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We propose a methodology for combining a number of experiments to make an
overall assessment of the empirical justifiability of certain economic hypotheses.
We illustrate our methodology by an application to models of learning in repeated
games. The application of our proposed (purely Bayesian) procedure allows us to
combine two sets of experiments (for a total of nine experiments) to update our
beliefs on the relative justifiability of the Cournot and the fictitious play learning
hypotheses. The experiments we analyzed indicate that the fictitious play hypoth-
esis is impressively more likely than the Cournot hypothesis. Journal of Economic
Literature Classification Numbers: 026,211,215, « 1993 Academic Press. Inc.

1. INTRODUCTION

In recent years, there has been a marked growth in the number of
experimental studies in economics, and their influence on the field can no
longer be denied.! The interaction between experimental studies and
other parts of the discipline has also been flourishing, but we believe that
it has not yet reached its potential. We believe that the main reason for the

* We thank Bob Forsythe and Gary Miller for giving us access to their data. We thank an
anonymous referee and the editor in charge for comments that helped substantially to
improve the paper.

I A review of experimental findings can be found in Hoffman and Spitzer (1985), Plott
(1982), and Smith (1982).
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slow development of those interactions is our inability to integrate a large
number of experimental studies systematically (in some rigorous statisti-
cal manner) to develop stylized facts that can inspire and benefit from
work in other subfields of economics. It is true that a number of stylized
facts have already been established by experimental studies and have
been taken into account by modeling economists, but the progress of the
science can be greatly enhanced by a systematic procedure of generating
such stylized facts. This is the issue that we address in this paper. It was
clear to us from the start that no classical procedure can be used to
combine the results of different experiments in generating stylized facts.
That is the case since the different experiments have completely different
designs and were performed to investigate different issues. To complicate
things further, one cannot ignore the fact that experimenters are aware of
the other experiments that their colleagues have run, and hence a classical
procedure will need to take into consideration what amounts to pretesting
of the hypotheses in question, a task that defies even the most capable of
statisticians.

We analyze the data in a Bayesian fashion, endowing ourselves with a
belief on the relative validity of a number of possible theories of human
economic behavior and updating our beliefs using the experimental
results available to us. Merits and demerits of our Bayesian procedure as
opposed to some classical procedures will be discussed in a later section.

We believe that the best way to illustrate a new procedure is by exam-
ple, and for this paper, we chose to analyze different learning procedures
in repeated games. The motivation for the learning literature is to explain
why individuals should be expected to select strategies that correspond to
Nash equilibria. The answer suggested by that literature is that the game
is played repeatedly. At each stage, individuals sclect the action that
maximizes their expected payoff in that round. Players start with beliefs
on their opponents’ possible actions, and update their beliefs as they play
each stage of the game and observe their opponents’ actual actions. A
Nash equilibrium is defined by a set of self-fulfilling beliefs.

In this paper, we consider two of the most popular learning hypotheses
in repeated games. The first hypothesis was proposed by Cournot and
proposes that each agent assumes that her opponents will choose the
same action they chose in the previous period (see Moulin, 1985). The
second hypothesis that we analyze is the so-called fictitious play hypothe-
sis (see Brown, 1951; Robinson, 1951; Shapley, 1962; Brock ef al., 1988).
The fictitious play hypothesis proposes that an individual has Dirichlet
priors over her opponents’ strategies and that at each round the player
updates her beliefs according to Bayes’ rules. It turns out that these
assumptions are equivalent to requiring that each player selects the strat-
egy that maximizes her payoff given beliefs that correspond to a convex
combination of the initial beliefs and the empirical distribution. The ex-
perimental literature investigating different learning algorithms is very
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sparse, and limited to an experiment-by-experiment study. We illustrate
our proposed methodology by starting with prior probabilities about the
relative plausibility of the two learning hypotheses described above. We
use a simulation technique to compute the likelihood functions (the proba-
bility of observing the data in each experiment under each of the two
hypotheses), and then use those likelihood functions to do Bayesian up-
dating of our priors for each individual experiment, and then for all nine
experiments combined.

Figure 1 summarizes the results of this paper. When we start the analy-
sis, we need a prior on the relative likelihoods of the Cournot and the
fictitious play hypotheses. A prior p € [0, 1] is the probability we assign to
the fictitious play hypothesis as opposed to the Cournot hypothesis before
we observe any data. After we observe the data, we use the relative
likelihoods of the two hypotheses (the ratio of the probabilities of observ-
ing the realized data given each of the two hypotheses) and the prior to
obtain the posterior probability that the fictitious play hypothesis holds
(another number between 0 and 1). In our analysis, we introduce a smear-
ing parameter £ € [0, 1] representing the probability for each person at
each move of each game to have a tremble and make a completely random
move (uniformly over available actions). The need for a smearing parame-
ter and the particular configuration we choose are discussed in detail in
later sections. Figure 1 shows a plot of our posterior probability (using all
nine experiments) on the fictitious play hypothesis as a function of possi-
ble priors and values of the smearing parameter. It is clear that for all
priors, and for all but very high smearing parameters (at € = 1, the data
has no influence on the posterior), the smeared fictitious play hypothesis
is impressively more likely than the smeared Cournot hypothesis.

The rest of this paper builds up and justifies the necessary machinery to
achieve Fig. 1. Section 2 describes the experiments that we analyze.

osterior

1 : epsilon

Fic. 1. Posterior probability of agents playing according to fictitious play using all nine
experiments.
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Section 3 describes and justifies the actual statistical and numerical tech-
niques that we follow. Section 4 discusses the advantages and disadvan-
tages of our methodology, and Section 5 contains some concluding re-
marks. The paper ends with a series of nine appendixes each describing
an experiment and presenting our statistical analysis of the data it gener-
ated.

2. DESCRIPTION OF THE EXPERIMENTS AND THE APPENDICES

The first set of experiments that we analyze were run by Knott and
Miller (1987). In this series of three experiments (labeled A, B, and C),
individuals were matched in pairs and played the games reproduced in
Figs. 2, 7, and 12, respectively, 10 times. The second set was run by
Cooper et al. (1990). In each experiment of that second set, there are 11
players. Each player plays twice against each of the other players, where
the matching in each round is determined at random. Agents do not know
the identity of the player they are matched with and after each play they
find out which strategy the opponent selected. We analyze 6 of the experi-
ments run by the authors. These experiments are labeled Experiments 3
through 8, and the payoff matrices are depicted in Figs. 17, 22, 27, 32, 37,
and 42,

There are nine appendixes corresponding to the nine experiments that
we analyze. The appendixes are labeled A, B, C (for Knott and Miller’s
experiments A, B, and C, respectively), and 3 through 8 (for Cooper et
al.’s experiments 3-8, respectively). Each appendix contains five figures.
First, the normal form matrix of the game played in the corresponding
experiment is displayed together with notes describing the pure strategy
Nash equilibria of the game, and when appropriate, which of them we
expect to be the limit strategy for most players. The statistical analysis of
the individual experiment shown below is then discussed. The next two
figures show the simulated frequencies with which players would select
the various actions in each period of the game if they used Cournot and
fictitious play updating, respectively. To obtain these simulated frequen-
cies we simulated 1,000 ensembles of players (2,000 individuals in experi-
ments A—C and 11,000 individuals in experiments 3-8) and endowed them
with randomly drawn (uniform over the strategy simplex) initial priors
over their opponents’ possible actions.? We then let each pair go through
the identical design that was implemented in the experiment (10 stages of
the game with the same opponent for experiments A-C, and the exact
matching scheme realized in experiments 3-8) and where they were made
to update according to the Cournot and fictitious play rules, respectively.

2 We have checked the sensitivity of those simulated frequencies to the size of our Monte
Carlo simulations, and found that 10,000 ensembles led to almost identical frequencies.
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The fourth figure shows the actual observed frequencies of play of each
action in each period. The fifth figure shows our posterior belief on ficti-
tious play against Cournot updating using the likelihood function for that
experiment alone. The posterior is plotted as a function of all possible
priors and the level of smearing £ (to be explained in the next section).
Figure 1 is simply the combination, through Bayesian updating, of the
fourth figures of all nine appendixes to produce the overall posterior
belief.

3. ECONOMETRIC ANALYSIS

In the previous section, we described how we obtained the simulated
frequencies of play of each of the available actions in each of the time
periods under the two competing hypotheses. Let us now introduce some
notation. Let p{ = | — p{ be the experimenter’s subjective probability at
time ¢ that individuals act according to the Cournot process. Also, let g- =
1 — gf be the probability of the observed strategy choices at time r given
that the individuals act according to the Cournot process. The experi-
menter updates her beliefs according to Bayes’ rule:?

L= pigiqi - - - gl
¢ plalql- - qi + plaigi - af’

_ piaigi - - - gt

plalq: - - - q. + plaiqi - - - qf’

Now, when we compute g; for i = f, ¢, if we use the simulated frequen-
cies depicted in the appendices, we run into the zero likelihood problem.
This problem is common in experimental economics and occurs when
some of the observed data have a zero probability of occurring under all
the hypotheses that we consider. For instance, in the Cooper ef al. experi-
ments there are observations of agents playing strictly dominated actions
which cannot be justified under any beliefs. The zero likelihood problem
has been discussed at length in El-Gamal et al. (1992), and a number of
solutions that exist in the literature were discussed. The solution we use
here is similar in spirit to those used in McKelvey and Palfrey (1992) and
El-Gamal et al. (1992). We include in our models a small probability of a
tremble (a completely random action) taking place. The two smeared
models we compare are then

pi

a with probability 1 — ¢

Model 1: a’' = £
a with probability i

* It trivially follows that the order with which the experiments are analyzed does not affect
the belief of the experimenter.
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ag with probability 1 — &

Model 2: a’' = €
a with probability e

where a’ is the action chosen by the experimental subjects, a. is the action
that maximizes their expected payoff given their beliefs that are updated
according to the Cournot procedure, gy is the same as a. with fictitious
play updating, and a € {1, 2, . . . , A} is any strategy.

In computing the gi’s, we treat the actual action of an agent in a period
as a random draw from the probability distribution obtained from the
simulated experiments with probability (I — £) and as a uniform random
draw with probability £. Let the observed data points be indexed by
(n,nef{l,2,...,N}x{l1,2,. .. ,T}, and let the simulated probabil-
ity under the pure version of Model i of action a in period ¢ be g/ ,. Then
we compute the ¢! needed for our Bayesian updating as

N T ¢ I
gt =1111 <(1 = i, T E Z)’

n=t =1

where a,, is the actual action chosen by agent n in period ¢. Note that cur
smearing procedure guarantees that g; is always positive, and hence
avoids the zero-likelihood problem discussed above.

4. REMARKS ON OUR ECONOMETRIC PROCEDURE

Since we are advocating the use of our new methodology for the analy-
sis of a number of economic experiments, we should point out its main
advantages and warn against its main disadvantages. This section will
deal with those main advantages and disadvantages that are inherent in
the general statistical methodology, as well as those that are specific to
our implementation in this paper.

4.1. Advantages of Our Procedure

* As we have argued in the introduction, classical methods cannot be
used to combine such a heterogeneous collection of experiments whereas
the Bayesian procedure we used can. This is a general property of Bay-
esian methods: the order in which evidence appears and the source of the
evidence are irrelevant.

* The type of horse race we ran between our two hypotheses could
just as easily be run with any number of hypotheses. The relative likeli-
hood of each of the hypotheses is still the likelihood of each of them
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divided by the sum of the likelihoods. As the relative belief (prior times
the relative likelihood) for some hypothesis becomes negligible, it can be
dropped out of the race without altering the methodology. Similarly, new
hypotheses that suddenly gain credibility can be added to the race.

» In addition to the previous point, the nature of this Bayesian proce-
dure also keeps all hypotheses alive and can be resurrected at all times.
This is in contrast to classical hypothesis testing procedures which choose
one model over all others, and in which dead models cannot be resur-
rected in a probabilistically consistent manner.

* The computation of the likelihoods of all possible observations un-
der each of the competing hypotheses can clearly be done prior to running
the experiments. Hence, if we were to run more experiments a la Cooper
et al. to distinguish between our two hypotheses in this paper, we would
choose the design of their experiment 6, where there is a very strong
separation between the two experiments, and avoid the design of experi-
ment 7, where there is practically none.

4.2. Shortcomings of Our Procedure

« The choice to draw initial beliefs uniformly for our simulations
seems rather arbitrary. It can be justified on the basis of being the least
informative prior (the one which maximizes entropy) on the players’ be-
liefs. It is, however, conceivable that different games will give rise to
different initial distributions of beliefs.

* In our Bayesian approach, the parameter £ is what is commonly
called a nuisance parameter, and so we chose to be agnostic as to its
value. Two other alternatives are available. One would be to follow a
classical procedure and label & an irrationality parameter as in McKelvey
and Palfrey (1992) and find its estimate under the maintained hypothesis
of one of our models. The alternative is to follow a Bayesian methodology
as in El-Gamal et al. (1992) and start with priors on the nuisance parame-
ter e, integrate it out to compute the likelihoods, and then update our prior
about it under each of the competing models. In this paper, we decided
that by displaying the posterior beliefs on the competing hypotheses at all
values of our prior beliefs and the parameter £, we allow the readers to
integrate with respect to whatever prior beliefs they may choose.

* The choice to maintain a constant £ can be criticized on the basis
that agents should be learning over time. Given the shortness of the time
series component of the data we use, however, we cannot extract any
parametric form for such a learning-by-doing curve, and nonparametrics
with such small data samples would be extremely unreliable.

« It is very difficult to decide on a comprehensive set of hypotheses
that will please all readers of a survey. But since our Bayesian procedure
allows us to add hypotheses as wished, this problem is one that should
concern only sociologists of science.
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» The set of available experiments may not be well suited for distin-
guishing between the hypotheses that interest us since it was run for a
different purpose. This suggests that we cannot stop running experiments
and concentrate on analyzing the very large number of experiments that
have already been run. The need for well designed experiments to update
our beliefs about various hypotheses continues to be very strong.

* There is a well known problem that arises in the context of other
methods of combining statistical results (e.g., El-Gamal, 1992); meta-
analsis (see Wolf, 1986); and the consensus literature (see Genest and
Zidek 1986). For instance, there is always a bias towards significant and
surprising findings in published research, which will influence the direc-
tion of the overall analysis. This influence can be quite harmful if the
*‘significance’’ of the results for the experimenter means that it favors cne
particular set of hypotheses.

» Well designed and run experiments are given the same weight in
this methodology as badly designed and/or run experiments. This prob-
lem was dealt with in EI-Gamal (1992) by allowing ditferent weights to be
assigned to different studies, but the decision on those weights can be a
very difficult problem.

5. CONCLUDING REMARKS

In this paper, we have proposed and itlustrated a fully Bayesian proce-
dure for updating our beliefs on a number of economic hypotheses. Of the
nine experiments that we analyzed in the appendixes, some unequivocaily
favor the Cournot learning hypothesis and some unequivocally favor the
fictitious play learning hypothesis. No classical statistical procedure will
allow us to analyze all nine experiments to decide on what we have
learned from all of them combined. This is the case due to the different
designs and purposes of the experiments in question. Bayesian proce-
dures, on the other hand, require only the computation of likelihood ratios
for the models in question for each of the experiments. Our overall Bay-
esian analysis of the nine experiments shows that starting from any prior
on the relative validity of the two learning hypotheses, we end up believ-
ing that the fictitious play learning hypothesis is infinitely more likely. The
stylized facts derived with this approach will hopefully generate more
productive interaction between theory and experimentation. We must
also warn, however, that one must be very careful when applying a gen-
eral technique like ours not to fall into too many of the problems outlined
in the previous section lest one’s beliefs be wrongly biased in favor of
some hypotheses.



APPENDIX A. EXPERIMENT A OoF KNOTT AND MILLER?

S1 82 s3 S4 S5 Sé 57 S8 s59 s10 S11 312 S13 S14 518
S1 100 100 75 8% 85 90 80 90 90 20 90 90 90 90 90
S2 200 120 100 100 100 100 100 100 100 100 Jj00 100 100 100 300
53 [ 140 1295 115 115 110 110 110 110 110 110 110 110 110 110
S4 -100 160 150 130 125 120 120 120 120 120 120 120 120 120 120
S5 -200 180 175 145 135 130 130 130 130 130 130 130 130 130 130
S6 -300 200 200 160 145 140 140 140 140 140 140 140 140 140 140
s57 -400 220 220 175 155 155 150 150 150 150 150 150 150 150 150
S8 -450 0 250 190 165 160 160 160 160 160 160 160 160 160 160
S9 -475 -100 [ 205 175 170 170 170 170 170 170 170 170 170 170
S10 -500 -125 -100 0 185 180 175 175 180 180 180 180 180 180 180
S11 -52% -150 -125 -100 0 190 180 180 190 190 180 190 190 190 190
312 -550 -17% -150 -128 -100 [J 195 190 185 19% 200 200 200 200 200
3513 -575 -200 -175 -150 -125 -100 0 250 200 200 210 210 210 210 210
514 -600 -225 -200 -175 -150 -125 -100 0 250 250 250 250 250 220 220
S15 -625 -250 -225 -200 -175 -150 ~125 -100 80 100 120 140 160 180 200

F1G. 2. Payoff matrix for Knott and Miller's experiment A.

+ (S14,S14) is the unique pure strategy equilibrium.

« It is clear that both Cournot updating and fictitious play will eventu-
ally lead all the players to play the pure strategy Nash equilibrium. In-
deed, when we ran fictitious play for 100 periods, all the mass converged
to (S14,S14). Comparing the simulated frequencies from the two models
with 10 periods of data, it is clear that the fictitious play hypothesis leads
to much slower convergence to the pure strategy Nash equilibrium, and
hence mimics the noisy data much better than the Cournot hypothesis.

F1G. 3. Cournot simulated frequencies.
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Fi1G. 5. Observed frequencies. Fi1G. 6. Posterior on fictitious play.

4 In Appendixes A—C, the matrices give the payoff of the row player, while the transpose
of the matrices give the payoff of the column player.



APPENDIX B. EXPERIMENT B oF KNOTT AND MILLER

S1 52 53 S4 S5 56 87 S8 s9 810 S11 812 513 Si4 $15
s1 100 100 90 90 20 20 80 -100 -125 -150 -17% -200 -225 -250 -825
82 800 120 100 100 100 100 100 [} -100 -125 -150 -175 -200 ~22% -800
S3 700 400 125 110 110 110 110 110 0 -100 -125 -150 -17% -200 575
S4 600 450 350 130 120 120 120 120 120 0 -100 -12% -150 -175 550
S5 500 500 375 150 135 130 130 130 130 130 [ -100 -125 -150 5285
§6 400 €00 400 200 200 140 140 140 140 140 50 Q 100 -12% 500
s7 350 800 425 210 210 150 150 150 150 150 100 50 0 -100 475
S8 200 300 450 250 220 180 160 180 160 160 160 120 50 o -450
89 100 200 240 400 230 170 170 170 170 170 170 140 100 20 400
s10 90 100 200 200 300 200 180 180 180 180 180 160 150 40 -300
S1L 65 65 85 100 100 280 200 180 190 190 180 180 178 80 -200
S12 60 80 60 60 80 100 250 200 200 200 200 200 200 80 -100
s13 55 55 55 55 55 55 210 220 210 210 210 210 210 100 o
514 50 50 50 50 50 50 50 50 220 220 220 220 220 220 220
S1s 40 10 40 40 40 40 40 60 80 100 120 140 160 180 200

FiG. 7. Payoff matrix for Knott and Miller's experiment B.

+ (S14,S14) is the unique pure strategy equilibrium.

» It is clear that both Cournot updating and fictitious play will eventu-
ally lead all the players to play the pure strategy Nash equilibrium. In--
deed, when we ran fictitious play for 100 periods, all the mass converged
to (S14,S14). Comparing the simulated frequencies from the two models
with 10 periods of data, it is clear that the fictitious play hypothesis leads
to much slower convergence to the pure strategy Nash equilibrium, and
hence mimics the noisy data much better than the Cournot hypothesis for

low levels of &.

act {ons

F1G. 8. Cournot simulated frequencies.

periods
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F1G. 10. Observed frequencies.
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FiG. 11. Posterior on fictitious play.



ApPPENDIX C. ExPERIMENT C OF KNOTT AND MILLER

S1 52 s3 St S5 S6é ST ss S9 510 511 S12 513 S14 515
51 100 75 85 85 90 90 90 80 90 20 90 80 90 90 a0
52 350 120 100 100 100 100 100 100 100 100 100 100 100 100 100
53 300 140 125 115 118 110 110 110 110 110 110 110 110 110 110
S4 275 130 150 130 128 120 120 120 120 120 120 120 120 120 120
85 250 120 125 145 135 130 130 130 130 130 130 130 130 130 130
56 200 110 110 128 145 140 140 140 140 140 140 140 140 140 140
57 100 100 100 100 100 155 150 300 350 250 150 150 150 150 150
sSs -350 0 50 50 75 100 125 250 400 450 450 160 160 160 160
59 -400 -100 0 25 50 75 100 200 aoo 425 400 375 350 325 170
s10 -500 -128 ~100 ] 25 50 75 1785 225 328 375 350 2% 300 300
s11 -525 -150 ~125 -100 [ 25 50 125 200 22% 350 328 300 275 250
512 -550 -175 ~150 -12% -100 ] 25 100 17% 200 200 250 250 250 225
513 -575 -200 -175 -150 -125 -100 0 75 150 178 175 175 200 200 200
514 -600 -225 ~200 -17% -150 -125% -100 0 125 150 150 150 150 175 178
S15 -625 -250 ~225 -200 -17% -150 -128 -100 [} 100 120 140 140 150 150

F1G. 12. Payoff matrix for Knott and Miller's experiment C.

+ (S7,S7) is the pure strategy equilibrium.

« It is clear that both Cournot updating and fictitious play will eventu-
ally lead all the players to play the pure strategy Nash equilibrium. In-
deed, when we ran fictitious play for 100 periods, all the mass converged
to (S7,S7). Comparing the simulated frequencies from the two models
with 10 periods of data, it is clear that the fictitious play hypothesis leads
to much slower convergence to the pure strategy Nash equilibrium, and
hence mimics the noisy data much better than the Cournot hypothesis for
low values of «.

osterior

15 actions T 16 1 0.8 epsilon

F1G. 15. Observed frequencies. FiG. 16. Posterior on fictitious play.
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APPENDIX 3. EXPERIMENT 3 OF COOPER et al.’

S1 S2 S3
S1 | 350,350 | 350,250 | 1000,0
S2 {250,350 | 550,550 0,0
S3 | 0,1000 0,0 600,600

Fi1G. 17. Payoff matrix for Cooper er al.’s experiment 3.

* (S1,81) and (52,82) are pure strategy Nash equilibria.

* For almost all initial beliefs, S1 is a best response.

« If fictitious play is followed, everyone eventually plays SI.

* It is clear that the proportion of subjects playing S1 is not converg-
ing to 1 as fast as the fictitious play hypothesis predicts. Hence, for small
values of ¢, the Cournot hypothesis seems much better than the fictitious
play hypothesis (since it always puts some mass on S2).

F1G. 18. Cournot simulated frequencies.
FiG. 19. Fictitious play simulated frequencies.

-Bposte -1or

20

F16. 20. Observed frequencies.
F1G. 21. Posterior on fictitious play.

actions H

¥ Note that in Appendixes 3-8 there are only three strategies; the fourth strategy was only
mandated by the limitations of our graphics package.
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APPENDIX 4. EXPERIMENT 4 OF COOPER ¢t al.

S1 52 S3
S1 (350,350 | 350,250 | 700,0
S2 (250,350 | 550,550 | 0,0
S3{ 0,700 | 0,0 |600,600

F1G. 22. Payoff matrix for Cooper er al.’s experiment 4.

* (S1,S81) and (S2,S2) are pure strategy Nash equilibria.

« For almost all initial beliefs, S1 is a best response.

« If fictitious play is followed, everyone eventually plays SI.

+ The results of this experiment are not as sharp as for many of the
others since the two hypotheses predict very similar behavior.

FiG. 23. Cournot simulated frequencies.
FiG. 24. Fictitious play simulated frequencies.

Fi1G. 25. Observed frequencies.
FiG. 26. Posterior on fictitious play.
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APPENDIX 5. EXPERIMENT 5 oF COOPER et al.

S1 S2 S3
S1 | 350,350 | 350,250 [ 700,0
S2 | 250,350 | 550,550 | 1000,0
S3| 0,700 | 0,1000 | 600,600

Fi1G. 27. Payoff matrix for Cooper et al.’s experiment 5.

« (S1,S1) and (S82,S2) are pure strategy Nash equilibria.

» For almost all initial beliefs, S2 is a best response.

« If fictitious play is followed, everyone eventually plays S2.

* We can see that the Cournot hypothesis predicts that positive pro-
portion of the players will continue to play S1, whereas the fictitious play
hypothesis predicts that S1 will become extinct very quickly. Since rhe
data have S1 die out rather rapidly, the fictitious play hypothesis fares
very well at most values of &.

29

actions K

FiG. 28. Cournot simulated frequencies.
Fic. 29. Fictitious play simulated frequencies.

30 4

F1G. 30. Observed frequencies.
Fi1G. 31. Posterior on fictitious play.



APPENDIX 6. EXPERIMENT 6 OF COOPER et al.

S1 S2 S3
S1 [350,350 | 350,250 | 700,0
S2 [250,350 | 550,550 | 650,0
S3 {70,700 | 0,650 | 600,600

FiG. 32. Péyoff matrix for Cooper er al.’s experiment 6.

» (S1,S1) and (S2,52) are pure strategy Nash equilibria.

+ Approximately half the possible initial beliefs make S1 an optimal
response and the other half make S2 a best response.

» However, if 3 is never played, then for almost all initial beliefs, S1
is a best response.

« If fictitious play is followed, and S3 is never played, everyone
eventually plays S2.

» This is by far the most interesting experiment that we analyze since
the dynamics predicted by the Cournot and fictitious play hypotheses are
completely different. The behavior of the subjects is very similar to that
predicted by the fictitious play hypothesis, and the result is a clear no-
contest in favor of that hypothesis.

act ions 1 34 act lons 3

F16. 33. Cournot simulated frequencies.
F16. 34, Fictitious play simulated frequencies.

actians H

FiG. 35. Observed frequencies.
Fi1G. 36. Posterior on fictitious play.
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APPENDIX 7. EXPERIMENT 7 OF COOPER ¢t al.

S1 52 S3
S1 [350,350 | 350,250 | 700.0
S2 (250,350 | 550,550 | 0.0
S3 [ 0,700 0,0 | 500,500

FiG. 37. Payoff matrix for Cooper et ul.’s experiment 7.

* (S1,S1) and (S2,S2) are pure strategy Nash equilibria.

* For almost all initial beliefs, S1 is a best response.

« If fictitious play is followed, everyone eventually plays S1.

* We see that both hypotheses predict for this experiment that most
of the mass will converge to playing SI, whereas the data show that
everybody eventually plays S2. Both hypotheses fare rather poorly for
this experiment, but since the Cournot hypothesis predicts more mass at
S2, it wins rather decisively at most values of &.

FiG. 38. Cournot simulated frequencies.

FiG. 39. Fictitious play simulated frequencies.

periods 10

FiG. 40. Observed frequencies.
FIG. 41. Posterior on fictitious play.

_
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APPENDIX 8. EXPERIMENT 8 OF COOPER ¢t al.

S1 S2 S3
S1 | 350,350 | 350,250 | 1000,0
S2 | 250,350 | 550,550 0,0
S3 | 0,1000 0,0 500,500

FiG. 42. Payoff matrix for Cooper et al.’s experiment 8.

+ (S1,81) and (S2,S2) are pure strategy Nash equilibria.

« For almost all initial beliefs, S1 is a best response.

« If fictitious play is followed, everyone eventually plays SI.

+ We see that both hypotheses predict for this experiment that most
of the mass will converge to playing S1, whereas the data show that
everybody eventually plays S2. Both hypotheses fare rather poorly for
this experiment, but since the Cournot hypothesis predicts more mass at
S2, it wins rather decisively at most values of &.

[[[[{4{ A

I

F1G. 43. Cournot simulated frequencies.
FiG. 44. Fictitious play simulated frequencies.
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act iens M

F1G. 45. Observed frequencies.
Fi1G. 46. Posterior on fictitious play.
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