q** is the larger root of 
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(8). From (8), 

(1 + 8)d+ (1 + 8)2d 2 f4(2:88) (i- 82d2) 
(16) q** = 2(2+8) 

Because 4 < qm, we know from case I that 8 < 81. But from (16) we know that 
there exists 82 E (0, 81) such that 

d q** 
q>T(q**) =2 2(1+8) 

holds if and only if 8 E [82, 81). Thus 4 < qm and 4 > T(4) imply that 8 E [82, 81), 
that 4 q**, and that R(q) = max {q**, T(q)} for q < q**. Now for 8 E (82, 81), 
q** > T(q**), and there exists q < q** such that q > T(q) if and only if q > q. 
Hence R(q) takes the form (11). Furthermore, if 8 E [82, 81) and R(q) is defined 
by (11) it is straightforward to verify that (R, R) constitutes an MPE. 

SUBCASE B: 4 < T(4). Then, for q < 4, 
82 

1(T(q), q) + 8(T(q),0) + 1 (Im f) > 0, 

with the inequality reversed for q > 4. Hence 4= q***, the larger root of (9). By 
elimination, we conclude that if 4< T(4), then R(q) is defined by (12) and 
8 < 82. Conversely, one can easily check that for 8 < 82, (R, R) with R defined by 
(12), constitutes a symmetric MPE. Q.E.D. 

Proposition 2 shows that, regardless of the discount factor, equilibrium takes a 
simple form. Namely, there is a deterrence level 4, such that if a firm's rival is 
currently operating at or above this level, the firm will produce nothing. How- 
ever, if the rival falls short of 4, the firm will operate at least at the level 4. Thus, 
there is a unique steady-state outcome wherein the single firm in the market 
operates at the level max { 4, qm }. Moreover, starting from any other position, 
that steady-state is reached in a maximum of three periods. 

The deterrence level 4 monotonically increases in the discount factor 8 (and 
decreases in the fixed cost f). When 8 is comparatively high (greater than 81), 4 
is above the monopoly quantity qm (see Figure 1). That is, to drive out its rival or 
deter it from entering, a firm must operate above the monopoly level. If the firm 
actually uses all the capacity it has installed,9 it, therefore, charges less than the 
monopoly price. Given these restrictions, the firm will produce exactly 4. This is a 
result reminiscent of the limit pricing literature (see Gaskins (1971), Kamien and 
Schwartz (1971), and Pyatt (1971)): an incumbent firm sells at a price sufficiently 
low that the immediate short-run losses of entry outweigh the longer run gains. 

9 This will be the case, for instance, if the marginal cost c reflects primarily installation rather than 
operating expense. 
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q2 

qm q 
FIGURE 1. 81 < 8 < 1. 

(Dotted lines denote firm l's reaction function; solid lines denote firm 2's reaction function.) 

Since 4 must satisfy (6) notice that, as 8 tends to 1, vl(q, 0) tends to zero. That 
is, instantaneous profit is driven down to the competitive level. Hence our model 
confirms the heuristic stories of Grossman (1981) and Baumol, Panzar, and 
Willig (1982) if firms place sufficient weight on future profits. 

Our conclusion differs from that of Eaton and Lipsey (1980), although those 
authors' model shares with ours the property that instantaneous profit tends to 
zero as the length of commitment shrinks. Eaton and Lipsey allow for only one 
level of capital and do not obtain our "contestability" conclusion that instanta- 
neous output/capacity tends toward the socially optimal level as the threat of 
entry increases. Indeed, in their model, profit is driven to zero because of the 
accumulation of socially useless capital. (Of course, our result relies on the 
"exact-Cournot form." That is, the firms are supposed to choose prices that clear 
the market given their capacity. As we note in footnote 9, this property holds if 
the marginal cost of investment in capacities is sufficiently large. For smaller 
investment costs, results intermediate between those of Eaton-Lipsey and ours 
would hold.) 

When the discount factor is less than 81, the deterrence level is below the 
monopoly level (see Figures 2 and 3). Hence, the steady-state quantity is the 
monopoly level itself, a result in keeping with the barriers to entry tradition. How 
a firm takes over the market from its rival depends on the discount factor and the 
rival's quantity, q. The firm could always drive the rival out by choosing q. 
However, for moderate discount factors (82 < 8 < 81) and low values of q or for 
low discount factors (8 < 81) and any q (less than q), the firm prefers to operate 
above q, namely at T(q). T(q), defined by (7), can be thought of as the optimal 
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q2 

q m 

-II q~~~~~~~~~~~~~~~~ 

I ~ s R 

q q qm q 

FIGuRE 2. 82 < 8 < 81. 

q2 

qm 

q 

qm 
FIGuRE 3. 0 < 8 < 82. 
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" two-period reaction" function. It is a firm's best response to q in a game with a 
two-period horizon, given that the other firm does not produce in the second 
period. 

We ought to mention that although Proposition 2 exhibits the unique symmet- 
ric MPE, there are also, for sufficiently large fixed costs and discount factors, 
exactly two other, highly asymmetric MPE's. Specifically, for such costs and 
discount factors, if firm 1 always uses its two-period reaction function, then firm 
2 will always stay out of the market. Conversely, if firm 2 never enters, the 
two-period reaction function is optimal for firm 1. Thus this pair of strategies is 
an MPE, and so is the pair with the roles of the players interchanged. 

PROPOSITION 3: There exist 8 E (0, 1) and f < vm such that if 8 5 < 1 and 
f < f < 7Tm, there are exactly two asymmetric equilibria: 

(R', R2) = (T,O) 

and 

(R, R 2) =(0, T), 

where T satisfies (7). 

PROOF: See the Appendix. 

Notice that in these asymmetric equilibria, the firm remaining in the market 
ultimately operates at the monopoly level even if 8 is near 1. Thus, if one does 
not accept our above justification for emphasizing the symmetric equilibrium, one 
may place less weight on our contestability conclusions. 

Our uniqueness result depends, of course, on the Markov assumption. For the 
usual "Folk Theorem" reasons, there are many symmetric perfect equilibria in 
this model that are not Markovian. For example, there is one in which the firms 
take turns operating at the monopoly level. Despite our defense of Markov 
strategies, therefore, one might wonder why the firms do not "agree" to adopt 
this more profitable equilibrium in preference to the Markov equilibrium. 

One answer might be that tacit collusion between duopolists arises in in- 
dustries where each firm expects the other to remain in the market for a long 
time. But if only one firm ends up operating in the long run, the opportunity for 
collusive behavior may be smaller (admittedly, this is an informal argument that 
awaits rigorous treatment).'0 Another possible explanation is that alternating 
monopoly is disadvantageous because of the cost of entering and reentering the 
market. This line is pursued in the following section. Finally, one might interpret 
our infinite-horizon model as the limit of a sequence of finite-horizon models as 
the horizon grows (we stress this interpretation in Maskin-Tirole (1987)). We 

10 This response does not apply to the price-setting model of our companion paper, where both 
duopolists are present throughout. As we shall see, however, Markov equilibria themselves are 
collusive in that model. 
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conjecture that the unique limit of the finite-horizon equilibria is our symmetric 
MPE (this is certainly the case in the small fixed cost model of our (1987) paper). 

4. ENDOGENOUS TIMING 

We admitted in the introduction that the imposition of alternating moves is 
artificial. There seems no reason why, in principle, firms could not move 
simultaneously.11 In this section we extend the alternating moves model to allow 
the relative timing of firms to be endogeneously determined. There is a variety of 
alternative ways such an extension might be made, depending on the particular 
technological or contractual reasons why firms are committed in the short-run. 
Here we discuss two possible endogenous timing models. Although they are 
highly stylized, they suggest that our results may be robust to more satisfactory 
constructs. 

In our first pass at endogenous timing, we abandon the assumption that firms 
alternate. We will continue, however, to suppose that time is measured discretely, 
and so the intertemporal profit functions are the same as before. Firm 1 (firm 2) 
is no longer constrained to move only in odd- (even-)numbered periods. Nonethe- 
less, when a firm does act, it remains committed to that action for two periods.'2 
If in any period a firm does not have a commitment pending it is free to move. 
Failure to do so amounts to being out of the market for a period (and therefore 
corresponds to zero profit). Thus at any time where it is uncommitted, the firm 
can either move or select the "null action." 

From the point of view of a firm about to act, the payoff-relevant information 
is whether (i) the other firm is currently committed, and (ii) if so, at what level. 
We continue to require that strategies be Markov, i.e., dependent only on 
payoff-relevant information. Thus a Markov strategy for firm i can be described 
by the pair { Ri(.), Si}, where Ri'(-), as before, describes how firm i reacts to the 
other firm's current action and Si prescribes its move when the other firm is not 
currently committed. Both Si and R'(ai), for any action ai, are random 
variables that take their values in the union of the action space with the null 
action. 

Notice that if, along the equilibrium path, a firm chooses prices according to 
R'(-), the firms alternate in their moves (alternating mode). By contrast, when Si 
dictates i's equilibrium behavior, firms act at the same time (simultaneous mode). 

Markov strategies and equilibria are now more complicated than in the 
fixed-timing model. Nevertheless, in the two cases we consider in this pair of 
papers-the quantity model of this paper and the price model of Part 
11-steady-state equilibrium behavior remains essentially the same as before. 
This fact is established for the price model in our companion paper. The 

11 Of course, literal simultaneity is unlikely. However, that firms act in ignorance of other firms' 
moves is all that is needed for de facto simultaneity. 

12 More generally, we might imagine that the firm is committed for m periods. What is important 
is that m be greater than 1, i.e., the period of commitment should exceed the basic decision period. 
This is certainly true of firms constrained by contracts for labor, machinery leasing, or franchising. It 
is also likely to hold for firms that compete in prices by mailing price lists or who are pressured by 
their retailers not to change prices too quickly. 
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following observations for the quantity model with large fixed costs are proved in 
Maskin-Tirole (1982). 

First, for 8 near 1, there exists a simultaneous mode strategy S such that 
{R(.), S} defines a symmetric equilibrium, where R(.) is given by (10) in 
Proposition 2, and S is a random quantity choice (S has no arguments because, 
in the simultaneous mode, there is no payoff relevant variable). Starting at any 
initial configuration of actions, the firms switch to the altemating mode in finite 
time with probability one, and stay in that mode forever. The steady state output 
is q as defined in (6). Second, if we introduce an entry/reentry cost exceeding 
1T'(1 + 8) and the fixed cost is "sufficiently large,"13 (a slightly modified version 
of) R describes the long-run behavior of the system in the unique symmetric 
MPE of the endogeneous timing game. 

Let us now tum to a second way of endogenizing the timing. This model is 
highly special, but its simplicity allows us to derive the exogenous timing 
two-period commitment framework directly (not only as an equilibrium outcome 
as in the previous model). Specifically, let us now suppose that time is continuous 
and discounted at rate r. Instantaneous profit 7T1(al, a2) now represents a flow 
per unit of time. When a firm chooses an action, its period of commitment to that 
action is stochastic. We shall assume, in fact, that commitment lengths are 
governed by a Poisson process.14 Thus, in the time interval At, the probability 
that the commitment will lapse is X At, where X is the Poisson parameter. 

Random commitment may arise when capital has an uncertain working 
lifetime (here, as in the fixed-timing model, we assume that the fixed cost of 
capital is incurred up-front). Of course, the Poisson property-the assumption 
that the probability the machine will give out in the next instant is independent 
of its current age-is extreme. Its primary virtue is its simplicity.15 

In this model, the physical state of the system from the point of view of a firm 
about to choose an action is exactly as in the discrete framework. Thanks to our 
Poisson assumption, the length of time the other firm has been committed to this 
action is not relevant; only the action itself is. Hence, a Markov strategy is 
exactly the same as before. Indeed, formally, our continuous time model reduces 
to the two-period commitment, discrete-time framework of Section 2. To see this 
more clearly, note that the dynamic programming equations describing Markov 
perfect equilibrium have the same form in both cases. For instance, if firm 2 is 
currently committed to action a2 and firm 1 is about to act, the present 
discounted value of l's profit in the continuous-time model is 

V1(a2) = max {figl(al, a2) At + AAtWl(aal)e rt 
al 

+(1 - AAt)Vl(a2)er-rAt 

13 It is sufficient that 2ir'/3 <f. The entry cost rules out equilibria in which firms take turns being 
monopolists. 

14 We could introduce the possibility of a null action without appreciable change. 15 If we abandoned the Poisson assumption, a firm's reaction would also depend on the age of the 
other firm's machine. We believe, however, that the qualitative results of Section 3 would not be 
significantly altered in this more elaborate model. 
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where W1(a1) is firm l's present discounted profit assuming that it is currently 
committed to a' and firm 2 is about to act. But this equation can be rewritten as 

Vl2= 1(a2)lnax((') V(a ) maxt +r + j Wl(al)}, 

which is the exact analogue of the equation we obtained in Section 2B. 
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APPENDIX 

PROPOSITION 3: There exist 8 e (0, 1) and f< ' fm such that if 8 < 8 < 1 and f f< Im, there are 
exactly two asymmetric equilibria: 

(R', R2) = (T,O) 

and 

(R1,R2) = (O,T), 

where T satisfies (7). 

PROOF: We begin by observing that, for 8 sufficiently high and f (5/7)IT', firm 1 must lose 
money over the two periods if it plays positively the first period and firm 2 responds with its 
" two-period reaction function." That is, 

(Al) sup {(&7 (q,O)) + 8(rl (q, T(q)))} < 0. 
q>O 

Substituting for &rl in the left-hand side of (Al) and using 

d q 
T( q) =- - 

2 2(1?+8)' 

we obtain 

max (q(d -q) -f+ 8 q(-- q) f q 
2 2(1?+8) 

which for 8 = 1 is negative if 

9 9 
(A2) f >-_d2 =_ 7M. 

56 14 

Hence, by continuity, (Al) holds for 8 in a neighborhood of 1 if f> (5/7)sm. 
We next assert that, for sufficiently high 8 and f, the counterpart of Lemma 5 for asymmetric 

equilibria holds (the proof can be found in our (1982) working paper). 

CLAIM: For sufficiently high 8 < 1 and f< irm, R2(r) = 0 for all positive realizations r of Rl(q) 
and all q, if R1 and R2 are equilibrium dynamic reaction functions. 
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Consider an asymmetric Markov perfect equilibrium. For each i, let 4'-inf { q IRJ(q) =0) 
(conceivably 4' could equal 0 or oo), j * i. Suppose first that 0 < q4, 42< 0. Let 

41 = limsup { rlrE R'(42 - 
e ?0 

By definition of -2, r'(E)=sup{rIrER'(42-E)}>0 for any e>0. Hence from the above claim 
and Lemma 1, R (r'(e)) = 0, and so r1(E) > 4'. We conclude that 4' > 4'. If 4' > qm, then 4' = 41, 

otherwise for small E, firm 1 could reduce its output, raise its short-period profit and still deter entry 
in response 42- E. If 41 < q', then 4' < qm, and so 41 = max (if, T(42)}. 

There are therefore three possibilities: 
(i 41 = 41 > n 

(ii) qm > 41.=. q'> T( q2) 

or 

(iii) q > . = T(42) > 41. 

We first rule out cases (ii) and (iii). If, to the contrary, either case holds, then if firm 1 plays qfl + e, 
firm 2 will not produce. Hence firm 1 can earn essentially monopoly profit indefinitely. Thus for high 
discount factors 42 > qn1. If q2 = 00, then 

[ ~~~~~~~~2 
lim -(-q )q+ (_l)l+_ 7m_f ]> O 
4L? 1-8 1 

which is plainly false. Hence q2 < oo. Then 

82 
(A3) (d 42-ql )ql + 8(d )ql tm f) = o. 

Similarly, 

(A4) (d - 4'-2)42?+ 8 (d-42)42_- 0. 

Now as 8 tends to 1, 42 must grow indefinitely if (A3) is to hold. But (A4) clearly cannot hold for 
arbitrarily large 42, and so, for large 8, cases (ii) and (iii) are impossible. 

We conclude that either 

(iv) 4'>qm, i=1,2, 

or 

(v) 4=-0 or 420=0 

If (iv) holds then 

(A5) (d- 41 42)41 + 8 (d- 41)41 
f 

=(d- 1-42)-2 + 8 
(d-42)42- 

f 

=0, 

which implies ql = q2, violatin2_ 
asymmetry. 

Thus (v) must hold. If 4 =0, then R2(q) = T(q). From (Al), we deduce that R'(q) =0. 
Similarly 4 = 0 implies that (Rl, R2) = (T, 0). Q.E.D. 
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