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To model the evolution of strategic intelligence, player types are drawn from
a hierarchy of '‘smartness’’ analogous to the levels of iterated rationalizability.
Nonrationalizable strategies die out, but when higher levels of smartness incur
maintenance costs, being right is always as good as being smart. Moreover, if a
manifest way to play emerges, then dumb players never die out, while smarter
players with positive maintenance costs vanish. These results call to question
the standard game-theoretic assumption of super-intelligent players. Journal of
Economic Literature Classification Numbers: B40, C70, C72, C73. 1993 Academic

Press, Inc.

l. INTRODUCTION

The concept of ‘‘rationality’” is problematic for multi-decision-maker
problems (i.e., games). Many games have multiple Nash equilibria, but
even when there is a unique Nash equilibrium, rationality alone (and even
common knowledge of rationality) is often insufficient to predict the Nash
equilibrium solution (Tan and Werlang, 1988; Brandenberger, 1992).

Recently fundamental questions have been raised about what it means
to be a ‘‘rational and intelligent’” player' in a game (Reny, 1986, 1992;
Binmore, 1987; Basu, 1988, 1990). With only a handful of exceptions,
game theory has taken as an implicit axiom that all players are super-
intelligent, i.e., possessing omaicient powers beyond those supposed in
single decision-maker problems. For example, in many games, all players’

* The author gratefully acknowledges financial support from the CentER for Economic
Research, Tilburg University, while visiting there in 1991, Eric van Damme, Vince Crawferd,
Reinhard Selten, and Jérgen Weibull for encouragement, and anonymous referees for chal-
lenging comments. The usual disclaimers apply.

' This phase was coined by Myerson (1991, p. 4).
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priors and the selection rule for the solution concept must be common
knowledge. The exceptions (e.g., Rosenthal, 1981; Kreps et al., 1982;
Fudenberg and Maskin, 1986) have found that super-intelligent behavior
can be fundamentally different when there is even a small probability of
irrational players and is very sensitive to the ad hoc specification of the
irrational behavior.

To debate what it means to play ‘“‘intelligently,”” we must also give
meaning to “‘unintelligent™’ play and then be prepared to demonstrate just
how intelligent play is superior to unintelligent play in an environment in
which it is possible for some players to be unintelligent. Moreover, we
should have a model that justifies the assumptions about unintelligent play
that underpin the derived intelligent behavior.

The methods of evolutionary game theory are well-suited for this task.?
To illustrate, consider a symmetric two-player game. We can conceive of
a large class of behavioral rules, including constant-strategy rules as well
as sophisticated multi-stage-reasoning rules. Suppose there is a very large
population of potential players with an initial frequency distribution of
behavioral types (rules). In the first period, players are randomly matched
a large number of times so each behavior type receives its expected
payoff against the population distribution. Between the first and second
periods, each behavioral type reproduces at a growth rate proportional
to its payoff, thus generating a new frequency distribution of behavioral
types at the beginning of the second period. This process is repeated
indefinitely. The obvious questions include: Which types survive and
which die out, do the more intelligent types gain in population relative to
the less intelligent types, does the frequency distribution converge, and
if so to what?

Granted, we can reinterpret extant evolutionary game theory models
as evolution with intelligence. That is, the growth of a strategy type can
be reinterpreted as arising from conscious decisions of intelligent players
to switch to better performing strategies. However, in this reinterpreted
model, the intelligent trait itself (the switching behavior) is not subjected
to evolutionary selection, and therefore the model tells us nothing about
the evolution of intelligence. In contrast, the alternative model sketched
above and to be developed in this paper is about the evolution of intelli-
gence.

To impilement this research program, we need to specify the class of
behavioral rules used by players in the population. The specification of
the unintelligent players is obvious. For each strategy of a specific game,

>

’ For an introduction to the literature, see van Damme (1987, Chap. 9), Hofbauer and
Sigmund (1988), Samuelson (1988). Friedman (1991), Selten (1991b), and Samuelson and
Zhang (1992). For an innovative application, see Blume and Easley (1992).
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we associate a player type who will always play that strategy in that
game. The specification of intelligent players on the other hand is far from
obvious, and we claim only to have a reasonable beginning model (see
also Rosenthal, 1992). Henceforth, we use the term ‘‘smart’’ rather than
“intelligent,”” and we use the term “‘smart;” to refer to the unintelligent

players.
Our approach is to model a hierarchy of evermore thoughtful and
informed smart players, called smart,, smart,, ... , who reason analo-

gously to the iterative levels of ‘‘BP-rationalizability’’ (Bernheim, 1984;
Pearce, 1984) and process successively more inclusive population infor-
mation. A smart; player can reason about which strategies are first-
level rationalizable conditional on his information about the population,
but does not assume that other players can reach these first-level
conclusions and does not reason further (the latter steps illustrate what
we mean by higher-level reasoning). Similarly, a smart, player can
reason about which strategies are first-level rationalizable conditional
on her information; then given information about proportion of the
population that is smart, or higher, she can reason about which strategies
are second-level rationalizable conditional on her information, but she
does not assume that other players can reach these second-level conclu-
sions and does not reason further.

If we did not endow our smart players with some population information,
then our smart players could deduce no more than a modified version of
BP-rationalizability—modified to acknowledge the potential presence of
smart, players, which prohibits the iterative elimination of never-best
responses. But then a conclusion that smartness has limited survival fitness
could be readily dismissed as an artifact of the dearth of information
possessed by smart players. Part of the supposed advantage of being smart
is the ability to use information, so the endowments of information are
crucial to the ultimate performance; in contrast, an unintelligent player
could not perform well even if provided vast amounts of information. To
focus attention on the limits of reasoning in our hierarchial model rather
than differential information, we make the extreme assumption that all
players are perfectly informed about the entire distribution of smart types
in the population.*

Given this information, smart, players confine their choices to the *“first-
level rationalizable’” strategies: those that are best responses to some
probability distribution over other players’ strategies conditional on the

3 Our subsequent results that show that smartness does not have superior survival fitness
are strengthened by this assumption. Our results would also hold under the weaker assump-
tion that smart, players are perfectly informed about the distribution of less smart tyges,
but uninformed about equal and smarter types; this follows because a smart, player's limited
reasoning faculties render the latter information useless.
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information about smart, players. If there is a unique first-level rationaliza-
ble strategy, then smart, players choose that strategy.

However, more often than not, there will still be a large number of
strategies to choose from, and the evolutionary dynamics can be quite
sensitive to how this choice is made. For example, the ‘*equal chance”
rule will create a barrier that prevents convergence to nonuniform Nash
equilibria. Rather than impose arbitrary fixed rules, we take a flexible
approach. We suppose that, in addition to primary preferences over the
consequences of the game, each smart, player is endowed with a secondary
strict transitive preference ordering over the strategies and that this sec-
ondary preference is used to choose among the (first-level) rationalizable
strategies. Each distinct secondary preference order distinguishes a smart,
player’'s type, and there is an initial distribution of smart, players by type.
Then, the proportion of smart, players who choose a particular first-level
rationalizable strategy is the proportion of smart, players whose secondary
preference (restricted to the first-level rationalizable set) is for that strat-
egy. With this specification, evolutionary dynamics can operate on the
(secondary preference) types of smart, players, thereby making the popu-
lation of smart, players more adaptable than they would be with a fixed
decision rule.*

We continue recursively defining smart, players for all # = 2. There
are two senses in which a smart, player is smarter than a smart,_, player.
First, the smart, player reasons that no smart,_; player will choose a
strategy that is not (n — 1)-level rationalizable conditional on the popula-
tion information. Second, given this deduction, a smart, player’s informa-
tion allows him to predict the choice distribution of all less smart players.
Nonetheless, the smart, player is not smart enough to anticipate the behav-
ior of other equal or smarter players. To fully capture the notion of a
“transcendentally smart’’ player requires an infinite hierarchy and a
smart, player. (If this were not true, then the previously discussed prob-
lems in game theory would not have arisen.)

In Section 2, we formalize this model and derive several results about
the structure. In Section 3, we specify the evolutionary dynamics, and in

4 Another approach (e.g. Banerjee and Weibull, 1992) would be to assume that smart,
players play a Nash equilibrium of the **'modified’’ game (taking account of the known play
of smart, players). We do not follow this approach for several reasons. First, there may be
smarter players in the population who play differently. Second, there may be multiple Nash
equilibria, in which case selecting any one presupposes a level of coordination (and super-
intelligence) that should be explained by the model rather than assumed. Third, even when
there is a unique Nash equilibrium, the principles of rationality alone do not compel that
solution. Evolutionary models that do not permit players to anticipate the current response
of other players can be soundly criticized (Selten, 1991a). However, our model does allow
such anticipation within the hierarchy.
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Section 4, we present our results. Section S concludes, and all proofs are
relegated to the Appendix.

2. THE FORMAL STRUCTURE OF THE MODEL

Let G = (A, w) be a symmetric finite two-player game, where A is a
finite set of actions, and 7 is the payoff matrix. Let M(X) denote the set
of probability measures on a finite set X. Let ? denote the set of all strict
transitive orderings of A.

The population of players consists of smart, players and smart,
players for n = 1. Let y,, denote the proportion of the whole population
that consists of smart, players who always choose a € A. Similarly,
let y,, denote the proportion of the whole population that consists of
smart, players with secondary preference & € %. Further, let y, =
{y”}aEA* Yn = {Ynk}kef- and y = {yn}nz()' By deﬁnitionv EuEA You + Enzl
Zic» Yu = 1, and the state variable y completely describes the player
population.

We also want to know the distribution by smartness category. The
proportion of the population consisting of smart, players is s, = 2,4 You»
and for n = 1, the proportion of the population consisting of smart, players
is s, = Z.cp Vo Note that 2, o5, = 1.

Given s, > 0, the subpopulation of smart, player types is distributed
among the strategies according to f, = y,/s, € M(A), with f,, denoling
the proportion of smart, players who always play strategy a € A. Similarly,
given 5, > 0, the subpopulation of smart, players is distributed among
the % orderings according to f, = v,/s, € M(%), with f,, denoting the
proportion of smart, players with secondary preference type k. Later we
add a time index to these vectors.

2.1. Player Behavior

It is first convenient to introduce some notation-saving definitions. Let
fB: M(A) — A be the pure-strategy best-response correspondence. For
each b € B C A, let P(b, B) = {k € P|k ranks b highest in B}. In other
words, P(b, B) is the set of secondary preference types that rank strategy
b highest among the strategies in B. Note that {P(b, B), b € B} is a
partition of P.

We let u, = {u,,. ¢ € A} denote the distribution of smart, play. For
example, a smart, player simply plays his strategy type, so the distribution
of smart, play is f,; hence, ug = f;.

Letting R, = A, we recursively define (1) R,,, the set of n-level rationali-
zable strategies conditional on y, and (2) u,, for n = 1,
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R, = B(Q,), where Q, = 2., s;u; + (1 — 2, 5) M(R,_), (1)
and

0 foralia € R,, and

2iepiary Sk otherwise.

Moy = (2)

Q, is the set of probability distributions over A that are possible beliefs
for a smart,, player, given the information about all less smart players and
the restriction that a smart, player believes that an equal or smarter player
will never choose a strategy that is not (n — 1)-level rationalizable. The
properties of the O, sets are illustrated in Fig. 1 and explained further in
Section 2.2. R, is then the set of all pure strategies that are best responses
to some belief in ,. A smart, player then chooses the strategy in R, most
preferred according to his secondary preferences ordering; hence, we
have Eq. (2). Since u, is a recursive function of y, Eqs. (1)-(2) define
w(y) = {,(y)},-o. The aggregate distribution of strategy choices for the
whole population is

p(y) = 2, s,u,(y). 3

2.2. Properties of the n-Level Rationalizable Sets.

Figure | illustrates the construction of the Q, and R, sets. First, partition
the simplex M(A) into the pure-strategy best-response regions. Next,
locate f;,, and construct @, as a (1 — s,) scaling of M(A). [Note that the
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image of f; in M(A) coincides with the image of f; in Q,.] Then, R, consists
of the associated best responses that intersect Q,: {1, 2, 3} in Fig. [. By
construction, g = sypg + 5,1, liesin Q. Then, Q,isa (1l — s, — 5,) scaling
of M(R,), and R, consists of the associated best responses that intersect
O-: {3} in Fig. 1. Hence, R, = {3} for all n = 2. Consequently, p lies on
the straight line connecting g and the {3}-vertex of Q,. It is easy to see
that R, C R, , for all n = 1, and hence, {R,, n = 1} is a nonincreasing
sequence of nested sets.

Observe that if s, > 0 and f; is an interior distribution, then R, cannot
contain any weakly dominated strategies. Thus, smart, players will never
choose a weakly dominated strategy given an interior distribution of srnart,
players.

As a correspondence from y to A, R, for n > 1 is necessarily neither
upper or lower hemicontinuous, because the distribution of smart, | play,
“.-1» can change discontinuously. These potential discontinuities create
technical problems for the existence of a well-defined solution path of a
continuous-time dynamical system [e.g., Champsaur er al. (1977) require
upper hemicontinuity]. While these problems could perhaps be handled,
they are beyond the scope of this paper, so we opt for the simpler environ-
ment of discrete-time dynamics, in which unique solution paths always
exist.

3. THE EvoLUTIONARY DYNAMICS

To represent the strategy choice of each type of smart, player, let ¢-(n,
k) = {0 € M(A)|o, = | iff a is most preferred relative to R, by smart,
type k}. We also let o(0, k) denote the strategy choice of the smart, players
by letting the k index range over A (instead of ). For n = 1, note that
o(n, k) depends on R,, which is a deterministic function of y.

Given payoff matrix 7 and aggregate play p, then =p is the vector of
expected payoffs to each strategy when matched with an opponent ran-
domly drawn from the population of players. The expected payoff aver-
aged over the population is p - wp. The expected payoff to a smart, player
of type k is o(n, k) - wp.

Typically, evolutionary models assume that the growth rate of a species
type is proportional to its expected payoff (Friedman, 1991; Nachbar,
1990). It follows then that the growth rate of the population share of a
species type is proportional to the difference between its expected payoff
and the population average payoff. We adopt this approach and assume
for all n = 0 that

4+ D=y,
nk
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where »(t) > 0 is the adjustment speed parameter, and ¢ denotes the
temporal period. The right-hand side of the Eq. (4) is a deterministic
function of the state variable y(¢), so given an initial condition y(0), Eq.
(4) defines a unique dynamic path. While the adjustment speed parameter
has no affect on the direction of the path at any point, it does affect the
length of each step. We hereby assume that v(r) is always sufficiently
small that y,.(¢z) = 0 for all 7.° Moreover, it is well-known that high adjust-
ment speeds can severely destabilize a system because of overshooting.
To reduce the overshooting problems, we are interested in the behavior
of Eq. (4) for low adjustment speeds.

We have adopted a discrete-time dynamic model to avoid technical
problems due to discontinuities on the right-hand side of Eq. (4). Doing
so guarantees the existence of a well-defined solution path. However, the
reader may wonder whether the technical problems of the continuous-
time version might manifest themselves in some other form (such as insta-
bilities) in our discrete-time version. We believe not because we can
formulate a continuous-time approximation to Eq. (4) with unique solution
paths.®

An artifact of an evolutionary dynamic system specified in terms of
growth rates is that if y,,(#,) = 0. then y,(¢) = 0 for all ¢t > ¢,. In other
words, player types that do not exist or that die out can never reemerge.
Therefore, initial conditions that have v, (0) = 0 for some (j, k) are of
limited interest. We henceforth limit attention to ‘‘semi-interior’” initial
conditions of the form: for all k € %, y,,(0) > 0 for all n < n* + 1 and
Yx(0) = 0 for all n > n*, where n* € {0, 1, ..., «} is the maximum level
of smartness in the population.

4. RESULTS

There are two types of results: one concerning the evolution of aggregate
play p, and the other concerning the evolution of the population by smart-
ness, s,. The first result identifies a set of strategies that will eventually
never be played. This result does not require convergence of the solution
path.

S Define K, = sup{(p — ¢,) - mp|p € M(A) and a € A}, where e, puts probability one
on strategy «. Then. from Eq. (4), as long as »(1) < /K, y,.(1) = Q.

¢ To do so, suppose that every smart, of type k {(n = 1) unknowingly receives slightly
distorted information about y. Further, suppose the information received is, say, uniformly
distributed over an e-ball around true state and that each player's distortion is independent
of all other player’'s distortions. Then, integrating over this uncertainty, u, and hence p
would be Lipschitzian continuous functions of v. In addition, the definition of o (n, &) would
be modified, and it too would be a Lipschitzian continuous function of y.
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PropPosITION 1. If a € A is not BP-rationalizable, then starting from
any semi-interior y(0), for sufficiently slow adjustment speeds, p(t) — 0.

An analogous result for standard continuous-time evolutionary dynamics
has been shown by Samuelson and Zhang (1992). It does not necessarily
hold for discrete-time dynamics with arbitrary adjustment speeds (see
Dekel and Scotchmer, 1992; Cabrales and Sobel, 1992).

An immediate implication of Proposition 1 is that all smart, types associ-
ated with non-BP-rationalizable strategies die out. On the other hand,
Proposition I does not imply that smart, types whose secondary preference
ordering ranks the non-BP-rationalizable strategies highest die out. Since
eventually a non-BP-rationalizable strategy is not in R,, the position of
these strategies in a smart, player’s secondary preference ordering is
irrelevant to the evolutionary dynamics.

We consider next the class of games that have a unique BP-rationalizable
strategy, say a*.

ProrosiTION 2. If game G has a unique BP-rationalizable strategy,
a*, then for sufficiently slow adjustment speeds (i) p..(t) — 1 and f, (1)
—> 1, and (ii) there is a & > O such that 8 < s, (1) <1 — & for all t and all
n<n*+1.

In other words, all smart, player types except the a* types die out. Smart
players do not die out, but neither do they dominate. Intuitively, the
smart, player who happens to be genetically disposed toward a* is just
as “‘fit’’ as any smart, player; i.e., ‘“being right is just as good as being
smart.”’

We now generalize Proposition 2 to cases where G has multiple BP-
rationalizable strategies. When lim inf B[p(¢)] # J, there is at least one
strategy that is always a best response after some finite time, so we say
that a “*manifest way to play the game emerges."

ProprosITION 3. Iflim inf B[p(2)] # O, then there is a 8 > 0 such that
d<s,(t)y< 1l —=38foralltand all n < n* + 1.

In other words, if a manifest way to play the game emerges, then no
smart, or smart, player has a superior (or inferior) survival fitness. Again,
we have the principle that being right is just as good as being smart.

Proposition 3 implies that if we are to find cases for which, say, smart,
players die out, we must focus on the nonconvergent (often chaotic) cases
or convergent cases for which the best-response correspondence cycles.
Even if we succeed, the victory will be soured by the observation that
despite the superior survival fitness of some smart, players, a manifest
way to play the game does not emerge.

When the maximum level of smartness in the population is finite, we
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have a more remarkable result that does not require any conditions on
the dynamic path.

PROPOSITION 4.  Given n* < =, there exists a 8 > 0 such that sy(t) =
S infinitely often.

The intuition behind this result is that because the R, sets are nested,
some of the smart, types are mimicking the smart, ., players and hence
must do as well. Thus, if s,() — 0, then s,(¢) — 0 for all n = 1, but this
is clearly impossible since we always have %, ., s, = 1. Thus, with a finite
upper bound on smartness, smart, players will never be driven out.

One way to rationalize a finite n* would be to assume there are mainte-
nance costs, ¢,, for smart, players, with ¢, > ¢,_, forall #n = 1 and lim,_,,
¢, > max . Letting ©(¢) = X, 5,(1) ¢,, we would add [¢(1) — ¢,] inside
the brackets of Eq. (4). Then, for sufficiently large n, Ay, (¢)/y,.(t) < 0
for all K € %; hence, s5,(r) — 0. The consequences of costly maintenance
is more dramatic for a wide class of cases.

PROPOSITION 5. For any n = 1, if p(t) = p* and/or im inf B(p(1)] #

&, and if ¢, > 0, then s (1) — 0.
Thus, if aggregate play converges and/or a manifest way to play emerges,
then costly maintenance drives smart, players to extinction.” In other
words, being right is strictly better than being smart when smartness
carries maintenance costs.

Notwithstanding the above remarks, Proposition 4 appears to leave
open the possibility that, when n* = x and there are no maintenance
costs, all mass may escape to infinity: i.e., there may exist an increasing
divergent sequence {m(¢)} such that % _, , s,(t) = 1. In other words, a
dominant transcendentally smart player would evolve—a result that would
vindicate traditional game theory, albeit a manifest way to play the game
would not emerge.

It also remains an open question whether or not smart, players can be
driven out. The difficulty in trying to prove that a smart, player will
not be driven out (or that mass can escape to infinity) is that the R, (1)
correspondence is discontinuous, and when a new strategy becomes n-
level rationalizable, a relatively large proportion of the smart, players
may switch to this strategy, but it could actually perform worse than
average.

5. DiscussioN

We have developed a hierarchial model in which players have varying
degrees of reasoning abilities or smartness and for which an infinitely

" Conlisk (1980) in a related model with **optimizers’* and **imitators’ showed that imita-
tors survive iff maintenance costs are sufficiently large.
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smart player possesses all the reasoning abilities of the super-intelligent
player assumed in game theory. We supposed that smartness is subject
to evolutionary selection pressures and asked whether smartness has supe-
rior survival fitness. Our findings were negative: Generally, being right is
just as good as being smart.® Smart, players are never driven out by smart
players whenever (i) a manifest way to play the game emerges, (ii) when
there are increasing maintenance costs for smartness, or (iii) when there
is a finite upper bound on smartness.

We have focused our analysis on a fixed (albeit arbitrary) finite, symmet-
ric, two-player game. Given our general definition of smartness, we could
be criticized for this focus on a fixed game rather than on a distribution
of games in this class. For example, we could consider a set of M <« M
symmetric games defined by a diverse but finite set of payoff matrices
and a probability distribution on these games. In each period, players
are randomly matched and a payoff matrix is drawn. The evolutionary
dynamics would depend on the average performance of all player types
over all possible games in this class.

It is reasonable to conjecture that smartness would have superior sur-
vival fitness over smart, players in this environment. However, this result
would be due to the unreasonable limitations of smart, players. The funda-
mental characteristic that distinguishes any smart player from a smart,
player is not the ability to know the game variables, but the ability to
think about how other players will behave. That a ‘*dumb’’ player who
cannot even discriminate between different games might die out is hardly
a victory for the super-intelligence axiom. To permit a smart, player to
discriminate between the alternative games, we can introduce more com-
plex “‘genes.’” Given N possible games, and M strategies, there would be
MV possible genetic types. (The secondary preferences of the smart,
players should also be expanded analogously.) Now the apparent inferior-
ity of smart, players disappears, and the principle that being right is just
as good as being smart would seem to hold.

Of course for an infinite set of possible games, we would need an infinity
of types, and it may be reasonable to restrict smart, players to a finite set
of types. However, it is not obvious that these smart, players would be
driven out. The smart, players’ discrimination abilities could partition the
space of payoff matrices in a way that minimizes the consequences of the
incomplete information. (For example, for 2 X 2 games it may suffice to
have a three-part partition that recognizes when each of the strategies is
strictly dominant.) In general, it may be adequate to have the cardinality

¥ A referee pointed out that a similar model in which all players have unbounded reasoning
abilities but possess hiearchial sets of population information would yield analogous results
with the interpretation that being right is just as good as being informed.
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of the partition equal to 2% — 1 corresponding to each possible nonempty
subset of A.

For the sake of argument, suppose in this infinitely diverse environment
of games and finite smart; types that the smart, types are driven out. Our
celebration will be tempered by the observation that after some finite
time, the smart, players will be virtually indistinguisable from the smart,
types confined to the R, set and hence no more fit. Moreover, for any
given game, these smart; players will be indistinguishable from the smart,
players of this paper. Therefore, we will not find that “‘the smarter, the
better.”

Thus, our model does not provide an evolutionary foundation for the
usual assumption in game theory that all players are super-intelligent, and
it seems unlikely that any other model will satisfactorily meet this goal.
Future research should develop more realistic models of intelligence sub-
ject to evolutionary selection with the goal of developing a theory of
“‘intelligent’” play in an evolutionary context.

APPENDIX: PROOFS

Proof of Proposition 1. Let BP, denote the n'" level BP-rationalizable set: i.e., the subset
of A that survives »n rounds of elimination of never-best responses (or equivalently, since
we are focusing on two-player games, strictly dominated strategies).

(1) Take any & & BP,., so u,; = 0foralln = 1, and p; = 5,f,;. Since 4 is not first-level
BP-rationalizable, 3 ¢ € M(A) such that g - wp for all p € M(A). Let £ = min,{(g — ¢;) -
wp} > 0. Define

VI = ()T o Lfou(1%), (Al)

Note that V > 0 iff f,; > 0. Define AV(1) = V(1 + 1) — V(7). Then,

AV(’)_[/]H[V(I]] N Aﬁd(”_ Af()u(’) , "
vin - dt roun= [ Joalt) uQEA 4 ol o). (A2)

Note that, by virtue of the dynamic specification, Eq. (4), the expression in square brackets
in Eq. (A1) is equal to v{e, - wp — q - wp] < ~ve/2. Therefore, for sufficiently small v >
0, V(¢) is a Liapounov function; so by Liapounov's Direct Method fsee, e.g. LaSalle (1986)),
Joalt) — 0.

(2) Next take ¢ € BP,/BP,, so 3 ¢ € M(A) such that ¢ - wp > ¢, - wp forall p €
M(BP,). By virtue of (1), there exists a 7{ and an ¢ > 0 such that for all t > 1 and all p €
M(R\(1), (g — e;) - wp = &. Now p, = syfos + 51141, By the same methods used in (1), we
can show that fy;(1) — 0. Further, since f;,(r) — 0, for sufficiently large 7, 4 & R,(1); hence,
#y = 0.

(3) Repeating these steps for all levels of BP-rationality, we conclude that if @ & M.
BP,. then p,(1) — 0.
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Proof of Proposition 2. If G has a unique BP-rationalizable strategy a*, then it follows
immediately from Proposition 1 that f,..(¢) — 1. To prove the second part, first observe that
for all n = 1, R, (1) converges to {a¢*} in finite time, say r*. Thus, for all ¢+ > ¢*, all smart,
types play «* and, therefore, have identical growth rates, which is also the growth rate of
Yo+~ The poptlations of all these player types remain in constant ratio to each other for all
t > r*, and hence none die out. Further, since sy = y,«, smart, types do not die out either.
In other words, forall j < n* + 1,38 > Qsuch that § < s5(1) < 1 - 8.

Proof of Proposition 3. By the premise, 3 a* € 8(p*) N B(p()) C Ri(») forall j = |
and  sufficiently large. Therefore, all player types who rank «* highest, do not die out
and grow at the same strictly positive rate as yy,.. Therefore, 3 § > 0 such that s4(7) =
Your(1) = 8 for 1 sufficiently large. For n = 1, let k* denote the secondary preference type
that ranks a* highest. Then, similarly, 3 8 > 0 such that s,(1) = yy(¢) = & for ¢ sufficiently
large.

Proof of Proposition 4. (a) Suppose s,(¢) — 0. Then, observe that, for sufficiently large,
t, R\(1) differs from the first-level BP-rationalizable set only by deleting all strategies (if
any) that are never perfect best responses to some g € M{A); call this set PBP,. For each
a € PBP; and each & € P(a, PBP)), y|, and y,, have the same growth rate; hence, s,(f) —
0 implies s,(1) — 0.

Next, for sufficiently large ¢, R,(¢) differs from the second-level BP-rationalizable set only
by deleting all strategies (if any) that are never perfect best responses to some g € M(PBP);
call this set PBP,. For each ¢ € PBP; and each & € P(q, PBP,), y,, and y,, have the same
growth rate; hence, sy(7) — 0 implies s,(1) — 0. Therefore, by induction, sy(1) — 0 implies
s,y — 0foralln=1.

{b) Given n* < = and X, 5,(t) = 1 for all 7, we cannot have s4(¢) — 0. so there must
be a § > 0 such that sy(r) > & infinitely often.

Proof of Proposition 5. (a) If g* = lim inf 8] p(1)] # &, let a* € B*. Then, Ayg,(¢)/
Yoarlt) — Ay (1) v, () = ve, > 0. Therefore, yg,.(1)/y (1) — =; hence, y,{t) — 0.
(b) If p(1) — p*, let a* € supp( p*). Then, for all £ € (0, ¢,), there exists a ¢, such that
forall t > 1., {Bp(1)] — p(0)} - wp(r) < e. It follows that Ayg, (1) yy,«(1) — Ay, (D)y, (1) =
v(c, — €) > 0. Therefore, vy,(#)/ v,,(£) = =; hence, y,.(t) — 0.
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