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§ 1. Introduction

Iet the matrix

be the payoff matrix in the non-zero-sum two-person game I', where aij
and bij are payoffs to players I and IT respectively, when player I
takes strategy i and player II takes strategy j . For notational con-

venience let us write

a. . =cpl(i, i), b..

ij ij = CPQ(i: J) .

Mixed strategies for players I and IT will be written
X = (Xl’ cees xm) and y = (yl, coe yh)
respectively, where

X, >0, X, =1, and yj >0, zyj =1.

Then a pair of equilibrium strategies (x¥%, y*) is defined as follows:

@l(X*; y¥*) > wl(X, y*) for all x ,
and

¢é(x*, y*) > ¢b(x*, V) for all vy .
When both the equilibrium strategies x* and y¥* are pure strategies,
let us call them pure equilibrium strategies. And we know the existence
of at least one pair of equilibrium strategies in any non=-zero-sum two-
person game [1]. (In this paper we restrict ourselves to non-cooperative
games. )

Let us consider the situation in which two players I and IT

play the non-zero-sum two-person game T infinitely many times, and

define a "learning process” in the following way. For the first play of
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the game 7 » let players T ang IT arbitrarily choose bure strategies
i, and J1 respectively. Then let v(1) = V(1) be the J1-th column
of the payoff matrix A = | aij | to player I and u(l) = U(l) be the

il-th row of the payoff matrix B = ” bij “ to player II, that is

(1.1) v(l) =v(1) = [Vi(l) seees V(1)]
=ley (1, §) | 1=1,...,m
and
(1.2) u(l) =u(1) = [Ul(l) seea, qn(l)]

il

[oy(i5 3) | 5 =1,...,n]

Next let us define 12 and jg by the following:

(1.3) A (1) = max v(2) ,
2 i
and
(1.4) U, (1) = max U(1) ,
J2 3

where in general max V expresses one of the maximum components in the
i

vector V = (Vi seeey Vh) - Then for the second play of the game T s

let players I and IT choose strategies 12 and jg respectively.

Now let
(1.5) v@) = lo (i, 35) | 1= 1,.00,m]
and
(1.6) u(2) = [qb(ie, 33 =1,...,0].
We define V(2) and U(2) by
(1.7) v(2) = v(1) +v(2)
and
(1.8) U(2) =u(l) +u(e) .

Tet 15 and j5 be such that




(1.9) V. (2) = pax v(2)
. 3 i
and
(1.10) U, (2) = max Uu(2)
J3 J

Then for the third play of the game T, let players I and IT choose strate-
gies 15 and JB respectively. In thisg way, after the strategy pairs
(il’ Jl) P (i2; 32) seeey (ik—l’Jkul) are defined, the strategy pair
(ik, jk) is defined by the following:
Let
(1.11) v&4)=vu)+”.+vmd)
and

(1.12) WbD=uﬂ)+u.+MbD.

Then ik and jk are such that

(1.15) Vik(k-l) = max V(k-1)
and '
(1.1%) Uj (k=1) = max U(k-1) .
k J

Definition 1.1 A sequence of strategy pairs (il, jl) s (12’ jg) seee,

(ik’ jk) > -+ defined as above is called a "learning process" in the
repetition of the non-zero-sum two-person game T . ILet a(ik) be the
unit vector in m-dimensional vector space whose non-zero component is
the ik—th one, and B(jk) be the unit vector in n-dimensional vector
Space whose non-zero component is the jk—th one, k =1, 2, ...,

We define vectors xk and yk by

k %[a(il) + o0 + a(ik)J
and

=BG+ 4 ()]
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Then xk and yk can be interpreted asg mixed strategies for players T
I
and IT respectively. We call Xk and yk mixed strategies of players I

and IT associated with g learning process {(ik, jk)} - Then it is clear

that v
(1.15) e T @ (m, ¥5)]
and
(1.16) W) - (g6 1) ..., 9, (<, n)]

Our problem is the following: Will a learning process give rise
to an equilibrium point; that is, will a sequence of mixed strategies xk, yk
associated with a learning process converge to equilibrium strategies
x¥, y¥ , of the game I', when k increases infinitely? This is one of
the open problems in game theory. (In the case of zero-sum two-person
games, the affirmative answer is given in [2] and [3].) It is our purpose

in this paper to show that the answer to the above question is affirmative

in the cage of m=n=2,

§2. a learning process in g 2 x 2 game

Let

* , (all? b, (8) 55 b, 5)

2 / (g5 Do) s (agps LY

be the payofrf matrix in the hon-zero-sum two-person game I’ . We define

the following notations:

(2.1) MTEy tey s y=a,-a,,
(2.2) fL=P m Py By=by -b,
(2.5) R N I




Then, in this 2 x 2 case, a learning process (ik’ jk) s k=1, 2,
will be obtained as follows:

At first, we choose il and ji arbitrarily among player I's
strategies 1, 2 ang player II's strategies 1, 2 respectively, Here we

define two functions a(x) and B(x) on the set of real numbers ({x} as
"o

follows:
1, when sign (x) > 0 5
(2.4) a(x) = 2 , when sign (x) < 0 s
1 or 2 according to some rule,
when sign (x) =0 .
1, when sign (x) > 0 s
(2.5) B(x) = 2 , when sign (x) < 0 s
1l or 2 according to some rule which
may differ from the case of a,
when sign (x) =0 .
Now let
(2.6) A(l) =L, and B(1) =R,
J1 1
Then we define 12 and 32 by the following;
(2.7) i, = a(A(1)) and Jo = B(B(1)) .
Let
(2.8) A(2) =L, +L., , and B(2) =R _ +R .
1 do 1 2
Then we define i5 and 35 by the following:
(2.9) iz =a(A(2)) ana Jz = B(B(2)) .

After strategy pairs (il, Jl) PR (lk-l’ Jk_l) are defined in thls

way, we define ik and Jk by the following:
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Tet
(2.10) Ak-1) =L, 4+ ... +1. 3
J1 -1
and
(2.11) B(k-1) =R, 4 ... + R s
t1 k-1
then

(2.12) i, = a(A(k-1)) and J = B(B(k-1)) for k = 2, 3, .. .

In this case it ig clear that a sequence of strategy pairs

Definition 1.1. The above method for obtaining a learning process is shown

in the following diagram:

B R IT I L A
B(1) = R, R, j i L L, = A(1
( 3 i Jq 1 5 3y (1)
B(2) =R, + R, R J i L L. + L = A(2)
Jd1 o dp i 2 2 do dy 7 s
-1 k-1
B(k-1) = s R, R J i L, z L. = A(k-1)
=1 g g1 k-l kel k-1 a1 I
Iy Ty

Definition 2.1: When Ak) =0 (or B(k) = 0) , we say that a tie has

occurred in A (or B) at the k-th play.

If, in the construction of a learning brocess, a tie occurs in
A or B at some point k , the arbitrary situation which results must

be settled by some rule for choosing 1 or 2 at such points.




Definition 2.2: A learning process {(ik, jk)} » 1s called a special
learning process if, in the event of a tie, the rule for making the next

move is defined as follows : If A(k) =0 for some k >1 , then we

(’l s When ik

z2 » When i

define a(A(k)) by

n
no
-

(2.13) a(A(k)) =

i
[

k

If B(k) = 0, we define B(B(k)) according to the same rule for a(Alk))

That is,
1, when jk =2,
(2.14) B(B(k)) =
\2 » When e =1 .
We may then proceed to prove the following theoren.
THEOREM: (2 x 2 non-zero-sum two-person games I' ) TIn g learning process

(1, Bl s k=1, 2, ..., 1et
(2.15) Xl(k) be the number of 1's 1in 11, 15 we, i
(2.16) Xé(k) be the number of 2's in 115 igy ooy i,

te . .
and Yi(k) be the number of 1's in 312 Jps eee, Jy Yé(k) be the

number of 2's ip 15 dps ++e5 Jp - We define
(2.17) x; (k) = % X (k) , 1i=1, 2
and
(2.18) %&)=%%&),1=L2;
and let us write
(2.19) x(k) = (xq (x), x5 (k) ,
(2.20) y(k) = (v, (x), vy (k) .

Then, in a special learning process starting with any strategies il and
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d; of players I and II, we have the following: x(k) and y(k) converge

to equilibrium strategies of the game I' as k .increases infinitely.

At the first stage of a learning brocess, players I and IT are
allowed to choose any  strategies il and Jl » respectively; in this
case they are 1 or 2. Therefore, we must prove our theorem for all the

following possible starts:

A - start; il =1 and jl =1,
B - start: il =1 and jl =2,
C - start: il =2 and jl =1,
D - start: il =2 and jl =2 .

The proof of this theorem will be described in the following sections, in
which many of the different possible cases will be treated separately.
Tt will be convenient to prove the theorem by dividing the possible cases

into two major categories:

Case I: sign Ll =.8ign 12 » and Case II: sign Ll + sign IQ .

Before we begin the proof, we make the following remarks: In
the payoff matrix of g 2 X 2 non-zero-sum two-person game, the necessary
and sufficient conditions for the (1, l)-element, the (1, 2)-element, the
(2, 1)-element, and the (2, 2)-element to be the pure equilibrium points

are given by

£
\%
e
A
oy
v
O
A\ ]
=
v
O
\a
=

.
A
O
-
=
v
®
gl
AN
(@)
.
=
AN
o

respectively.
The proof of the theorem for the case in which no pure equili-

brium point exists is given in § 5 below.




§ 3. Case T: sign L, = sign L,

We will treat Case I in two barts:

Case T(A): sign L, = sign L, +0; ang

Case I(B): sign L, =sign L, =0 .

Case T(A): sign L, = sign L, to.
Let us consider the case in which Ll >0 and 12 >0 . (The
broof for 11 < 0 and IQ <0 is omitted as it is essentially similar to

the proof for Ll >0 and L2 >0 .)

Case I(A)(i): R, >o0.

(5, 6) (4, 2) In this case, it ig clear that the strate-
(3, le) (1, b22) gles x¥ = (1, 0) apg y*¥ = (1, 0) are

the pure equilibrium strategies.
It is evident that we always have

A(l) <o, a(2) >0 seees Alk) >0,...,

that is

ik =1, for k>2,

Accordingly, B(k) takes the following form:

B(k) :Ril +R + ... +R

So, for g sufficiently large X , we have

b .

Bk) >0, for k>k,
since Rl >0 . That ig
jk =1, for k >x .

Therefore it ig clear that
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lim x(k) = (1, 0) = xx s

k-0

lim y(k) = (1, 0) = y% .

k0
Q.E.D.
Case T(A)(i1): R <o0.
The proof is just the Seme as in Case I(A)(i).
Case T(A)(iii): R =o0.
(5, 6) 4, 6) In this case (all, bll) and (alE’ b12)
(3, bgl) (1, b22) are two pure equilibrium points.

In A-start, because of our definition of a special learning

brocess, we have the following diagram:

B II I A

0 1 1 +

0 2 1 +

0 1 1 +
2 1

From the above diagram, it ig clear that

lim x(k) = (1, o) s

k-0

X 11
lim y(k) = s 3)
koo

N

)

and that in this case the strategies x¥% = (1, 0) ang v* = (3,
constitute equilibriun strategies.

In B-start, it can be easily seen that we have the same result




as in A-start.

-11-

Since Rl =0, C-start takes the following form:
B IT I A
R2 1 2 +
R2 . 1 +

Accordingly, it R2 >0

(5, 2)
G, 7)

(&, 2)
(1, 6)

lim
k-0

Thus our theorem holds.

If R2 < 0 , then from

(5; 2) (lJ-, 2) lim
k0
(3, 6) (1, 7)
lim
koo
and the strategies x% = (1, 0)

strategies in thisg case.
Ir R2 = 0 , then from

brocess, we have

> 1t is clear that

x(k) = (1, 0) , lim y(x) = (1, 0)

k=00

the above diagram we have

x(k)

y(k)

1]

it

and y¥

(1, o),
(0, 1) ,

= (0, 1) are pure equilibrium

our definition of g special learning

(5: 2) (l‘”: 2) lim X(k) = (l: 0) >
k=0
G, 6 (6 .
lim y(k) = &, 1) ,
koo
That is, our theorem also holds in this case.

It can be shown that the same results also hold for the case

of D-start.

Q.E.D.
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Case I(B): sign L = sign‘L‘2 =0 .

That is

Case I(B)(i): sign R, = sign R, to.

It is clear that in this case the same results hold as in Case T.

Case I(B)(ii): Rl >0 > 32

In this case two points (all, bll) and (agg, b22) are pure equilibrium
points.
Let us consider A-start. Then, because of our definition of g

special learning brocess, we have the following diagram:

B IT I A
Rl 1 1 0]
Rl + R2 2 0
2Rl + R2 1 0
ERl +‘2R2 2 0

(@) If r. > Ts s then, from the above diagram, it is clear that

1
(3, 7) (5, 2) Bk) >0, for k = 1, 2, ... . That is,
(3, 6) (5, 8) Je =1, for k=1, 2,

Accordingly, we have

lim x(k) = &, ),

lim y(k)

k00

I
~—~
H

.
O
~—

-
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And it can be easily seen that in this case x* = (4, 1) and y* = (1, o)
ére equilibrium strategies.
(B) 1If r, <r, , we can write
(3, 8) (5, 6) r2=url+€,
(G, 2 (5, 7) . where u>1,0<e<1 andif u =1

then € >0 .
In this case B(k) takes the following values:

B(2k + 1)

Ll

(k + l)Rl + kR,
= - krl(u-l) +1; - ke .

B(2k) = le + kR2

]

- krl(u—l) - ke .

As stated above, u - 1 and € cannot be zero at the same time. Accord-

ingly, for a sufficiently large K s we have

B(k) <0, forall k >K,

that is
jk =2, forall k >K.
Accordingly,
lim x(k) = (3, %),
k00
lim y(k) = (0, 1) .
k-0

In this case 1t can be easily seen that x* = (3, ) and y* = (0, 1)
are equilibrium strategies.
(y) 1f Ty =T, , then, in the case of A-start, we have the following

diagram:
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B IT I A
Rl 1 1 0
0] 1 2 0
Rl 2 1 0
0 1 2 0

Accordingly,
lim x(k) = (3, 1),
k-0
lim y(k) = (3, 3)
k00
(3, 6) (5, 2) In this case, x* = (3, 3) and y* = &, %)
(3, &) (5, 8) are equilibrium strategies.

In the case of B-start, C-start, and D-start, it can be easily

seen that the same reasoning as for A-start also holds.

Case I(B)(dii): R, >0, R, =0 (or R, =0, R, < Q).

1 2 1 2

In this case we always have
lim x(k) = (4, &),
k-0
lim y(kx) = (1, 0) ,
k-0

and it can be easily seen that

(3, 4) (5, 1) x¥* = (%) %) and y* = (1, 0) are

(3, 2) (5, 2) equilibrium strategies.
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Case I(B)(iv): Rl =R, =0.

(3, 2) (5, 2) In this case, from our definition of s
(3, 7) (5, T) special learning sequence, it follows that
lim x(k) = (%, &)
k00
lin y(k) = (3, %)
k-0
And, in this case, the strategies x* = (4, 1) and y* = %, ) are

equilibrium strategies.

§ 4. Case II: sign L, f sign L,

Case II(A): L, >0, L, =0.

Case IT(A)(i): If sign R, = sign R2=+ 0 , we have the same

reasoning as in Case I.

Case II(A)(ii): If Ry >0 >R, , it is clear that A-start gives

il

(5, 3) (4, 2) i, =1, forall k =1, 2,

(3, 6) (4, 1) Jjy =1, forall k=1, 2, ...

That is, it gives

lim  x(k)

k-0

(1, 0) ,

lim y() = (1, 0) ,

k-0

and x* = (1, 0) and y* = (1, 0) are pure equilibrium strategies in
this case.
In the cases of B-start and C-start, it can be easily seen that

we have
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lim x(k) = (1, 0) ,
k00
lim y&) = (1, 0) ,
k=0

since

i, =1 for k=3,1L4 ...,

For D-start, the following two cases must be treated separately.
If ry > Ty 5 We have

i, =1, for k=4 5,6, ....

Accordingly, for some K >4 ,

jk =1, for k>K.
That is,

lim x(k) = (1, 0) ,

k-

koo

It ry < Ty, We have

A(k) =0, for k=1, 2, ...,

and

Accordingly, in this case,

lim x(k) = (3, %),

k-0

lim y(k) = (0, 1) .

ko0
(5, k&) (2, 3) It cen be easily seen that x* = (4, 3)
(3, 6) (2, 9) and y* = (0, 1) are equilibrium strate-

gies in this case.
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Case IT(A)(iii): 1If R =0, R, <0, then from our definition

of a special learning process, in the case of A-start, it is clear that we

have

(5, 2) (4, 2) Ak) =1, for k=1, 2, ...,

(3, 1) &, 3) and
B(2k+l) =1, for k =0, 1, ...,

B(2k) =2, for k =1, 2, cve
Accordingly, we have

lim x(k) = (1, 0) ,

k-0

lim y(k) = (3, %) .

k-0

And, in this case, x¥* = (1, 0) and y* = (4, %) are equilibrium strate-

gies.
. In B-start, we have
Ak) =1, and B(k) =2, for k=3, 4, ... .

Accordingly,
lim x(k) = (1, 0) ,
k0
lim y(k) = (0, 1) .
k-0

In this case, x* = (1, 0) and y* = (0, 1) are pure equilibrium
strategies.

. In C-start, we have

Ak) =1, and B(k)

1l
o

5 Tfor k=2, 3, ... .

Accordingly, we have

lim x(k) = (3, 0) ,

ko

lim vy (k)

1l
N
o

[y
—
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In D-start, from our definition of a special learning process,
it is clear that we have
A(2k) =2, for k=1, 2, ...,
A(k+1) =1, for k=0, 1, 2, ...,

and

Accordingly, we have

I_I

el

=]

>

(-
p——

il

ol
\a
N
»

In this case, x¥* = (3, 3) and y* = (O; 1) are equilibrium strategies.
For all other cases which can occur with respect to the rela-
tions between R, and R, wunder the Case II(A) , it can be easily
shown that the same reasoning as above holds. Also it is clear that in
the cases of 11 <0, IE =0 ; Ll =0, 12 >0 ; or Ll =0, L2 <0,

we can obtain the same results as in Case II(A).

Case IT(B): L, >0 > 1, .
In this case we must also consider -separately several subcases.
But if at least one of the Ri is zero, then the same results hold as in

Case TI(A). Accordingly, we consider the following two cases:

Case II(B)(i): L, >0>1I, and Rl>O>R2 ,

Case II(B)(ii): Ll>o>L2 and Rl<O<R2.

In this section we will take up Case II(B)(i) . (Case TI(B)(ii) will be
treated separately in § 5.) 1In Case IT(B)(i) it is clear that in A-start

we have

that is
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lim x(x) = (1, 0) ,

k=00

lim y(k) = (1, 0)

k=0

In D-start, we have

that is

lim x(k) = (0o, 1) ,

k00

lim y(k)

k=0

(0, 1)

In this case both x* = (1, 0) , y* = (1, 0) and x¥* = (0, 1) , y**¢ = (0, 1)
are equilibrium strategies.

Consequently, the proof of fhe theorem for B-start and C-start
remains. For that proof, we consider the following two cases separately:

Case ITI(B)(i)(a): sign (Ll + LE) = sign (Rl + R2) .

First we consider the following case:

Ll + L2 >0 and Rl + R2 >0,
that is

{1 > {2 >0 and rl > r2 >0 .

Then for B-start it can be easily seen that we have

=1, for k>3.
Accordingly,

lim x(k) = (1, 0) ,

k00

lim Y(k) = (l) O)

k-0

Next, in the case of

that is,
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1 2 1 2
we have
lim x(k) = (3, %) ,
k00
lim y(k) = (5, %)
k-0
(5, &) (4, 1) In this case, x* = (3, 3) and y* = (%, %)
(3, 2) (6, 5) are equilibrium strategies.

Cose II(B)(1)(B): sign (L, +1I,)  sign (R, +R,) .

Let us consider the case {1 > {2 . Then we have r <r We can write

1 2 "

{1 = u{é + €, Ty, =vry + o}

where u, v are integers greater than or equal to 1 and we assume that
0<ec< fg », 0<®<r, . (The proof for the case € = 0 andlor & =0

will be given in the same way as below.)

1) If u<v, in B-start, it can be seen that we have

(6, 5) (2, 3) iy =3 =2, for k=u=+2,u+3, ...

1,20 5, 7)

Accordingly,
lim x(k) = (0, 1) ,
k-0
lim y(k) = (0, 1) ,
ko0

and x¥ = (0, 1) and y¥ = (0, 1) are pure equilibrium strategies.
2) If u=v,

L

4 =ur, + 5 .

2 1

u{é +€, r

In this case we must treat the several subcases separately.
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(a) e40,5%0, and ae<%2<(a+l)e, and
r, > (a +1)8,

where a 1is an integer. In this case

(9, T) (2, L) A(k(u+ 1)) =ke and B(k(u+ 1)) =- kd

(1, 3) (5, 10) for k

1, 2, ooy & + 1 o
Accordingly, we have

A((a+ 1) (u+ 1) +1) = - 4’&2 + (a+1)e >0,
and.

B((a+ 1){u+ 1) + 1) - (a+1)3 >0 .

1

This means that

i, =3 =1, for k> u(a+ 1) + 2,
and we have
lim x(k) = (1, 0) ,
k-0
lim y(&k) = (1, 0) .
k00

() e+0,84+0, and

4, =ae ,bd<r, < (b+1)8, a<b.

2 1
In this case it can be shown that
(10, 8) (9, 1) Ala(u+ 1) +1) =- 4, +ae =0,
(7, 3) (11, 12) ~ Bla(u+ 1) +1) = r - 88>0 .

Thus, from the definition of a special learning process, we can check that

Ala(u +1) +1 +a +1) =€ >0

and

Bla(u +1) +1 +a +1) =r, - (a+1)8 >0 .

a1
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Accordingly, in this case we have

lim x(k)

k-0

il
Camns
[

“

0) ,

lim y(k) = (1, 0)

ko0

(¢c) e+0,5F0, and %2=ae,rl=a6.

Thus we have

(2, 1) (-1, -1) 2 = (ua +1)e, r

y = (ua + 1)8 .

2
(-1, -1) (1, 2)

We are now considering B-start. Accordingly,

a(1) = -4, =-ae <0, B(1) =r; =ad >0,

and.

|
—

iy =2, 0,
Therefore, we have

A(2) = [(u-1)a +1le >0, B(2) ==-[(u-1)a +1]3 <0 .

In this way we have

i =l"jk=2’ for k

K u+1,

and

i

Alu+1l) =e>0, Blu+l)==-58<0.
Accordingly we have the following reasoning:

i =l,jk=2, for k=u+2,

=
c

+

no
I
1

(a=l)e <0, B(u +2) = (a1 >0,

]

i, =2, =1, for k=u+3,
Afut 3) = [(u-1)a +2]le >0, B(u+3) =-[(u-l)a +2]8 <0,

i, =1, 3, =2, for k=u+bk.
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In this way we have

ik=l,jk=2, for k=u+l, u+5 ..., 2u+2,
and
A(2u+ 2) =2¢ >0, B(2u+2) =-25 .
Accordingly,
ik =1, jk =2, for k=2u+3,
and
A(Pu +3) = ~(a-2)e < 0,
B(2u +3) = (a-2)% >0 .

Proceeding in this way, at the af(u+ 1)-th stage we have
Ala(u+ 1)) =0, B(a(u+rl)) =0.
Then, because of our definition of a special learning process, we have
i, =2, =1, for k=a(u+l) +1,
and at the a(u+ 1) +u + 2 -th stage we have
A=¢€¢ and B =-0 .

After this point, we repest the same phase as from the (u+ 1)-th stage

to a (u+l) +u + 1-th stage. In this interval, player I uses strategy 1
2 +ufa~1l) +u=-1=ua +1

times and strategy 2
a
times; and then it is clear that in this interval player II uses

strategy 2

ua + 1

times and strategy 1

times.
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Therefore, in this case we conclude that:

. oy L ua + 1 a —
Lin (k) _( (ur Lja+ 1 ° T{u+r Ja+ 1 =%

koo

ua+ 1 > '
VA o

. B _a
;ig ylk) = T+ DJa+ L ° (s LJa+ 1

From Iemma 4.1 to be stated below, it is clear that in this
case x' and y' are equilibrium strategies. The same result holds in

the cage of C-start.

Temma 4.1 In 2 x 2 non-zero-sum two-person games I , if
(k.1) L, >0>1L, or L, <0<,
and
k.2) R >0 >R, or R) <O0<R,,

hold, then one of the equilibrium strategy pairs (x¥*, y*) is given by

R “R
5 1
(4.5) % = ( . >
| By - R 7 Ry - Ry
and
L -L
2 1
(4.4) | = ( , > .
L, - L Ly - &y

Proof of Temma 4.1; Iet x = (@, 1-a) , vy = (B, 1-B) De mixed strategies

for players I and II respectively. Then the following equation

(4.5) cPl(l: Y) = (Pl(gy y)

becomes
Pa + (1-8) a1y = Bag + (1-B) 8op

That is

p(L, - L) =-L, -

If condition (4.1) holds, it is clear that

I,

0 < 5 = ir—g;TT <1l.
2 1
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In the same way, from equation

(4.6) 9y (x, 1) = 9y(x, 2)
we have

a(32 - Rl) =R, -

If condition (4+.2) holds, it is clear that
Ry
By - Ry
This proves Lemma 4.1. Q.E.D.

o<a = <1l.

3) If u >v , in B-start, we have

ik =1, jk =2, for k=v,

and

(8, 5) (7, 3) A(v+ 1)

1]

(u—v){é +€e>0,

-8 .

(1, 2) (9, 7) B(v+ 1)

We are assuming that © > 0 . Accordingly, we have

ik =1, jk =2, for k=v+1

and

Alv+ 2) (u-v—l){é + e,

B(v+2) =r. - 8 >0.

1

]

Accordingly, under the assumption € >0 , we have
ik =1, jk =1, for k=v+2, V£ 3, «..

This means that we have

lim x(kx) = (1, 0) ,
k-s00

lim y(kx) = (1, 0)
k—o0

In other possible cases, we can also check the truth of our theorem. 1In
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the case of C-start, we have the same results as in B-start.

§ 5. case II(B)(ii)

Ll >0 > L2 and Rl <0< R2

In all the cases treated above, there was at least one pure

equilibrium point; but in this case, there is no pure equilibrium point.

(5, &) 2, 1) According to lLemma 4.1, we know in this

(3, 6) 8, 1) case that the equilibrium strategies x* and

y¥* are given by

T r
(5.1) x* = (r i r.’ r i r >
1 2

“and

L,
(s} 1
o2 v (g r )

where as before

(5.3) 4 = L, | and r, = | R

L, i=1,2

In order to prove the theorem for this case, let us assume that

we can write

(5.4) {2 = u{i +e€, 0<e< {1
and
(5.5) r, =vr, +8, 0<0d<r

1 2 2’
where u, v are integers greater than or equal to 1. We will prove the

theorem only for B-start. (We remark that the same reasoning holds for

the other possible cases concerning the magnitudes of £', {2 » Ty and

r, and for A-, C-, and D-start.)
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According to the definition of B-start, we have

i,=1,4, =2

and

(5.6) A1) = -%2

G(o) <o, B(1) =-r, =H(0) <O .

Then it can be easily seen that for some time we have the equalities

2 =i, =iy = ...
2=, =g = ene
and
(5.7) A() =-2b, , A(3) =34, , ...
(5.8) B(2) = H(O) + 1 , B(3) =H(0) +2r, , «.. .

This means that A remains negative for some time, and that B changes
its sign from negative to positive or from negative to zero at some point.
Iet f£(1) %be the number of plays from the second play to the play at which
B finishes its sign change. Let us call this period phase I.

Phase T can be shown in the following diagram:

B II I A
( 0 >u(o) =-r 2 1 -%25G(o)<o)
0 > u(0) + 1, 2 o 1 a(0) - 4, <0
: > > :
: . :
0 > H(0) +vr, = -8 2 2 .
0 <H(O) + (v+1l)r, 2 2 ¢(o) - (v+1)4, <o
¥

Iet us call the 1 + f(l)-th value of A and B, G(1) and H(l) res-

pectively. Then it is clear that

=2, =1,for k=1+£(1)+1,1+f(1)+2,...,
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since even in the case of H(1l) =0 » our definition of a special learning
process indicates that the 1 + f£(1)-th strategy of player IT will be 1.

A takes on the values
G(1) +£l<o, G(1) +2J&l<o,
and B takes on the values

H(1) +r, >0, H(L) +or

5 PIEEE
Accordingly, after A continues to be negative for some time,
its sign will change from negative to positive or from negative to zero.
Let us call this positive or zero vélue G(2) and let f(2) be the number
of plays during this period. This period will be called phase II. It is
clear that, in phase II, B takes on positive values. Let H(2) be the

value of B corresponding to G(2) . Phase II is shown in the follow-

ing diagram:

B IT I A
7
0< u1) + r, 1 p) a{1) +4'Ll <0
0< H(1) + or, 1 p) G(1) + 2&1 <0
° ° f(g) .
0 < : 1 ) : <0
0 < H(2) 1 2 i G(2) >0

Accordingly, we have

jk=jk=l,fw k=1+f(1) +f(@) +1, 1 +£(Q1) +£(2) +2,...,

and A +takes on the values

c(2) +J8,l>o, G(2) +24'Ll>o, cee
and B takes on the values

H(2) - v, >0, H(2)-2rl>0,

1
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Accordingly, after B continues to be positive for some time, it will
change its sign from positive to negative or from positive to zero. Iet
us call this negative or zero value H(3) and let f£(3) be the number
of plays during this period. This period will be called phase III. It
is clear that, in phase III, A takes on positive values. Let G(3)

be the value of A corresponding to H(3). Phase III is shown in the

following diagram:

B IT 1 A

T
0< H(2) - r) 1 1 G(2) “0’1 >0
0< H(2) - 2r, 1 1 £(5) a(2) + 2«';1 >0
0 < :
0> H(3) 1 1 G(3) >0

Accordingly, we have

i, =1

X »d =2, for k=1+1(1) +£(2) +£(3) +1,

1 +5£(1) +£(@) +F(3) +2, v.u .
A  takes on the values
¢(3) -4, >0, ¢(3) - 2L, >0, ...
and B takes on the values

H(3) - r, <0, H(3)-e2r, <0,

1
A will change its sign from positive to negative or from positive to zero
at some point. Let us call this negative or zero value G(4) and let
f(4) be the number of plays during this period.

This period will be called phase IV. In phase IV, B takes

on negative values. Iet H(4) be the value of B corresponding to G(4)



Phase IV is shown in the following diagram:

B 11 T A
?
o> H(3) - ry 2 1 G(3) - %2 >0
0> H(B) - 2r, ) 1 G(3) - 218,2 >0
: . () .
: ) 1 : >0
0> (k) 2 1 ak) <o

After phase IV, four phases which are similar to phases I, IT, ITT and IV
respectively, will appear cyclically.
From the above reasoning, it is clear that there is a general

cycle, which is shown in the following diagram:

IT I
(0 >  H(bkk) 2 1 Gkk) <o)
T
0> 2 2 | <o
o f(bk+ 1)
0 5 H(kk + 1) 2 2 i G(4k+ 1) <0
o< 1 2 r <o
° ’ f(khk+ 2)
0<  H(kk+ 2) 1 > l G(hk+ 2) >0
0 < 1 1 I' >0
) ’ T (dk+ 3)
0> H(kk+3) 1 1 ‘& Gkt 3) >0
o> 2 1 lt >0
(b1t k) )
0> H(k+ k) 2 1 $ Gkt k) <o
’

for k =0, 1, 2,
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In this way, if players I and II continue to play the game T
according to a special learning process, then the number of times that

playe? I uses his strategy 1 is given by
(5.9) 1+ EG) +£M)] + [£(7) +£8)] + ...

and the number of times player I uses his strategy 2 is given by
(5.10) [£(1) +£(2)] + [£(5) +£(6)] + ...

The number of times player II uses his strategy 1 is given by
(5.11) [£(2) +£(3)] + [£(6) +£(7)) + ...

and the number of times player II uses his strategy 2 is given by
(5.12) L+£Q) + W) +£(5)] + [£(8) +£(9)] + ...

Now let us write
(5.13) | a(t) | =g(t) anda | B(t) | =n(t) .

From the diagram above, we have the following equations:

In the period (4k + 1)

(5.1k4) h{bk) = rgf(ul«:+ 1) - hkk+ 1) ,
(5.15) 0 <h(kk+ 1) < Ty and
(5.16) g(bk+ 1) = g(hk) + £2f(uk+ 1) .

In the period (4k + 2)
(5.17) g+ 1) = L £ (bk+ 2) - glbk+ 2) ,
(5.18) 0 < g(hk+ 2) < %l , and
(5.19) h(bk+ 2) = h{bk+ 1) + r f (bk+ 2) .

In the period (4k+ 3) :

(5.20) h(kk+ 2) = rlf(uk+ 3) - h(bk+ 3) ,



(5.21)

(5.23)
(5.2L)

(5.25)

(5.26)

(5.28)

(5.29)

- (5.30)

(5.31)
(5.32)
(5.33)

(5.34)
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O<h(kk+3) <r and

l J

g(bk+ 3) = g(bk+ 2) +%lf(uk+ 3) .

In the period (4k + 4)

g(bk+ 3) = Lo (hk+ 4) - g(hks k),
0 < gkt ) < {2 ’ and

h(bk+ %) = h(hx+ 3) + 1 f (bt k) .

From (5.14) we have

£kt 1) = =[n(kk) +n(hk+ 1)] .
2
From (5.16) and (5.17) we have
/&2

f(bk+ 2) =
From (5.19) and

f(lk+ 3) =

£ (b 1) + 7-lg(4k) + g (bt 2)] .
1 1
(5.20) we have

f(bk+ 2) + [h(kk+ 1) + h(kk+ 3)] .

NG
= o
s

1

From (5.22) and (5.23) we have

&

1

£kt b) = p= £ (bt 3) + 3 [glbke 2) + glie b)) .
2 2

From (5.25) and (5.14) we have

Ty 1
fbk+ 1) = = fbk) + = [h(bk-1) +h(kk+1)] .
2

If we put

2
a(bks 1) = %— [h(Me-1) + H(kk+ 1)]
2
a(bier 2) =3 [g(k) + g+ 2)]
1
albk+ 3) = l}— [h(bk+ 1) + n(dk+ 3)] ,
1

a(ksr 1) = 3 [g(k+ 2) + g(bk+ 2)] ,
2
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then from (5.26) ~ (5.30) we have

(5.35) £(1) - %; (2(0) +n(1)],

(5.36) bk +1) = ;i (k) +altk +1) ,
(5.37) bk +2) = %% £k + 1) +alk +2) ,
(5.38) bk +3) = ;f f(hk +2) + a(kk +3) ,
(5.39) Tk +4) = i% Tk +3) +albk +4) .

Here (5.36) holds for k =1, 2, 3, ..., and (5.37), (5.38), and (5.39)
holds for k=0, 1, 2, 3, ... .
We derive here the following expressions from (5.36) ~ (5.39)

for k =1, which will be used below:

-

1

£5) =52 £(4) +als)
2y 2,

£(6) = 4= == £(1) + 3= a(5) +a(6)
1l 72 1

(5.40) 2 )

£(T) =72 2(4) 422 52 a(5) + -2 a(6) + al7)

T A , 1 ; ’
r
£(8) = £ (k) +Z—2a(5) +ym == a(6) + 3= all) +a(8) .
1 e "1 2

Now we define the functions @i and Wi » 1 =1, 2, as follows:

1 1 s
(5.41) @l(hk+ 1) = = (1 +3f,—) altk) + (1 +;E:—) a(bk+ 1) ,
2 1 1
{1 1 4
(5.42) @2(hk+ 3) = (1 +-Z£) albk+ 2) + ;;(l +-Z£) a(bk+ 3) ,
)
(5.43) “wm¢)=?¢ﬂ%+m,
1.
o
(5.44) o (bt 3) = = o, (bk+ 3) ,
1

for k=1, 2, ... , but we take a(k) =£(4) .



-34.

Then we will prove the following two relations (5.45) and (5.46):

(5.45)  £Ut+ 1) + F(bt+ 2)

t
= ®1(5) + % [@2(2+k-1) + @

(
k=0 .

(5.46)  f(ht+ 3) + £(bt+ b))
4

b+ 1)] + a(it+2) , for t = 2,3, ...

= = [ml(um 1) + ¥, (hk+3)] + albt+ b) , for t =1, 2, 3, ... .

k=1

For t =2 , we have:

The right hand side of (5.45)

=0 (5) + o, (7) + 2, (9) + a(10)

r £ £
=% (1 +j€i—> () + (1 wﬁ) a(5)
£ T £
1 1 1
+ (1 +9=) al6) +— (1 + =) a7)
jg +r2 Iz—
ry 1 1,
+= (1 +76“) a(8) + (1 +1-n/—) a(9) + a(10)
2 1 1
T £ r. 4
= [ L e) 5) + 7= a(6) +—= 2% a(7)
0 ) + af +452—a( +r2:ga
ry 40“2 Ty 40“2
— a(8) +a(9) 1 + I —= (k) a(5)
+I'2 + + '?’I I‘2 +4'ZI
T £ r £,
a(6) + == alT) + = == a(8) ++= a(9) + a(10) ]
* +r2 +:EI Y2 +)q
£ r 4,
o Z_;f@ +a0) 1+ Lyt 5 10) 42 ) +a0) )
(because of (5.40))
{2
=1(9) + [ T £(9) + a(10) ]
1
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(because of (5.37)).

This proves that (5.45) holds for +t =2 .

Next we will prove (5.45) for (t + 1) , under the assumption
that it hplds for t . From this inductive assumption and from (5.37),
(5.42) and (5.41), we have the following transformation:

t+1

(5.47) ®l(5) + = [@2(uk-1) +<1>l(uk+ 1)) + a(t+l) +2)
k=2

t
@l(5) + £ [0 (hk-1) + o, (bk+ 1)) + a(bt+ 2)
t=2

]

albt+ 2) + oy (ht+ 3) + 0 (B(t+ 1) +1) + ak(t+ 1) +2)

i

f(ht+ 1) + £(4t+ 2) - alkt+ 2) + @2(ht+ 3) + 0 (W(t+ 1) +1)

1

+a(b(t+ 1) + 2)

10’2
= (1 *Z‘) £ (4t+ 1)
1

gl 1 4
+ (1 +77) alit+ 2) +== (L +77) albt+3)
2 2 2

+ ;i (1+ If) albt+ &) + (1+ Zf) as(t+ 1) +1) +al(t+1) +2) .

On the other hand, using the relations (5.36) ~ (5.39), we have
the following transformation:

(5.48) F(h(t+1) +1) = ;i fhta b)) + all(t+1) +1)
2 .

r r
——;F/——f(ht+3) £ albte b) + o (64 1) +1)
2

l_l

r

N

= flat+ 2 alldt+ 3 a(4t+ + t+ 1 1
:E_ ).1.+ + r. )++ .|. ).{. L L +

!\)

ry {1 ry hon b
a(kt+ 2) +-;g Zg albt+3) +-§; allt+ 4)

= p(hte 1) +

S

a(d (t+1) + 1)
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and

2
(5-59)  £(4(t+1) +2) = 5= £(h(t+ 1) + 1) + alb(t+ 1) +2)

l._J

e+ 4) + a(b(t+ 1) +1) +alb(t+ 1) +2)

I
R P
oIfic
SR E
PR

3
a(bts 4) + f ae (b 1) +1) +als(ts 1) +2)
1

H

,
no f—

flt+ 3) +

B
|
e

Ty {2
— alkt+ 4) + > alk(t+ 1) + 1)
1

il
| = f(bt+ 2) + I’_; a(bt+ 3) + 5

i

N

+ ol (t+ 1) + 2)

r

=

{2 1 {? 1
= 47{ fht+ 1) + a(kt+ 2) + 17;— albt+ 3) + 7 -z a(bt+ L)
1
{2
+ 7 ad(t+1) +1) +alkE+1) +2) .
1

It is clear that the sum of the last expressions in (5.48) and (5.49)

is equal to the last expression in (5.47). This proves that equation (5.L45)

holds for t + 1 when it holds for t . This completes the proof of (5.45).

Next we will prove the equality (5.46). For t =1 , using
(5.41) ~ (5.44) and (5.40) we have the following:

The right hand side of (5.46)

=¥ (5) + ¥, (7) + a(8)

= (1 + i}) (L) +=( +'§;) (5)
= (4 a5
1 ol 1

To {1 {1
.|.;Z (1 +4-Z) al6) + (1 +;g) a(7) + a(8)

£(7) +£(8) ,

I

that is, the equality (5.46) holds for + =1 .
Now we will prove (5.46) for t + 1 under the assumption that

it holds for t . From this inductive assumption and (5.39), (5.41 ~ (5.4k4),




we have the following transformation:
t+1
(5.50) = [yy(hk+ 1) + ¥y (Mt 3)] + a(b(t+ 1) + k)
k=1

= (4t 3) + FUb+ L) - a(bt+ 4)

+11fl(l+(t+ 1) +1) +\u2(h(t+ 1) +3) +a(l(t+1) +4)

1, ry 4’,2
+ (1 +Zl—) allkt+ L) +-—l- (1 +;(-/I) alb(t+ 1) +1)
f2 0 ale 1) +2) ¢ %l> b (
}—l— +;goz +1) +2) + ( +;g a(k(t+ 1) +3)

+a(d(t+1) +L4) .

On the other hand, using (5.36) ~ (5.39), we have the following

t;ansformation:
r
(5.51) £(h(t+1) +3) =2 £(b(t+ 1) +2) +a(b(t+1) +3)
1
ry 1 Yo
= — T(t+ 1) + 1) + o=l (t+ 1) +2) +al(t+1) +3
1™ 1
4, r, 4, r
= 2 fbt+ 4) +—2;E§oz(l+(t+ 1) +1) +;?-cx(4(t+ 1) +2)
1 1™ 1
+ at(t+ 1) +3)
Y o
= f(kt+ 3) +;E—-a(l+t+ W) +-r—4-p/—oz(l+(t+ 1) +1)
1 1™

r
2
+?—a(h(t+ 1) +2) +al(bt+ 1) +3) .
1
Following the same process as in (5.51), it can be easily shown

that we have
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oo

r

(5.52)  £(:(t+1) +4) =5 2(h643) +albte h) + 2 a(h(ts 1) + 1)
2 1
Lz, A
+z—2—qa(h(t+ 1) +2) +4—u/—2— alk(t+ 1) +3) +

+ob(t+ 1) +4) .

Tt is clear that the sum of the last expressions in (5.51) and
(5.52) is equal to the last expression of (5.50). This proves that (5.46)

holds for t + 1 . This completes the proof of (5.46).

Now, let &l(n) and. gg(n) [nl(n) and ne(n)] be the number
of plays in which player I[II] wuses his strategy 1 and 2, respectively,

during the first

1+ 2 [f(%k+ 1) + £0k+ 2) + £ (bk+ 3) + £(bk+ 4))
k=0

plays in a learning process which is B-start.
Then, using (5.46), we have

n
(5.53) & () =1 +[£3) +£W)] + = [£(bt+3) + £kt 4)]
t=1

1+ [£(3) + (k)]

n t n
+ = X [Wl(uk+ 1) + wg(uk+ 3)] + = akt+ L)
t=1 k=1 t=1

]

1+ [£G) +£(4)]

4

nly, (5) + ¥, (T)]

+ (0=1) 0¥, (9) + v, (11)]

+ e e

2[y, (hn-3) + ¥, (bn-1) ]

-

l[wl(hn+ 1) + w2(4n+ 3)]

n
+ = a(bt+ b)) .
t=1
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Now we put

(5.54) o) =nly (5) +¥,(1] + (@-1)[H, 9) + (1)1 + ...

+ 20y, (4n-3) + ¥, (bn-1)1 + L0y, (bns 1) + ¥, (b0t 3)]

and

(5.55) 0(n) = = oalkt+d) ,

then from (5.53) we have
(5.56) g ) =1+ [£(3) +£()] +p(n) +06(@) .
Using (5.45), we have

(5.57) Eg(n) =1(1) +1(2) +£(5) + £(6)

n-1
+ X [FlE+1) +1) +2Q0GE+1) +2)]
t=1

=f(1) +7(2) +£(5) +£(6)

n=-1 t+1
+ = [®1(5) + = (@2(uk-1) + @l(uk+ 1)) +alt(t+ 1) +2))
t=1 k=2

=f(1) +£(2) +£(5) + £(6)

n=-1 t
+ x [ = {@l(hk+ 1) + @2(4k+-5)} + @l(4t+ 5) ]
t=1 k=1
n=-1
+ 2 at(t+ 1) +2)
t=1

=£(1) +£(2) +7(5) + £(6)
+ (a-1)[2, (3) + o, (7)]

+ (0-2)[2(9) + 8, (11)]

4-

+ 200 (bn=T) + 0, (kn-5)]

+ 1[®l(un-5) + @2(un-1)]
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+ [0, (9) +0,(13) + ... + 0, (bn+ 1))

n-1
+ = ak¢t+ 1) +2)
t=1

=f(1) +7(2) +£(5) + £(6)
+nle, (5) + o,(7)]

+ (n~l)[®l(9) + 0, (11)]

+
+ 2, (kn-3) + 0, (4n-1)]
+ l[@l(hn+-l) + ®2(4n+ 3)]

- [2,(5) + 0, (7)1

n=-1
+ 5 o+ 6) - o, (bt+ 7)] .
te
If we put
n-1
(5.58)  8(n) = £ [a(t+6) - o (bt T)]
t=1

then from the last expression in (5.55) and (5.43), (5.&4), we have
(5.59) Ee(n) = (1) +£(2) +£(5) + £(6) - [®l(5) + ®2(7)]
T

+ ;l pln) + d() .
2

Now from our definition of the function a(t) , it is clear that
there exists a finite number K such that
0 <aft) <K, 0<e (t) <K, O<v¥, (t) <K, 1=1,2
for all possible values of t+t . And
@l(um 1) + @2(4k+ 3)

is a linear combination of (k) , oaflbk+ 1) , a(bk+2) , and a(bk+ 3) s

with constant coefficients.
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Therefore, we can say in general that the order of magnitude of

o(n) is that of

that is, p(n) is of the order n2 . On the other hand, 6(n) and 5(n)
are of the order =n .
Therefore, from (5.56) and (5.59), we have
e, (n) 1,
»(n

(5.60) lim m = q— B

nN—co

From (5.60) and from the fact that the number of plays in each

period is finite, we have

o !
(5.61) 1lim X(k) = (I’ - P ;—-l-—?_— )
K00 1" 72 1 2
In the same way, it can be shown that
(5.62) 1 y(k) = = 2 )
. im ¥y =7 7 s 7 T .
_— {1+ {2 {1 +A{2

But from Iemma 4.1, we know that these limit strategies are surely equili-

brium strategies. This proves the theorem.
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