GAMES AND ECONOMIC BEHAVIOR §, 320-367 (1993)

Learning Mixed Equilibria*
DREw FUDENBERG

Department of Economics, Harvard University, Cambridge, Massachusetts 02138
AND

Davip M. KREPs

Graduate School of Business, Stanford University, Stanford, California 94305, and
Department of Economics, Tel Aviv University, Tel Aviv, Israel

Received July 8, 1992

We study learning processes for finite strategic-form games, in which players
use the history of past play to forecast play in the current period. In a generalization
of fictitious play, we assume only that players asymptotically choose best re-
sponses to the historical frequencies of opponents’ past play. This implies that if
the stage-game strategies converge, the limit is a Nash equilibrium. In the basic
model, plays seems unlikely to converge to a mixed-strategy equilibrium, but
such convergence is natural when the stage game is perturbed in the manner of
Harsanyi’s purification theorem. Journal of Economic Literature Classification
Number: C72. © 1993 Academic Press, Inc.

1. INTRODUCTION

Nash equilibrium describes a situation in which players have identical
and exactly correct beliefs about the strategies each player will choose.
How and when might the players come to have correct beliefs, or at least
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beliefs that are close enough to being correct that the outcome corresponds
to a Nash equilibrium? One expianation is that the piayers play the game
over and over and that their beliefs come to be correct as the result of
learning from past play. This explanation has been explored at some length
in the recent literature, in models that take a number of different forms
and stress different aspects of the problems.!

This paper explores learning models that are in the spirit of the model
or method of fictitious play (Brown, 1951; Robinson, 1951) in which players
choose their strategies to maximize their current period’s expected payoff
on the assumption that their opponents will play each strategy with proba-
bility equal to its historical frequency. We extend the previous literature
in three ways:

(1) We provide some minor extensions to the basic model of fictitious
play, by generalizing the classes of rules by which players form their
beliefs and use them to choose their actions.

(2) We study models in the spirit of fictitious play for games with more
than two players.

(3) Most importantly, we reformulate the study of convergence to mixed-
strategy equilibria. We argue that the notion of convergence used pre-
viously in the literature, that the empirical marginal distributions converge,
is not an appropriate notion of what it means to play a mixed-strategy
profile, and we suggest and analyze the stronger criterion of the conver-
gence of intended behavior. We show that all Nash equilibria and only
Nash equilibria are possible limit points under this mode of convergence.
Finally, we investigate the global stability of mixed equilibria in the setting
of Harsanyi’s (1973) purification theorem.

Section 2 gives a general formulation of learning in a strategic-form
game. This formulation, and our subsequent analysis, supposes that the
same players play each other repeatedly (as opposed to a model with a
large number of player 1’s, player 2’s, etc.) and that in each round of
play, players observe the (pure) strategies chosen by their rivals.

Section 3 reviews the model of fictitious play for two players. We
separate the questions addressed by fictitious play (and models of learning
in general) into two groups. First, if play ‘‘settles down’’ or converges in
some appropriate sense, what are the possible limit points? Second, is
play guaranteed to converge?

With regard to the first question, recall that there are two modes of

! To provide a guide to the literature would take too long, so we remain content with a
partial list of recent references: Canning (1991), Crawford and Haller (1990), Eichenberger
et al. (1991), Ellison (1993), Fudenberg and Levine (1993), Fudenberg and Kreps (1988),
Hendon et al. (1991), Jordan (1991), Kalai and Lehrer (1993), Kandori et al. (1993), Milgrom
and Roberts (1990, 1991), Nyarko (1991), and Young (1993). We comment on some of these
papers as we proceed, when they bear directly on our own analysis.
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convergence in the literature on fictitious play. In the first, there is a finite
time T such that a single strategy profile is played in every period from
T on; it is easy to see that any such profile must be a Nash equilibrium.
In the second mode of convergence, play cycles among different strategy
profiles in such a way that the empirical frequencies of each player’s
choices converge to some (mixed) strategy. The corresponding strategy
profile is also a Nash equilibrium; this is the traditional sense in which
fictitious play is said to converge to mixed-strategy equilibria. Section 3
briefly reviews results from the literature that use these two convergence
notions.

In Section 4, we generalize fictitious play by considering more general
assumptions about the ways in which players construct their assessments
and then choose their immediate actions. We assume throughout that
players’ choices of actions are asymptotically myopic; i.e., in the long
run, players choose in a way that maximizes their immediate payolfs.
This assumption requires some explanation and rationale, which we pro-
vide. As for players’ assessments, if they are adaptive (following Milgrom
and Roberts (1991)), and if intended play converges to a pure-strategy
profile, the profile must be a Nash equilibrium, for any number of players.
But more is required if the second form of convergence—convergence of
empirical frequencies to a mixed-strategy profile—is to have only Nash
equilibria as limit points. A sufficient condition is that assessment rules
are asymptotically empirical, which means that players’ assessments con-
verge together with empirical frequencies. Moreover, this condition suf-
fices only for two-player games.

Section 5 presents several objections to convergence of empirical fre-
quencies as an appropriate mode of convergence for learning to play a
mixed-strategy profile. In summary, these objections are: (1) Although
assessments are converging (if they are asymptotically empirical), the
strategies that are chosen are not; (2) in examples, correlations will be
observed over time in the actions of players who choose their actions
independently; and (3) because of (2), convergence in this sense for games
with more than two players is problematic.

For these reasons, in Section 6 we propose a stronger mode of conver-
gence, namely convergence of (intended) behavior. This raises some tech-
nical complications: When players use mixed strategies, the realized distri-
bution of play need not equal the intended one, which makes notions of
convergence inherently probabilistic. We attend to these complications
and then show that only Nash equilibria are possible limit points under
this mode of convergence, as long as behavior is asymptotically myorgic
and assessments are asymptotically empirical. Moreover, for any game
and Nash equilibrium of the game, there is a model of asymptotically
myopic behavior and asymptotically empirical assessments for which the
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equilibrium is a limit point of intended behavior with probability as close
to one as desired.” These results are not limited to two-player games.

The problem with this alternative mode of convergence is that, while
convergence to mixed behavior is possible, it is hard to see why it should
occur. The difficulty is the standard one with mixed strategies: If, based
on their assessments, players choose their actions to maximize precisely
their expected payoffs, then (uniess their assessments are precisely those
of the mixed equilibrium) their intended behavior will not converge. If
players are not restricted to precise maximization, then any behavior (that
puts weight on actions in the equilibrium mixture) will be satisfactory.
Something outside of payoff-maximization considerations is required to
lead players to the precise mixtures needed in the equilibrium. In our
basic formulation, we see no natural way of doing this.

As a way around this problem, in Sections 7 and 8 we consider learning
in games in which each player’s payoff is subject to a sequence of i.i.d.
random shocks that are observed only by that player, as suggested by
Harsanyi’s (1973) purification theorem. In this context, a mixture over
two strategies does not correspond to mixing by a player who is indifferent,
but rather to a player who (in each period) strictly prefers one of the two
strategies, depending on the (period’s) realization of the player’s payoff
perturbation. Yet from the perspective of other players, who do not know
the precise value of this period’s perturbation for the player, the actions
of the first player are random. We show in Section 7 that in this context
all of our earlier results go through without difficulty. Then, in Section 8,
we specialize to the class of 2 X 2 games with a unique equilibrium in
mixed strategies, and we show that any learning process that is close to
fictitious play (in a sense to be made precise) will converge with probability
one to the unique equilibrium. Here we use and adapt results from the
theory of stochastic approximation (Arthur et al., 1987; Kushner and
Clark, 1978; and Ljung and Séderstrom, 1983).3

Before setting out, let us note that the results given here are only a
small part of the overall story. Among other things, we are assuming that
players encounter the same opponents repeatedly and yet act myopically,
a fairly unsavory combination (see Section 4); they observe the full (stage-
game-pure) strategies chosen by rivals in each round of play; and they
play the same game over and over. We hope to return to each of these
three simplifying assumptions in subsequent work.

? To the extent that some Nash equilibria seem unreasonable, such as those where players
use weakly dominated strategies, this last result indicates that our assumptions are too weak.
This is discussed as well in Section 6.

*In this respect, our work is similar to that of Marcet and Sargent (1989a. 1989b) on
learning rational expectations equilibrium.
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2. FORMULATION

Fix an I-player, finite, strategic-form game, hereafter referred to as the
stage game. The players are indexed i = 1, 2, ..., I, and we let —i
denote the ““other’ players;i.e., —i = {1,2,...,i - 1,i +1,...,I}.}
Let S, i = 1, ..., I, be the finite set of pure strategies (or actions) for
playeri,let § = §' x - -+ x S?be the set of pure-strategy profiles, and
let s § — R give player i’s payoffs. In the usual fashion, let ' be the
mixed strategies for player i, let £ = X! x .-+ x X! be the set of mixed-
strategy profiles, and extend the domain of «’ from S to 2. Also, for each
ilet S ~'denote I, §’, and let £ ' denote the set of probability distributions
over S for s € Sand o € 27, let w'(s’, o %) denote i's expected
utility if she chooses pure strategy s’ and her rivals act according to the
(possibly correlated) distribution o 7"

Imagine that these players play the game repeatedly, at dates ¢t = 1,
2, ... . Imagine that after each round of play, players observe the actual
actions chosen by their opponents; i.e., the pure strategy that is chosen
is observed. If a player chooses his action using a mixed strategy, the
mixing is not observed. Then a history of play up to time ¢, denoted {,,
is a string of (pure) strategy profiles {, = (s;, ..., s5,_,), where 5., € §
fort’ =1, ...,t — 1. The set of all histories of play up to time ¢, or
(SY~', is denoted by #,.° By convention, ¥, denotes the (singleton) set
consisting of the null history. Also, & denotes the set of all possible infinite
histories; i.e., & = (§)*, with typical element { = (s,, 5,5, .. .).

The basic object of this paper is a model of learning and behavior,
which specifies how the players behave and what they believe as time
passes. A model of learning and behavior consists formally of two pieces,
behavior rules and assessment rules for each player. We take these in
turn.

Behavior Rules

We denote by ¢’ the behavior rule that player i uses in the infinitely
repeated game. That is, ¢' = (¢}, &5, ...), where ¢i: %, — 3\ The
notation ¢ (for a profile (¢', ..., ¢') of behavior rules for the players),
¢, (for the profile of behavior rules at date ¢ as a function of {,), and ¢,(£,)
are all used.

4 We use male pronouns for players in general, and for players numbered 2, 4, 6, etc.,
and lettered j and —i. We use female pronouns for players numbered 1, 3, etc., and ror
players lettered / and k.

S Insofar as possible, we follow the convention that subscripts refer to time and superscripts
to players. When we write (-, however, we mean the usual r-fold Cartesian product of the
argument within the parentheses. (We try to avoid this as much as possible.)
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Fix a profile of behavior rules ¢. Given any ¢t = 1 and {, € %,, we can
use ¢ to construct a conditional probability distribution (conditional on
) for the rest of the path of play in the usual fashion: ¢, and ¢ give a
probability distribution on s, (the actual play at date 7) via ¢,({,). This
gives us conditional probabilities on %, , , and with transition probabilities
for s,,, given by ¢,.,({,,,), we can extend the conditional distribution to
%..., and so on. These then give a probability distribution over the space
of complete histories % by the Kolmogorov extension theorem. We write
P(- | £,) for this conditional probability, keeping in mind that this is for a
fixed profile of behavior strategies.

One part of this construction must be emphasized. Given history £,,
the probability that i plays s' at time ¢ is ¢{({,)(s'). When we construct the
conditional probability distribution on ¢,, we must specify the joint proba-
bility that 1 plays s', 2 plays s°, and so on. We insist that

P(s, = (s's ..., sD]L) = L) x - X L.
That is, players randomize (in their behaviors) independently.

Assessments

To model the behavior rules of players, we employ some ancillary
formalisms. Specifically, we want to speak of what each player assesses
concerning the behavior of her rivals, at each date ¢ and contingent on
each possible history ¢,.

For the analysis in this paper, it suffices to specify (for each player /,
time ¢, and partial history {,) what i believes her rivals will do in the round
about to be played. Formally, for each ¢, let u! denote a function with
domain ¥, and range X, representing i’s assessment over the possible
pure-strategy profiles that her rivals will choose at date ¢, as a function
of {,. Also, we use u' to denote a full system of assessments or assessment
rule for i i.e., u' is a sequence (u}, ub, ...). Note well that o~/ € % ~¢
encodes more than {'s marginal assessments for her rivals’ behavior; / is
allowed to make an assessment concerning the joint behavior of her rivals
that admits correlations in their play.® This may at first seem troubling

¢ For example, imagine a three-player game in which player 1 has a choice between pure
strategies a and b and player 2 has a choice between @' and &'. Imagine that player 3 thinks
that player | mixes between a and b either with probabilities § and } or with probabilities
1 and §, with the same mixing probabilities used at each date, irrespective of the history of
play That is, player 3 believes either that player 1 is using the behavior rule &! that is given
by cb,(;,)(a) = § or that | uses qS‘ given by ¢,(§,)(a) =} Player 3 entertains similar beliefs
about the behavior rule used by player 2; we use ¢ and ¢* to denote the two possibilities.
Moreover, player 3 believes that her rivals randomize at each date independently; i.e., if
player 1 is using ¢' and player 2 is using &%, then player 3 assesses that the probability of
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when contrasted with the independence assumption made in the earlier
construction of the probability measures P. There is no conflict, however.
The measure P reflects the objective probability measure that governs the
evolution of play, as a function of the behavior rules by the players. We
do not allow players to correlate their (mixed) strategies at any date;
hence P is constructed with independence at each date. On the orher
hand, the wi({) represent a player’s subjective assessment of what her
rivals are about to do; unless and until i/ knows what behavior rules her
rivals are using, correlation in her assessments can reflect her strategic
uncertainty.’

3. FicTiTious PLAY

The model of fictitious play (Brown, 1951; Robinson, 1951) can be
viewed as a model of learning and behavior. First we give the details of
fictitious play, and then we discuss its interpretation as a model of learning
and behavior.

In fictitious play, there are two players; i.e., / = 2. In this setting, we
interpret —/ as “‘not i"’;i.e., =i = 3 — ifori = 1, 2. Otherwise, the
general setting is just as in Section 2. The behavior and assessment rules
are built up as follows.

(A) For each player i, strategy s' € §', and history {,, let ({,)(s") be
the number of times that i played s’ in the 1 — 1 observations that com-
prise ¢, .8

(B) For each player /, there is an “‘initial weight”* function n": §' —
[0, =) such that 2 icc- pi(s™') > 0.

{a, ') in any round is (1) = {5 Imagine that player 3's prior belief is: 1 will use &' and
2 will use &* with probability .4; 1 will use ¢' and 2 will use ¢ with probability .05; I will
use @' and 2 will use ¢! with probability .05; and | will use ¢' and 2 will use ¢® with
probability .4. And, finally, imagine that 3 uses the sequence of observed play and Bayes’
rule to update her beliefs about the joint behavior rule profile used by her rivals. With these
data, we can integrate out to find 3's assessment about what 1 and 2 will do at any date ¢,
given any history £,. It is evident that although 3 believes that 1 and 2 are randomizing
independently, her initial uncertainty about what behavior rules they are using and the
correlation in her initial beliefs about their behavior rule profile imply that she will be mak:ng
assessments about their play at each date that reflect correlation. If we condition on plaver
| playing « at date 1, this makes it more likely that player 1 is using <2>1 than ¢', which makes
it more likely that player 2 is using &, which makes «' more likely. Note as well that even
though player 3 believes (with probability one) that her rivals do not change their behavior
from date to date as a function of what happens in the course of play, her assessments
u3(Z,) very much depend on {,, since the history of play up to date 1 gives player 3 information
about what behavior rule profile her rivals are in fact using.

7 We are grateful to Bob Aumann for convincing us of how important this is.

¥ We do not bother to write k%, since the two arguments determine the length of the histcry
and the player whose strategy is being counted.
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(C) For each player i, date ¢ = 1, history {,, and strategy s ' € S,
we deﬁne' NALHs ™) = (s ™) + k({)s 7). (Note that ni({)(s ™) = n'(s ™)
for all s 7*'.) Then player i’s assessment rule u' is given by normalizing the
7' i.e.,

o MENs
mi&)(s ™) Soes LS

(D) For player i, at each date ¢ with history {,, ¢/({,) is a maximizer of

> o, s T s T (3.1)

s 'es™!

over all o' € 3/,

In (D), we have not pinned down the definition of ¢i(Z,) when there is
more than one maximizer of (3.1). We do require that ¢! make a particular
prescription in such cases (which, of course, can be a mixed strategy),
but we do not say what it is. Formally, we would say that a model of
learning and behavior is consistent with the model of fictitious play if
there are initial weight functions %' such that (C) holds as a definition of
the assessment rules ' and (D) holds as a condition on the behavior
rules ¢'.

We trust that most readers are familiar with the model of fictitious play,
but it may help the uninitiated to give a simple example. Imagine two
players who repeatedly play the strategic-form game in Fig. 1, with player
1 choosing a row and player 2 a column. We assume that the game begins
with the players holding ‘*beliefs”

n' = (1,0,4.32) and n* = (3,5.7),
where we write these functions as vectors with the understanding that

the first component of n' corresponds to column 1, the second component
to column 2, and so on.

Player 2
Column1 Column2 Column3
Row 1 5,1 8,4.7 2,3
Player 1
Row 2 2,3 2,1 4,2

F1G. 1. A strategic-form game.
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TABLE 1

AN ExAaMPLE OF FicTITIOUS PLAY

‘Beliefs’” about rival Expected payoffs Choice of action

Round number 1

Player | (1,0, 4.32) (2.56, 3.62) Row 2

Player 2 (3, 5.7) (2.31, 2.28, 2.34) Column 3
Round number 2

Player 1 (1,0, 5.32) (2.47, 3.68) Row 2

Player 2 (3, 6.7) (2.38, 2.14, 2.31) Column 1
Round number 3

Player 1 (2,0, 4.32) (2.82, 3.45) Row 2

Player 2 3, 7.7) (2.49, 1.95, 2.26) Column 1

Refer to the first two lines of Table 1, which are labeled round number
1. The first line gives data for player 1, first her relative beliefs about what
player 2 will do in the first round (i.e., the vector »') and next the expected
payoffs she will accrue given those beliefs if she chooses row 1 and then
row 2. Row 2 gives the higher payoff, and that is written down as her
choice. Similarly, given 2's beliefs about what player 1 will do (the vector
7%), 2’s best choice is column 3.

Move to the second two lines, labeled round number 2. Player 1’s belicfs
about the actions of player 2 are changed to reflect what happened in the
first round. Since player 2 chose column 3 in the first round, the entry
for column 3 in I's beliefs is increased by 1. (That is, n! = (1, 0, 5.32).)
We recompute the expected payoffs to player 1 of playing either row,
using these reassessed beliefs, and we see that row 2 continues to be
player I's best choice. But player 2 now finds that column 1 is optimal,
when his beliefs are changed to reflect player 1’s choice of row 2 in the
first period. Hence in the second round, row 2 and column 1 are chosen.
This gives beliefs for round number 3, and so on.

Fictitious play was not originally advanced as a model of how individuals
would behave (and learn) when playing a game repeatedly; it was advanced
instead as a method for computing Nash equilibria’® or perhaps as a model
of the preplay thought process of individual players. How well does it
stand as a model of learning and behavior? The following two questions
are raised immediately.

(1) Is there any particular sense to how assessments are being formed?
It can be shown that the assessment rules ' are consistent with a Bayesian

9 The connection will become clear in a bit.
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model in which each player believes her rival is playing the same (un-
known) mixed strategy in each round, independent of what came before,
and where each player’s prior assessment concerning this unknown behav-
ior strategy has a Dirichlet distribution.

(2) Is it sensible or realistic to assume that players would behave myopi-
cally, in the sense that, in each round, they choose a strategy that maxi-
mizes their immediate expected payoff, given their assessments? Behavior
that is myopic in this sense is discussed in Section 4, so for now we only
note that if each player believes that his rival does not respond to the
history of play—as posited in our answer to question (1) just preced-
ing—then myopic behavior in this fashion is warranted.

Accepting the model as, at least, a very specific but interesting parame-
terization of learning and behavior, we can ask about its long-run implica-
tions. One possibility arises in the example of Fig. 1 and Table 1; if we
follow this out until round 8, then in round 8 play reaches the profile row
I-column 2. Since this pair is a strict Nash equilibrium for the game,
increasing the weight on row I in player 2’s assessment and increasing
the weight on column 2 in player 1’s assessment only increases the optimal-
ity of column 2 and row 1, respectively. Thus play ‘‘gets stuck’’ at this
pure-strategy Nash equilibrium. In general,

PROPOSITION 3.0. In any history generated by fictitious play, if a strat-
egy profile that is a strict Nash equilibrium is played, then all subsequent
play will be that strategy profile.

Or, speaking very loosely, strict Nash equilibria are absorbing for play
according to the model of fictitious play. A related observation is the
following.

ProrosiTiON 3.1. Suppose that in some history generated by fictitious
play, a particular pure-strategy profile is played for all but a finite number
of periods. Then that strategy profile must be a Nash equilibrium.

We refrain from giving the proof here; this is an easy corollary to Proposi-
tion 4.1, which is proved later.

Thus we see one possibility; play might ‘‘stick’’ at some pure-strategy
profile. If so, this profile must be a Nash equilibrium. (It goes almost
without saying that judicious choice of the initial weight functions will
allow fictitious play to stick at any strict equilibrium. Depending on how
ties are broken, this is true as well of any equilibrium, even those in
weakly dominated strategies.)

Proposition 3.1 implies that fictitious play cannot converge to a single
pure-strategy profile in games that have no pure-strategy equilibria. More-
over, even in games that do have pure-strategy equilibria, fictitious play
may fail to lock on to a single pure-strategy profile. For example, take
the game in Fig. 1, and change the entry 4.7 in row l-column 2 to a 4.
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Note that row 1-column 2 is still a strict Nash equilibrium. Begin fictitious
play with the same initial weight vector as before, and it turns out that
column 2 will never be played. Instead, play ‘‘cycles’ around the best
response cycle row l-column 1 to row I-column 3 to row 2—column 3
to row 2—-column 1, where ‘‘cycles’ is put in quotes because the periods
of the cycles increase through time. In the limit, however, the relative
frequencies of play of the various strategies converge. That is, player |
plays row 1 one-third of the time in the limit, and player 2 plays column
1 two-fifths of the time and column 3 three-fifths of the time. Hence the
players’ beliefs about how each other will be playing converge to the
corresponding mixed strategies. It is straightforward to see that these
mixed strategies constitute a mixed Nash equilibrium. More generally,
we have

ProPoSITION 3.2.  Suppose that in some history generated by fictitious
play, the empirical frequencies of pure-strategy choices converge to scme
(mixed) strategy profile. Then that strategy profile is a Nash equilibrium.

The proof is omitted for now; this is a corollary of Proposition 4.2. Note
that this proposition implies Proposition 3.1 as a special case.

It is natural to ask whether, in every game and for every set of initial
conditions, convergence at least in the sense of Proposition 3.2 will take
place under fictitious play. There are entirely trivial reasons why conver-
gence may fail, connected with the way in which ties (among optimal
strategy choices) are broken. However, if due care is taken in dealing
with ties, then it is known that convergence in this sense is ensured
for zero-sum games (Robinson, 1951) and two-by-two games (Miyasawa,
1961). However, for general games convergence is not ensured; the frst
(nontrivial) example is given in Shapley (1964).

4. EXTENSIONS OF FicTITIOUS PLAY

One problem with the model of fictitious play is its very rigid, ad hoc
specification. Assessments are formed according to the empirical frequen-
cies of past play (up to the initially given weight vectors), and actions are
chosen to maximize precisely immediate expected payoffs. Neither part
of this specification is essential to the results given above; we can obtain
similar results for a broad class of models of learning and behavior. In
this section, we present some results of this sort.

Myopic Behavior

DerFINITIONS. Given an assessment rule pu' = (u}, &}, ...) for player
i, we say that the behavior rule ¢’ = (¢}, ¢4, .. .) for i is myopic relative
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to u'if, for every tand ¢,, ¢/({,) maximizes i's immediate expected payoff,
given assessment w/({,). That is, u'(d/({,), ni(L,)) = max,icg t'(s’, wi(L,)).
The behavior rule ¢' is asymptotically myopic relative to u' if for some
sequence of strictly positive numbers {g,} with limit zero, for every t and
{,, ¢'({) comes within g, of maximizing i's immediate expected payoff,
given assessment pi(L,). That is, «(di(L,), pi(L)) + & = maxicg u'(s’,
w{Z)). _ ‘
The behavior rule ¢' is strongly asymptotically myopic relative to ' if
for some sequence of strictly positive numbers {g,} with limit zero, for
every tand {,, every §' in the support of ¢i({,) comes within g, of maximiz-
ing i’s immediate expected payoff, given assessment u/({,). That is, u(s",
wiL)) + &, = max, ¢ 1'(s', wi¢,)) for all §' in the support of ¢i({,).

Note that in asymptotically myopic behavior, the player can use slightly
suboptimal pure strategies with large probability, or he can use grossly
suboptimal pure strategies with small probability, or both, as long as the
“‘average’’ suboptimality, averaged according to the probabilities with
which the pure strategies are played, is small enough. In strong asymptotic
myopia, grossly suboptimal pure strategies cannot be used at all.

We work throughout with models of learning and behavior for which
behavior is at least asymptotically myopic with respect to the assessment
rules. Even this less restrictive assumption has one feature that is poten-
tially troublesome: It implicitly supposes that players do not try (asymptot-
ically) to influence the future play of their opponents. To see this, consider
the game in Fig. 2, and imagine that player 2 selects actions according to
the model of fictitious play. In this game, row 2 is dominant for player 1,
and so if player 1's behavior is asymptotically myopic for any assessment
rule, she will play row 1 eventually. Since player 2 uses the assessment
and behavior rules of fictitious play, he will eventually choose column 1;
play converges to the pure-strategy equilibrium, row 2—column 1. But if
player 1 does not behave asymptotically myopically and instead chooses
row 1 each time, then player 2 would eventually choose column 2. If
player 1 discounts her payoffs with a discount factor close to one, this
gives her a higher overall payoff. The point is a simple one. As long as
player 2 is playing according to the model of fictitious play, player 1 can

Player 2
Column 1 Column 2
w 1 1,0 3,2
Player 1
Row 2 2,1 4,0

FiG. 2. A strategic-form game illustrating the possibility of Stackelberg leadership.
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exploit this and manipulate 2’s beliefs in order to receive her **Stackelberg
leader’” outcome (cf. Fudenberg and Levine, 1989).

Inlight of this example, our assumption of asymptotically myopic behav-
ior requires some defense and explanation. We defend the assumption
with stories that combine two justifications in varying proportions: First,
even if a player’s possible influence on an opponents’ future play is large,
the player may discount the future sufficiently that the effects are unim-
portant.

Second, even if the players are relatively patient, they may believe that
their current action will have little, if any, effect on what will happen in
the future. Suppose, for example, that player i believes that her rivals
choose actions in each period according to some fixed but unknown (and
possibly mixed) strategy profile, which is not influenced by the actions
of other players. Moreover, because i learns her rivals’ actual play at
each date regardless of what i chooses to do, i’s immediate choice of
action will not affect what i learns, and thus (as long as i’s behavior
is subsequently myopic) it will not affect i’s own subsequent actions,'
Weakening this slightly, if / believes that her rivals will be playing a fixed
strategy asymptotically, then asymptotically myopic behavior (for the
same reasons) is warranted.

We are not very happy with either of these two justifications on its
own. In order to permit learning to take place, play must be repea:ed
“frequently,’” more frequently than would be suggested by a substanrial
discount rate, except for extraordinarily impatient players. And the story
that players regard their rivals as playing fixed strategies repeatedly suffers
from internal inconsistency; Why should a player imagine that his rivals
are so different from himself? A belief that one’s rivals will settle down
to repeated play of a single strategy profile (justifying asymptotic myopia)
is more palatable, especially when each player, in consequence, settles
down to repeated play of a single strategy. But even in this more palatable
story, each player is (effectively) assuming that his rivals settle down
more quickly than the player does himself.

More convincing justifications of myopia can be given by enriching our
story and combining the two justifications. Rather than thinking of a small
group of players who interact repeatedly, we think of situations in which
there are a large number of (potential) players who interact in small groups.

1 Suppose instead that i’s choice of action in round 1 affects the information she receives
about the strategy choices of her rivals in that period. (This would be natural, for examgle,
if we imagined that the stage game is an extensive-form game, and players only observe
the outcome of each round of play.) Then i’s choice of action today might affect her own
subsequent actions; and she might choose to invest in information today by taking an action
that is (myopically) suboptimal but that may generate useful information for guiding future
choices.
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Imagine that we have 5000 players 1, 5000 players 2, and so on, that
repeated meetings between any small group of players are rare, and that
whenever a player meets some group of rivals, he is unaware of how these
rivals acted in the past. To be more precise, imagine that one of the
following three stories holds.

Story 1. At each date 7, one group of players is selected to play the
game. (That is, one from each of the 5000 players of each type is selected
to play.) They do so, and their actions are revealed to all the potential
players. Those who play at date ¢ are then returned to the pool of potential
players, and another group is chosen at random for date + + 1.

Story 2. At each date ¢ there is a random matching of ali the players,
so that each player is assigned to a group with whom the game is played.
At the end of the period, it is reported to all how the entire population
played. (That is, at the end of the period, it is announced that 20% of the
I’s chose row 1, and so on.) The play of any particular player is never
revealed.

Story 3. At each date ¢ there is a random matching of the players, and
each group plays the game. Each player recalls at date z what happened
in the previous encounters in which he was involved, without knowing
anything about the identity or experiences of his current rivals.

In each of these stories, myopic behavior seems ‘‘sensible,”’ for reasons
that mix to varying degrees the two basic justifications given above. In
the first story, mainly the first justification is at work. Although the game
is played relatively frequently, any single individual plays very infre-
quently, and at any reasonable discount rate, immediate payoff considera-
tions will dominate any long-run considerations. In the second and third
stories, it is more a matter of each player believing (now, with good
reason) that his own immediate actions will have little impact on how his
future rivais will behave. In story 2, this is because each player may
believe that how he behaves will have little influence on the reported
aggregate distribution; in story 3, this is because each player attaches low
probability to the possibility that his current rivals will be future rivals
any time soon, or even that future rivals will indirectly be affected by the
player’s own immediate play through an effect on the player’s immediate
rivals, who then (through some chain of individuals) affects future rivals.
These stories make myopic behavior more plausible intuitively, although
whether this plausible intuition has some firm, formal basis remains a
question worth exploring.

Adaptive Assessments

Once we assume that behavior is (asymptotically) myopic, the next step
is to specify the assessment rules ' used by the players and, in particular,
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how these assessments are revised as the players observe the actions of
others. In the models we consider, players believe that, at least asymptoti-
cally, the past choices of opponents are to some extent representative of
future choices. A fairly weak property that captures this idea is suggested
by Milgrom and Roberts (1991)."

DeriNITION.  The assessment rule ' is adaptive if for every £ > 0
and for every ¢, there is some T'(g, ¢) such that for all ¢’ > T(e, t) and
histories ., uf.({,) puts probability no more than £ on the set of pure
strategies by /’s opponents that were not played at all between times ¢
and ¢’ (according to ¢,).

In words, the definition says that i puts very little weight on strategies by
her rivals that have not been played for a long (enough) time. The class
of adaptive assessment rules is very broad, including, for example, assess-
ments that take a weighted average of the history of past plays by one’s
opponent, as long as the weight put on any initial segment of history can
be made small by making ¢ sufficiently large. Four examples of adaprive
assessment rules are: (a) assess that one’s rivals will play in pericd ¢
whatever was played in t — 1 (the assessments that go with Cournotian
dynamics); (b) assess that one’s rivals will play according to an exponen-
tially weighted average of past plays; (c) assess that one’s rivals are equally
likely to play any action that has been played at least 1% of the time,
with zero probability for all other actions; and (d) assess according to the
scheme of fictitious play (where all previous observations are equally
weighted).

While the class of adaptive assessment rules is broad, there are argu-
ments that restricting attention to this class is too restrictive. See, for
example, the discussion in Milgrom and Roberts (1991, p. 89ff) concerning
sophisticated learning.

Convergence to a Pure-Strategy Profile

We are now in a position to generalize Proposition 3.1. Fix assessment
rules ' and behavior rules ¢' for our two players. To state the result, we
require a definition.

DerFiniTION.  The infinite history { = (s, 55, .. .) is said to be compati-
ble with behavior rules ¢ if foreachs = 1,2, ... andfori =1, ...,1,
the action s! is in the support of ¢i({,).

That is, { is something that could be observed with positive probability
over all finite time horizons for players who behave according to the
behavior rules that are given.

I Milgrom and Roberts define adaptive behavior as opposed to assessments. but it will
be apparent that our formal definition is just a gloss on theirs.
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PROPOSITION 4.1.'2  Let { be an infinite history (s,, s,, ...) such that
for some s, € S and for some T, s, = sy for all t = T. If { is compatible
with adaptive assessment rules u' and behavior rules ¢' that are strongly
asymptotically myopic relative to the assessment rules, then s, must be
a Nash equilibrium of the stage game.

Proof. Normalize the payoffs in the game so that the range of payoffs
for each player is no greater than one. Suppose [, is the partial history
(s;, $, ..., §,) of {. Maintain the hypotheses of the proposition; { is
compatible with the ¢', and {’s components are eventually s, . Suppose
that s, is not a Nash equilibrium. Then (without loss of generality) player
1 has a better response to s ' and sk. Let §' be 1's better response, and
set

W (5, s — u'(sk, sz "
8 = 4 >0;

Because the u' are adaptive and because history eventually settles on
repeated play of s,, we can find a T sufficiently large so that for all ¢+ >
T, the probability assessment of player 1, u!({,), puts probability at least
I — & on the play of s;!. Thus the expected payoff to | forall ¢ > T from
playing s) (against 1’s assessment of her rivals’ strategy choices) is at
least 4e(1 — &) — € = 3& — 4e*> > & worse than |'s payoff from playing
§1." Thus sk is more than & suboptimal against s; ' for all r > T, which
implies that 1's behavior rule is not strongly asymptotically myopic, a
contradiction. =

Note that the proposition assumes that behavior rules are strongly as-
ymptotically myopic. If we deleted the modifier strongly, the result would
be false as stated. Consider, for example, repeated play of the prisoners’
dilemma, and behavior where, at period ¢, each player chooses to cooper-
ate with probability 1/¢ and to defect with probability (r — 1)/t. Consider
the infinite history where each player cooperates in each period. This
history is compatible with the behavior rules. And (for any assessment
rules) the behavior rules are asymptotically myopic, because they involve
playing a suboptimal strategy with vanishing probability. But the strategy
profile that is “‘repeated’ in each period is not a Nash equilibrium. The
problem of course is that compatibility only requires that each finite history

12 Compare with Milgrom and Roberts (1991, Theorem 3{ii]).

" This is computed as the probability assessed that — [ plays s, !, at least [ — ¢, times
d4g = u'(s', 5.1 — u'(sL.s; Y, less the probability that — I plays anything other than s,
which is no more than ¢, times the maximum possible difference in payoffs playing §' and
sk, which by the normalization is one.
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has positive probability for the behavior rules. To obtain a result in the
spirit of Proposition 4.1, but with asymptotic myopia instead of strong
asymptotic myopia, we must either be more careful about how we make
histories consistent with the given behavior rules or study not the actual
history of play but the intended strategies of the players. We provide one
result along these lines at the end of Section 6.

Convergence to Mixed Strategies in Empirical Frequencies for I = 2

Next we proceed to generalizations of fictitious play and convergence
in the second sense of Section 3, where we look for convergence of the
empirical frequencies of observations to some (possibly mixed) strategy
profile.

For the remainder of this section, assume that the game has two players
only; i.e., / = 2. We take up the case of more than two players in Sec-
tion S.

Let o({,): § — [0, =) give the vector of proportions of strategy profiles
in S along the partial history {,; i.e., o({,)(s) gives the number of timss s
was played in periods 1 through ¢ — 1, divided by t — 1. We write o'({,)
for the marginal frequency distribution on S’ induced by a@({); i.e.
T(L)sY) = Z,-igg-i (), s77). Then, in the spirit of Proposition 3.2,
we look for conditions on assessment and behavior rules that guarantee,

Suppose { is an infinite history (s,, s,, ...) such that for some o4 € X,

limc¢) = ok,
t—x

fori = 1,2. Then oy is a Nash equilibrium of the stage game.'*

To get this result, it is insufficient that behavior be strongly asymptotically
myopic with respect to adaptive assessment rules. Consider, for example,
the game matching pennies, and suppose that at dates ¢+ = 4, the two
players assess equal probabilities for any strategy by their rival that has
occurred at least 10% of the time in the past; until date 4, they assess
equal probabilities for the two strategies. As for behavior, players behave
myopically optimally in all instances, with the following specification if
the asssessment leaves the player indifferent: If ¢ is divisible by 3, then
play ‘‘heads’’; otherwise play ‘‘tails.”” What happens is that the sequence
of plays is tails, tails, heads, tails, tails, heads, ... , for both players, and
each always assesses equal probabilities for his rival’s two strategies.

14 Please note carefully, this is not quite the same as asking that lim, a(¢,} = o,. We ask
only that the marginal frequencies converge and not the joint frequency distribution. There
is a lot behind this observation, to which we return in the next section.
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Empirical frequencies converge to (4, ) for each, which (of course) is not
a Nash equilibrium of the stage game."

The difficulty, it should be clear, comes from the fairly weak require-
ments of being an adaptive assessment rule. When only one strategy
choice by rivals is eventually observed, adaptive assessment rules con-
verge together with the (degenerate) empirical frequencies of observations.
But when rivals use more than one (pure) strategy with nonvanishing
frequency (or even with vanishing frequency that vanishes sufficiently
slowly), adaptive decision rules can assign probability to that strategy
that is unrelated to its limiting empirical frequency. To obtain the result
that we seek, we must sharpen considerably the criterion imposed on
assessment rules. The simplest and most direct criterion that works runs
as follows.

DEFINITION. The assessment rule u' is asymptotically empirical if for
every { € %,

lim [ls(&,) = &~ = 0,

where the ¢, are subhistories of the fixed {.'

It is easy to see that any asymptotically empirical assessment rule is
adaptive, that there are adaptive assessment rules that are not asymptoti-
cally empirical, and that the assessment rule in the model of fictitious play
is asymptotically empirical.

Is it reasonable to insist that assessment rules are asymptotically empiri-
cal? This property is natural if one’s picture of a rival’s dynamic behavior
is that the rival is playing some (unknown) strategy repeatedly, or even
if one supposes that one’s rival will converge to repeated, independent
play of some (unknown) strategy. But if you think that your rival’s strategy
may shift repeatedly through time, then some assessment scheme that
puts nonvanishing weight on more recent observations (which is precluded
if assessments are asymptotically empirical) would be more reasonable.

PROPOSITION 4.2. Let { be an infinite history (s, s, ...) such that
for some oy € X,

limai(g,) = ok,
t—>x

15 At the cost of complicating the description of the assessment and behavior rules, we
can modify this example so that the two players eventually play the mixed strategies (3, %)
at all dates; nonconvergence of their intended strategies is not the issue.

' Whenever we are dealing with finite dimensional vectors as here, ||| denotes the sup
norm.
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fori = 1,2 If Lis compatible with asymptotically empirical assessment
rules u' and behavior rules ¢ that are strongly asymptotically myopic
relative to the assessment rules, then o, is a Nash equilibrium of the
stage game.

The proof resembles the proof of Proposition 4.1 with the following
amendments. First, since the assessment rules u' are asymptotically em-
pirical, the assessments of player i (given by u’) at the partial histories ¢,
converge to the mixed strategy oi'. If ¢ i is not a best response to
o', then there is some pure strategy §' for player i that is strictly better
against o ' than is some §' in the support of o i . By a standard argument,
for some & > 0 and sufficiently large T, §* will be worse against u‘(Z,) than
is §' by more than ¢, for all r > T. Thus §' will not be played eventually
(by asymptotic myopia). But this would contradict §' being in the support
of the limiting frequencies of i’s strategy choices."”

5. OBJECTIONS TO CONVERGENCE OF THE EMPIRICAL DISTRIBUTIONS
AS A CONVERGENCE CRITERION

Notwithstanding the results of the previous section, the convergence
criterion employed fails to capture what we want for a model of “‘learning
to play mixed strategies.’’ Our objections begin with the obvious observa-
tion that in examples such as fictitious play, players are (almost) never
playing mixed strategies. They are instead jumping from one pure stralegy
to another, (typically) in cycles of ever-increasing length, so behavior is
not converging.

The rebuttal to this is that while behavior is not converging, beliefs are.
Mixed equilibria are sometimes interpreted as equilibria in beliefs; each
side believes the other to be acting in a manner that makes the first
(nearly) indifferent among several actions. Under this interpretation, the
convergence criterion used in the previous section is fairly natural if
players ignore the cycles in their own and their opponent’s play.

However, these cycles can lead to phenomena so striking that we do
not believe they would be ignored. Consider, for example, a symmetric
battle of the sexes as depicted in Fig. 3. Imagine play of this game using
the precise method of fictitious play, where each player begins with the

Y The conclusion of Proposition 4.2 does not require the full power of asymptotically
empirical assessment rules; e.g., the conclusion still holds for assessment rules that dc not
approach the empirical frequencies along histories where the empirical frequencies do not
converge. More concretely, suppose that s’ reports the empirical frequencies of ~i's cheices
over the most recent a% of history, for « strictly between 0 and 100. This assessment rule
is not asymptotically empirical per our formal definition, but it is empirical enough so that
Proposition 4.2 holds.
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Player 2
Column1 Column 2
Row 1 0,0 2,1
Player 1
Row 2 1,2 0,0

FiG. 3. The battle of the sexes.

relative beliefs vector (1, \V2). The symmetry of the situation implies that
if player 1 chooses top in the first round, 2 will choose left, and vice versa.
In fact, with the numbers we are given, top-left will be played, and each
player's relative beliefs going into the second round will be given by (2,
V2). The symmetry again implies play of either top-left or bottom-right,
and so on, inductively.?® From general results about fictitious play, we
know that empirical frequencies will converge to the Nash equilibrium
probabilities (3, 5). But this will be realized with perfect correlation in the
two players’ choices: Top-left will be played two-thirds of the time, and
bottom-right one-third. Players will get zero round after round, there will
be perfect correlation in their actions, and yet, according to the theory,
they will persist in believing that they are ‘‘converging’’ to the mixed
Nash equilibrium.

Moreover, this example shows that Proposition 4.2 will run into diffi-
culties for the case I > 2. Imagine a three-player game, in which the
actions of player 3, from the perspective of players 1 and 2, are irrelevant.
Players 1 and 2 simply play the battle of the sexes against each other in
each round. Player 3, to choose an optimal strategy, must forecast the
joint actions of her rivals; for the sake of definiteness, suppose her optimal
action is zic if she believes that they will play to a main-diagonal cell with
probability § or more, and her optimal action is tac otherwise.

What should 3 conclude, asymptotically, if I and 2 act in accordance
with the particular model of fictitious play given above? Should she con-
clude that their actions are perfectly correlated, always playing along the
main diagonal, hence tic is optimal? Or should she conclude that 1 will
play top two-thirds of the time, 2 will play left two-thirds of the time, and
hence top-left has asymptotic probability four-ninths, bottom-right has
probability one-ninth, and thus tac is optimal?

There are (at least) two different ways we could proceed, depending
on how we extend the definition of asymptotically empirical assessments.
One possible definition is precisely the definition given before, interpreting

'® Because the payoffs are rational and the relative weights have an irrational ratio, there
will never be a tie: each player will have a unique best response at all times.
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o ~(,) as the marginal frequency distribution along ¢, of profiles from §*.
Under this definition, i’s assessment (asymptotically) reflects any
correlations that are observed empirically in the play of her rivals. The
example shows how this definition permits convergence (under fictitious
play) to non-Nash (correlated) assessments, so that Proposition 4.2 fails."
An alternative definition supposes that players asymptotically assess inde-
pendent play by their rivals, regardless of the empirical frequencies.?
Then we obtain Proposition 4.2 for I > 2. However, this seems to us to
be somewhat unnatural; if there is correlation asymptotically, we feel that
it is unnatural to assume that players ignore it.

Moreover, if it is unnatural for player 3 to ignore correlation in the
choices of players 1 and 2, then isn’t it equally unnatural for player 1 to
ignore correlation in her choice of strategy and that of player 2? If so,
then the example indicates that even for two-player games, asymp:otic
empiricism as formulated may be dubious.

All these objections (past our first and most basic objection) are
grounded in the battle-of-the-sexes example; if that example is nongeneric,
perhaps these objections have less force. In fact, it can be shown that the
example is nongeneric for 2 X 2 games: In a2 X 2 game, for generically
chosen payoffs, the actions of the two players (under the model of fictitious
play) will be asymptotically uncorrelated. However, we conjecture that
robust examples of asymptotic correlation can be found in larger games.
The basis for this conjecture is the game rock—scissors—paper. Fictitious
play in this game must converge to the unique Nash equilibrium (4, &, %),
since the game is zero sum. And, for most initial weight vectors, this
happens while (asymptotically) avoiding the three cells along the main
diagonal. (Each of the other cells has asymptotic frequency §.) We conjec-
ture that these properties hold for a neighborhood of games arcund
rock-scissors—paper, although we are unable to prove either convergence
to the Nash equilibrium frequencies (since most games in a neighborhood
will be nonzero sum) nor are we sure of the asymptotic frequencies of
the cells. Robust examples can be created easily, though, if we move from
the strictures of exact fictitious play.

Because we cannot verify our conjecture, we do not leave our secondary
objections based on asymptotic correlation in empirical frequencies neat

1 One can repair the proposition in this case by restricting to histories { where the emgirical
joint frequencies are the products (in the limit) of the empirical marginal frequencies. But
this repair seems a bit cheesy.

® One way to formalize this is to define, for each ¢, {', and s € S, (L )s) = T, T Ns').
That is, ({,) gives the *‘frequency distribution’’ obtained by using the marginal frequencies
&' and forcing independence. Let % 7'({,) give the S~' marginal distribution of 7(Z,). Then
asymptotic empiricism in this second sense is the condition lim,|u'(Z,) — 7 7'(¢,)|| = 0 along
every history {.
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and tidy. Nonetheless, in our view the first objection—that this mode of
convergence does not correspond to learning to play mixed strate-
gies—suffices to motivate research into stronger modes of convergence.
With this motivation, then, we proceed.

6. CONVERGENCE OF BEHAVIOR STRATEGIES

Rather than look for convergence of empirical frequencies (and hence
assessments about the actions of others), we look for convergence of the
behavior strategies employed by players. That is, we study convergence
(in 1) of ¢i(Z,) to some o, € 2, for each player i.

Because we wish to consider games with 7 > 2, we must first specify
how we will adapt the definition of asymptotically empirical assessments.
We proceed in the easiest fashion, by using the definition precisely as it
was given earlier, but interpreting —i as the set of i’s rivals. That is,
i’s assessments asymptotically exhibit any correlation that is observed
empirically in the choices of her rivals.

Two problems surface immediately. First, if ¢i(¢,) is meant to converge
to a mixed strategy, then player / must be willing to play one of several
pure strategies. In the model of fictitious play, we insisted that players
choose only myopic best replies, computed on the basis of their assess-
ments of the actions of their rivals. How likely is it that a player, based
on some history of play, would assess for his rival precisely the mixed
strategy that makes him (the first player) indifferent? If this is unlikely,
how can we ever have players willfully randomizing?

It is here that the asymptotic parts of asymptotic myopia and asymptotic
empiricism come into play. We do not insist in general that players play
only myopic best responses; they can play slightly suboptimal responses,
as long as the degree of suboptimality vanishes as time (¢) passes. So if
assessments converge to the equilibrium mixed strategies quickly enough
relative to the rate at which the allowable suboptimality vanishes, we can
sustain mixed strategies even if assessments do not match precisely the
equilibrium mixtures. At the same time, we do not insist that players’
assessments are precisely empirical; if the empirical frequencies of play
converge to some equilibrium mixed strategy, then players’ beliefs can
sit at precisely that limit mixed strategy, justifying the play of mixed
strategies even if behavior is precisely myopic.

This means that the divergence from precisely myopic behavior and
precisely empirical beliefs that we allow carry a lot of power in our story,
at least insofar as convergence to mixed strategies is concerned. As we
shall see, we don’t require both at once. That is, our results obtain with
asymptotic myopia and beliefs that are precisely empirical, or with behav-
ior that is precisely myopic and beliefs that are asymptotically empirical.
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But we need one or the other, if we are to hope for convergencs of
behavior to mixed-strategy profiles.

The Formal “'Nonconvergence’’ Criterion: Unstable Strategy Profiles

The second problem that is raised is that statements of convergence in
terms of behavior strategies must be probabilistic statements. To see what
is at issue here, imagine playing the matching pennies game repeatedly.
Suppose that along some history {, the empirical frequencies of the two
rows and the two columns approach (3, 1), but the behavior rules converge
to the mixed strategies (3. 3). This, you may object, is very unlikely. How
could players’ behavior strategies be converging to (3, §) and at the same
time empirical frequencies are approaching (3, $)? Unlikely is just the right
word. There is nothing that prevents this—any history { is compatible
with behavior rules that have players mixing strictly in each round—-but
by the strong law of large numbers, this history belongs to an evert of
probability zero. If behavior strategies are converging to (1, %), then the
strong law of large numbers says that empirical frequencies will converge
to (4, ) with probability one. Given asymptotically empirical assessment
rules, this would rule out players continuing to play anything close to the
(3, %) strategies.

Accordingly, when giving results in the spirit of Propositions 4.1 and
4.2, we give results of the following form: If o, is not a Nash equilibrium,
then for every initial condition there is probability zero that behavior wiil
remain forever in a small-enough neighborhood of o,. The formalities
run as follows.

Fix a set of behavior rules ¢ (which will be accompanied by assessment
rules u!, although for the time being only the behavior rules are needed).
Recall that P(-|,) represents the objective conditional probability distribu-
tion on the space % created by starting at {, and using the behavior rules
thereafter.

DEFINITION. A strategy profile o, € Z is unstable if there exists
some & > 0 such that P(|¢,({,) — o4l < eforall+' =1]{) = 0 forall
t and ¢,.

Note that € here is independent of the starting conditions ¢,.

PROPOSITION 6.1.  Fix behavior rules ¢ that are asymptotically myopic
relative to some asymptotically empirical assessment rules p'. Then every
strategy profile o that is not a Nash equilibrium is unstable.

Note that in this proposition, behavior rules are required to be (cnly)
asymptotically myopic relative to the assessment rules. Compare with
Propositions 4.1 and 4.2, in which strong asymptotic myopia was assuraed.
We return to this point at the end of this section.
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Although the details of the proof of this proposition are tedious, the
idea is fairly simple. If behavior lies forever in a small neighborhood of
the strategy profile o, then empirical frequencies will eventually lie in a
small neighborhood too, and thus so will the players’ assessments. If the
strategy profile is not a Nash equilibrium, then (eventually) some player
will want to move far away from the strategy profile, a contradiction to
the supposition.

The key technical result is an application of the strong law of large
numbers, which we state in the form of a lemma. The proof of this lemma
is given in the Appendix.

LEMMA 6.2. Let{x,;t = 1,2, ...} be a sequence of random variables
on a probability space with range some finite set A. Fix a probability
distribution m on A and an € > 0, and let A be the (measurable) subset
of the probability space consisting of all sample points such that for t =

1.2, ..., the distribution of each x, conditional on {x,, . .. , x,_}, denoted
mClx,, ..., x,_\), satisfies

max |z (alx,,....x,_) — ma) <e.

aEA

Let 7,(a) be the random variable Z!,_, 1,(x,); that is, T(a) is the number
of times that x, = a fort’ =1, ..., t. Then

7la)

lim sup:'—(tg—) =7(a) + ¢ and lim inf =ma) — ¢

1—x t—x

for all a € A, almost surely conditional on A.*!

Proof of Proposition 6.1. Suppose that o is a strategy profile that is
not a Nash equilibrium. Then there is some player i and a pure strategy
§" such that §' is strictly better against o' than is o’ . Since ui(c’, ™9
is continuous in both arguments, we can find an £ > 0 so that for all ¢~/
that are within & of o;' and o’ that are within ¢ of o, both in the sup
norm (on 2~ ¢ and X', respectively),

o', o) + e < u(@E, o).
(Interpret o ~' here as any element of 27'; i.e., o "' need not be based on
independent play by i’s rivals. But o5 'is composed of independent choices

by i's rivals according to the components of the strategy profile o .)
We claim that for this £ and for all asymptotically empirical behavior

2UIf A has zero prior probability, the lemma is taken to be vacuous.
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rules ¢ and assessment rules u that are asymptotically myopic relative
to these assessment rules,

Pl (L) — ou| < eforalle’ =+¢|g) =0

To see why, suppose to the contrary that for some {,, this probability is
strictly positive. We proceed to derive a contradiction.

From the lemma, we know that on the set A of positive probability
(conditional on {,), where [|¢,({,) — a4l < € for all ¢ = ¢, the limits
inferior and superior of the empirical frequency distribution @ ~(¢,.) almost
surely lie within (I — 1)e of o', (If |¢p7.(L,)(s?) — 0% (s))] < & for all s/,
then for any §°' = (§),.;, I ¢4 (L)E) ~ I ah(&)] < I — De)
Since assessments are asymptotically empirical, along every infinite his-
tory in A there is a 7 such that for all ' > T, the assessments of player
i lie within Ie of o5 ". But then asymptotic myopia implies that along every
L€ A, ¢i(L) will eventually be more than € away from o %, which contra-
dicts the definition of A. =

Two remarks about the proof are in order.

(1) Note that the neighborhood of o that is used in the proof is indepen-
dent of the behavior and assessment rules that are assumed to be given;
the value of ¢ depends only on the strategy profile o, and the extent to
which it is not a Nash equilibrium.

(2) The full strength of asymptotic empiricism is not required for this
proof. What is essential is that if behavior lies forever in some small
neighborhood of a strategy, then assessments come to lie in another small
neighborhood of that strategy. We used the strong law of large numbers
to show that the empirical frequencies would lie in a small neighborhood,
and then we were able to enlist the asymptotically empirical character of
assessment rules. But suppose the assessment rule took the following
form: ui(Z,) is asymptotically equal to the empirical frequency of observed
strategy choices by one’s rivals over the most recent Vi periods. Since
the length of this segment of history grows without bound, we can stili
enlist the strong law of large numbers to come to the desired conclusion.
Or suppose ui({,) is a weighted average of past observations, with the
greatest weight on the most recent observation. As long as that greatest
weight falls off to zero fast enough as ¢ goes to infinity, we can enlist a
variation of the strong law of large numbers and obtain the desired result.
(Of course, this rules out exponential moving averages, where the weight
on the most recent observation does not vanish at all.)

We stick to asymptotic empiricism for the remainder of this paper, since
it is expositionally the easiest thing to deal with. But you should note that
it is a bit more restrictive than we actually need.
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Locally Stable Strategy Profiles

Proposition 6.1 shows that every strategy profile that is not a Nash
equilibrium is unstable. We know by example that there are some strategy
profiles that are not unstable. It is natural to wonder whether any Nash
equilibria are unstable. The answer is no; no Nash equilibrium profile is
unstable.

To avoid double negatives, we make the following definition.

DEFINITION. A strategy profile o is locally stable if there exists some
asymptotically empirical assessment rules and behavior rules that are
asymptotically myopic with respect to the assessment rules such that for
every £ > 0, we can find some ¢ and {, € ¥, such that

P(},‘_’Hﬁ b (L) = oy ' gr) >1-e.

We do not insist that behavior converges to the target strategy with proba-
bility one, but only that the probability can be made arbitrarily close to
one (for a fixed model of behavior and assessment rules) for some choice
of initial conditions. We couldn’t have a probability one statement as long
as the target strategy is not pure (except for degenerate cases), since as
long as players use mixed strategies, there is positive probability of a very
long run of **bad luck,”” which would lead players away from the target
strategy.

PROPOSITION 6.3. Every Nash equilibrium profile o 4 is locally stable.

The proof is left for the Appendix, but some remarks are in order here. In
the definition of local stability, we allow assessments to be asymptotically
empirical and behavior to be asymptotically myopic. In fact, we can
obtain local stability of any Nash equilibrium with either (a) a model with
asymptotically empirical assessments and precisely myopic behavior or (b)
a model with precisely empirical assessments and asymptotically myopic
behavior. We provide details of the first sort of construction in the Appen-
dix, but the idea behind each is easily given.

For the first construction, we suppose that players maintain precisely
the equilibrium beliefs unless and until sufficient evidence against this
accumulates. Of course, as long as players maintain equilibrium beliefs,
the equilibrium strategies are among their myopic best responses, and we
suppose that this is how they play. The work then is in showing that if
players play according to the equilibrium strategies, we can rig things so
that there is arbitrarily small probability that ‘‘sufficient evidence’’ against
these assessments will arise.

For the second sort of construction, we would assume that players
maintain precisely empirical beliefs, but that they stick to playing the
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targeted equilibrium strategies unless and until the ‘‘cost™ of doing so
becomes too large. The work here is in showing that we can rig things so
that there is arbitrarily small probability that they will ever have to abandon
the equilibrium strategies.

In both constructions, the trick is to note that as long as play is according
to equilibrium strategies, by the strong law of large numbers, empirical
frequencies will converge to the equilibrium frequencies. Thus in the first
case there is asymptotically no need to abandon the assessments that
opponents use the equilibrium strategies, and in the second case, the cost
of keeping to the equilibrium strategies {(computed vis a vis the empirical
frequencies) vanishes asymptotically.

In both constructions, players use precisely the equilibrium strategy
for no positive reason at all. This suffers from the usual problem of implau-
sibility of a mixed Nash equilibrium; the precise mixing probabilities have
nothing to do with one’s own payoffs, but are chosen to make one’s rivals
indifferent. Thus, although the constructions show that convergence to a
mixed-strategy equilibrium is possible, neither one convinces us that it
would in fact happen, except perhaps for players who have been trained
in game theory and therefore know how they are “‘expected’’ to act. Put
simply, mixed-strategy equilibria as a positive prediction are hard (for us)
to defend in the stark environment of this chapter. Instead, we prefer
to follow Harsanyi (1973) in interpreting mixed-strategy equilibria as a
shorthand description of pure-strategy equilibria in games where parame-
ters of the game (such as the players’ payoffs) are subject to small random
perturbations, which are private information. Sections 7 and 8 consider
learning in this context and argue that mixed-strategy outcomes are indeed
plausible when interpreted in this way.

Asympiotically Myopic Behavior and Compatible Histories

Before moving to this development, we have one piece of pending
business to take care of.

In both Propositions 4.1 and 4.2, we assumed that the players’ behavior
rules were strongly asymptotically myopic relative to their assessment
rules, whereas in Proposition 6.1, we assumed that behavior was (only)
asymptotically myopic. We earlier indicated why the results in Section 4
would not work with asymptotically myopic behavior; viz., compatibility
of a history and a profile of behavior rules is (too) weak. To obtain results
in the spirit of Section 4 without strong asymptotic myopia, we must work
with the sort of probabilistic convergence criteria used in this section.

Because we do not assume (in Propositions 4.1 and 4.2) that strategies
converge, to avoid problems of correlation we must restrict attention to
the case of two players. Also, because strategies are not assumed f{o
converge, we cannot use the definitions of unstable and locally stable



LEARNING MIXED EQUILIBRIA 347

strategy profiles given above. Instead, for fixed behavior and assessment
rules, we make the following definition.

DEFINITION. A strategy profile o, € Z is unstable in empirical
frequencies if there exists some £ > 0 such that for all ¢+ and ¢,
P(ldt¢,) — okl > eforallt’ =randi = 1,2]¢) = 0.

Note that this captures some of the spirit of Proposition 4.2, in that this
notion of stability asks for empirical frequencies to remain close to a target
profile o,. At the same time, it is a probabilistic statement about the
likelihood of this event.

PrOPOSITION 6.4. In two-player games, for asymptotically empirical
assessment rules p' and behavior rules ¢' that are asymptotically myopic
with respect to the assessment rules, every strategy profile o that is not
a Nash equilibrium is unstable in empirical frequencies.

We omit the proof. The idea is that if empirical (marginal) frequencies lie
close to o, then so must beliefs. But if beliefs are close to o, and o4
is not a Nash equilibrium, then for some i and some pure strategy s' in
the support of o, s’ will be used with vanishing probability. And then
(by the strong law of large numbers) the frequency of s* must fall to zero,
which contradicts the hypothesis that empirical frequencies stay close to
o % (which puts positive weight on s°).

7. LEARNING IN GAMES WITH RANDOMLY PERTURBED PAYOFFS

Although Proposition 6.3 shows that all Nash equilibria are locally
stable, including equilibria in mixed strategies, we have suggested that
convergence of intended behavior to a mixed-strategy profile in the stan-
dard model seems implausible, as it requires that players use just the right
mixed strategy whenever they are indifferent, and it is not apparent why
they should or would choose to do so. Of course, this apparent drawback
of mixed-strategy equilibria is not special to our learning-theoretic ap-
proach, but arises whenever mixed strategies are considered.

In response to this problem, Harsanyi (1973) proposed that the mixed-
strategy equilibria of a game could be interpreted as pure-strategy equilib-
ria of a related game of incomplete information, in which each player’s
payoff is randomly perturbed by a stochastic shock, which is private
information. If the distribution of payoff perturbations is absolutely contin-
uous with respect to Lebesgue measure, then the strategy of each player
would be (essentially) pure, because (given the strategy of others) each
player would have a strict best response for almost all of his payoffs. But
from the perspective of his opponents, the actions of the player would be
random, because the opponents do not know the value of the player’s
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payoff perturbation. For example, a mixed strategy placing probability %
on one pure strategy and % on another corresponds to a situation in which
the payoff shocks and opponents’ strategy are such that the player has a
strict preference for the first strategy when his payoff perturbation comes
from a set with probability 4 and a strict preference for the second when
his payoff perturbation comes from the complementary set. Harysanyi
showed that for generic strategic-form payoffs, every mixed-strategy equi-
librium can be ‘‘purified’’ by any small, sufficiently well-behaved payoff
perturbation.

In the spirit of Harsanyi’s work, this section extends our assumptions
on behavior and notions of convergence to games in which the players’
payoffs are subject to an i.i.d. sequence of payoff perturbations. As we
show, this allows us to construct a more satisfactory model of learning
to play a mixed-strategy equilibrium. The concluding section then exam-
ines the question of global convergence to a mixed equilibrium in 2 > 2
games.

The Model
Consider I playersi = 1, . . ., ] playing a strategic-form game at times
t = 1,2,..., where the action spaces A’ are the same in each period,

but the payoffs are subject to random and privately observed shocks.
Specifically, the payoff to player i from the action profile a = (¢/, a=%) in
period ¢ is ui(a) = vi(a) + € (a’). This is the augmented or perturbed
version of the underlying game, which is the game where the payoff
functions are simply the v'. We call &! = (ei(a')) ¢ 4 the date-t perturbation
of player i’s payoffs. We assume that for each i the {¢/; r = 1,2, .. .}
are independent and identically distributed and that the perturbations of
different players are independent. We denote the probability distribution
of each ¢! by p', and we denote its support, which we suppose is compact,
by E‘C R*.

In the stage game for period ¢, each player i observes the shock ¢ to
her own payoffs, but does not observe the shocks to her opponents’ payoff
functions. Hence in the stage game, a pure strategy for player { is a map
from E' to A’. (We do not need to consider mixed strategies in the aug-
mented game.)

To model learning in the repeated game, we suppose that at date ¢,
player i knows the sequence of (pure) action profiles that have occurred
in the past, the shocks to her own payoffs, and also her current payoff
perturbation ¢/; player i does not learn the past payoff shocks of her
opponents. We adopt the following notation:

(a) We use A = I/, A’ to denote the space of action profiles, with
typical element a. Profiles of actions by all players except i are denoted
by a € A~'. Probability distributions over actions by player i are denoted
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by a’ € &', and probability distributions over A~* (which can reflect
correlations in the actions of i’s opponents) are denoted by a™f € o™,

(b) Histories of actions up to time t are denoted by {, € %,;i.e., {, =
(@, ...,a,_,)€A)" " = %,. Complete histories of actions are denoted
byle%.

(c) We write a,({,) to denote the empirical disribution of action profiles
up to time ¢ along the history ¢,, and we use &, /(,) to denote the empirical
distribution of action profiles by i's opponents up to time t along the
history ¢,.

(d) In addition to {,, at time ¢ player i knows her own history of payoff
perturbations up to and including time ¢, or (e}, . . ., ¢). We use ¢! €
%! to denote the vector of all this information; i.e., ¢! looks like (¢,
(e}, ..., e)). Dropping the subscript ¢, £‘ denotes a complete history
for player i of action profiles by all players at all dates and all of {’s payoff
perturbations; dropping the superscript /, as in £, or &, denotes (respec-
tively) a time ¢ history or a complete history of plays, and all the players’

payoff perturbations,

(€) A behavior rule for player i is denoted by ¢' = (¢}, d}, . . .), where
o X— AL

(f) An assessment rule for player i is denoted by ¢/ = (uf, uj, . . .),

where pi: %, — o~

All of this is a straightforward extension of our earlier model. In particu-
lar, i’s assessment rule gives her predictions how her opponents will play
at each date, based on history so far. In this regard, note that the domain
of u! is ¥, and not ¥:. We assume that players other than i never observe
i’s payoff perturbations, so it seems sensible that i would not have assess-
ments of the actions of her opponents depending on her payoff perturba-
tions. Nonetheless, at the cost of some notational complexity, we could
assume that ’s assessments at date ¢ depend on all of ¢!, as long as
asymptotic empiricism is properly defined.

Given behavior rules for all the players and the exogenous probability
distributions on payoff perturbations, we can construct the induced condi-
tional probability distribution, conditional on £,, on the space . We use
P( - [£,) to denote this probability distribution.

DeriNITION. For augmented games:
(a) The assessment rule u' is asymptotically empirical if

lim [ () — & ‘@)l =0

—>x

for every { € ¥%.
(b) The behavior rule ¢’ is asymptotically myopic relative to u' if for

2 Measurability of the behavior rules is always assumed.
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some sequence of nonnegative numbers {¢} converging to zero, i’s choice
of action at every £! is at most &, suboptimal against p!({,).>

Nash Equilibria of the Augmented Game

Before examining learning in the context of this model, we review the
structure of Nash equilibria in the augmented (stage) game.

A Nash equilibrium of the augmented game is, as usual, a strategy
profile such that each player’s chosen strategy s‘( - ) (: E'— A’) maximizes
her expected payoff given the strategies of her opponents, or equivalently
that for p‘almost every ¢, a’ = s'(¢') maximizes the expectation (over
e ) of viid, s~ (e ")) + e'(a’).

Assumption7.1. For eachi, the distribution p'is absolutely continuous
with respect to Lebesgue measure on R*',

This assumption simplifies the analysis, because it implies that for any
distribution of the opponents’ actions, { has a strict preference for one of
her actions at p’-almost every e'.

LEMMA 7.2. For every a™' € A, the set of ' for which

argmax|[ 2 [v(d,a )+ é@))a(a™")]
dea’ u'ea™

is a singleton has measure one under p'.

We omit the proof, which is based on the observation that the complemznt
of this set lies in a finite union of lower-dimensional hyperplanes. Note
that this is true whether « ~' reflects independent or correlated play by
i's rivals.

For each ¢ and a /, let b'(e', a ™) specify some best response for i to
« ~“ when her payoff perturbation is ¢/, and let 8'(a ~%) be the distribution
that &' induces on player i’s actions:

Bia )d') = p{e EE": bi(e',a ) = a'}.

(Lemma 7.2 shows that 8'is well defined, since forevery a ™, b'is uniquely
determined for p‘-almost every ¢'.)
It is straightforward to prove the following technical result.

3 Suboptimality here is measured given the period r payoff perturbation. We believe that
nothing of interest changes with a weaker definition in which suboptimality is measured
averaging over e/, but the proofs are somewhat more involved.

* Throughout, we are loose in our notation, taking as understood things such as: in (a),
{, denotes the date-t subhistory of the fixed {; and in (b), {, is the actions-profile part of

&
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LEMMA 7.3. The function B' is continuous.

For each i and strategy profile s/, let 7(s") denote the distribution on
A" induced by s'; i.e., w(s')Na’) = p{e' € E' : 5'(¢') = a'}. Fors™, a
profile of strategies for i’s opponents (that is, s™* = (s/),.;, where s’:
Ei— A%, let = (s %) denote the distribution on 4 ~f induced if i’s rivals
use the strategies in s ‘. Note that 7 ~/(s ~¥) € & ~¢is a product measure
(since the various e/ are independent of each other).

LEMMA 7.4. (a) A strategy profile s is a Nash equilibrium of the
stage game if and only if, for each player i and p'-almost all €', s'(¢') =
bi(el, " i(s™H).

B Ifad, ..., a)y esd' x ... x dA!satisfies Bi(a™') = o' for all
i (where it is understood that o =" is the product measure on =" whose
margins are the various o’ for j # i), then every strategy profile s such that
s'(e") = bi(e', a ™) for all i and p'-almost every é is a Nash equilibrium.

This is largely a matter of marshalling definitions, hence the proof is
omitted. This lemma shows that to analyze Nash equilibria, it suffices to
work with the induced marginal distributions over actions, which moti-
vates the following definition.

DerFINITION. The vector of marginal distributions & = (a!, . . . , af)
ed' x ... x dA'is a Nash distribution if 8'(a~') = a' for all i.

Local Stability

As one would expect, our results about the relationship between Nash
equilibrium and local stability carry over to the context of augmented
games. Since all that each player observes about the others, and all that
matters for a player’s decisions, are the actions chosen, we define stability
and stability of behavior rules ¢ in terms of the induced distributions on
actions 7'(pi(£,)).

DEfFINITION., Aprofile ax, € ' x . .. X sd’is unstable if there exists
some ¢ > 0 such that for all r and ¢,,

P(|mi(p} (& ,) — ak|<eforallt’ =tandi|&,) = 0.

PropoSITION 7.5. Fix asymptotically empirical assessment rules '
and behavior rules that are asymptotically myopic relative to the p'. Then
if ay is not a Nash distribution, oy is unstable.

This proposition does not follow immediately from our earlier results (in
particular, from Proposition 6.1 applied to the augmented game), because
in Proposition 6.1, it is assumed that each player sees the full strategy
of his opponents in each round of play. In this setting, each player sees
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only the actions chosen by his opponents; he sees neither the payoff
perturbation that leads to that choice of action nor the actions that would
have been chosen for other payoff perturbations.

The proof of Proposition 7.5 is left to the Appendix.

The next step in parallel with Section 6 is to note that every Nash
equilibrium is locally stable for some asymptotically empirical assessments
and asymptotically myopic behavior rules. This can be most easily shown
by adapting the first construction in the proof of Proposition 6.3, in which
players believe that the distribution over their rivals’ actions corresponds
to the equilibrium unless and until they receive sufficient evidence other-
wise. With these beliefs, the arbitrary nature of the players’ behavior
rules is eliminated; rather than just happening to mix in the way the
equilibrium prescribes, the players have a strict preference for the behav-
ior they choose. Of course, the players’ beliefs are still cooked to favor
the equilibrium, so we do not yet have a really satisfactory explanation
of how players might learn to play a mixed equilibrium. The final section
provides such an explanation for a special class of two-player games.

8. GroBAL CONVERGENCE IN A CLASS OF 2 X 2 GAMES

This section shows by example how learning in augmented games can
lead to a mixed equilibrium even when the assumed behavior and assess-
ment rules do not build in an arbitrary predilection for equilibrium play.
To this end, we restrict attention to behavior and assessments that take
precisely the form of fictitious play, as specified in (A) through (D) of
Section 3. Moreover, we do more than show that convergence to a mixed
equilibrium can occur even when the equilibrium is not artificially built
in the behavior rules: In the games we consider, play converges to the
(augmented version) of the mixed equilibrium with probability one, regard-
less of the initial beliefs of the players.

We do not aim for very general results here. Rather, we content our-
selves with the special case of 2 x 2 games that (before being augmented)
have a unique Nash equilibrium, which moreover is completely mixed.
At the end of the section, we speculate about possible extensions that
would provide a sufficient condition for local stability of mixed equilibria
under fictitious play in other augmented games. We suspect, however,
that convergence cannot be guaranteed for general augmented games; we
conjecture that an augmented version of Shapley’s example will provide
the desired counterexample, but we have not verified this.

The remainder of this section discusses the following result, the proof
of which is given in the Appendix.

ProrosiTiON 8.1.  Take any 2 X 2 game that has a unique, completely
mixed Nash equilibrium, and consider any augmentation that satisfies
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Assumption 8.3 given below. If behavior rules and assessments are as in
the model of fictitious play, the induced marginal distributions on actions
converge, with probability one, to the unique Nash distributions of the
augmented game,

Previous results about the global convergence of behavior in learning
processes have focused on games that are solvable by iterated strict domi-
nance (Moulin, 1984; Milgrom and Roberts, 1990; Borgers and Janssen,
1991; Guesnerie, 1992). In contrast, the augmented games we consider
are not dominance solvable.

Preliminaries

Fix a 2 x 2 augmented game with expected payoffs (v, v?) and payoff
perturbation vectors e' and e?. Write the action sets for each player A =
{1, 2}, so that, for example, v’(1, 2) is 2’s payoff if he chooses column 2
and player 1 chooses row 1. (Player 1’s choice of row is listed first.)
Assume that the game (v', v?) has a unique Nash equilibrium that is
completely mixed.

Because (v', v?) has a unique Nash equilibrium that is completely mixed,
(v', v?) has a strict best-response cycle. Rearrange rows, if necessary, so
that this best-response cycle is counterclockwise. That is, v'(1, 1) <
v'(2, 1), V32, 1) < VA2, 2), v'(2, 2) < v'(, 2), and v¥(1, 2) < VX1, 1).

Let F'(z) be the probability that, on any given date, (e'(2) — e'(1))/
'(1, 2) ~ v'(2, 2)) = z. This probability is derived from the distribution
function p' in the obvious fashion. Note that F' is continuous on R'.

Let F(z) be the probability that, on any given date, (e’(1) — ¢%2))/
(v}(2, 2) — VX2, 1)) = z. Note that F? is continuous.

We want to compute 8'(a?), the marginal probability that I plays row
1 if she assesses probability a? that 2 plays column 1. If she plays row 1,
her expected payoff is a’v'(1, 1) + (1 — a?!(1, 2) + €'(1), while row 2
nets for her a®0'(2, 1) + (I — a?V'(2, 2) + €'(2). Simple algebra shows
that the former is greater if

e'(2) — e'(1) B 2( v'(2, 1) - v'(l, 1))
T —vey Tt Ta oy T/

Define

v'2, D - v, D
vi1,2) - 0'2,2)

=1+

Then row 1 is chosen whenever (¢!(2) — e'(1))/(®'(1, 2) — V'Q2, 2) <
1 — xa?. This gives
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BlYa? = FI(1 — xa?).

Note that x > 1 and that 8' is a nonincreasing function of a?.
A similar computation shows that if we define

vi(1, 1) - v¥(1,2)

=1t 0y —ve

then
BHaH) =1 - FX(1 - ya').

Note that y > 1 and that 8 is a nondecreasing function of .

LEMMA 8.2, Fixany2 X 2 game with a unique Nash equilibrium that
is strictly mixed. Then every augmented version of the game that satisfies
Assumption 7.1 has unique Nash distributions and thus has Nash equilib-
rium strategies that are essentially unique.

Proof. Nash distributions are pairs (ak, a%) where 8'(a;’) = af for
i = 1, 2. To show existence of a solution to these two equations, note
that (o', a?) > (8'(a?), Ba')) is a continuous function mapping the
unit square into itself, and use Brouwer’s fixed point theorem. To show
uniqueness, suppose that (ak, @) and (&%, @3) are two Nash distritu-
tions. Without loss of generality, assume ak # ak and, in fact, alk >
@l . Because 8’ is nondecreasing, this implies that « = &%. And because
B! is nonincreasing, this implies that ek =< &, a contradiction. =

We hereafter denote the probabilities of row 1 and column 1 in the
unique Nash distributions by a} and a%. In general, it is not the case
that o} and a} are both strictly between zero and one, even if the original
(unaugmented) game has a unique, completely mixed equilibrium. How-
ever, the Nash distribution probabilities are strictly between zero and one

if the supports of the perturbations are sufficiently small.

Assumption 8.3. For i = 1, 2, the density function F’ is uniformly
bounded on its support. The density function for F is strictly positive on
some neighborhood of 1 — xa%, and the density function for F?is strictly
positive on some neighborhood of 1 — yak.

This assumption is stated in somewhat implicit form, since it involves
the density functions of the distribution functions F' and F2. Restating it
in terms of the original distribution functions p' and p? of the perturbation
vectors is tedious but not difficult. A set of sufficient conditions for this
assumption is that the supports of the perturbation vectors E! and E? are
connected and small enough that the equilibrium marginal distributions
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are strictly between zero and one, and the density functions for p' and
p? are bounded and strictly positive on the interiors of their supports.

The Intuition for the Proof of Proposition 8.1

The proof of Proposition 8.1 is fairly involved, and it is easy to get lost
in the details. While we reserve those details for the Appendix, we sketch
here the intuition behind the proof.

We fix behavior and assessment rules where behavior is myopic with
respect to the assessments, and the assessment rules conform precisely
to the model of fictitious play, as given in Section 3. We write a! for the
probability assessed by —i at date ¢ that player i will play her first action.
This is a random variable, depending on the history of play up to date 1.
We show thatlim,_,.(a!, @?) = (ak, a}) with probability one; since behav-
ior is myopic and myopic behavior is continuous in beliefs, this implies
that behavior converges to the Nash equilibrium strategies.

For notational simplicity, we suppose that the players’ assessments
equal the empirical distributions at all dates ¢ = 2, which corresponds to
the case of initial weights identically equal to zero in the fictitious play
model. (It will become clear that allowing for nonzero initial weights does
not alter the analysis.) In this case

P JGad + DG+ ), if i plays action 1 in round ¢,
Dot T Vit + 1), if i plays action 2 in round ¢,

which is more conveniently written as

P i Ja=adie+ 1, if i plays action 1 in round ¢,
Frvy T AT —al/(t + 1), if i plays action 2 in round ¢.

The key thing to note here is that the size of the changes of the o’ vanishes
asymptotically, at rate O(1/¢).

The theory of stochastic approximation (Arthur et al., 1987; Kushner
and Clark, 1978; Ljung and Soderstrom, {983) shows when such asymptot-
ically vanishing stochastic variations can be ignored, i.e., when the succes-
sive random variables will almost surely evolve according to the evolution
of their expected values. Starting from some value of (a!, a?), compute
the (conditional) expected values (.., a2, ), then use these to compute
expected values of (a),,, a2, ,), and so on. If for every starting value of
(a!, a?), this ‘‘successive expected values’” sequence converges to
(a), ak), and if certain regularity conditions are met, then the random
process will almost surely approach (ak, a3).

So fix some (a!, @?) and compute the conditional expected values of
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(al,,, a2, ). Or, since it makes matters a bit more transparent, let us
compute Efa},, — ailg] for i = 1, 2, where E[-|¢,]) denotes expectation
taken with respect to P(:|£).

Given a!, the probability that player 2 will play his first strategy is
BXa!) = 1 — FX(1 — ya!), so the expectation of the difference between
al,, and a?is

1 —a? —al

—a - Fa - ! —L Y1 - .

t+l( Fi(1 ya,))+t+1 (1 = ya;)
This simplifies to

1
Ela?,, - afl¢] = parari Ul FAl - ya}) — aj).

A similar calculation gives
1
Ele},, — ajl¢) = m(F‘(l - xa;) — a}).

The fact that the step size in these difference equations is going to zero
suggests that the evolution of the successive expected values approximates
that in the related differential equation system

d 2
= Fi(1 - xa?) —a) and %: 1- F(1 —yal) — a2, (¥)

de!

d?

where we reinterpret the a''s as the successive expected values, and the
time index has been changed: Because the amount of change between
time ¢ and ¢+ + 1 in the differential equations is independent of ¢, more
and more steps of the difference equations are compressed per unit of
time of the differential equation system as ¢ becomes larger.

The trajectories of this system of differential equations are most easily
studied by comparing them with those of the system

df

dr

d 2
= Fi(1 - xa?) —al  and -d"%= ~ F1 - yal) — o

The second system has closed, convex orbits around the point
(ak, @), and that relative to the second system, the first always points
strictly inward. (See Fig. 4.) Thus the first system spirals in toward
(o), ). This suggests that the successive expected value sequence ap-
proaches (ak, o) from any starting point, and then the methods of the
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ol

1

FiG. 4. Dynamics of expected beliefs. The solid curves represent trajectories of the second
system of differential equations given in the text. These closed orbits give the level sets of
the Lyapunov function L. (Note that these level sets are not restricted to stay inside the
unit square.) The dashed arrows show the trajectories of the first system of differential
equations, the system that describes the dynamics of expected beliefs. (These do stay within
the unit square.) Since the dashed arrows always point inward relative to the closed orbits
of the second system, the first system gives trajectories that spiral in toward (a}, ai).

theory of stochastic approximation will yield the almost sure convergence
that we desire.

In relating this intuition to the proof we give in the Appendix, there are
two things to watch for. First, we use the closed orbit trajectories of the
second system of differential equations as level curves for a Lyapunov
function. Second, we derive parts of the theory of stochastic approxima-
tion that we need, because the Lyapunov function we construct is a bit
less regular than is required for the general results as they are stated in
the literature.®

Extensions of Proposition 8.1

Proposition 8.1 gives a relatively restricted global convergence result.
It is restricted in that the behavior and assessment rules that are permitted
are quite specific; behavior must be precisely myopic with respect to
assessments that are formed according to the model of fictitious play. It
is further restricted in that it considers only 2 x 2 games, and then only
2 x 2 games in which the unaugmented game has a single equilibrium

3 Specifically, our Lyapunov function is not twice continuously differentiable in general.
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that is completely mixed, and then only those for which the augmentation
satisfies Assumption 8.3.

Thinking first about the behavior and assessment rules, it is clear that
extensions are possible. (Indeed, extensions along these lines are sug-
gested by Arthur et al. (1987).) Assessments can be asymptotically empiri-
cal and behavior asymptotically myopic, as long as the ‘“‘rates of conver-
gence’’ to fictitious play and myopic behavior are sufficiently fast.
Specifically, the dynamic process being studied is determined at each
stage by the two possible conditional values of ai,, — a! (two fori = 1
and two more for i = 2) and the probabilities of those values. The probabili-
ties are determined by the behavior rule (which determines which action
a player chooses, thus which action his rival observes); the possible values
of al,, — «!are determined by the assessment rule. As the detailed proof
indicates, we can tolerate changes that, in terms of these differences and
probabilities, contribute differences that are uniformly O(1/¢%) or smaller.
One can control the probabilities by imposing a rate of convergence test
on the sequence {g,} that governs the asymptotic part of asymptotically
myopic behavior. But for the differences a!,, — «f, a bit more delicacy
is called for.

One’s first instinct might be to impose a uniform rate of convergence
to empirical assessmeants; the natural condition would seem to be that

lai — a@'(g,)| = o(1/1%), (M)

where a‘({,) is the fraction of the time that i has played her first strategy.
But this is stronger than is needed. We do not need to know that «. is
close to empirical frequencies, but only that if o ! is fairty far from empirical
frequencies, a',, is going to be about the same distance away (from the
new empirical frequency) in the same direction. Specifically, we need to
know that

i i
QT

(I —a)/(t+ 1)+ o(1/th, if i plays action 1 inround 1, .
B —al/(t+ 1) + o(1/¢?), if i plays action 2 in round ¢. ()

In this regard, note that for fictitious play beliefs with nonzero initial
weight vectors, (&) holds (so our proof extends to this case) even though
(&) fails.

Extending our results to other classes of 2 X 2 games or beyond 2 X
2 games (and to games with more than two players) seems to offer greater
challenges. We conjecture that results on local stability can be derived,
along the following line. Take an augmented game and any equilibrium
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distribution for that game. Write down the continuous-time dynamics for
the expected values of the empirical frequencies, as in Eq. (¥).% If this
system is locally stable at the equilibrium values by the usual eigenvalue
test, then the equilibrium will be locally stable in the sense of this paper
for fictitious-play learning dynamics. (Compare with Arthur et al. (1987).)
It is interesting to speculate whether the continuous-time system that goes
with the Shapley (1964) counterexample is unstable at the equilibrium.
If so, then its instability under fictitious play (for augmentations) might
follow.

Regardless of these conjectures, we hope that the limited results we
have managed to derive here indicate that, with Harsanyi’s notion of
purification, it is plausible that in some cases players would learn to play
a mixed-strategy equilibrium.

APPENDIX: PROOFS OMITTED IN THE TEXT

Proof of Lemma 6.2. Fix any a € A. Construct a *‘standard’’ probability space {Q, F,
P}, where Q = [0, 1]1*} and, writing w, as the rth component of w, the sequence {w,} is
an independent sequence of random variables, each uniformly distributed on the unit interval.
Enumerate A as {q,, a;, ..., ay} (where N is the cardinality of A), with a; = a. Now define
random variables y, on this standard probability space as follows: For ¢ = 1, y|(w) = a, for
that index n such that

n—|

Z mla,) <w = 2 m(a,,).

m=} m=1
Then, inductively in ¢, let y(w) = g, for that index n such that

a-1 n

> mlan @), . y@) <@ = D malyie) . ye).

m=1 m=1

This construction uses the uniformly distributed random variables to construct a sequence
of random variables whose joint distribution is identical to the joint distribution of the original
sequence {x,}. Accordingly, we can define A in terms of the constructed probability space,
and if we prove that the stated bounds on the limits superior and inferior of 7,(a)/t hold
almost surely conditional on A for each a taken one at a time, then they hold almost surely
on A for all the (finitely many) «¢’s simultaneously, which then gives the desired result.
But showing that the two bounds hold on A for the y, sequence and the fixed g is easy.
Because we set a; = a, the set of points w € A for which y,(w) = a contains the set {w:w, =
m(a) — e} and is contained within the set {w:w, = m(a) + &}. This is so because 7(a) ¢ =
mlaly. ..., y,) = w(a) + ¢ for all ¢, for points in A by definition; then compare with how

% This is conceptually straightforward, but it is not a simple exercise in practice, which
is one reason we offer conjectures instead of results.
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we determine those w for which y,(w) = a. For r € [0, 1], let v,(r, w) be the number of
times that w,' < rfor ¢’ =, ..., t. Then the estimate

v(m@) — e, 0) =74, w) = pywa) +e,w) foro€A
follows from the asserted set inclusions. By the strong law of large numbers,

.y (r, w)
lim ——— =

11—

r

with probability one for each r individually, so this holds with probability one both for r =
m(a) — € and r = w(a) + &. This, combined with the previous bounds on m,(a) on A, gives
precisely the desired result. &

In Proposition 6.3, we are required to show that the probability of a certain type of event
can be made as close to one as desired. The proof is simplified by the following lemma,
which shows that it suffices to make the probability of this type of event strictly positive.

LEMMA A.l. Suppose that for a strategy profile o, there exists some asymptotically
empirical assessment rules and some behavior rules that are asymptotically myopic with
respect to those rules, such that for some t and {, € %¥,,

P<]‘|m ¢1'(c1') = 0*'&1) >0.

Then, o, is locally stable.

To prove the lemma, let A be the event {lim,_.$.({) = o,}. By the usual arguments, this
is measurable with respect to the o-field generated by the {{;, {;, .. .}. Thus by Paul Levy's
zero-or-one law (Chung, 1974, p. 341), the probability of A conditional on {, approaches
the indicator function of A as ¢‘ approaches infinity.?’ Since A has positive probability
conditional on ,, for some (positive probability) {. that are continuations of {,, the conditional
probability of A can be made as close to one as desired, which gives the result.

Proof of Proposition 6.3. As noted in the discussion following the statement of this
proposition, we can sharpen the result in either of two ways; we can require that behavior
is precisely myopic and assessments are asymptotically empirical, or we can require that
assessments are precisely empirical and behavior is asymptotically myopic. We give a
construction for the first of these sharpenings here; the other is left to the reader’s ingenuity
(or see earlier working paper versions of this paper).

Fix the Nash equilibrium profile o, . By virtue of the lemma, we only need to find myopic
behavior rules and asymptotically empirical assessment rules, and a ¢ and ¢, such that

P(l_im oolLy) = a*lcf) >0.

7 If you have trouble squaring this assertion with what you find in Chung (1974), recall
that £, “‘contains’’ {, for ¢ < t’, so conditioning on {, is the same as conditioning on {{;,

Y
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The behavior rules are easily defined: For each player i, date ¢, and history {, such that
the player i’s assessment u/({,) is that her rivals are playing according to o', player i uses
the strategy o,. If her assessment is anything else (including any form of correlation in
the play of her rivals}), her behavior can be assigned arbitrarily, as long as it is myopic.

To construct the assessment rules, create a probability space on which is defined a
sequence of random strategy profiles {5, s,, ...}, where each s, is independently and
identically distributed according to o, .

Let

B(t) = max [[o7'(¢) — o).

{where o, is taken to be the joint distribution on S ' with margins given by the ¢ and
with independence determining all joint probabilities). That is, 8({,) is the difference (in the
sup norm) between the empirical frequencies and the target strategy. By the strong law of
large numbers, with probability one the empirical frequencies of strategies and joint strategy
profiles all converge to the corresponding probabilities under o,. Soforn = 1,2, ..., let
L, be a positive integer sufficiently large so that the event

{8(g) < 1nforalt>L,}

i

i
.8 -

has probability at least equal to (2**' — 1)/2"*!, Assume that L,,, > L,. For each 1
2, .. letn()=0ifr <L, letn(t)=1if L, =t < L,, and so on. Note that lim,_,, n(r)
We claim that by construction, the event

8(,) = Un(ty, t = 1,2, ..}

has probability at least one-half. To see why, note that this event can be written as

ﬂ {8(¢,) = Unforall t such that n(z) = nr},
m=0

and note that the probability of the events in this intersection are 1 for n = 0, § (or more)
forn = 1, { (or more) for n = 2, and so on. Apply De Morgan’s law to see that the complement
of this event is the union of events, the first of which has probability 0, the second probability
no more than %, the third probability no more than &, and so on. Hence the probability of
this union is } at most, and the probability of its complement—the event we are interested
in—is at least }.

Now we give the assessment rules. For any history {,, let

: o, if |l (g, — a < tn(r),
mig) = {

L), otherwise.

That is, the i believes that her rivals are playing (independently) according to o' unless
and until the accumulated evidence against this hypothesis becomes severe (as measured
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by 1/n(r)), at which point the player reverts to empirical beliefs. These assessment rules
are clearly asymptotically empirical.

With these behavior and assessment rules, the players begin with o, and the sequance
{L,} has been constructed precisely so that, with probability } or more, the players continue
to use o, forever. To see this, note that if 8(¢,;) = Un(t')fort' = 1,2, ...,¢, then ¢, =
o, . Thus the probability of the event {8({,) = U/n(¢), 1 = 1,2, ...} under the measure induced
by the behavior rules ¢ is precisely the same as the probability of this event under the
probability distribution where all strategy profiles are drawn independently and identically
according to the distribution o, . By construction, this event has probability at least 4 under
the i.i.d.-generated measure, so it has the same probability (at least 3} under the measure
generated by the behavior rules ¢. And, of course,

) =ln),t=1,2,..}Cl{d() =o,. 1 =1,2,...}

This completes the proof,

The proof of Proposition 7.5 uses the following lemma, which shows that as time passes,
asymptotically myopic behavior converges to myopic behavior, in the sense that the induced
distributions over outcomes become close.

LEMMA A.2. For any 8 > 0 there exists an & > 0 such that, for any beliefs a™' and for
any s' that e-maximizes player i’s payoff against o' for p'-almost every ¢',

flri(s = Bito )l = 3.

Proof of Lemma A.2. We show that for any § there exists an & such that for all « ™/, the
set of e for which player i has more than one e-best response has measure (under p') no
greater than 8. To see this, fix some o~ and note that the set of ¢' that makes player i
indifferent between any two given actions lies on a lower-dimensional hyperplane, and there
are (at most) (#A')* such hyperplanes, where #A' denotes the cardinality of A" Put a
“sleeve™ of diameter £ around each of these hyperplanes, and the set of ¢/ where player i
has multiple £-best responses is contained in the union of these sleeves. In the compact set
E, there is a uniform (in o) upper bound on the Lebesgue measure of the union of (#4)?
sleeves of this sort, and this uniform upper bound goes to zero as & goes to zero. Because
p'is absolutely continuous with respect to Lesbesgue measure, there is thus a uniform upper
bound on the p-measure of these sets, going to zero as & goes to zero, which establishes
the result. =&

Proof of Proposition 7.5. Fix an a, that is not a Nash distribution. Without loss of
generality, suppose that 8Y(a;") # o). Let 8 = ||8'(a;") — al]|. Since 8! is continuous, we
can find ¢’ sufficiently small that |8'(a™") — Bl(a )| = §/4 for all « ™! within 2¢’ of ;!

We show that profile a, is unstable for ¢ = min(e'/1, §/4). Suppose not, so that for some
history &,,

P(||l7'(pigi)) ~ aill <eforalls’ = randfori=1,...,1¢) > 0.

Lemma 6.2 then implies that (almost surely on this event of positive probability) the empirical
marginal frequencies of actions eventually lie within & of the a',. Then because assessments
are asymptotically empirical, we conclude that (almost surely on this event), |ul(Z,) —



LEARNING MIXED EQUILIBRIA 363

a;'ll = Ie < ¢'. This in turn implies that the distribution on actions 8'(u}({,)) induced by
the myopic best response to pl(Z,) is within 8/4 of 8'(a').

From Lemma A.2, there is one £” such that the set of £”-best responses to u}({,) is within
8/4 of B (uL, ) for any {,. Let ¢’ be large enough that the suboptimization allowed for by
player 1's decision rule is fess than this ¢”. The triangle inequality then implies that the
marginal distribution over player 1's actions is within 8/2 of 8'(a;"), and hence at least
8/2 = ¢ away from a), which contradicts the hypothesis.

Proof of Proposition 8.1. For (a!, &%) € {0, 1] x [0, 1], let L(«', a?) be the function
defined by

{ 2
Lia',ad) = Ll (1 = F(1 — yB") — al]dg' ~ j

[FY(1 — x8%) ~ al}dB>.
The function L (a mnemonic for Lyapunov) has the following properties:

(a) Lk, al) = 0.

(b) If (@', @) # (ak, al).then L(a', a?) > 0.

(¢} L is continuously differentiable with gradient vector

VL =(1-FY1 —ya") - a}, al - F'(1 - xe?).

This gradient vector is zero at (ak, «2) and nonzero everywhere else.
(d) L is convex. In fact, the level curves of L are trajectories of

dl d2 3
SteF-xad)-al  and ~§i=1—F1(1—ya,')—a;,

which gives closed trajectories that wind around the point (a), a).

Property (a) is immediate from the definition of L. For property (b), note first that | ~
FX) - yal)=al and F'(1 - xal)=al. Then enlist Assumption 8.3 to note that 1 —
FX1 — ya!) is nondecreasing, and it is strictly increasing in a neighborhood of a, and
F'(1 — xa? is nonincreasing, and it is strictly decreasing in a neighborhood of &3 . Property
(b) then follows. Property (c) is virtually a matter of definitions, together with the properties
of | — FXI — ya') and Fi(1 — xa?) just noted. For part (d), compute the Hessian of L to
show convexity; the rest is an exercise in integration.

Note that L is separable; i.e., L(a', a’) = L{a") — L¥a?), where we define

al
L'a) = [, (1= F¥1 - yB") - &} 148",

1
and

LYo = f (F'(1 — xBY) — alldB

Now fix assessment rules according to the model of fictitious play, and suppose that
behavior is precisely myopic with respect to these assessments.
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For every {', 1t > 1, define
L) = L(a,‘, a’Z) = L‘(a:‘) + Ll(a;)-

In words, L,({,) is the value of the function L at the vector of assessments by the two
players. We have proved the theorem if we prove that lim_,, L,({,) = 0 with probability
one, since this implies that the beliefs are converging (with probability one) to a and aZ;
hence (by earlier analysis and myopic behavior) the marginal distributions over actions are
converging to those values.

The first step in proving that lim, L,({,) — 0 is to derive an upper bound for E[L,,({,,))
— L(Z)|L]. Specifically, we show that there exists a nonpositive continuous function ¢ on
the unit square with t(a', a?) < 0 for (a', @?) * (al, al), such that if X is the uniform
bound on the density of the two perturbation scalars,

tal, a?) LK +y)

r+1 20+ 1Y (%)

E[LHI(;MI) - Ll({{)‘fl] =

We obtain this bound by looking at the two (separable) pieces of L,({,). That is, we write

E[LH'I({H'I) - LI(CI)]EI] = E[Ll(azlﬂ) - Ll(afl)ffl] - E[Lz(atzﬂ) - Lz(a,l)lf,],

and we begin with estimates of each of the two expectations on the right-hand side.

Consider first the term involving L!. Given a!, we have that a/,, will equal (ta! + itz +
1) if player | plays row 1 in round ¢, and a!,, will equal ra!/(t + 1) if player 1 plays row 2.
Since 1's beliefs about 2’s actions are given by a?, player | will play row 1 in round  with
probability FI(1 — xa?). Now

tal +1 (fal+ e+ 1) ,
L‘(,; 1 ) ~L'ah =], [~ F(1 - yB") — @}1dp".

b

which is bounded above by

e+ 1 L] taj+1 7
[,H af | [1 = F31 = ya)) ~al] + 5Ky | 5~ al |

where K is the uniform bound on the density functions of F' and F2.% Simplifying, this is

{—al s ; ) i 1 -alP
[,H][l F(1 = ya)) = all + 3Ky |~ |-

2 This is the length of the interval of integration, times the value of the integrand at
B' = a!, plus a bound on the integral of the difference between the true integrand and the
integrand at a!. This latter bound comes from noting that 8 +> F*1 — yg) is Lipschitz
continuous with Lipschitz constant Ky.
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Similarly,

1ﬂ'l_.>_11:_°‘i_2_1_21_3}_2
L(’+] ACHES e [t - FA1 ~ yal) a*]+2Ky =1l

Hence E[LYal,,) — L'(a}))]£,] is bounded above by

1-F'—aj 1yt 1 1 Ky
[ e ][(l—u,)F a,(l—F)]+2(’+“2

1-F - af 1 1 Ky
=|— -all+
[ T ][F o] 20+ 1)

where we suppress the arguments (respectively 1 ~ xa?and 1 — ya!) of F' and F2.
Similar caiculations show that E{LXa?,)) — L(a})|£] is bounded below by

Kx
20+ 1)

F'—aj 22
['TTF‘]““F mail-
Thus

E[Ll*l(gul) - Ll(Cl)lgl] = E[L(azlﬂ s a’ZH) h L(a'l, ai)'fl]
= E[LY(a}.)) = L'@})|€] - ElLXa},) — L¥a])|€)

is bounded above by

l_Fz-ai 1 1 Fl_alk 2 2 K(X+)')
[——————‘H ][F—a,]—[ T ][I—F —a,]+——————2(t+l)2.

Write [F! — a!las [F' — al + al — all and write [l ~ F? — aflas [l — F? ~ ol + o} -
a?], substitute these two expressions into the upper bound, and simplify. This gives

1 - FZ — a2 Fl !
E[LHI(CHI) - Ll(lt)’fr] = [_:'-l_(X:] [aalk - all] - [ + (l!*jl [ai - a’z] + %%—;122

Define
val, @) = [1 —= FA1 - ya!) - alllek - '] = [FI(1 - xa?) — a!,‘][ai - a’.

The signs of 1 — F? — a2 and a! — o' are opposite, and the signs of F' — ) and ol —
a? are the same, so that ¢ is a nonpositive function. Moreover, if a' # a), then 1 — F? —
ai # 0, and if @2 # ai, then F! — a}, #= 0, 50 ta', &%) < 0 for (&', a?) # (a), a2). Putling
everything together, this gives the bound (%).
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Next, for each 1 and {,, let

¥, (L) = E[L(L) — L1~\(§1Al)l§r—\]’

and
N I
L) = L) — > max{y,(L,), 0.
=1

By construction, {1:,({,)} forms a supermartingale over the information sequence {{,}. By the
bound (),

ax{'bt(g)‘ 0} = g} 2(, + ])2

i m o Kix + y) <w
t=1
S0 {I:,} is a bounded supermartingale, and hence has a limit almost surely. As an immediate
consequence, L,(¢,) itself has a limit almost surely.

Finally, it is not possible that, with positive probability, this limit is a value greater than
zero. To see this, suppose that along some history ¢, lim,_,.. L,({,) > 0. From the construction
of the function . given previously, it is easy to show that, in this case, lim sup,_,
ua/, a?) <0, so that for all t > T for some large T, «(a/, a?) < A <0. Increase T if necessary
so that T > K(x + yY|Al. Then it is a matter of algebra to show that
UE) < M2t + 1)) for all r > T. Accordingly, if we define Z,(C,) as
L(L) — Sho( WAL, we know that lim, .. L,({,) = o for those { where L,({,) has nonzero
limit.

But {L,(£,)} is a martingale that is bounded below. If L,({,) has nonzero limit with positive
probability, L,(Z,) has limit > with positive probability. In this case, lim,, E{L ()] = o=,
which contradicts the fact that {L(Z,)} is a martingale. =
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