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SIAM J. APPL. MATH. 

Vol. 21, No. 1, July 1971 

COMPUTING EQUILIBRIA OF N-PERSON GAMES* 

ROBERT WILSONt 

Abstract. The algorithm of Lemke and Howson for finding an equilibrium of a 2-person game 
is extended to provide a constructive procedure for finding an equilibrium of an N-person game by 
finding in succession an equilibrium for each of certain related k-person games, 1 < k _ N. 

1. Introduction. The purpose of this paper is to demonstrate that the 
algorithm of C. E. Lemke and J. T. Howson [1], originally formulated as a con- 
structive procedure for finding an equilibrium of a 2-person game, can, in fact, 
be extended directly to construct an equilibrium of an N-person game. Of course, 
the procedure requires the solution of multilinear equations in the general case, 
rather than simply linear equations as in the 2-person case, but presumably 
there are or will be numerical methods adequate to this task. Nash [3] gives an 
example of a 3-person game with rational data and an irrational equilibrium. 

The central idea is that, in general, an almost-complementary path leads 
to an equilibrium, just as in the 2-person case. Moreover, one can find a point 
on an almost-complementary path with which to initiate the procedure by 
constructing an equilibrium of an (N - 1)-person game. Hence, one can construct 
an equilibrium of an N-person game by constructing in succession equilibria of 
certain k-person games, 1 ? k ? N - 1. 

2. Formulation. We consider an N-person noncooperative game FN in 
normal form (cf. Nash [3] or Luce and Raiffa [2, pp. 170-173]). Let P = { 1, *.* , N} 
be the finite set of players, and for n E P let Sn be the finite set of pure strategies 
available to player n in the normal-form description. Then 7 = XneP Sn is the 
set of possible plays of the game. For each n E P and co E i we are given u, , the 
utility to player n from the play w. We assume without loss of generality that 
(neP)(wrc- )un < 0, and let an =-u% > O.' Define the array An = (an ).C 
with N attributes and positive elements (An > 0). 

A mixed strategy for a player n E P is a probability distribution, say 
n= (4)i, over his pure strategies in Sn; that is, (i E Sn) > > 0 and >jS = 1. 

Thus, Xn is an element of the face of the ISnI-dimensional unit simplex an, and 
Q is the probability with which player n uses his ith pure strategy. Define 

= XneP cn, the collection of mixed strategy combinations for the game. Also, 
for each player v E P and E . let -v(4) = { E , (n : V)n = Xn} , the sub- 
collection with player v's mixed strategy variable. In general, for any x E E', the 
Euclidean space of K = EneP I Snl dimensions, where x = ((x0)1AC )nep, let 

A(X) E a" n XJ i is Sn, n c P; 
X 

v = ifl 

An(x) = E AX(x)xn, ne P. 
ieSn 

* Received by the editors September 8, 1969, and in revised form January 23, 1970. 
t Graduate School of Business, Stanford University, Stanford, California 94305. This work was 

supported by the Atomic Energy Commission under Contract AT(04-3)-326 PA #18, and first 
appeared as Working Paper 163, Graduate School of Business, Stanford University, August 1969. 

Universal quantifiers are represented by parentheses; e.g., (n E P) means "for all n E P." 
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In particular, a mixed strategy combination 4 E_ yields an expected utility of 
-IA() to player n conditionally on his pure strategy i, and an unconditional 
expected utility of -An(). 

An equilibrium is a mixed strategy combination 4 e E for which 

(n c- P) (4 c- An)) An(: <-A"(: 

so that no player wishes to change his mixed strategy alone. Since I' could assign 
probability one to any one of n's pure strategies, it is readily verified that an 
equivalent definition is that (n e P) (i - S) AX() > An(4). Moreover, one can 
eliminate the restriction c E by transforming variables as follows: Define L H Av(4) '(N - ) 

(2) tX~~~~~n LAn(4)N - 2 

(2)=j 
n X = 1(n (:, n EP; 

then, for an equilibrium it is necessary and sufficient to find x, y E En for which 

(3) (n c-P) (i SJ xin > O, yin > O, Xi(x) -yin = 1, xinyi = O. 

The explicit derivation of (3) parallels the exposition of Lemke and Howson for 
the 2-person case. Ordinarily, if we are given x E E" we assume y to be defined 
implicitly by yi = AX(x) - 1. 

From a solution (x, y) to (3) one obtains an equilibrium 4 E 2. via the reverse 
transformation (n e P) 4n = (ZieX)- lXn. Consequently, the problem of con- 
structing a solution to (3) is the immediate subject of our investigation. 

3. Geometric characterization. For each player n E P let 

n = {x xc E',x _ 0,(i eSO)A X(x)> 1} 

and let Z* = nneP Xn. Clearly each Xn is closed and nonempty, since An > 0, 
and each Xn and Z* contain every solution to (3). Nash [3] has given a fixed- 
point proof of the existence of an equilibrium, so Z* is nonempty, although later 
we shall provide a constructive proof of this fact. 

It will suffice here to consider a pertinent subset of Z*, namely, the set Z 
of points from Z* for which xi (A7(x) - 1) > 0 for at most one pair (n, i), n E P, 
i E Sn . Such a point is said to be almost complementary, or (n, i)-almost-complemen- 
tary, and if x is (n, i)-almost-complementary but xi(AX(x) - 1) = 0 then x is said 
to be complementary. Clearly, Z contains all solutions to (3), and a point x E E' 
solves (3) if and only if x is a complementary point in Z. 

A point in E' is a vector of dimension K = >neP ISnl . On the other hand, 
a point in Z c E' is almost complementary, which requires that it satisfy at 
least K - 1 equalities of the form xi = 0 or AX(x) = 1, called the boundary 
conditions of Z*. Hence, one expects that ordinarily Z will be a graph of dimen- 
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sionality K - (K - 1) = 1. But to ensure this we impose the following restriction 
throughout.2'3 

Nondegeneracy assumption: No point in the nonnegative orthant of E' 
satisfies more than K boundary conditions, and no two points in the nonnegative 
orthant of En satisfy the same K boundary conditions. 

With this convention, Z is a unidimensional graph in E" and it is worthwhile 
to distinguish its nodes and arcs. 

A node of Z is a point in Z that is an extreme point of Z*; that is, it satisfies 
(precisely) K boundary conditions. Clearly, there is only a finite number of 
nodes of Z, and a point x E E" solves (3) if and only if it is a complementary node 
in Z. 

Similarly, an arc of Z, corresponding to an open edge of Z*, is the collection 
of points in Z satisfying some specified set of (precisely) K - 1 boundary condi- 
tions as one varies parametrically some value xn or yn in the open interval from 
zero, at an extreme point of Z*, to the first value at which another extreme point 
(if any) is encountered. Clearly, an arc "leaves" Z* only at an extreme point of 
Z*; that is, at a node of Z. Note that for N > 3 an arc is nonlinear; actually, 
multilinear. 

The idea of a constructive procedure, due originally to Lemke and Howson, 
is to proceed from one almost-complementary node to another, along the almost- 
complementary arcs, until a complementary node is found, which must solve (3) 
and yield an equilibrium. 

4. Almost-complementary paths. For some fixed player m E P and a pure 
strategy choice j e Sm, let Z(m, j) be the subset of (m, j)-almost-complementary 
points in Z. Clearly, for each pair (m, j), x solves (3) if and only if x is a comple- 
mentary node in Z(m, j), so the choice of (m, j) may be arbitrary. 

LEMMA 1. A node in Z(m, j) has either one or two (m, j)-almost-complementary 
arcs starting from it, and there is just one if and only if the node is complementary. 

Proof. A node x E Z(m, j) satisfies precisely K boundary conditions and is 
either complementary or almost complementary. If x is complementary, then 
precisely one of each pair (xn, y ) is zero, and only that arc starting from x that is 
parametrized by the one of xJ or ym that is zero is (m,j)-almost-complementary. 
Otherwise, x is not complementary but almost complementary with both xm 
and yJ positive, and there is a unique pair (n, i) for which both x' and yn are zero. 
In this case, only the two arcs starting from x that are parametrized by x' and 
y' respectively are (m, j)-almost-complementary, and these are distinct. This 
concludes the proof 

Similar arguments show that a complementary node in Z has precisely K 
arcs starting from it, whereas a node that is not complementary has precisely 
two and belongs to just one Z(m, j). A maximal connected set of (m, j)-almost- 
complementary nodes and arcs is called an (m, j)-path. Clearly, Z(m, j) is the union 
of a finite number of (m, j)-paths. 

2 Lemke and Howson [1] give a procedure for perturbing a degenerate problem to satisfy this 
assumption, but we shall not consider such extensions here. 

3 This is sufficient to ensure the nondegeneracy of all of the derived games 7k, 1 < k < N, 
encountered later in Theorem 1 and ? 5. 
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Let FN-1(m,j) be the (N - 1)-person game among the other players that 
results from assuming that player m uses his strategy j with probability one 
(i.e., X7 = 1, (i E Sm, i 7A j i = 0) 

LEMMA 2. An equilibrium of FN- I(M, j) corresponds to an (m, j)-almost-com- 
plementary node in Z(m, j). 

Proof. Let (,n), - m be an equilibrium of FN - 1(m, j) . We distinguish two cases: 
either N ? 3 or N = 2. If N ? 3, then let the transformation (2) of (4n)n m in 
the (N - 1)-person game FN-1(m,j) be (f-n) m' so that (-n) m satisfies (3) for 
FNm- (m, j). This can be converted to the N-person game FN by defining 
(i e Sm)[5m = 1 if i = j, and m- = 0 if i 1 j]. Then x = (5n)ncP satisfies (3) for FN 
except possibly for n = m. Define ,B-minies,m Am(5) and let i* E Sm yield the 
minimum. Then define 

(neP,n :# m)xn = #-11(N-1)xn 

xm - /3(N-2 )/(N-1) 5m 

Letting x = (Xn)nep one obtains 

(n E P, n =A m)(i E S) An(x) = An(5))xm[fl- 1/(N- 1)]N-2 = n(X) 

(i E Sm) Am(x) = Am(5/) 1/(N- 1)]N-1 

A Am(x-)/, 

= Am(x)/Aim*() > 1 (with = 1 if i = i*). 

Hence, x satisfies (3) excepting only the possibility that xmyY > 0, SO x is (m, j)- 
almost-complementary, x e Z(m, j), and also x is a node. The proof if N - 2, 
which is implicit in Lemke and Howson's exposition, is rather different. For 
n = m the fact that Xn is an equilibrium requires (i E SO)[ i = 1 if i-C w* and 

= 0 if i =# wfl, where co* El yields min,m=j a. Let o-)** yield min,,,,,=,,* a,, 
and define 

(i E Sm)[x7 = 1/an* if i =j, and xT =0 if i = j], 

(iES)[xn = 1/am. if i =o*, and x7 = O if i =A #o]. 

Let x = ((Xn)ieS,)nep. Then one finds: 

(i E Sm) AT(x) = am,(*)x(n = am(,)*)Iam** > 1 (with = 1 if i = (**), 

(i E Sn)A (x) = an, i)X = an,i)/an* > 1 (with = 1 if i = w). 

Hence, as before, x is (m, j)-almost-complementary, x E Z(m, j), and x is a node. 
This concludes the proof of the lemma. 

A node of Z(m, j) that arises from an equilibrium of FN - 1(m, j) is called an 
initial node of Z(m, j) and is identified by the feature that xm is positive only for 
i = j. The initial nodes are the endpoints of the unbounded arcs of Z(m, j), as 
we shall now establish. 

LEMMA 3. An arc in Z(m,j) that starts from any node other than an initial 
node is bounded, and an initial node is the endpoint of precisely one unbounded arc. 

Proof. The proof of Lemma 3 is broken up into several simpler propositions. 
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Let x* be a node in Z(m, j) which is not an initial node of Z(m, j), and let T 
be an arc of Z(m, j) that starts from x*. 

PROPOSITION 1. For each ne P there exists i(n)e Sn for which (xe T)An(n)(X) = 1 
ProoJ. Suppose to the contrary that (since T is an arc) for some n E P, x E T, 

(i E Sn)AX(x) > 1. Then for x to be (m, j)-almost-complementary requires that either 
(a) x = 0 if n =A m, or (b) (i e Sm,i = 7j)x' = 0 if n = m. In case (a), for any v e P, 
v :A n, i E Sv, one has Av(x) = 0 < 1, contradicting x E Z(m, j) c Xv. In case (b), 
the same property must hold for x*, contradicting the assumption that x* is not 
an initial node of Z(m, j). 

PROPOSITION 2. If for some n e P, i e Sn, x7 is unbounded along T, then 
(i E Sv)x - 0 along T for some v E P. 

Proof. Define A.v(x) in the obvious way so that An(x) = j,Js' A"7(x)x, 
and similarly define A nvj,v2(x), etc. Suppose, say, that x1 is unbounded along T 
but, contrary to the proposition, for each v E P there is some j(v) E Sv for which 
it is false that Xv(v) -+0 along T. By letting i(2) = 1 for definiteness, the condition 
along T that 1 = A2(x) = ZieS A21(x)xl requires that A21(x) -+ 0 along T. 
If there were only two players, then A21(x) = a21, a contradiction, so there is 
a third player for which A21(x) = Ejcs, A 21Nx)x] X 0 along T. If j(3) = 1, then 
this requires A 21(x) -+ 0 along T. Hence there is a fourth player, etc., and one 
can repeat the process until the set of players is exhausted and one has found a 
contradiction. 

PROPOSITION 3. If T is unbounded, then there are at least three players 
(i.e., N _ 3), and xv -+ 0 along Tfor at least two players v E P. 

Proof. The proof of Proposition 2 actually shows that if some x7 is unbounded 
along T, then for each n :A n, the condition An(n)(x) = 1 implies the existence of 
a v E P, v =A n-, v =A n, for which xv -+ 0. Hence, there are at least three players. 
Moreover, by choosing n = v and repeating the construction one must obtain 
a second player v' for which xv' -+ 0. 

PROPOSITION 4. T is bounded. 
Proof. For each x E E', a) E 7, and n E P, define hn(x, co) = Hxv, where the 

product is over those (v, j) for which wov = j and v =A n. Thus, AX(x) = E anh ,(x, w), 
where the sum is over those w E it for which wn = i. According to Proposition 1, 
(n e P)(x e T)Ani(n)(x) = 1. Consequently, there exists a positive constant b such 
that (n E P)(wo E 7t)(x e T)hn(x, w)) < b, and for each n E P there exists an co(n) E 7t 
for which it is false that hn(x, w(n)) -+ 0 along T. Now, suppose, contrary to the 
proposition, that say x1 is unbounded along T. Choose that &e3 e it for which 

= 1 and (n E P, n :A 1) &cn = w-)n(l); clearly, (x E T)h1(x, co) = h1(x, co(1)) and 
therefore it is false that h1(x, co) -+ 0 along T. Define Hn(x, ow) = H hv(x, co), where 
the product is over v E P, v =A n. Clearly, Hn(x, w) < bN-1 along T. Observe, 
however, that H1(x, &i) = (xl)Nlh1 (x, &4N-2* Hence, since x1 is unbounded 
along T by supposition, and Proposition 3 assures that N > 3, hl(x, co) -+ 0 
along T. This is a contradiction, and the proof that T is bounded is complete. 

The same reasoning shows that if x* is an initial node of Z(m,j), but x* is 
not complementary and x*m = AT(x*) - 1 = 0 for some i E Sm, i :A j, then the 
(m,j)-almost-complementary arc T that is parametrized by x' must be bounded, 
since Proposition 1 is again valid with i(m) = i. Finally, whether or not x* is 
complementary, since each An > 0 it is clear that the (m, j)-almost-complementary 
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arc parametrized by y7 (i = j if x* is complementary) is unbounded. This com- 
pletes the proof of Lemma 3. 

THEOREM 1. The number of equilibria is positive and odd. 
Proof. The proof is by induction on the number of players. Clearly, a 

(nondegenerate) 1-person game has a single equilibrium. Assume therefore that 
a (nondegenerate) (N - 1)-person game has an odd number of equilibria. Then 
FN-1(mJ) has an odd number of equilibria, and therefore Z(m,j) has an odd 
number of initial nodes. Now starting from an arbitrary node x in Z(m, j) there 
are either one or two (m, j)-almost-complementary arcs, and just one whenever x 
is complementary. Also one such arc is unbounded if and only if x is an initial 
node. Traversing a bounded arc, one arrives at another node, say xl. Now, if xi 
is complementary, then there is no exit from xl on a new (m,j)-almost-comple- 
mentary arc; if x1 is an initial node, then the only exit is along an unbounded 
arc; and, otherwise, there is precisely one such exit along another bounded arc. 
Each (m, j)-almost-complementary arc starting from x proceeds therefore through 
a finite number of nodes of Z(m, j) until it terminates in either a complementary 
node, or an unbounded arc, or returns to x (to return to any other node, say xl, 
would imply the existence of three (m, j)-almost-complementary arcs starting 
from x1). In the latter case, x is on an (m, j)-path that is circular and contains no 
complementary nodes. The two former cases resolve into whether the (m, j)-path 
containing x has 0, 1, or 2 initial nodes. If there are no initial nodes, then the 
terminus at each of the two ends must be a complementary node. If there is one 
initial node and therefore one unbounded arc, then the other terminus must be a 
complementary node. If there are two initial nodes, then the path terminates in 
an unbounded arc at both ends, and consequently there is no complementary 
node. Now, the induction hypothesis assures that there are an odd number of 
initial nodes; hence, there are an odd number of complementary nodes and thus 
an odd number of equilibria. This completes the proof. 

A complementary node that is on an (m, j)-path with just one initial node 
will be said to be (m, j)-accessible, and any other is one of an (m, j)-inaccessible 
pair. Clearly, the number of (m, j)-accessible complementary nodes is odd. 

5. A constructive procedure. The foregoing results suggest a procedure for 
constructing an equilibrium of an N-person game; namely, by finding an (m, jm)- 
accessible complementary node of Z(m, jm) for an arbitrary player m E P and some 
one of his pure strategies jm E Sm. 

Let m = N and suppose that one has specified (n, jn) for each n E P, n : 1. 
Then one has a 1-person game F1({(n, Jn)Jn > 1}) played by the first player for 
which one can readily find the unique equilibrium. This equilibrium provides the 
unique initial node in Z(2, j2) for the 2-person game F2({(n, 1n)In > 2}) from which 
one can proceed along the (2, j2)-path containing it to find the unique (2,j2)- 
accessible complementary node (as described previously by Lemke and Howson 
[1]). In turn, this node provides an initial node in Z(3, J3) for the 3-person game 
F3({(n, Jn)Jn > 3}). Continuing in this fashion, one wants in general to find a 
complementary node in Z(k-1, k-l1) for the game Fk-l({(n, jn)ln > k - 1}) to 
provide an initial node in Z(k,jk) for the k-person game Fk({(nJn)Jln > k}) from 
which to proceed along the (k,jk)-path containing it in order to find a (k,jk)- 
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accessible complementary node. When this procedure has been completed for 
k = N one has found an (N,JN)-accessible complementary node for the original 
problem and therefore an equilibrium. For k > 3, however, the procedure is 
unlike Lemke and Howson's algorithm in that not every initial node need be on a 
(k,jk)-path containing a complementary node, and it is the circumvention of this 
difficulty that we must explain below. 

In order to illustrate the basic idea most simply, suppose for the moment 
that the (k - 1)-person game has only one (k -1, 1k 1)-accessible complementary 
node, all others being grouped into inaccessible pairs; e.g., this is the case for 
k - 1 = 2 since there is only one initial node. Of course it is precisely this com- 
plementary node that will be found by the procedure when one is ready to begin 
working on the k-person game. Now, since one has found the accessible comple- 
mentary node in the (k - 1)-person game, it provides an initial node for the 
k-person game. This initial node, say x, is either complementary (in which case 
one is finished if k = N or else one moves on to the (k + 1)-person game) or 
there is a unique bounded (k, jk)-almost-complementary arc along which one can 
move to traverse the (k, jk)-path containing x. This path terminates in either a 
complementary node (in which case again one moves on to the (k + 1)-person 
game) or another initial node. In the latter case, observe that this initial node 
must arise from a complementary node of the (k - 1)-person game which is one 
member of a (k -1, Ik- 1)-inaccessible pair. Hence, from this member there is a 
unique (k - 1,k -1)-almost-complementary arc which one can traverse in the 
(k - 1)-person game which leads to the other member of the pair. This second 
member provides a new initial node for the k-person game, on a new (k,jk)-path, 
from which one can begin again. Continuing in this way, one must find an initial 
node that leads to a (k, jk)-accessible complementary node for the k-person game. 
To see this, recall that the number of initial nodes is odd and at least one is on a 
path containing a complementary node; also, one cannot return to an initial 
node previously encountered since that would imply, if it were x, that the equilib- 
rium from which x arises is (k - LIk- 1)-inaccessible, or if it were any other, that 
there are three (k - 1,Ik-,1)-inaccessible complementary nodes on a single 
(k -1, Ik- 1)-path in the (k - 1)-person game. 

The procedure in the general case is merely a variant of the above. In general, 
one must allow for the possibility that in the course of the above procedure one 
finds a new initial node in the k-person game that arises from a (k - 1,jk- _)- 
accessible complementary node in the (k - 1)-person game, rather than one 
member of an inaccessible pair. In this case, one proceeds along the (k - 1,jk- )- 
path containing the accessible complementary node in the (k - 1)-person game 
to reach its initial node, which arises from a complementary node in the (k - 2)- 
person game. If this complementary node is (k - 2,jk- 2)-accessible in the 
(k - 2)-person game, then one repeats. After not more than k - 2 iterations one 
must reach a complementary node in a (k - v)-person game which is (k -v, Ik- v- 
inaccessible and therefore is one member of an inaccessible pair, the other member 
of which provides a new initial node of the (k - v + 1)-person game from which 
one can again continue. As before, this procedure cannot cycle. 

THEOREM 2. One has a constructive procedure for finding an equilibrium 
of an N-person noncooperative game. 
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The term "constructive" as employed here presumes, of course, that one 
has a means of finding the node at the endpoint of any bounded arc traversed 
in the course of the procedure. Since for N _ 3 this requires the solution of a 
set of simultaneous multilinear equations, at least with a sufficient degree of 
numerical accuracy, this is by no means a trivial presumption. 

Acknowledgment. The author is indebted to Stefan Bloomfield for noticing 
a deficiency in the original version of this paper. 
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