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Econometrica, Vol. 63, No. 1 (January, 1995), 103-143 

ADAPTIVE DYNAMICS IN COORDINATION GAMES 

BY VINCENT P. CRAWFORD1 

This paper proposes a model of the process by which players learn to play repeated 
coordination games, with the goal of understanding the results of some recent experi- 
ments. In those experiments the dynamics of subjects' strategy choices and the resulting 
patterns of discrimination among equilibria varied systematically with the rule for deter- 
mining payoffs and the size of the interacting groups, in ways that are not adequately 
explained by available methods of analysis. The model suggests a possible explanation by 
showing how the dispersion of subjects' beliefs interacts with the learning process to 
determine the probability distribution of its dynamics and limiting outcome. 

KEYwORDS: Equilibrium selection, coordination, learning, strategic uncertainty. 

1. INTRODUCTION 

IN ECONOMICS, COORDINATION PROBLEMS are usually modeled as noncooperative 
games with multiple Nash equilibria in which any Pareto-efficient strategy 
combination is an equilibrium, but players' strategy choices are optimal only 
when they are based on sufficiently similar beliefs about how the game will be 
played. Although such games have no incentive problems as these are normally 
characterized, playing them often involves real difficulties. Similar difficulties lie 
at the heart of many questions usually analyzed under the assumption that 
players can coordinate on any desired equilibrium. These include how incentive 
schemes should be structured; which outcomes can be supported by implicit 
contract in a long-term relationship; whether, and how, bargainers share the 
surplus from making an agreement; and the role of expectations in macroeco- 
nomics. 

Convincing answers to such questions must go beyond the observation that if 
rational players have commonly known, identical beliefs, then those beliefs must 
be consistent with some equilibrium in the game. However, the traditional 
approach to analyzing games with multiple equilibria relies on refining Nash's 
notion of equilibrium until (ideally) only one survives, and traditional refine- 
ments do not accomplish this for coordination games. This suggests that players 
are unlikely to base their decisions entirely on deductions from rationality, and 
highlights the importance of gathering information from other sources about 
how coordination problems are solved. 

1I am grateful to Brian Arthur, Antonio Cabrales, John Conlisk, Robert Engle, Daniel Fried- 
man, Clive Granger, Jerry Hausman, Yong-Gwan Kim, Mark Machina, Robert Porter, Garey 
Ramey, Michael Rothschild, Larry Samuelson, Joel Sobel, Maxwell Stinchcombe, Glenn Sueyoshi, 
John Van Huyck, Halbert White, Peyton Young, and anonymous referees for helpful suggestions; to 
Bruno Broseta and Pu Shen for valuable advice and outstanding research assistance; to Ray 
Battalio, Richard Beil, and John Van Huyck for access to their experimental data; to the Santa Fe 
Institute and the Department of Economics, University of Canterbury (New Zealand) for their, 
hospitality; and to the National Science Foundation for research support. 
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104 VINCENT P. CRAWFORD 

Perhaps the most important source of such information now available is the 
rapidly growing experimental literature on coordination. A number of recent 
-studies-such as Banks, Plott, and Porter (1988); Cooper, DeJong, Forsythe, 
and Ross (1990); Isaac, Schmidtz, and Walker (1989); Roth and Schoumaker 
(1983); and Van Huyck, Battalio, and Beil (1990, 1991) (henceforth 
"VHBB")-report experiments in which subjects repeatedly played simple 
coordination games, uncertain in most cases only about each other's strategy 
choices. The results suggest that players' initial beliefs in such games are 
normally widely dispersed; that this dispersion, which I shall call strategic 
uncertainty, makes players' experience with analogous games an important 
determinant of their decisions; and that interactions between strategic uncer- 
tainty and the process of learning from experience can exert a strong and lasting 
influence on coordination outcomes. 

The effects of strategic uncertainty show up especially clearly in VHBB (1990, 
1991). The large strategy spaces and the variety of modes of interaction in their 
designs yielded remarkably rich dynamics, with persistent patterns of discrimi- 
nation among equilibria emerging over time. These patterns varied systemati- 
cally with the environment, in ways that are not adequately explained by 
available methods of analysis but which can be better understood, as I shall 
argue, by taking strategic uncertainty fully into account. 

This paper presents a simple model of the learning process that suggests a 
unified explanation of the dynamics and patterns of discrimination VHBB 
observed. The model is a repeated game in which players adjust their strategies 
in the underlying coordination game in response to their experience. It implies 
that players normally converge to some equilibrium in the underlying game, as 
usually happens in coordination experiments. The question remains, which 
equilibrium? The model answers this question by showing how strategic uncer- 
tainty interacts with the learning process to determine the prior probability 
distribution of its outcome. When players' beliefs are identical from the start, 
the outcome is completely determined by their initial responses to the underly- 
ing coordination game, and does not vary with the environment except as their 
initial responses do. But for realistic levels of strategic uncertainty, declining at 
realistic rates as players learn to predict how the game will be played, the 
distribution of the dynamics and limiting outcome varies with the environment 
much as it did in the experiments. 

The model's predictions are influenced (but not completely determined) by 
the differences in the sizes of the basins of attraction of the equilibria in these 
environments discussed in Crawford (1991). Maynard Smith's (1982) notion of 
evolutionary stability, Harsanyi and Selten's (1988) risk-dominance axiom, and 
the techniques used by Kandori, Mailath, and Rob (1993) and Young (1993a) to 
study the limiting outcomes of related adjustment processes also respond to 
those size differences, discriminating among equilibria in ways that in some 
respects resemble the patterns VHBB observed. The extent to which these 
alternative approaches help to explain their results is discussed below. 
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The model departs from traditional noncooperative game theory in three 
main ways. First, players' behavior is adaptive rather than rational, in that they 
view their strategies in the underlying coordination game as the objects of 
choice, adjusting them over time in ways that are sensible but not necessarily 
consistent with equilibrium in the repeated game that describes the entire 
adjustment process or the underlying game.2 One could conduct a traditional 
equilibrium analysis of the repeated game, but such an analysis would share the 
indeterminacy of the underlying game but nonetheless require the assumption 
that players' beliefs are coordinated when play begins. This begs the question of 
how coordination comes about, and often leads in practice to dictating a 
solution by applying refinements that are largely insensitive to the difficulty of 
coordination. It seems better for my purposes to allow players' beliefs to differ 
and study the dynamics of the process by which they converge. 

Second, the model relies on simplifying assumptions about the structure of 
the strategic environment in the spirit of evolutionary game theory. These 
assumptions are satisfied by VHBB's designs (see Crawford (1991)) and are 
common to a number of interesting economic models (see Woodford (1990) and 
Cooper and John (1988)). They allow a more informative analysis of the 
implications of strategic uncertainty than now seems possible for more general 
games. The results are applicable to some important questions, and the methods 
seem likely to be useful in other settings. 

Finally, instead of fully endogenizing players' beliefs and strategy choices 
(whose differences cannot be traced to differences in players' information or 
other characteristics) the model characterizes them statistically, treating certain 
aspects of the process that describes how they evolye as exogenous parameters 
to be estimated on a case-by-case basis. This departure reflects the conviction, 
first expressed by Schelling (1960), that it is impossible to predict from rational- 
ity alone how people will respond to coordination problems. I illustrate the 
usefulness of this approach by using the data from VHBB's experiments to 
estimate the model, treating the idiosyncratic components of players' beliefs as 
error terms, and then using the estimates to infer the prior probability distribu- 
tions of outcomes in the various environments. In each case the model provides 
an adequate statistical summary of subjects' behavior while closely reproducing 
the dynamics of their interactions. The distributions it implies suggest that the 
observed dynamics are not anomalous, but in some cases they strengthen or 
modify the impressions created by the raw data. 

The paper is organized as follows. Section 2 introduces the model and 
summarizes VHBB's experimental designs and results. Sections 3 and 4 carry 
out an analysis under the simplifying assumption that players' strategies are 
continuously variable. Section 5 extends the analysis to the case in which players 

2Because players' strategy choices normally converge to an equilibrium in the underlying game, 
this "irrationality" does not persist, and is therefore immune to the most common criticism of 
adaptive analyses. 
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have discrete, finite strategy spaces, as in the experiments. Section 6 reports 
econometric estimates of the model's parameters based on VHBB's experimen- 
tal data, and Section 7 discusses the implications of these estimates for the 
probability distributions of coordination outcomes. 

2. VAN HUYCK, BAII7ALIO, AND BEIL'S EXPERIMENTAL DESIGNS AND RESULTS 

In VHBB's (1990, 1991) experiments, subjects repeatedly played coordination 
games in which their payoffs were determined by their own strategies and 
simple summary statistics of other players' strategies. Explicit communication 
was not allowed, but the relevant summary statistic was publicly announced 
after each play. (In some experiments entire strategy profiles were also an- 
nounced; this made little difference to the results.) With apparently unimpor- 
tant exceptions, all details of the structure of each experimental environment 
were publicly announced at the start. There was ample evidence that the 
subjects understood the rules and were paid well enough to induce the desired 
preferences.3 

VHBB's designs are best understood in simplified versions of the games used 
in their 1990 experiments. Suppose that a number of players choose between 
two efforts, 1 and 2. The minimum of their efforts determines their total output, 
which they share equally. Effort is costly, but sufficiently productive that if all 
players choose the same effort their output shares more than repay their costs. 
If anyone shirks, however, the balance of the others' efforts is wasted. Assuming 
for definiteness that output per capita is twice the minimum effort and each 
player's unit effort cost is 1, payoffs are determined as follows: 

Minimum Effort 

2 1 

2 2 0 
Player's 
Effort 1 1 

A game with this structure was suggested by Bryant (1983) (see also Cooper 
and John (1988)) as a model of Keynesian effective demand failures. This game 
has a long history in economics, which can be traced to the stag hunt example 
Rousseau (1973 (1775), p. 78) used to discuss the origins of the social contract. 
To see the connection, imagine (adding some game-theoretic detail to 
Rousseau's discussion) that each of a number of hunters must independently 
decide whether to join in a stag hunt (effort 2) or hunt rabbits by himself (effort 
1). Hunting a stag yields each hunter a payoff of 2 when successful, but success 
requires the cooperation of every hunter and failure yields 0. Hunting rabbits 
yields each hunter a payoff of 1 with or without cooperation, and thereby 
determines the opportunity cost of effort devoted to the stag hunt. 

3VHBB (1990, 1991) and Crawford (1991) describe the designs in more detail. 



COORDINATION GAMES 107 

For any number of players, stag hunt has two pure-strategy Nash equilibria, 
one with all choosing effort 2 and one with all choosing effort 1. The effort-2 
equilibrium is the best feasible outcome for all players, and all strictly prefer it 
to the effort-1 equilibrium. This rationale for playing effort 2 does not depend 
on game-theoretic subtleties; it is clearly the "correct" coordinating principle. 
However, effort 2's higher payoff when all players choose it must be traded off 
against its risk of a lower payoff when someone does not. For a player to prefer 
effort 2 (treating the influence of his choice on future developments as negligi- 
ble) he must believe that the correctness of this choice is sufficiently clear that it 
is more likely than not that all of the other players will believe that its 
correctness is sufficiently clear to all. Informal experiments suggest that people 
are often uncertain about whether other people will believe this, and that most 
people accordingly believe that effort 2 is a good bet in small groups but not in 
large groups.4 

VHBB's experiments showed that this kind of uncertainty can have profound 
and lasting consequences. Their subjects chose among seven efforts instead of 
two, with both the summary statistic used to determine payoffs and the size of 
the groups playing the game varying across treatments. In the "minimum" 
experiments reported in VHBB (1990) populations of 14-16 subjects repeatedly 
played games like stag hunt, first in large groups with the minimum effort in the 
entire population determining payoffs, and then in random pairs with each 
subject's payoff determined by his current pair's minimum.5 In the "median" 
experiments reported in VHBB (1991) populations of nine subjects repeatedly 
played games in which the entire population's median effort determined their 
payoffs, with variations in the payoff function across three treatments. In each 
case the game had the "same" seven strict, symmetric, pure-strategy equilibria; 
this similarity in strategic structure extends to the experimental environments 
when the random-pairing treatment is viewed as a game played simultaneously 
by all members of the population, with players' expected payoffs evaluated 
before the uncertainty of pairing is resolved. 

These environments elicited roughly similar initial distributions of effort, with 
high to moderate means and variances. Subjects' subsequent behavior, however, 
differed strikingly and systematically across treatments, with consequences for 
equilibrium selection that appeared likely to persist indefinitely. In the large- 
group minimum treatment subjects' choices gravitated strongly toward the 

4Note that these beliefs are self-confirming. They are plausible because if players choose 
independently, with probabilities independent of the number of players, the clarity of the principle 
is less likely to be sufficient the larger the group. Because this intuition concerns a choice between 
strict equilibria, however, it is not captured by traditional refinements like trembling-hand perfect- 
ness or strategic stability. 

5 In the random-pairing treatment each subject was told only his current pair's minimum. There 
was also a treatment in which the minimum game was repeatedly played by fixed pairs, with subjects 
informed that their pairings were fixed. Those subjects were evidently aware of the importance of 
repeated-game strategies, and usually achieved efficient coordination. Because repeated-game 
strategies raise difficult new issues-the horizon over which players evaluate their strategies, for one 
-that treatment is not discussed here. It may be possible to explain its results along the lines 
suggested by Crawford and Haller (1990) or Kim (1990). 
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lowest effort, even though this led to the least efficient equilibrium. By contrast, 
in the random-pairing minimum treatment subjects' efforts converged very 
slowly with little or no trend; and in the median treatments subjects invariably 
converged to the equilibrium determined by the initial median, even though it 
varied across runs in each treatment and was usually inefficient.6 Thus, the 
dynamics were highly sensitive to group size, with very different rates of 
convergence and patterns of discrimination among equilibria in the random- 
pairing and large-group minimum treatments. They were also highly sensitive to 
the summary statistic used to determine payoffs, with no trends and very strong 
history-dependence in the median treatments but strong trends and no history- 
dependence in the large-group minimum treatment. 

The similarity of the distributions of subjects' initial responses across treat- 
ments suggests that the differences in their subsequent behavior can be at- 
tributed to the dynamics of the learning process. Explaining VHBB's results 
requires imposing structure on this process. Many structures are consistent with 
some aspects of the results, and the dynamics will be at least as important as 
their limiting outcomes in discriminating among explanations. It is instructive, 
however, to consider the extent to which the outcomes that emerged (or seemed 
to be emerging) in the experiments can be explained by applying equilibrium 
refinements to the underlying coordination games.7 

Traditional refinements like trembling-hand perfectness and strategic stability 
do not address the strategic issues raised by VHBB's games. Those refinements 
are motivated by asking whether a given equilibrium is self-enforcing if all 
players expect it to govern play. They therefore do not discriminate among the 
strict equilibria in these games, which all pose essentially the same strategic 
question in the absence of strategic uncertainty. 

More promising are refinements like Harsanyi and Selten's (1988) risk-domi- 
nance axiom or the "general theory of equilibrium selection" of which it is a 
part, which do discriminate between strict equilibria. Although Harsanyi and 
Selten assume that players' beliefs always converge to a particular equilibrium 
before play begins, the mental tatonnements that model their convergence 
process are sensitive to strategic uncertainty, with implications for equilibrium 
selection that are similar in some respects to the patterns VHBB observed. 
However, neither Harsanyi and Selten's theory nor a variant that eliminates the 
precedence they give payoff-dominance (allowing risk-dominance, which embod- 
ies most of their ideas about the effects of strategic uncertainty, to determine 
the outcome in most of VHBB's treatments) corresponds very closely to VHBB's 

6 Isaac, Schmidtz, and Walker (1989) and several more recent studies report similar results. 
Comparing the results across VHBB's (1990) treatments that differed only in subjects' prior 
experience suggests that the patterns they observed are not eliminated when subjects learn to 
anticipate them; if anything, they are reinforced. 

7Applying refinements to the repeated game that describes the entire learning process does not 
increase their explanatory power, and seems less plausible in this setting. 
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subjects' strategy choices.8 As will be seen, this is due mainly to the influence 
strategic uncertainty exerts on the learning dynamics, an influence their theory 
rules out by assumption. 

Also more promising is Maynard Smith's (1982) notion of evolutionary 
stability. Formally a static equilibrium refinement, it is motivated by considering 
conditions for local stability of evolutionary dynamics that resemble simple 
models of the learning dynamics (see Crawford (1989)). Crawford (1991) ex- 
plored the possibility of an "evolutionary" explanation of VHBB's results, 
verifying that VHBB's environments satisfy the structural assumptions of evolu- 
tionary game theory, so that the notion of evolutionary stability, suitably 
generalized to allow finite populations and interactions other than random 
pairing, can be applied. Like risk-dominance, evolutionary stability responds to 
the large differences in the sizes of basins of attraction in the large-group 
minimum treatment by discriminating among strict equilibria in a way that 
resembles VHBB's results. Although suggestive, an analysis along these lines 
does not determine players' initial strategy choices, as would be required to 
determine the patterns of equilibrium selection in VHBB's other treatments, 
and the analogy between evolution and learning may well be unreliable in 
environments with strategic uncertainty. The structure of evolutionary games 
nevertheless has important advantages in modeling the learning dynamics. 
Section 3 introduces a model that combines this structure with a flexible model 
of individual strategy adjustment, in which players learn from experience in 
comparatively sophisticated ways. 

3. A MODEL WITH CONTINUOUSLY VARIABLE STRATEGIES. 

In this section and the next it is assumed that players' pure strategies are 
continuously variable. The analysis resolves most of the issues that arise when 
the model is extended to the discrete strategy spaces of VHBB's experiments in 
Sections 5-7. 

8As explained in Crawford (1991), Harsanyi and Selten's theory selects the equilibrium with 
effort 7 (in response to payoff-dominance) in all of VHBB's treatments but median treatment P, 
where it selects the equilibrium with effort 4 (in response to symmetry). These selections correspond 
to 7% of subjects' last-period choices in the large-group minimum treatment, 43% in the random- 
pairing minimum treatment, and 0%, 67%, and 33% in median treatments F, Q2, and '. These 
success rates are mostly better than random, which with seven effort levels would imply a 14% 
success rate, but low. Harsanyi and Selten's theory without payoff-dominance selects the equilibrium 
with effort 1 in the large-group minimum treatment (in response to risk-dominance); the equilibrium 
with effort 4 in the random-pairing minimum treatment (because risk-dominance is neutral in 
VHBB's two-person minimum game and the theory therefore applies the tracing procedure to a 
uniform prior over the undominated strategies); the equilibrium with effort 7 in median treatments 
F and 12 (in response to risk-dominance); and the equilibrium with effort 4 in median treatment P 
(in response to risk-dominance, after imposing symmetry). This raises the success rate to 72% in the 
large-group minimum treatment, lowers it to 17% in the random-pairing minimum treatment, and 
leaves it unchanged in the median treatments. These success rates are again better than random, 
but low. The patterns differ for first-period choices, but the success rates are no higher on average. 
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The model is defined for a class of environments with the structure of 
evolutionary games, which generalizes VHBB's experimental designs. There is a 
finite number of indistinguishable players, who repeatedly play a game in which 
their roles are symmetric. This game should be thought of as describing the 
interactions of the entire population of players, with their payoffs evaluated 
taking into account any uncertainty about how they interact. Players' strategies 
are identified, so that it is meaningful to say that different players choose the 
same strategy, or that a player chooses the same strategy in different periods. 
Players play only pure strategies, and their strategy spaces are one-dimensional.9 

I focus on coordination games in which any symmetric combination of pure 
strategies is an equilibrium, and they are the only pure-strategy equilibria. 
Because players' roles are symmetric, these equilibria are Pareto-ranked unless 
players are indifferent between them. This makes the coordination problem 
particularly simple, with a one-dimensional continuum of possible limiting 
outcomes and an unambiguous measure of efficiency. I further restrict attention 
to games in which each player's best replies are given by a summary statistic of 
the strategies chosen by all players in the population whenever the statistic in 
question is unaffected by his choice. The summary statistic can be written in 
general as y, =f(x,), where xt = (x1t, ..., xnt) and xit denotes player i's strat- 
egy choice at time t. I assume that f( ) is continuous and, for any xt and any 
constants a and b > 0, f(a + bx t, * * *, a + bXnt) =a + bf(Xlt* Xnt). These 
assumptions are satisfied when f(*) is an order statistic, as in VHBB's minimum 
and median treatments, or a convex combination of order statistics such as the 
arithmetic mean.10 To see what they entail, note that because players' roles are 
symmetric f( ) must be a symmetric function of the xit; its value is therefore 
completely determined by the order statistics of their empirical distribution. My 

9The results of Crawford (1989) suggest that equilibria in which individuals play mixed strategies 
would not emerge if they were allowed. The polymorphic configurations of pure strategies that 
mixed-strategy equilibria often represent in evolutionary game theory are allowed, but do not 
emerge in the games studied here. 

10 When players are risk-neutral their best replies in VHBB's random-pairing minimum treat- 
ment are actually given by the median effort in the population. A risk-neutral player i would like, 
ideally, to choose the xi that maximizes 

E[ p min {xi, xj} - qxi] =p[1 - G(xi)]xi +pf xj dG(xj) - qxi 

= (p - q)xi -pJ xG(xj) dxj, 
- 00 

where p > q > 0, G(*) is the empirical distribution function of the other players' efforts, and the 
second equality is obtained by integrating the Stieltjes integral by parts. Computing the left- and 
right-hand derivatives of this objective function makes it clear that xi* solves this problem if and 
only if G(x) < (>) 1 - q/p when x < (>) x*, so that x* is an order statistic of the distribution 
G(-). In the random-pairing minimum experiments p = 2q, so that xi* is the median when it is 
well-defined. VHBB also conducted some large-group minimum experiments in which the cost of 
effort was lowered to zero, making all efforts at or above the current minimum best replies and the 
highest effort a weakly dominant strategy. The effect of dominance on players' strategy choices is 
easily handled within the model, but the generic multiplicity of players' best replies raises new 
issues, not addressed here. 
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assumptions rule out most nonlinear functions of these order statistics, which is 
certainly restrictive but probably not unrepresentative of symmetric games. 

The structure of the environment is made public before play begins, and the 
value of the relevant summary statistic is publicly announced after each play." 
Players' beliefs and strategy choices evolve as follows. Their beliefs at the start 
of play determine their initial choices. They then observe the value of the 
summary statistic that results, update their beliefs and make new choices, and 
the process continues. Thus, players face uncertainty only about each other's 
strategy choices, and both the effects of those choices and the information they 
receive about them are filtered through the summary statistic. It follows that in 
choosing their strategies, they need form beliefs only about the summary 
statistic. 

In this learning process, even if players form and revise their beliefs sensibly 
and choose their strategies optimally given their beliefs, their beliefs and 
strategy choices may differ in unpredictable ways. I imagine that each player 
begins with a prior about the process that generates yt, and that each period he 
updates his prior in response to his new information and then chooses the 
strategy that is optimal given his beliefs about yt. Players whose priors differ 
may then have different beliefs, even if they observe the same history and use 
the same procedures to interpret it. I suppose that each player treats the 
probability that his decisions influence the {ytj process as negligible, so that his 
optimal choice each period is determined by his beliefs about the current value 
of yt; this is not strictly necessary, but it is a natural simplification given the 
unimportance of such influences in VHBB's experiments.12 Finally, I assume 
that each player's prior is sufficiently undogmatic that he will eventually learn to 
predict Yt correctly if it converges. 

The importance of the differences in players' beliefs and the need to supple- 
ment the theory with empirical information about them make it essential to 
represent beliefs accurately and flexibly, and to describe their evolution in terms 
of observable variables so that it is possible to estimate the parameters left 
undetermined by the theory. It also seems advisable to avoid unduly restricting 
the form of players' priors about the {ytj process, given the lack of theory on 
this issue. These considerations suggest a model in the style of the adaptive 
control literature.'3 The key insight of the control literature is that describing 
the evolution of agents' beliefs does not require that they be explicitly repre- 
sented as probability distributions or their moments: It is enough to model the 

"lAlthough subjects were told only their pair minimum in the random-pairing minimum treat- 
ment, this can be viewed as a noisy estimate of the population median that determined their best 
replies (see footnote 10), so that the limitation on their information can be treated as an increase in 
the dispersion of their beliefs. 

12 In a large-group minimum game a player can expect to influence the minimum only if he 
reduces his effort below his estimate of the minimum of the others' choices, but the model implies 
that he will never do this. In more than 90% of the periods in the other treatments, no single 
sub)ect's choice could have altered the summary statistic. 

3See for example Ljung and Soderstrom (1983) and Nevel'son and Has'minskii (1973). My 
discussion follows Woodford (1990, Section 2), who gives an excellent overview. 
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dynamics of the estimates of the optimal decisions they imply, which are the 
only aspects of agents' beliefs that affect the outcome. This simplification will 
accommodate the wide range of learning behavior VHBB's subjects exhibited 
and make it possible to describe the dynamics in a simple framework that 
satisfies the desiderata mentioned above. 

The logic of this approach and the need for accuracy and flexibility suggest 
that beliefs are best represented by continuous variables. When strategies are 
also continuously variable it is possible, if players are risk-averse or risk-neutral, 
to represent their beliefs directly by their optimal decisions.14 Thus, in this 
section and the next, xi, will represent both beliefs and strategy choices. (In 
later sections xi, will continue to represent beliefs and remain continuously 
variable, with strategy choices determined by a standard model of discrete 
choice in which the xit are latent variables.) Note that this way of representing 
players' beliefs requires no specific restrictions on their priors or risk prefer- 
ences. There is also no need for a player's beliefs, as represented by his strategy 
choices, to be related in any simple way to the moments of the distribution that 
describes his beliefs about yt. If, however, players come to expect a particular 
value of yt the xit will approach that value; thus, in the limit, their choices can 
be viewed as estimates of the mean of yt. 

I follow the control literature in assuming that players' beliefs and strategy 
choices evolve according to linear adjustment rules of the following form: 

(1) xi= aj? 

and 

(2) xit= ait + bityt-1 + (1 -1 (t=1,...). 

The ait and bit in (1) and (2) are exogenous coefficients, which represent any 
trends in players' beliefs and how their beliefs respond to new information, 
thereby reflecting their precision. These coefficients are allowed to vary with i 
and t, as described below, to accommodate differences in players' beliefs and 
learning behavior. 

Although (2) resembles partial adjustment to the strategy choice the latest 
observation of yt suggests is optimal, it is taken here to represent full adjust- 
ment to his current estimate of his optimal decision, which normally responds 
less than fully to each new observation because it is only part of the information 
he has about the {ytj process.'5 Suppose, for instance, that player i's decisions 
are certainty-equivalent, so that his optimal strategy choice equals his current 
estimate of the mean of yt. Then if he is convinced that the yt are independent 
draws from a fixed distribution, and if he puts as much weight on his prior as he 

14 When players' optimal decisions do not preserve enough information about their beliefs to 
represent them accurately, it is necessary to keep track of beliefs and decisions separately, as in the 
analysis of discrete strategy choice in Section 5. 

1 Note that these learning rules differ from those discussed in the psychological learning 
literature (see Roth and Erev (1995) for an interesting application in economics) in that they 
incorporate information about the game's best-reply structure. This seems appropriate for VHBB's 
experiments, but might be unrealistic in other settings. 
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would on X such draws, he will set ait 0 and bit 1/G(+t+ l), as in 
"fictitious play." If he believes instead that the {yt} process is a driftless random 
walk, he will set ait 0 and bit 1, as in a "best-reply" process. Thus (2) 
includes as special cases two of the learning rules most often studied in the 
game theory literature. 

In general players' priors are more complex than this, and their decisions may 
not be well approximated by certainty equivalence. With or without certainty 
equivalence or strong restrictions on priors, players whose adjustments follow 
(2) will learn to predict yt if it converges and choose xit that are optimal, given 
their predictions, as long as a -- 0 as t -- oo and 0 < bit < 1 for sufficiently large 
t. More generally, learning rules of this kind have been shown in the control 
literature to provide a robust, effective approach to the estimation problems 
faced by agents who understand the forecasting problems they face but are 
unwilling to make the specific assumptions about the process or unable to store 
and process the large amounts of information an explicitly Bayesian approach 
would require. 

It is plain that the learning rules in (2) are usually less than fully rational in 
the sense used in game theory, because players' priors about the structure of the 
{yt} process are not required to be correct, and because the form of (2) may be 
inconsistent with the adjustment rules that are optimal given their priors (which 
in general may depend nonlinearly, and nonseparably, on the observable his- 
tory). It might be possible to find repeated-game equilibria, perhaps with payoff 
perturbations as in McKelvey and Palfrey's (1992) analysis of experiments with 
the centipede game, that are statistically consistent with VHBB's subjects' 
behavior. But for this application it is both simpler and, given the unimportance 
of individual subjects' influences on yt noted above, more plausible to adopt the 
working hypothesis that players focus on stage-game strategies.'6 Under simple 
restrictions on the learning process this approach yields specific predictions that 
correspond to the dynamics VHBB observed. Although the possibility that 
players choose optimally given correct beliefs is not ruled out, it is strongly 
rejected in the empirical analysis. 

To sum up, although the specification of players' learning rules used here 
cannot be defended by an appeal to rationality, it accommodates a wide range 
of sensible rules, which locate players' best replies quickly and reliably. The case 
for this specification is most compelling when it is difficult to defend specific 
restrictions on the form of players' Bayesian priors. However, the adjustments it 

16 One might still try to impose rationality in the weaker sense of requiring players' rules to be 
statistically optimal for the process implied by the model, on the assumption that their influences on 
Yt are negligible. If players' choices are certainty-equivalent, (2) includes rules (exponential smooth- 
ing with time-varying coefficients) that are optimal in this sense for {yj} processes close to the one 
implied by the model (which is shown below to resemble a random walk plus noise, with drift and 
declining variances); see Harvey (1989). However, the logic of this approach also requires using the 
underlying variances of the process to determine the optimal coefficients of the learning rule. Even 
without the restrictive form of (2), attempts to close the loop in this way ultimately founder on the 
multiplicity of equilibria in the learning process, and in any case do not help to explain the 
differences in players' beliefs. 
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implies are qualitatively similar to those of Bayesian players and coincide with 
them in leading cases. Thus, using (2) might not be a significant source of error 
even if the population consisted entirely of Bayesians with known priors. More 
to the point, it appears to be a reasonable way to describe players' behavior 
when, as here, precise knowledge about their priors and decision rules is 
lacking. 

When players' learning rules are described by (2), differences in their beliefs 
appear, to an outside observer or the players themselves, as random variations 
in the ait and bit, In keeping with their unpredictability, I characterize them 
statistically, treating certain parameters of their distributions as behavioral data. 
Thus, let 

(3) sit ait - at and it -bit -8t (t = 1,...) 

where at and t are the common expected values of the ait and bit, The 
restrictions on the ait and bit discussed above suggest that at -O as t --oo (but 
that the at may have either sign before they converge) and that 0 <,bt < 1. By 
construction, EEit = E-1it = 0 for all i and t, where Ez denotes the expected 
value of the random variable z ex ante (that is, before random variables dated 0 
are drawn). I assume that the Eit and nit are serially independent. This amounts 
to assuming that xiti, fully captures any future effects of idiosyncratic influ- 
ences on player i's beliefs through period t - 1, which is restrictive, but seems a 
reasonable simplification. It is then a natural extension of my assumption that 
players are indistinguishable ex ante to assume that the Eit and nit are jointly 
independently and identically distributed (henceforth, "i.i.d.") across i for any 
given t, with exogenous common variances and covariances, denoted o-, at 
and Kt respectively.17 

It is convenient to rewrite the model by substituting (3) into (1) and (2) and 
letting 

(4) V iO =io and tit 8it+ (yt_l-xitJ)qit (t= 1,...), 

which yields 

(5) xio= ao + Vio 

and 

(6) xit = tt +f tyt-l + (l-t)Xit-1+ t (t= 1,...). 

The vit are idiosyncratic random variables that represent the differences in 
players' initial beliefs and in how they respond to new observations. It is easily 
verified that, like the Eit and nits they are ex ante identically distributed across i 
for any given t. Further, letting E,(z I ) represent the conditional expectation 
of the random variable z given the information available at time s (that is, after 
random variables dated s are drawn) and using the law of iterated expectations, 

17 Note that it is not assumed that Eit and nit are independent of each other. This would be 
inappropriate because ait and bit are different aspects of the same learning rule. 
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E[;it;jt]=E[Et-,(;it;jtlxt-,)]=O for any i#j and any t; and E;it=?, 
E itl ) = O, and E[;i,vjt] = E[E,(;i jtlx,, i)] = E[;iE(jtlx,)]= O for any 
i, j and any s, t with s < t. Thus, although the distribution of Vit depends on 
xt-1 and therefore on -it_l and the other -jt_,, the Vit are uncorrelated across i 
for any given t and serially uncorrelated. The common ex ante variance of the 
cit' which is endogenous but well defined once ot- 171t, and Kt are specified, is 
denoted o-J, and the conditional variance of Vit given xt1 is denoted o2tIx_1. 

Under these distributional assumptions, (5) and (6) define a Markov process 
with state vector xt, in which players' beliefs and strategy choices are identically 
distributed ex ante, but not in general otherwise. The recursive structure, 
together with the conditional independence of players' deviations from the 
average learning rule, captures the requirement that players must form their 
beliefs and choose their strategies independently which is the essence of the 
coordination problem. 

The dynamics are driven by the dispersion of players' beliefs, as represented 
by the otlxt 1. This is true even though the model is formally consistent with 
any history of the yt for any n and ffQ), with the at varying as necessary over 
time and players' beliefs constrained to be identical throughout. (If o Ix_1 = 0 
for all i and t, so that Vit = 0 with probability one, then (5) and (6) imply that 

it =yt= Et=oaa.) Solutions of this kind, in which players jump simultaneously 
from one stage-game equilibrium to the next following some commonly under- 
stood pattern, correspond to equilibria of the repeated game that are difficult to 
rule out using traditional refinements. Yet it is clear that they provide neither a 
meaningful explanation of the dynamics of yt nor an adequate statistical 
summary of subjects' strategy choices. I shall therefore ask that the model meet 
both of these goals simultaneously, without such ad hoc variations in its 
parameters. 

This requires that players differ significantly in their responses to new 
information as well as in their initial beliefs. To see this, assume for simplicity 
that at=0 for all t=1. If ;2=E2>0 but ot Ixtl1=0 for all i and 
t = 1,..., then (6) (with Vit = a-t = 0 and 0 < J3t < 1) implies that (xit - yt- 1) and 
(xit -1 - yt- 1) always have the same sign, with xit closer to yt- 1 than xit -1 was. 
It follows that players' strategy choices converge to yt monotonically, without 
overshooting, and therefore, when ff() is an order statistic, that yt Y0 for all 
t, independent of n and f( ). This extreme history-dependence is consistent 
with the results for VHBB's median treatments but not for their minimum 
treatments. 8 

Given that t- Ixt 1 > 0, the model is closest to other work on adaptive 
dynamics when at = 0 for all t = 1,... and 8t and ;it x t- remain constant at 

18 In the large-group minimum treatment, for instance, subjects whose efforts were above the 
minimum adjusted their efforts only part of the way toward it on average. Thus, without persistent 
differences in subjects' responses to new information the minimum would never have fallen. In fact, 
however, there was enough variation in subjects' responses, given the size of the population, to 
make the minimum fall in 9 out of the 13 instances in which it was not already at the lowest possible 
level. 
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positive levels or converge to positive limits, so that the process has stationary or 
asymptotically stationary transition probabilities and a unique, globally stable 
ergodic distribution. Then, the methods of Freidlin and Wentzell (1984), as first 
applied in this area by Foster and Young (1990) and subsequently adapted to 
discrete state spaces by Kandori, Mailath, and Rob (1993) and Young (1993a), 
can be applied to the model with discrete strategy choice analyzed in Section 5. 
In the long run the process cycles perpetually among the pure-strategy equilib- 
ria of the underlying game, with their prior probabilities at any given time 
determined by the ergodic distribution. As the o-t Ixt_ are allowed to approach 
zero (remaining constant over time) the ergodic distribution assigns probability 
approaching one to the equilibrium with the lowest effort whenever the sum- 
mary statistic is below the median, and approaches a limit with positive 
probability on every equilibrium when the summary statistic is the median, in 
each case independent of the number of players.19 

Thus, an analysis is the style of Kandori, Mailath, and Rob (1993) and Young 
(1993a) discriminates between VHBB's large-group minimum treatment on one 
hand and their median treatments and random-pairing minimum treatment (in 
which the relevant summary statistic is also the median, as explained in footnote 
10) on the other, but otherwise does not distinguish between them. These 
conclusions are not logically inconsistent with the systematic, persistent effects 
of the number of players and the summary statistic within the finite horizons of 
VHBB's experiments, but they suggest that an analysis based entirely on the 
limiting distributions of an ergodic learning process with infrequent "mutations" 
is of limited use in understanding those effects. 

The methods developed below characterize the probability distributions of 
the entire time paths of yt and the xit, whether or not the process is ergodic 
and the o-J Ixt_ are small. As will become clear, the model's dynamics are 
closest to VHBB's results when the o-JlIxt_ decline steadily over time-even- 
tually to zero, given subjects' tendency to "lock in" on an equilibrium-just as 
one would expect as players gain experience forecasting yt. 

4. ANALYSIS 

The model's "evolutionary" structure makes it analytically tractable despite 
its nonlinearity and the nonstationarity of its transition probabilities. When 
players' interactions are filtered through a summary statistic f(x1,,..., x"t) with 
the property that f(a + bxlt, ... , a + bXnt) a + bf(Xlt, ..., xnt), the outcome 
can be expressed as a function of the idiosyncratic shocks that represent the 
differences between their beliefs. In what follows, sums with no terms (like 

-1 Bs+ 1 fs for t = 0) should be understood to equal 0, and products with no 
terms should be understood to equal 1. All limits are taken as t -- oo. 

19 This follows because fewer changes in individual players' efforts are required to get from a 
high-effort equilibrium to the basin of attraction of a low-effort equilibrium than vice versa if, and 
only if, the summary statistic is below the median. Robles (1994) analyzes a closely related model for 
the games studied here, showing that this conclusion changes only slightly when players do not 
ignore their influences on y,. 
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PROPOSITION 1: The unique solution of (5) and (6) is given, for all i and t, by 

t t-1 

(7) Xit = a cs + E Ps+ l s + Zit 
s=O s=O 

and 

t t-1 

(8) Yt =5 ats + E 1s+lfs +fttS 
s=O s=O 

where 

t t -s 

(9) Zit 1 -ot-j+ 1) vjs and ft=f (zj,..,znt) 
S=0 _J=1 

PROOF: The solution follows immediately by induction on t, recalling that 
f(a + bx1t,.*.*, a + bxt)n a +bf(Xlt..... xIn) and noting that zit = (1 -/3dZit- 
+ Vit for all t. Uniqueness also follows immediately by induction. Q.E.D. 

Proposition 1 represents the outcome of the learning dynamics as the cumula- 
tive effect of trend and shock terms from each period, each of whose effects 
persist indefinitely. (The remaining terms, zit in (7) and ft in (8), are subsumed 
in the shock terms after the period in which they first appear.) Thus the 
coordination process resembles a random walk, but with declining variances and 
possibly nonzero drift. Although Proposition l's solution remains valid no 
matter how the Vjt are generated, much of its usefulness in the analysis below 
stems from the fact that the shock terms are knQwn functions of the zit, which 
under my assumptions are ex ante identically distributed and uncorrelated 
across i for all t. 

The next proposition provides conditions under which the dynamics converge, 
with probability 1, to one of the symmetric Nash equilibria of the underlying 
coordination game. In this proposition, and sometimes below, it is necessary to 
bound players' strategies. This is accomplished by increasing xit to its lower 
bound, denoted x, or reducing it to its upper bound, denoted x, whenever it 
would otherwise fall outside the interval [x, x]. This is equivalent to increasing 
Vio to x - ao (or reducing it to x - ao) when it would otherwise fall below 
(above) that value and increasing Vjt to x - a -tyt - (1 -8)xjt_1 (or 
reducing it to X - ao - tyt-l- (1 - )xit-) when it would otherwise fall 
below (above) that value. The resulting truncation of the conditional distribu- 
tions of the Vjt is consistent with the distributional assumptions introduced in 
Section 3, except that it may bias the E;io or the Et_1(;itjxt_j) away from zero 
and induce serial or contemporaneous correlation in the Vit; I indicate below 
when this affects the results. 

PROPOSITION 2: Assume that the distributions of the Vit are truncated so that 
the xit always remain in the interval [x, x]. Then if 8t is bounded above 0, with 
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0 < 3 < 13 < 1 for all t, and E,=oa, and E,=o j2 are finite, y, and the xit 
converge, with probability 1, to a common, finite limit. 

PROOF: The proof follows the martingale convergence arguments of Nevel'son 
and Has'minskii (1973, Theorem 2.7.3).2? Consider the Lyapunov function 

Vt - Li j(x- xit)2, where the summation is taken over all i, j=1,..., n. Clearly, 
Vt > 0 for all xt, with Vt = 0 if and only if xit =xjt for all i and j. Substituting 
from (6) and simplifying, 

(10) Vt = E [(1-8t )(xit-1 x-xt-) + vit -jt] 
i,j 

- [(1 13t)2(Xit-l-xit_l)2 
i, J 

+2(1 -It)(xit-1 -xt-1)(;it-jt) + (-it jt)] 

Taking expectations in (10) yields 

( V~~~~~~~~, (11) Et_1(VtlXt_l) = (1-_,t)2 (Xit,_-xjtJ l) 
i, j 

+ 2(1 -8t) E (xit-, -xjt-,)Et-, [;it - jt] |xt-1) 
i,iJ 

+ J:Et_1([Ri jt- ] 
2 

Xt_J) 
i, J 

The first term on the right-hand side of (11) is plainly bounded below Vt-> for 
all xt-1 outside any given neighborhood of the set for which Vt 1 = 0. Without 
truncation the second term equals 0, and the third term eventually approaches 0 
with probability 1 because o2 must approach 0 for E=0 to be finite and this 
cannot occur unless Et_ 1(; 2tIxt 1) approaches 0 with probability 1. Thus, 
without truncation {Vt} eventually becomes a nonnegative supermartingale, and 
therefore converges with probability 1, under the stated variance condition, to 
its lower bound, 0. Because truncation at time t can never increase Et 1(Vt Ix_ t) 
or Et - 1(2tIxt-1), this conclusion extends to the truncated version of the {Vt} 
process. It follows that (xit - xjt) converges to 0, with probability 1, for all 
i, j = 1, ..., n, and therefore (because yt =f(xt), ff() is continuous, and 
f(a .. ., a) a) that (yt -xit) also converges to 0 with probability 1. The 
convergence of the xit (and not just their differences) then follows, given that 
they are bounded, from two observations: (i) xt cannot (with positive probabil- 
ity) return infinitely often to a given point at which xit =A yt for some i, because 

20 Nevel'son and Has'minskii's (1973) generalization of Lyapunov's global-stability criterion to 
stochastic dynamic systems is a useful alternative to the techniques of Ljung (see Ljung and 
Soderstrom (1983)) used by Woodford (1990). Nevel'son and Has'minskii require that the Lyapunov 
function approach infinity with llxtIl, but they use this condition only to ensure the boundedness of 
solution paths; in Proposition 2 boundedness is assumed directly. The variance condition they 
impose is just what one would expect by analogy with the strong law of large numbers. 
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the (y, -xi) converge to 0 with probability 1; and (ii) x, cannot (with positive 
probability) oscillate infinitely often between distinct points at which xi, = y, for 
all i, because E'=oas and the Es=O;is also converge (the latter with probability 
1) under the stated conditions. Q.E.D. 

Because the xit, and therefore the (xit - Yt), are bounded, (4) implies that for 
E7=o 0 7to be finite it is sufficient that E os=oa2s and Es=0 7 be finite, and 
necessary that ES=o-2, be finite. Although it is plainly not necessary that 

S be finite, I have not been able to use this possibility to weaken these 
sufficient conditions for convergence in any useful way. I have also not been 
able, without truncating the distributions of the jit, to rule out the possibility of 
solutions in which Yv and the xit diverge together to ? oo, but the conclusion of 
Proposition 2 seems likely to remain valid for well-behaved unbounded distribu- 
tions. 

Propositions 1 and 2 show that the model determines a prior probability 
distribution over limiting equilibria that is normally nondegenerate, rather than 
singling out a particular equilibrium. This is consistent with the variations 
observed across different runs in some of VHBB's treatments, and follows 
naturally from characterizing players' beliefs statistically instead of assuming 
that they can be determined entirely within the model. 

I now consider the model's comparative dynamics properties, focusing on how 
changes in VHBB's treatment variables, the number of players, n, and the 
summary statistic, ff(), affect the prior probability distributions of the yt and 
xit. 21 Propositions 3 and 4 characterize these effects qualitatively for given 
values of the behavioral parameters at, 3t, oet a7t, and Kt, showing that they 
are fully consistent with the patterns of variation in the dynamics VHBB 
observed across treatments. Propositions 5 and 6 then show how the means and 
variances of the yt and xit are determined by the treatment variables and the 
parameters, to assess the quantitative magnitudes of these effects. 

These results are then used to explain the patterns of variation in the 
dynamics. As with any model whose predictions depend on empirical parame- 
ters, the explanation rests on the assumption that the parameters are stable 
across runs in any given treatment. (Sample-splitting tests and inspecting the 
data suggest that this is not a bad assumption.) But something more is involved 
here, because each treatment is a different game, and there is no good 
theoretical reason to expect players' responses to be the same in different 
games. Thus, in principle, the effects of changes in the treatment variables 
identified in Propositions 3 and 4 might be swamped by large, unpredictable 
changes in the behavioral parameters. Such changes would leave the model's 
ability to predict coordination outcomes unaffected, as long as the behavioral 

21 Broseta (1993a) studies the comparative dynamics of a closely related model that allows for 
autoregressive conditional heteroskedasticity in the idiosyncratic components of players' beliefs, 
obtaining some results like those given here and others concerning the effects of changes in the 
initial mean and dispersion of players' beliefs. 
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parameters remained stable across runs in each treatment. They would, how- 
ever, reduce the patterns of variation in the dynamics to a primarily empirical 
question, limiting the theory's usefulness beyond those environments for which 
the parameters have been estimated and leaving it unable to explain why the 
dynamics varied across treatments as they did in VHBB's experiments. There 
would then be no reason to expect similar results or patterns of variation in the 
dynamics for nearby values of the treatment variables. 

This question is addressed below by showing that the most important differ- 
ences VHBB observed across treatments were mainly the product of the 
interactions between the number of players, the summary statistic, and strategic 
uncertainty characterized in Propositions 3-6. Unreported simulations of the 
present model and the sensitivity analysis of a closely related model in Broseta 
(1993a) reveal that the patterns in the dynamics are highly robust to moderate 
changes in the behavioral parameters, which are shown in the econometric 
analysis in Section 6 to vary surprisingly little across treatments. Estimates 
based on Propositions 5 and 6 suggest that the effects of the important changes 
in treatment variables were systematic and large enough to swamp the effects of 
the changes in the behavioral parameters they induced; this is confirmed in 
Section 7 when the model is simulated using Section 6's estimates. Thus, there 
is good reason to expect similar results in nearby environments, and to believe 
that the patterns VHBB observed are replicable. 

In what follows, the jth order statistic of an empirical distribution (l,.... ., n) 
is defined to be the jth smallest of the ei; thus, the minimum is the first order 
statistic and the median (for odd n) is the ((n + 1)/2)th. If ffQ) is an order 
statistic, the index j identifies which one; and if ffQ) is a convex combination of 
order statistics, j indexes the order statistics from which it is computed. An 
"increase in j" refers, in general, to a shift in the weights used to compute ffQ) 
that increases j in the sense of first-order stochastic dominance, viewing the 
weights as a probability distribution for the purpose of applying the definition. 
A random variable is said to "stochastically increase" if its probability distribu- 
tion shifts upward in the sense of first-order stochastic dominance. 

PROPOSITION 3: Suppose that bit > 0 for all i and t, so that axi,/ayt- 1 > 0 with 
probability one. Then, holding n constant, increasing i stochastically increases y, 
and the xi, for any t. 

PROOF: The proof is immediate from (2) by induction, noting that for 
any given value of x,- 1' y-1 and therefore x,, is weakly larger when computed 
for the larger value of j. Q.E.D. 

PROPOSITION 4: Suppose that bi, > 0 for all i and t, so that axi,/ay,- 1 > 0 with 
probability one. Then, holding j (or the weights on alternative values of j) 
constant, increasing n stochastically decreases yt and the xit for any t. 



COORDINATION GAMES 121 

PROOF: The proof is immediate from (2) by induction, noting that for any 
given value of xt -1 (with i running from 1 to the larger value of n), yt -1 and 
therefore xt, is weakly smaller when computed for the larger value of n. Q.E.D. 

Propositions 3 and 4 hold whether or not the distributions of the vit are 
truncated. They make precise, in the probabilistic sense appropriate to the 
model, the common intuitions that coordination is more difficult, the smaller the 
subsets of the population that can adversely affect the outcome, and that 
coordination is more difficult in larger groups because it requires coherence 
among a larger number of independent decisions. 

Let a-2t denote the common ex ante variance of the zit. Because the vit are 
serially uncorrelated, it follows from (9) that o,2t- Et = o[H t s(l _j + 1)]2- 

Define /-t Ef(Z1/t-zt **... Zntl/ozt) Because the random variables zitl/zt are 
standardized, with common mean 0 and common variance 1, A-'t is completely 
determined by n, f0 ), and the joint distribution of the Zitl/zt -tt is subscripted 
only because the distribution of the zitl/zt is generally time-dependent; its 
dependence on n and fQ ) is suppressed for clarity. It is easily shown, using the 
properties of order statistics, that 1-tt is decreasing in n and increasing in j and 
that, if n > 2 and the zit are distributed symmetrically about 0, then A-'t < 0 if 
1 <i <(n + 1)/2, A-'t = 0 if j=(n + 1)/2, and At > 0 if (n + 1)/2 <j < n. 

PROPOSITION 5: The ex ante means of Yt and the xit are given, for all i and t, 
by 

t t-1 

(12) Exit= E a5 + E fs+ 1o5zs,s 
5=0 5=0 

and 

t t-1 

(13) Eyt= Eas+ ESs+lCzsAs+ztAt 
s=0 s=0 

PROOF: Taking expectations in (7) and (8), using (9), and noting that 

( 14) Ef (Z l s ** Zn,) )E [ 0rZS A Z ls/ozs ,** Znslozs ) ]-Czs/s 

immediately yields (12) and (13). Q.E.D. 

Let Var z and Cov(z, z') denote the ex ante variance of the random variable 
z and the covariance of the random variables z and z'. Let at-2 
Vart(Zlt/?"zts * * * l Znt/zt), Zt)f(Zlt/ztl I * *nt/zt)] (for any i), 
and 8st 

= 
Cov[f(zs/zS..., Zns/zs), A Z1t1?/zt- Izntazt)]. Like /tt the pa- 

rameters yt-, Vt' and 8st are completely determined by n, f(), and the joint 
distribution of the zisl/zs and Zitl/zt; they are subscripted only because that 
distribution is generally time-dependent. 
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PROPOSITION 6:22 The ex ante variances of yt and the xi, are given, for all i and 
t, by 

t-1 t-1 t-s 

(15) Varxi,= 
p 2+13 2or2+ E 3S+jo2 (1 (1 8-1+i)v5 

s=O s=O j=l 

t-1 s-1 

+ 2 E E r+i13s+izr'0zs 8rs + zt 
s=1 r=O 

and 

t-1 t-1 

(16) Var yt= E o82+1 2r2 + E >S+313o ztU 
s=O s=O 

t-1 s-1 

+ 2 E E 1r+i13s+iO'zrOTzs rs + t( 7t 
s=1 r=O 

PROOF: Taking variances in (7) and (8) yields 

t-1 t-1 

(17) Varxit= E 32+1VarfS+ E1s+1Cov(fS,z t) 
s=O s=O 

t-1 s-1 
+ 2 E E, r+13s+ 1COV( fr, fs) + Var zit 

s=1 r=O 

and 

t-1 t-1 

(18) Vary= yt E82+1Varf5+ E8s5+1Cov(fS,ft) 
s=O s=O 

t-1 s-1 

+ 2 E E, r+13s+C Cov(fr,fs) + Varft. 
s=1 r=O 

Because the zisl/ozs are standardized, with mean 0 and variance 1, 

(19) Var fs Var f (zls,...,* z,s) 

-Var [o-zs f ( Z 15/o *.*,zns/o5)] -0 
...- 

For any t > s, zit in (9) can be expressed as 

t-s t-s rt-s-k 

(20)J_ 
Zi 

1-8j+l)i is E FL (1 -8t-j+l) 1;sk 1=1 k=1 -Lj=1J 

Because Ezit = O and E(zisit) = E[Es(zisitlxs, zis)] = E[zisEs(;itxs)] = O for 

22 Because the proof of Proposition 6 uses the properties of the untruncated distributions of the 

vit, its formulas would need to be modified with truncation. 
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any s < t, it follows from (20) and my assumptions on ffQ) that, for all s < t, 

(21) Cov(fs, Zit) = E [zij (zls, zns)] 

= 
z2sE[(zis1qzs/) f ( 

z 
ls/lzs* Znslzs), 

t-s 

xFl (1 -8t j+l) 
j=l 

t-s 

=ozsys17 (1-t_j+l) j=1 

and 

(22) Cov fs, ft =Cov[f(Zls *** Zns) f(Zlt *** Znt)I 

-ZS(7zt Cov [ f ( z s/(Zs Znslo/zso), 

f ( Z ltl'7zt, - *Znt/Orzt) I 

o-(zs(Jzt st' 

Substituting (19), (21), and (22) into (17) and (18) yields (15) and (16). Q.E.D. 

Techniques like those used to prove Propositions 5 and 6 make it possible to 
compute the ex ante variances o-t and zt recursively from the fundamental 
parameters. Given (4) and (9), 

(23) z2-vo EO 

and 

(24) (J = (1- 1)2z2t + Jt. 

Combining (4), (7), (8), (14), and (21) and recalling that Kt - Cov(Eit, nit) yields 

(25) 1r+2t = or)2t + 2 ooz tILL t Kt+zt(t+ 
2 

Intuition suggests that both O2t and ozt should decline over time as players 
learn to forecast Yt. It is clear from (23) and (24) that (with 0 <J8t S 1) the o2 
are declining whenever the az2t are, so that requiring the ozt to decline is more 
stringent than requiring the a2t to decline. 

The formulas in Propositions 5 and 6 show with considerable generality how 
the dispersion of players' beliefs interacts with the strategic environment to 
determine the mean and variance of the outcome. But before those formulas 
can be put to practical use, numerical values must be assigned to the parameters 
that appear in them. As noted above, the behavioral parameters at' Pt' and o-t, 
171t, and Kt (which determine the azt) must be estimated for each environment; 
this is done for VHBB's experiments in Section 6. The remaining parameters 
A ot2, V7t2 and 8st are completely determined by n, fQ ), and the distributions of 
the zit (which are determined by the distributions of the Eit and Tit), but are 
difficult to evaluate due to the complexity of their dependence on those 
distributions. 

This problem can be overcome in two ways. Evaluating l 7t, a t2 and 8st can 
be sidestepped by estimating the probability distributions of outcomes implied 
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by the model directly by repeated simulation; this is done in Section 7, using the 
parameter estimates reported in Section 6. Alternatively, the outcome distribu- 
tions can be approximated analytically under simplifying assumptions about the 
distributions of the zi, 

Because the analytical results provide insight into the workings of the model, 
I outline the approximation method here.23 The approximations are based on 
the assumption that the zit are jointly normally distributed for any given t. 
Normality is a reasonable approximation, at least when truncation effects are 
negligible, because the zit are weighted sums of the cit, which are weakly 
dependent and likely to be approximately conditionally normal for familiar 
reasons.24 Normality simplifies matters by making the common distribution of 
the zit/o?t independent of t, so that At - X ,y2- and yt -y. Given that 
the zit/azt are uncorrelated for any given t, the parameters ,u and o-2 are 
tabulated in Teichroew (1956) for any order statistic of the normal distribution 
and any n < 20; and it can be shown that y = l/n.25 Finally, for jointly normal 
zis and zit ,st is completely determined by the common correlation between 
the standardized zis/o-zs and the corresponding Zit?zt. Because E(zisit) = 0 
whenever s < t, (20) implies that this correlation then equals 

t-s 

(26) Cov ( Zis 1 Zit ) /?zsozt = H (1 - 38t -j 1 ) (Var zis) /o-zso-zt 
j=1 

t-s 

= 171(1 - 3t-j+0)zs1?z, 
j=1 

23AAn earlier version, Crawford (1992), provides more detail about the approximations and 

com2pares them with the probabilities estimated directly by repeated simulation. 
2 It does not seem possible to give an exact justification for this assumption. Normality of the zit 

would follow from joint normality of the vit, even though they are dependent, because the normal 
distributions form a stable class. But even if the eit and nit were normal the vit could not be jointly 
normal, because then their lack of serial correlation would imply that they were serially indepen- 
dent, a contradiction. 

25 Let f'( ) denote the jth order statistic. If (. are any i.i.d. random variables, it follows 
from symmetry, the linearity of the expectations operator, and the fact that the sum of an empirical 
distribution's elements equals the sum of its order statistics that 

=E[n) (ib YJE[f f fO((*E[f( . n)Eij 

n j= nj= 

1 n~~~~~ 
-E f(( , n) E f n)] 

j=1 

It is well known (see for example Jones (1948)) that when the (i are standard normal, the sum in the 
last term equals 1 for any order statistic f( ); this conclusion extends immediately to the case where 
f(*) is a convex combination of order statistics. 
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Thus, under normality 8st can be written as 8(pst), where pst-- FlI-s(l - 
f3t-j + )?s/?t It is clear that 0 pst < 1, and that the function 8( ) is differen- 
tiable and monotonically increasing on the interval [0, 1], with 8(0) = 0 and 
8(1) = -2. The function 5( ) has not been tabulated, to my knowledge, but 
could be tabulated with some effort. 

An explanation for the patterns of variation in the dynamics can now be 
discerned. (This explanation is made precise in Section 7, taking the discrete- 
ness of players' strategy choices into account.) For simplicity, ignore the dis- 
creteness and boundedness of yt and the xit, assume normality of the zit, and 
suppose that as 0 and Bs =,1 for all s = 1.... and that Et0=o-s -* S. Proposi- 
tion 5 then implies that Eyt and Exit approach the approximate common limit 
a0 + A,u,S. Given that ,u is determined by n and ff(), this formula shows how 
the means and dispersions of players' beliefs and the average rate at which they 
respond to new information interact with the number of players and the 
summary statistic to determine the ex ante mean of the limiting coordination 
outcome. 

For VHBB's random-pairing minimum treatment (viewed as a median treat- 
ment, as in footnote 10) and their median treatments, A, = 0 because of 
symmetry. Thus, in these treatments the approximate common limit of Eyt and 
Eyit is a0. The estimates of a0 in Section 6 range from 4.30 in the random-pair- 
ing minimum treatment to 4.71 and 4.75 in median treatments ' and F and 
6.26 in median treatment n (whose payoff structure, described in footnote 34 
below, made the efficient equilibrium with effort 7 more prominent than in the 
other treatments). For VHBB's large-group minimum treatment, At= -1.74.26 
The estimates of a0 and p are 5.45 and 0.25 respectively, and S (which is 
difficult to estimate for this treatment, due to boundary effects) appears highly 
unlikely to be less than 10. Thus, the approximate common limit of Eyt and 
Exit, ao + At1S, is at most 1.10. 

Even the simplifying assumptions made above in approximating the means do 
not yield simple expressions for Var yt and Var xit, but Proposition 6 can be 
used to get some idea of how they vary with the environment. Because 5(pst) 
increases smoothly from 0 to o-2 as Pst ranges from 0 to 1, its value can be 
roughly approximated by psto2. It then follows from (15) and (16) that Var yt 
and Varxit are approximately proportional to o-2 for each treatment, with 
factors of proportionality determined by n, 13, and the z2t. 

Like A, oJ2 iS determined by n and f(-). o-2 = 0.17 in the median treatments, 
0.10 in the random-pairing minimum treatment, and 0.30 in the large-group 
minimum treatment. The estimates of o-t and O-1t reported in Section 6 are 
small for the median treatments, significantly larger for the large-group mini- 
mum treatment, and much larger for the random-pairing minimum treatment. 
This suggests that the ex ante variance of the limiting outcome is small in the 

26 This value for ,u and the values for 0,2 given below are taken from Teichroew's (1956) Tables I 
and II, setting n = 15 in the large-group minimum treatment for simplicity. 
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median treatments, larger in the large-group minimum treatment, and still 
larger in the random-pairing minimum treatment. 

These approximations suggest that the limiting prior probability distribution 
of y, is relatively concentrated, with means 4.71, 4.75, and 6.26 in median 
treatments ', F, and Q respectively; somewhat more diffuse, with mean no 
greater than 1.10, in the large-group minimum treatment; and still more diffuse, 
with mean 4.30, in the random-pairing minimum treatment. These estimated 
means are very close to those implied by the precise estimates of the limiting 
prior probability distributions implied by the model, and almost as close to 
those implied by the last-period frequency distributions in VHBB's experiments 
(both of these distributions are reported in Tables VI-Xa). The suggested 
ordering of the variances is also qualitatively consistent with the precisely 
estimated limiting distributions and VHBB's limiting frequency distributions, 
once the effect of the lower boundary in the large-group minimum treatment is 
taken into account. I do not estimate the variances here because this adds little 
intuition, and the distributions are estimated precisely below. 

The most important changes in the dynamics across treatments VHBB 
observed were between the random-pairing and large-group minimum treat- 
ments, and between the median treatments and the large-group minimum 
treatment. Viewing the random-pairing minimum treatment as a median treat- 
ment, as explained in footnotes 10 and 11, the model treats the differences 
between these treatments primarily as changes in the summary statistic (even 
though the former difference is "really" a change in group size and the latter 
also involves a change in the size of the group, from 9 to about 15). The 
estimates of the limiting means of y, given above suggest that each of these 
changes altered the drift of the process by much more than the accompanying 
changes in the behavioral parameters. 

VHBB also observed differences in the dynamics between the median treat- 
ments and the random-pairing minimum treatment. These were generally smaller 
and of a different character, having to do with the rate of convergence and, in 
one case, the mean outcome. The model treats the differences between these 
treatments mainly as changes in group size, which are relatively small and in any 
case have no effect on drift. The above estimates of the limiting means of y, 
suggest that the effects of these changes in treatment variables are mainly 
determined by changes in the behavioral parameters. 

5. DISCRETE STRATEGY CHOICE 

I now extend the analysis to the discrete strategy spaces of VHBB's experi- 
mental environments. The xi, will continue to represent players' beliefs, and 
remain continuously variable, but instead of representing players' strategy 
choices directly they will now determine them as the latent variables in a 
discrete-choice model. The fact that players' strategy choices and best replies 
are naturally ordered by their payoff implications suggests modeling them as an 
ordered probit (see for example McFadden (1984)). I therefore assume that the 
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vit are conditionally normally distributed given x-'1, and that players' choices 
among the feasible discrete alternatives are determined by rounding the latent 
variables that represent their beliefs as described below. These assumptions 
determine players' choice probabilities as functions of the nonrandom compo- 
nents of their latent variables. 

Let players choose, as in VHBB's experiments, among seven pure strategies, 
numbered 1, ... ,7. I assume that player i's choice at time t is determined by 
rounding xi, to the nearest feasible strategy, so that he chooses strategy 1 when 
X., < 3/2; strategy x, for x = 2,... ,6, when x - 1/2 <xi, < x + 1/2; and strat- 
egy 7 when 13/2 <xi. 27 Conditional on xt_l, eit is normal with mean 0 and 
variance (computed from (4)) 

(27) OtIxt1 =-1+2(yt1-xit1)Kt + (Yt-1 xit-1) O2t2 

Thus, letting c[ denote the standard normal distribution function, at time t 
player i chooses strategy 1 with probability P[(3/2 - at - it Yt_-1 - (1 - 
8t)xit - 1)1(of;it Ixt - 1)]; strategy x, for x = 2, ... ,6, with probability 

P[(X + 1/2 -at -,t yty1 -(1 -t)xit - /(0f0t xt_1)] 

-[(x -1/2 - at -,8tyt- 1- (1 -8t)xit x 

and strategy 7 with probability 1 - P[(13/2 - at - ,tyt-1 - (1 - Bt)xit-,)l 
(0ot Ixt- 1)1. 

The evolution of players' beliefs can be described by (5) and (6) as before, 
with players' strategy choices determined by rounding the xit, yt computed by 
evaluating f(*) at those rounded values, and the Vit satisfying the distributional 
assumptions in Section 3. The dynamics are still a Markov process with the state 
vector xt representing players' beliefs; the only difference is in how players' 
beliefs determine their strategy choices and the summary statistic. To see how 
this difference affects the results, let h(x1t,..., xnt) _ * nt, x), where xit 
denotes the rounded value of xit, so that h(-) determines the value of the 
summary statistic that players observe as a function of their beliefs. Because 
h(a + bxlt,.. ., a + bXnt) = a + bh(x10 ... X xnt) only by coincidence, Proposition 
1 does not carry over directly to the present model. I now argue, however, that 
Propositions 2, 3, and 4-which do not depend on Proposition 1-continue to 
hold exactly as stated with discrete strategy choice, and that Propositions 5 and 
6-which do depend on Proposition 1-hold approximately whenever the grid 
of feasible strategies is sufficiently fine. 

The proof of Proposition 2 goes through because the xit remain continuously 
variable and yt-1, the only variable in (6) that is affected by rounding, cancels 

27It would be easy to allow other values for the boundaries of these choice regions, or to estimate 
them. But rounding this way is optimal for the payoffs in most of VHBB's treatments when players 
are risk-neutral and xit is viewed as player i's estimate of Et -.1(yt Ixt .1), and allowing other values 
is unlikely to change the results very much. 
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out of the Lyapunov function in (10). Thus, under the stated variance conditions 
and bounds on the It,, players' beliefs and strategy choices still converge with 
probability one to one of the pure-strategy equilibria of the game. The proofs of 
Propositions 3 and 4 also go through, because h(*) inherits the weak monotonic- 
ity properties of f( ). Thus, the qualitative comparative dynamics are unaltered 
by discrete choice. 

Discrete choice does affect the quantitative comparative dynamics. Proposi- 
tion 1, and thus Propositions 5 and 6, remain formally valid, with the conditional 
distributions of the vi, adjusted for discreteness and , ot- 72, Yet, and 8st 
evaluated accordingly. The difficulty of evaluating those parameters limits the 
usefulness of these results. It is more helpful to identify settings in which the 
means and variances for the model with continuously variable strategies are 
good approximations to their analogs with discrete choice. 

Plainly, the errors in approximating the means and variances in this way 
cannot be negligible unless the probability of significant boundary effects is 
negligible.28 Given this, the errors are negligible whenever the grid of feasible 
strategies is sufficiently fine. To see this, note that rounding the xit can alter 
their order only by creating ties, which does not affect order statistics. It follows 
that if f(Q) is an order statistic, then h(x1t,..., xnt) equals the rounded value of 
f(xlt,.... xnt); and if f(-) is a convex combination of order statistics, then 
h(x1t,..., xnt) equals that combination of the rounded values of those order 
statistics, rounded as necessary when yt is also required to be discrete. Thus, 
the effects of rounding in (5) and (6) are filtered through yt, bounded by half 
the size of the grid each period, and additive across periods. It can then be 
shown, using the fact that the convergence of the xit is asymptotically geometric 
in both models, that the cumulative effect of rounding on yt remains finite with 
probability one and approaches zero with the size of the grid. The quality of the 
approximations reported in Crawford (1992) suggests that the grids in VHBB's 
experiments were fine enough to make the effects of the discreteness negligible. 

This section's analysis shows that most of the theoretical problems caused by 
discrete strategy spaces can be overcome for the present model. It would, 
however, be significantly easier to analyze the results of experiments with 
approximately continuous strategy spaces. 

6. ESTIMATION 

Although the theoretical analysis of Sections 4 and 5 sheds considerable light 
on the patterns of discrimination among equilibria in VHBB's experiments, a 
full explanation depends on the values of the parameters left undetermined by 
the theory. The model provides a simple specification of the distribution of 

28Boundary effects were a significant problem in both of VHBB's minimum treatments and, to a 
lesser extent, one of their median treatments, Q2. 
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players' beliefs within which those parameters can be estimated. This section 
reports estimates computed using VHBB's experimental data, in preparation for 
the analysis of coordination outcomes in Section 7.29 

The model was estimated separately for each of VHBB's experimental 
treatments that came first in its sequence, pooling the data from all such runs of 
each treatment.30 The estimates were obtained by maximum-likelihood tech- 
niques, taking the discreteness of strategy choices into account using the 
ordered probit model of Section 5, with the latent variables determined as in (5) 
and (6) and the error terms taken to be heteroskedastic as in (4), conditionally 
independent across players, and conditionally normally distributed.3' 

The model was first estimated for each treatment with no restrictioris on the 
behavioral parameters.32 Allowing the estimates to vary freely over time in this 
way maximizes the usefulness of their plausibility as an informal diagnostic and 
minimizes the risk of specification bias. However, as explained in Section 3, the 
large number of parameters (5 per period minus 3) also leaves room for doubt 
about whether the model can explain the dynamics only through ad hoc 
parameter variations. To resolve this doubt and to provide the structure needed 
for beyond-sample prediction, the model was reestimated for each treatment 
under the simplest intertemporal constraints that appeared to have a chance of 
not being rejected. These required that at = 0 for t = 1,... in the median 
treatments; that t = a for t = 1,... in the minimum treatments, in which at =0 
is implausible; that f3t = f3 for t = 1,... in all treatments; and that the parame- 
ters of the variance-covariance matrix, -t, O2t, and Kt, all decline over time like 
1/tA for t = 1, ... in all treatments.33 Including a0 and o_-O, which are allowed to 
vary independently to reflect the mean of players' initial beliefs and their 
different stochastic specification, these constraints reduce the number of inde- 

29 Broseta (1993b) estimates a related model that allows for autoregressive conditional het- 
eroskedasticity in the idiosyncratic components of subjects' beliefs. This richer intertemporal 
stochastic structure describes the data better in some respects. 

30An exception was made in including the random-pairing minimum treatment, which was always 
run following other treatments. Only the longer of the two runs in this treatment was used, to avoid 
problems with missing observations. All other treatments were sometimes run first in a series and 
sometimes later on; prior experience clearly affected subjects' initial beliefs, making pooling 
inadvisable. The two (out of nine) runs of the large-group minimum treatment in which entire 
strategy profiles were announced were omitted for similar reasons. 

31 To make the computations manageable, the likelihood function was constructed period by 
period, using the xit- 1, subjects' (rounded) strategy choices from the previous period, as proxies for 
the xit-1, their unobservable (unrounded) beliefs. Without this substitution, this procedure would 
yield consistent and asymptotically efficient parameter estimates under my assumptions. The grid 
ap ears to have been sufficiently fine that the substitution made little difference to the estimates. 

2 In each case the reported estimates are unrestricted maximum likelihood, except that /81 in 
treatment Q2 was constrained to lie between 0 and 1 because the unrestricted estimate, 1.28, was 
implausible. In this and a few other cases, indicated by dashes in parentheses in Tables I-V, it 
proved impossible to compute standard errors. 

33 No cross-treatment restrictions were imposed, because the unconstrained estimates suggest 
that most simple restrictions of this kind would be rejected, and such restrictions are neither 
suggested by the theory nor needed for the analysis. 
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TABLE I 

ESTIMATES FOR MEDIAN TREATMENT F 
(54 observations each period; asymptotic standard errors in parentheses) 

Unconstrained Model 
t at l o eKt 7,Ct Log L 

0 4.75 1.62 1.62 1.62 -86.7 
(0.18) (0.37) 

1 -0.07 0.56 0.57 0.19 0.21 1.17 0.86 - 67.9 
(0.13) (0.12) (0.18) (0.14) (0.11) 

2 0.15 0.80 0.41 0.11 -0.12 0.58 0.53 -59.4 
(0.11) (0.14) (0.11) (0.10) (0.09) 

3 0.02 0.63 0.14 0.05 -0.01 0.25 0.17 -37.9 
(0.07) (0.12) (0.04) (0.08) (0.07) 

4 0.10 0.57 0.05 0.55 -0.16 0.22 0.18 -24.2 
(0.10) (0.20) (0.02) (0.27) (0.05) 

5 -0.10 0.48 0.04 0.50 0.14 0.20 0.14 -15.6 
(0.12) (0.23) (0.02) (0.27) (0.05) 

6 0.09 0.41 0.04 0.43 -0.04 0.12 0.05 -8.7 
(0.09) (-) (0.02) (0.02) (0.02) 

Constrained Model 
t at l t Kt 't , Ct Et Log Lt 

0 4.75 1.62 1.62 1.62 -334.3 
(0.18) (0.37) 

1 0.00 0.58 0.43 0.78 -0.05 0.82 0.54 
(0.07) (0.20) (0.31) (0.13) 

2 0.00 0.58 0.23 0.43 -0.03 0.61 0.47 
(0.07) (0.06) (0.11) (0.07) 

3 0.00 0.58 0.17 0.30 -0.02 0.44 0.33 
(0.07) (0.03) (0.08) (0.05) 

4 0.00 0.58 0.13 0.24 -0.01 0.30 0.22 
(0.07) (0.02) (0.07) (0.04) 

5 0.00 0.58 0.11 0.20 -0.01 0.21 0.16 
(0.07) (0.02) (0.07) (0.03) 

6 0.00 0.58 0.09 0.17 -0.01 0.16 0.12 
(0.07) (0.02) (0.07) (0.02) 

pendent behavioral parameters to 8 in the minimum treatments and 7 in the 
median treatments, independent of the number of periods. 

Tables I-V report the unconstrained and constrained parameter estimates 
for the three median treatments, F, Q, and ', and the large-group and 
random-pairing minimum treatments, A and C, with asymptotic standard errors 
in parentheses. Each treatment lasted 10 periods except for treatment C, in 
which the run for which the estimates were computed lasted 5 periods, but no 
estimates are reported for some periods near the ends of the median treatments 
in which there was no longer enough sample variation to identify the parame- 
ters. To avoid specification bias, the constrained estimates for treatment A 
were computed omitting the data from period 9, in which the unconstrained 
estimates revealed large end-of-treatment effects, described below. The esti- 
mates of the JZ and o-2 reported for the median treatments were approximated 
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TABLE II 

ESTIMATES FOR MEDIAN TREATMENT Q2 

(27 observations each period; asymptotic standard errors in parentheses) 

Unconstrained Model 
,2t on2 ,2t 0,2 t oat l 0, 0 t Kt a;, Log L 

0 6.26 2.37 - 2.37 2.37 -35.9 
(0.36) (1.04) - 

1 0.34 1.00 1.47 2.47 -1.90 7.00 7.00 - 25.8 
(0.30) (-) (0.87) (1.73) (1.16) - 

2 -0.16 0.95 0.04 0.15 0.04 1.08 1.06 -12.0 
(0.22) (0.18) (0.06) (0.14) (0.15) - 

3 -0.01 0.97 0.02 0.03 -0.03 0.05 0.05 -0.2 
(0.36) (0.44) (0.05) (0.05) (0.88) - 

Constrained Model 
t ao t lot I Kt t K,tt Et Log Lt 

0 6.26 2.37 2.37 2.37 -76.5 
(0.36) (1.04) - 

1 0.00 0.97 0.89 0.90 0.54 2.91 2.91 
(0.13) (0.41) (0.64) (0.60) - 

2 0.00 0.97 0.09 0.09 0.06 0.35 0.35 
(0.13) (0.04) (0.06) (0.05) - 

3 0.00 0.97 0.02 0.02 0.01 0.03 0.03 
(0.13) (0.16) (0.02) (0.01) - 

TABLE III 

ESTIMATES FOR MEDIAN TREATMENT ' 
(27 observations each period; asymptotic standard errors in parentheses) 

Unconstrained Model 
2, 2 ,2 2 

t o lo 0a 0t Kt t UZ t Log L 

0 4.71 0.97 - 0.97 0.97 -38.5 
(0.20) (0.30) - 

1 -0.30 0.95 0.22 0.07 0.09 0.29 0.29 - 23.6 
(0.12) (0.16) (0.10) (0.11) (0.10) - 

2 0.11 0.40 0.00 0.00 0.00 0.11 0.00 -4.5 
(-) (-) (1.13) (0.94) (0.57) - 

3 0.16 0.92 0.04 0.10 0.00 0.05 0.05 -5.1 
(0.18) (0.27) (0.04) (-) ( - 

Constrained Model 
t ozt Pt cet lot Kt ut2 C a; Log Lt 

0 4.71 0.97 - 0.97 0.97 -79.9 
(0.20) (0.30) 

1 0.00 0.74 0.22 0.16 -0.01 0.43 0.36 
(0.11) (0.10) (0.14) (0.08) - 

2 0.00 0.74 0.08 0.06 -0.00 0.13 0.10 
(0.11) (0.02) (0.06) (0.03) - 

3 0.00 0.74 0.04 0.03 -0.00 0.05 0.04 
(0.11) (0.02) (0.03) (0.01) - 
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TABLE IV 

ESTIMATES FOR LARGE-GROUP MINIMUM TREATMENT A 
(107 observations each period; asymptotic standard errors in parentheses) 

Unconstrained Model 
t aot P It Kt Log L 

0 5.45 3.47 -180.5 
(0.19) (0.64) 

1 0.51 0.52 1.00 0.04 -0.21 -184.1 
(0.23) (0.09) (0.41) (0.03) (-) 

2 0.10 0.34 6,85 0.75 2.08 - 170.4 
(0.41) (0.14) (2.69) (0.32) (0.93) 

3 0.27 0.54 2.96 0.48 1.01 - 154.8 
(0.25) (0.11) (0.98) (0.20) (0.45) 

4 -0.63 0.15 6.00 0.52 1.64 - 140.7 
(0.37) (0.13) (2.06) (0.22) (0.67) 

5 -0.54 0.20 1.76 0.76 1.06 - 106.3 
(0.58) (0.25) (1.28) (0.27) (0.54) 

6 0.11 0.46 1.32 1.14 1.06 - 115.5 
(0.22) (0.22) (0.51) (0.45) (0.40) 

7 -0.35 0.40 0.55 0.24 0.19 - 78.3 
(0.35) (0.18) (0.42) (0.11) (0.19) 

8 -0.49 0.11 1.17 0.39 0.59 - 80.7 
(0.25) (0.17) (0.40) (0.19) (0.24) 

9 -5.19 -4.47 26.0 37.7 30.5 -88.0 
(1.97) (2.24) (1.73) (1.04) (1.30) 

Constrained Model 
t at Pt It Kt Et Log Lt 

0 5.45 3.47 -1265.0 
(0.19) (0.64) 

1 -0.27 0.25 3.05 0.59 0.91 
(0.09) (0.04) (0.61) (0.14) (0.25) 

2 - 0.27 0.25 2.34 0.45 0.69 
(0.09) (0.04) (0.35) (0.09) (0.17) 

3 - 027 0.25 2.00 0.38 0.59 
(0.09) (0.04) (0.27) (0.08) (0.14) 

4 -0.27 0.25 1.79 0.34 0.53 
(0,09) (0.04) (0.23) (0.07) (0.12) 

5 -0.27 0.25 1.64 0.32 0.49 
(0.09) (0.04) (0.21) (0.06) (0.11) 

6 -0.27 0.25 1.53 0.29 0.45 
(0.09) (0.04) (0.21) (0.06) (0.10) 

7 -0.27 0.25 1.44 0.28 0.43 
(0.09) (0.04) (0.20) (0.06) (0.10) 

8 -0.27 0.25 1.37 0.26 0.41 
(0.09) (0.04) (0.20) (0.06) (0.09) 

from the estimated parameters using (23)-(25) and assuming normality of the 
Zit; large boundary effects made it impractical to compute the analogous 
estimates for the minimum treatments. 

Despite its simplicity, the model gives a reasonably accurate statistical sum- 
mary of subjects' behavior in all three median treatments. The unconstrained 
parameter estimates are generally plausible and reasonably stable across peri- 
ods. With minor exceptions the trend parameters, at for t = 1,...,are not 
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TABLE V 

ESTIMATES FOR RANDOM-PAIRING MINIMUM TREATMENT C 

(16 observations each period; asymptotic standard errors in parentheses) 

Unconstrained Model 
t rat l ret t Kt Log L 

0 4.30 17.29 -28.2 
(1.13) (10.47) 

1 1.59 0.67 5.26 0.96 2.24 - 22.6 
(0.71) (0.28) (3.15) (0.49) (1.15) 

2 0.35 0.51 4.74 3.33 3.97 -24.2 
(0.61) (0.65) (2.24) (2.87) (2.30) 

3 1.50 1.00 9.30 9.30 9.30 - 17.0 
(0.01) (0.01) (6.48) (6.48) (6.48) 

4 0.80 0.42 6.51 0.72 2.16 -18.8 
(0.91) (0.37) (4.16) (0.44) (1.32) 

Constrained Model 
t aot lo P Kt Et LogLt 

0 4.30 17.29 - 119.5 
(1.13) (11.02) 

1 1.21 0.54 8.30 1.01 2.86 
(0.44) (0.17) (4.89) (0.57) (1.68) 

2 1.21 0.54 8.04 0.98 2.77 
(0.44) (0.17) (2.56) (0.35) (0.94) 

3 1.21 0.54 7.89 0.96 2.72 
(0.44) (0.17) (2.64) (0.39) (1.00) 

4 1.21 0.54 7.79 0.95 2.68 
(0.44) (0.17) (3.37) (0.49) (1.26) 

significantly different from 0. The adjustment parameters, f3t, are significantly 
different from 0, ranging from around 0.5 in treatment F to just below 1.0 in 
treatment Q. The initial mean, a0, is noticeably higher in treatment Q2, in which 
(unlike in treatment F) the cost of failing to coordinate on the highest effort is 
no greater than for lower efforts, and the simplicity of the payoff function may 
make the argument for the highest effort easier to apprehend.34 However, ao is 
not significantly higher in treatment F, where higher efforts are also associated 
with greater efficiency, than in treatment P, where they are not; and the other 
at are no higher in treatments F and Q than in treatment P. In treatment Q 
the at and ,t are close to the values that would correspond to best-reply 
dynamics if there were no dispersion, but in the other treatments the at and f3t 
are significantly different from both fictitious play and best-reply dynamics. 

With minor exceptions, the unconstrained estimates of the variances ot and 
u2 decline smoothly toward 0 over time, except for an upward jump in ay2t from 

34 Median treatment F combined a common preference for a higher median, other things equal, 
with increasingly severe penalties for being further and further away from the median. Median 
treatment ' maintained these penalties while eliminating the preference for a higher median; and 
median treatment Q2 maintained the preference for a higher median while imposing different 
penalties for being away from the median, usually higher than in treatment F but independent of 
the distance. See VHBB (1991) or Crawford (1991, Section 2) for details. 
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period 3 to period 4 in treatment F. The estimated covariances, Kt, are almost 
all insignificantly different from 0. The implied values of the ; and o-2t also 
decline smoothly toward 0, except for a sharp upward jump from period 0 to 
period 1 in treatment 12. Inspecting the data for the periods beyond those for 
which estimates are reported reveals that maximum likelihood estimates of o-t 
and 2 would differ at most slightly from 0, continuing their generally down- 
ward trends and implying a continuing downward trend in the zot and ait. 

The standard errors of both the unconstrained and the constrained estimates 
indicate that constraints that rule out strategic uncertainty, t -7t - Kt -, 
would be strongly rejected in each case. The impression that the dispersion of 
subjects' beliefs diminished steadily over time created by the unconstrained 
estimates is confirmed by the estimates of A, the common rate of decline of a,,,t, 

2, and Kt in the constrained specification, which are significantly positive in all 
three median treatments: 0.86 (0.34) in F, 3.27 (0.77) in Q, and 1.52 (0.53) in 1 
(standard errors in parentheses). These estimates do not fully explain the strong 
convergence VHBB observed in the median treatments, because in treatments 
F and ' they are not significantly greater than one as Proposition 2's variance 
condition requires in this case. This might reflect the fact that Proposition 2's 
condition is sufficient, but not necessary, or that convergence with probability 
one is an unrealistically stringent criterion. 

Likelihood ratio tests show that the constraints cannot be rejected in treat- 
ments Q and 0, but are strongly rejected in treatment F. The X2 statistics are 
5.3 with 10 degrees of freedom for treatment Q, with p-value 0.87; 16.6 with 10 
degrees of freedom for treatment 1, with p-value 0.08; and 67.8 with 25 
degrees of freedom for treatment F. Otherwise the constrained estimates are 
quite plausible, and similar to the unconstrained estimates. 

The rejection in treatment F appears to be due to the upward jump in the 
dispersion of players' responses from period 3 to period 4, which is likely to 
violate any simple intertemporal restrictions. As the rejected constraints are 
neither an implication nor a necessary part of the theory, the rejection has no 
bearing on its validity. Because they can still be used to show that the model can 
explain the dynamics without ad hoc variations in the parameters, I have not 
tried to find alternative constraints that would not be rejected. 

The model does less well summarizing subjects' behavior in the minimum 
treatments. The unconstrained model yields implausible estimates of the trend 
and adjustment parameters in period 9 of the large-group treatment, A, in 
which significant end-of-treatment effects were visible, with some subjects 
jumping all the way from effort 1 to effort 7.35 The unconstrained estimates are 

35 These end effects seemed to be due to subjects' perception that the coordination of the timing 
of adjustments required to break out of an inefficient equilibrium was unlikely to be achieved in any 
period other than the last; see Crawford (1991, p. 57). They were strongest in the first three runs of 
treatment A, in which the endpoint was announced; but they were visible even in the last four runs, 
in which it was not announced, perhaps because subjects believed that the experimenters or their 
partners were habituated to the decimal system. Estimates computed separately for each of: these 
regimes did not differ enough to justify reporting them separately. 
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otherwise plausible and reasonably stable over time. The initial mean, a0, is 
higher in treatment A than in the random-pairing treatment, C, and roughly 
comparable to the initial means estimated for the median treatments. The trend 
parameters, at for t = 1, .. ., are usually insignificantly different from 0 in 
treatment A and positive, often significantly so, in treatment C, showing some 
tendency to decline over time in treatment A but no clear trend in treatment C. 
The trend parameters are systematically higher in treatment C than in all other 
treatments, suggesting that subjects may have corrected for the fact that their 
current pair minimum tends to underestimate the median of the other subjects' 
efforts that determined their best replies (see footnote 10). The adjustment 
parameters, Pt, are usually significantly positive in treatment A and positive, 
often significantly so, in treatment C. In each case the at and Pt differ 
significantly from the values implied by fictitious play and best-reply dynamics.36 

In both minimum treatments the unconstrained model yields estimates of the 
variance parameters that show only a weak tendency to decline over time, with 
several upward jumps in the estimated values of the a2t and 2 . This impres- 
sion is confirmed by the constrained estimates of A, the rate of decline 
(standard errors in parentheses): 0.39 (0.11) in treatment A, significantly posi- 
tive but smaller than in the median treatments; and 0.05 (0.59) in treatment C, 
insignificantly positive. The convergence observed in treatment A is explained 
in Section 7 by considerations other than those addressed by Proposition 2, so 
the fact that its estimated A is significantly less than 1 is no cause for concern. 
The much smaller rate of decline in treatment C reflects its extremely slow 
convergence, which was to be expected, given the very noisy information its 
subjects received about the population median that determined their best 
replies (see footnote 11). 

The unconstrained estimates of the Kt are generally positive, usually signifi- 
cantly so, in treatment A and positive, but generally insignificantly so, in 
treatment C, as in the median treatments. The fact that the estimated covari- 
ances are significantly different from zero only in the large-group minimum 
treatment has a plausible explanation. Because all subjects are trying to forecast 
the same summary statistic based on the same experience, high values of sit 
tend to be associated with high values of wit in treatment A, where the relevant 
summary statistic is the minimum, so that the typical subject's effort is above it, 
and yt -1 - xit-1 < 0 in (4). In the other treatments, by contrast, the relevant 
summary statistic is the median, so that as many subjects' efforts are above it as 
below it. 

Likelihood ratio tests show that the constraints are strongly rejected in 
treatment A even when the last period is omitted, but that they cannot be 
rejected in treatment C. The relevant x2 statistics are 107.4 with 34 degrees of 
freedom for treatment A; and 17.4 with 14 degrees of freedom for treatment C, 

36Boylan and El-Gamal (1993) analyzed grouped data from different random-pairing experi- 
ments, comparing randomly perturbed versions of fictitious play and best-reply dynamics. On the 
assumption that subjects' unperturbed responses all followed either one or the other of these rules, 
they found that the evidence favors fictitious play. 
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with p-value 0.24. The constrained estimates otherwise seem plausible, and are 
generally quite close to the unconstrained estimates. 

Inspecting the unconstrained estimates suggests that the rejection in treat- 
ment A is again due to upward jumps in the dispersion of subjects' responses, 
which are likely to violate any simple intertemporal restrictions. As in treatment 
F, this has no bearing on the validity of the theory, and I shall use the rejected 
constraints as simplifying restrictions to show that the model can explain the 
dynamics without ad hoc parameter variations. 

7. COORDINATION OUTCOMES 

The parameter estimates can be used to infer the probability distributions of 
coordination outcomes from the results of a limited number of experimental 
trials. Those distributions can be approximated analytically as in Section 4, but 
they can be estimated precisely only by repeated simulation. This section 
describes simulations based on the constrained parameter estimates reported in 
Section 6 and uses the resulting estimated distributions to flesh out the explana- 
tion of VHBB's results outlined in Section 4. 

The estimated distributions play an essential role in evaluating the model. As 
explained in Section 3, the model can explain the dynamics VHBB observed 
only if there are significant differences in players' beliefs. Because it does not 
seem useful to try to explain such differences when players are otherwise 
identical, the model treats them as error terms within a given stochastic 
structure, and therefore determines a probability distribution over outcomes 
rather than predicting a particular outcome. This inevitably limits the model's 
goodness of fit, so that it should be evaluated by comparing the frequency 
distributions from the experiments with the probability distributions it implies. 

Such comparisons can be made either conditionally or unconditionally; both 
kinds of test are reported here. The simulations take into account the discrete- 
ness of the rounded y, and xi,, denoted 9, and x i. Because 9, and the x' 
normally approach a common limit except in treatment C, I simplify by focusing 
on 9t in treatments other than C. 

I begin by describing the results of the conditional simulations and compar- 
isons. These were designed to estimate the conditional probability distribution 
of 9t in the last period for which estimates are reported, given the realized 
value of x .37 Because the realized value of x_ differed across runs in each 
treatment, a separate estimate based on 500 simulation runs was computed for 
each. In order to test the model's ability to "predict" beyond sample, these 
simulations were based on parameter estimates computed under the intertem- 
poral constraints discussed in Section 6 but omitting the last period of data in 
each treatment but A, and the last two periods of data in treatment A. (These 
estimates are not reported, but are close to the constrained estimates in Tables 
I-V.) 

37 To make the computations manageable, the x iti1 were used as proxies for the unobservable 
xit_i. This appears to have made little difference to the results. 
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In all twelve experiments with median games and all seven experiments with 
treatment A, the model assigns conditional probability of at least 0.998, given 
the realized value of x 1', to the value of 9, realized in the last period.38 These 
fits are so close that formal tests are unnecessary. In the experiment with 
treatment C considered here the model assigns conditional probability 0.37 to 6, 
the realized last-period median (the relevant summary statistic here) and 
conditional probabilities of 0.53, 0.09, and 0.01 to the alternative values 7, 5, and 
4.39 The x2 statistic for a test of goodness of fit is 1.7 with 6 degrees of freedom, 
with p-value 0.94. (The analogous test for the xi, is not independent of this test. 
However, its x2 statistic is 3.8 with 6 degrees of freedom, with p-value 0.70.) 

I conclude that the model conditionally predicts the 9t well in every treat- 
ment. These are weak tests, because it is not difficult to make conditional 
predictions of variables that vary as little over time as the 9t do. But this 
weakness is inherent in the data set, which simply does not allow very powerful 
tests of this kind.40 

I now turn to the unconditional simulations, which were designed to estimate 
the prior probability distributions of the 't. These simulations were carried out 
using both the unconstrained and the constrained parameter estimates, with 500 
runs for each treatment. I report here only the results for the constrained 
estimates, despite the fact that the constraints were rejected in treatments F 
and A, because they provide a more stringent test of the model's ability to 
explain the dynamics and help to answer the criticism that it can explain them 
only through ad hoc variation in its parameters. (The simulation results for the 
unconstrained estimates, which are very similar, are reported in Crawford 
(1992).) 

Because the entire time paths of 9t are important in discriminating among 
alternative explanations, the results of these simulations are reported for as 
many periods as the estimates permitted in each treatment. The first and second 
lines of the cells in Tables VI-Xa report the actual frequency distributions and 
the estimated prior probability distributions of the 't. The distribution for the 
last period should approximate the common limiting distribution of 9t and the 
xit implied by the model in each treatment but C, in which convergence was 
slow. Table Xb supplements the results for the 9t in treatment C reported in 
Table Xa with the analogous distributions for the xit. 

38All 500 runs yielded the realized median or minimum in all but one r and one Q2 experiment, 
in which all but one of 500 runs yielded the realized median. 

39Ambiguities of the median due to the evenness of n in treatment C were resolved by splitting 
the weight of ambiguous observations between the two possible values. 

40 Breaking the sample earlier and trying to predict longer histories of the Yt would yield little 
additional information because the Yt do not change much even in the early periods, and would 
make it even more difficult to estimate the intertemporal relationships required for beyond-sample 
prediction. Comparing conditional predictions of the xit with the experimental results in the 
treatments other than C would amount to a joint test of the model's ability to conditionally predict 
the jt, which has already been tested, and the assumption maintained in the simulations that the 
(unrounded) xit are conditionally normally distributed, which is a working hypothesis rather than a 
substantive implication of the model. (Inspecting the data nevertheless suggests that conditional 
normality is approximately satisfied.) 
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TABLE VI 

DYNAMICS OF 
' 

IN MEDIAN TREATMENT F 
(actual frequency distributions in first lines, 

simulated frequency distributions in second lines) 

Po P, 92 93 94 95 96 

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.06 0.09 0.10 0.11 0.11 0.11 0.11 

5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
0.62 0.56 0.53 0.52 0.53 0.52 0.52 

4 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
0.31 0.31 0.33 0.32 0.32 0.32 0.32 

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.01 0.03 0.03 0.04 0.04 0.04 0.04 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.01 0.01 0.01 0.01 0.01 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 

The coarseness of experimental frequency distributions based on 1-7 trials 
makes them unlikely to resemble the probability distributions implied by the 
model closely. Formal tests suggest, however, that the model replicates the 
dynamics in every treatment. The most informative tests appear to be x2 tests 
of goodness of fit comparing the estimated prior distributions for the last-period 
At with the corresponding experimental frequency distributions, because it is 
harder to track the prior distributions for the last period than for earlier 

TABLE VII 

DYNAMICS OF 
A 

IN MEDIAN TREATMENT Q2 

(actual frequency distributions in first lines, 
simulated frequency distributions in second lines) 

PO Pi 92 93 

7 0.67 0.67 0.67 0.67 
0.34 0.37 0.36 0.36 

6 0.00 0.00 0.00 0.00 
0.55 0.47 0.47 0.47 

5 0.33 0.33 0.33 0.33 
0.10 0.15 0.15 0.15 

4 0.00 0.00 0.00 0.00 
0.01 0.02 0.02 0.02 

3 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

1 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
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TABLE VIII 

DYNAMICS OF Y IN MEDIAN TREATMENT 'P 
(actual frequency distributions in first lines, 

simulated frequency distributions in second lines) 

Yo Yi Y2 Y3 

7 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

6 0.00 0.00 0.00 0.00 
0.04 0.05 0.05 0.05 

5 0.67 0.67 0.67 0.67 
0.68 0.66 0.66 0.66 

4 0.33 0.33 0.33 0.33 
0.28 0.29 0.29 0.29 

3 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

1 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

TABLE IX 

DYNAMICS OF Y IN LARGE-GROUP MINIMUM TREATMENT A 
(actual frequency distributions in first lines, 

simulated frequency distributions in second lines) 

Y0 pi Y2 P3 Y4 Y5 

7 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 

6 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 

4 0.29 0.00 0.00 0.00 0.00 0.00 
0.09 0.01 0.00 0.00 0.00 0.00 

3 0.14 0.00 0.14 0.00 0.00 0.00 
0.37 0.04 0.01 0.00 0.00 0.00 

2 0.29 0.57 0.29 0.00 0.00 0.00 
0.33 0.18 0.03 0.01 0.00 0.00 

1 0.29 0.43 0.57 1.00 1.00 1.00 
0.21 0.78 0.96 0.99 1.00 1.00 

periods.41 These tests never reject in any treatment. The relevant x2 statistics, 
each with six degrees of freedom, are 2.54 in treatment C, with p-value 0.86; 
0.00 in treatment A; 1.55 in treatment F, with p-value 0.95; 2.95 in treatment 
Q, with p-value 0.81; and 0.16 in treatment 1, with p-value 0.99. (The 

41 More powerful tests involve entire histories of Yt and/or xi,. These are complicated by 
statistical dependence, and the results suggest that rejection is unlikely. 
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TABLE Xa 
DYNAMICS OF Yt IN RANDOM-PAIRING MINIMUM TREATMENT C 

(actual frequency distributions in first lines, 
simulated frequency distributions in second lines) 

Y0 Y1 92 93 Y4 

7 0.00 0.00 0.00 1.00 0.00 
0.06 0.09 0.18 0.30 0.38 

6 0.00 0.00 0.00 0.00 1.00 
0.14 0.21 0.26 0.27 0.28 

5 0.00 1.00 1.00 0.00 0.00 
0.25 0.29 0.28 0.26 0.22 

4 1.00 0.00 0.00 0.00 0.00 
0.29 0.27 0.21 0.14 0.10 

3 0.00 0.00 0.00 0.00 0.00 
0.19 0.11 0.06 0.04 0.01 

2 0.00 0.00 0.00 0.00 0.00 
0.08 0.02 0.01 0.00 0.00 

1 0.00 0.00 0.00 0.00 0.00 
0.01 0.00 0.00 0.00 0.00 

analogous tests for earlier periods and/or the unconstrained estimates, which 
are not independent, would yield the same conclusions, with the exception of 
the constrained estimates for period 2 in treatment A.) The model replicates 
the unconditional frequency distributions from VHBB's experiments. 

The statistical analysis suggests that VHBB's results were not anomalous. In 
some cases, however, the model strengthens or modifies the impressions created 
by the raw data. The inefficient outcomes they observed in treatment A now 
appear inevitable, appearing in all 500 simulation runs. It appears, however, 

TABLE Xb 
DYNAMICS OF THE Xit IN RANDOM-PAIRING MINIMUM TREATMENT C 

(actual frequency distributions in first lines, 
simulated frequency distributions in second lines) 

iio iXj Xi2 Xi3 ii4 

7 0.31 0.31 0.25 0.63 0.50 
0.30 0.33 0.37 0.42 0.46 

6 0.00 0.06 0.19 0.00 0.00 
0.09 0.09 0.10 0.11 0.11 

5 0.13 0.31 0.19 0.19 0.25 
0.09 0.11 0.11 0.10 0.10 

4 0.19 0.06 0.06 0.06 0.06 
0.09 0.11 0.11 0.10 0.09 

3 0.06 0.06 0.06 0.00 0.00 
0.09 0.10 0.10 0.08 0.07 

2 0.06 0.06 0.13 0.13 0.13 
0.08 0.07 0.06 0.06 0.05 

1 0.25 0.13 0.13 0.00 0.06 
0.25 0.20 0.16 0.13 0.12 
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that players might do better than VHBB's subjects in treatment F, and worse in 
treatment Q. The model also suggests somewhat more strongly than the data 
that treatment C is likely to yield a high-effort equilibrium. 

The model attributes the complete lack of history-dependence in treatment A 
to the strongly negative drift in this treatment, which overwhelmed its variance 
so that the lower bound on players' strategies determined the final outcome 
with high probability. The strong history-dependence in the median treatments 
and the moderate history-dependence in treatment C can be traced to the low 
to moderate drifts in these treatments, the large conditional variances of y, in 
treatment C, and the small conditional variances of y, in the median treat- 
ments. The analysis suggests, however, that the perfect history-dependence 
VHBB observed in all twelve of their experiments with median games overstates 
the importance of historical accidents in such environments. In the simulation 
results the correlation between yO and the last yt reported is only 0.68 in 
treatment r, 0.76 in treatment (2, and 0.90 in treatment 1, so that the initial 
median "explains" only 46%, 58%, and 81% of the variances of the limiting 
outcomes in these treatments. 

8. CONCLUSION 

The model provides a simple, unified explanation for the complex patterns of 
history-dependence and discrimination among equilibria in VHBB's experi- 
ments. Three directions for further research seem promising. 

It would be desirable to conduct similar experiments, in order to test the 
theory's predictions beyond the samples that influenced its specification, and to 
learn more about how the strategic environment influences the dispersion of 
players' beliefs and the rate at which it is eliminated as they accumulate 
forecasting experience. 

It would also be of interest to relax the assumption that players' beliefs and 
strategy choices are statistically identical ex ante. The substance of this assump- 
tion is the absence of externally observable differences between players. It may 
be tractable to allow, instead, a fixed population made up of two or more 
observable "types" of players, with each player's payoffs and best replies 
determined in each play by his type, his strategy choice, and the current 
population distribution of strategy choices by type. A random-pairing model in 
which players' types are identified with their roles in a "divide-the-dollar" game, 
as in Young (1993b), seems of particular interest. Such a model, in which 
players' preferences over equilibria are opposed, is a natural complement to the 
present analysis and may help in interpreting experimental evidence on bargain- 
ing outcomes (see Roth (1987)). 

Finally, it would be of interest to extend the analysis from tacit coordination, 
in which players communicate only by playing the game, to explicit coordination, 
in which players can send signals that are not directly related to the game (and 
which may not be costly). Tacit coordination raises many issues that must be 
resolved to understand explicit coordination, and generalizing the techniques 
developed here may yield useful models of explicit coordination. A natural 
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place to begin is games with one or more rounds of costless, simultaneous 
pre-play communication (see Farrell (1987), Palfrey and Rosenthal (1991), and 
Crawford (1990)) or the games with costly pre-play communication used in 
VHBB's (1993) experiments (see Crawford and Broseta (1994)). Considering 
how the meanings of players' messages and their decisions evolve may resolve 
the ambiguity that plagues traditional analyses of preplay communication and 
shed new light on proposed equilibrium refinements. 
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