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O. Introduction 

A two-player symmetric game consists of  a finite set of strategies indexed by 
I = { 1 , . . . ,  n} and an n • n payoff matrix (a~). When an i player meets a j  player 
their payoffs are a/j and aji, respectively. 

In evolutionary game dynamics we imagine a large population of game players, 
each with a fixed strategy. The state of the population is a vector in ~ =  
{x c R": xi/> 0} where x~ measures the subpopulation of i strategists. So the total 
population size is Ixl--Y, x,. The associated distribution vector lies in the simplex 
A={p~R~:Y~gp~=l} where p,---x,/lx], the ratio of i strategists to the total 
population. The dynamics comes from assuming that payoff is measured in units 
of fitness, i.e. relative growth rate, and is added to some background growth rate. 
Thus, we assume the system of differential equations: 

dx---J-= xi( r + aip ) (0.1) 
dt 

where r is the background, strategy-independen~ growth rate and a~ v =--~jpjaij is 
the average payoff to the ith strategist because his opponent is a j strategist with 
probability pj. 

Summing on i, and using x~ = Ixlp, we get the equation for the growth of the 
total population size: 

dd-~-- ]xl(r + app) (0.2) 

where app = Y~pia~p = Y,i, j pipjao. 
Using d In Pi = d In x~ - d In Ixl we obtain from (0.1) and (0.2) the system of 

differential equations describing the evolution of  the distribution vector: 

dp, 
d-t = p,(  a~p - app ). (0.3) 
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Thus, the relative rate of  increase of  the frequency of i players is given by the 
average excess in payoff between an i player and a random member  of  the 
population. 

Notice that the background rate r need not be a constant. It can depend on 
the populat ion size Ix] or even on the entire state vector x. But as long as its 
effect on fitness is additive, it cancels out in (0.3) and so we obtain a dynamical 
system on the simplex which depends only upon the payoff matrix. When it is 
solved, the solution can be substituted back into (0.2) to get a single time- 
dependent  equation in population size. 

Because the simplex A is compact,  we can display the solution of (0.3) as a 
smooth map qb: A •  A called the f low of the system. With p ~ A fixed the 
function of t: q~(p, t) is the solution path for the system with initial point p. With 
t fixed we obtain a smooth map q~t: A ~ A and the family of mappings satisfies 
the group properties: q~o =identi ty and ~ '  o q~s = q~,+s. In particular, each q~t is 
a diffeomorphism, i.e. it has a smooth inverse, namely q~-*. See, e.g. Abraham 
and Marsden (1978) Section 2.1. 

Suppose we attempt to solve system (0.1) numerically using the simplest 
approach,  namely Euler's polygonal approximation method. This amounts to 
replacing the derivative dxi /d t  by the difference quotient 6xi/.r with z > 0 a fixed, 
small increment, i.e. 

8xi = x(r( r + air) 

or alternatively after one step x is mapped  to the vector x '  with 

x~ = x~[1 + z(r  + a,p)]. 

So the total populat ion size changes by: 

Ix'l = ]xl[1 +'r(r+app)]. 

Because P'i = x'~/lx'l and pi = x~/Ix[ we get: 

p~ =pi[1 +m(r+aiv)]/[l  + r ( r  +app)]. 

Ignoring the fact that r may not be constant we define ~:= r / (1 +Tr) and so 
the mapping from p to p '  can be written as p '  = F~(p) where F~: A ~ A is defined 
by: 

F~(p)i = p,(1 + ~ra,p)/ (1 + ~app). (0.4) 

Euler 's result that the polygonal solutions approach the solution of the 
differential equation says that for any p in A and t > 0: 

lim[F~]"(p) = ~ ' ( p )  

where n ~ oo and ~:~ 0 so balanced that the product m:--> t. Here the exponent n 
represents n-fold iteration of the map F~ so n is a whole number. See, e.g. 
Abraham and Marsden (1978) Theorem 2.1.26. 

This result motivates the hope that the dynamics of the continuous time system 
(0.3) might be similar to the dynamics of  the discrete time system: 

6p, = pi( aip - avv)/ ( l + app) (0.5) 
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which is just a rewriting of (0.4) with ~: = 1, i.e. we consider the map F: A -~ a 
defined by 

F (p ) ,  =pi(1 + a i ; ) / ( l  +app). (0.6) 

Since we have, in effect, subsumed -7 into the matrix we may need conditions 
that the entries a~ be small. The only conditions of  this sort that we will always 
impose are those necessary that F(p)~ be defined and nonnegative: 

l+au~>0  and l + a ~ > 0  fori ,  j = l , . . . , n .  (0.7) 

i.e. the matrix 1 +a o is nonnegative with a strictly positive diagonal. These 
conditions ensure that 1 + aip >i p~ (1 +aii) and so 1 +aip > 0 if p~ > 0. In particular, 
1 + app > 0 for all p in zl. 

In the case where the matrix av is itself symmetric, i.e. a o = aj~, these systems 
have been widely studied as two versions of  the one-locus-n-allele model of  
classical populat ion genetics, (0.5) and (0.6) due to Wright and (0.3) due to 
Fisher. Here the phrase weak selection (i.e. law[ small) has been used as the label 
on the bridge to cross from the biologically more reasonable discrete time system 
to the mathematically more tractable differential equation. As discussed in Losert 
and Akin (1983) the hope that the two systems will behave similarly seems well 
justified in this symmetric case. 

The general system of equations (0.3) was introduced by Taylor and Jonker 
(1978) as we described above as a dynamic model for Maynard Smith's applica- 
tions of  game theory to evolution (see Maynard Smith (1982) for a survey). 
Independently,  this system of equations was introduced by Eigen's group studying 
origin of  life problems (see Eigen and Schuster (1979) for a survey). The discrete 
time model (0.5) is due to Hines (1980) and to Losert and Akin (1983). In 
particular, in the latter paper  is proved the following result which we will use 
repeatedly: 

Theorem 1. Assuming conditions (0.7) the map F: A-~ A defined by (0.6) is a 
homeomorphism, i.e. F is one-to-one and onto and the inverse function F -~ is 
continuous. F -1 is differentiable in the interior o f  A and if  1 + a 0 > 0 for  all i, j then 
F-I :  A ~ A is a smooth map, i.e. F is a diffeomorphism. 

In this paper  we will examine the case antipodal to the population genetic 
model, namely where the payoff matrix is antisymmetric. Since this condition 
can be written a o + aj~ = 0 such games are called zero-sum. 

In addition to its interest as a special case of  evolutionary game models this 
class of  systems has a separate pattern of  applications all its own. Nagylaki 
(1983a, b) has introduced (0.6) with antisymmetric a U as a model for gene 
conversion. We would like to express our gratitude to Professor Nagylaki for our 
introduction to the problem, for many helpful discussions and, above all, for his 
emphasis on the radical difference between the discrete and continuous models 
in the antisymmetric case. 

In Sect. 1 we use a common pattern of  assaying the behavior of  certain 
log-linear functions on orbits to provide an overview of the behavior of the two 
kinds of  models. The distinct behaviors thus revealed are examined in detail in 
the later sections. In Sect. 2 we use techniques of  Conley and Smale to construct 
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a closed set to which - -  we believe - -  almost  all orbits o f  the discrete system are 
attracted. In  Sect. 3 we show that the cont inuous  system exhibits the conservative 
behavior  o f  classical Hamil tonian dynamics.  

A related class o f  difference equations appears  in H o f b a u e r  (1984). 

1. Classification and general behavior 

From now on we will assume the payoff  matrix is antisymmetric,  i.e. a~ = - a j i .  
This implies app = ~i, jp~pjaij = 0 for any point  p and so the associated system of  
differential equations on A, (0.3), becomes:  

dp, 
dt - piaip (1.1) 

where aip= ~ ] pjaij. 
Whenever  we consider  the discrete time system we will assume condit ions 

(0.7) which in the ant isymmetric  case become:  

Jao.J<~ 1 fora l l  i,j. (1.2) 

The discrete time system (0.5) becomes:  

t~pi : piaip.  ( 1.3) 

Equivalently,  the discrete dynamic  is given by the mapping  F :  A --> A with 

F(p) ,  = p , ( l  +aip). (1.4) 

By Theorem 1 of  the introduction,  F is a h o m e o m o r p h i s m  and if the 
inequalities o f  (1.2) are all strict F is a diffeomorphism. Recall that  integrating 
(1.1) yields the flow tb:/1 xR-~ a which displays all the solution paths at once. 
Because F o f  (1.4) is invertible, we can define the discrete time flow F :  zl x77 ~ a 
where Z is the set o f  integers. We use the same symbol F for  map  and flow 
because when by analogy with q~t: A -~ A we look at Ft :  A -~ A this map is just 
F iterated t times when t is a positive integer and is F - '  iterated It] times when 
t is a negative integer. F ~ is the identity map.  Thus,  i f p  ~ A, cb ' (p)  as a funct ion 
of  t in ~ is the solution path of  (1.1) with initial condi t ion p. Similarly, F ' ( p )  
as a funct ion o f  t in 7/is the solution path o f  (1.3) with initial condi t ion p. 

A point  e o f  A is called an equilibrium if the solution path remains constant  
at e as t varies. The condit ions that  e be an equilibrium for (1.1) or  (1.3) are 
dp~/dt = 0 for all i or 6p~ = 0 for all i respectively. So the two systems have the 
same set o f  equilibria: e is an equilibrium if for all i either e~ = 0 or a~e = 0 (or both).  

In t roduc ing  the concept  o f  support ,  we can restate the equilibrium conditions.  
I f  x is a vector o f  R" then the support of  x, denoted supp(x) ,  is {i c I :  x~ ~ 0}. In  
particular,  if p c A then pi > 0 for i c supp (p )  and p~ = 0 for i ~ supp(p) .  I f  J c I 
we define 

R J = {x ~ R": supp(x)  c J} = {x ~ R" : xi = 0 for  i ~ J}. 

W+=R~nW, A~= A n W  
o j  n.  R + = { x ~ R + .  supp(x)  = J } = { x ~ R ] :  xi > 0 for i t  J} 

z~ ~ = A c~ ~+ = {p c A: supp(p )  = J}. 
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In particular, the set of  interior vectors of  A, denoted z~, consists of  the positive 
vectors of  A, i .e . /(  = {p ~ A: Pi > 0 for all i}. The remaining points of  a form the 
boundary of  A, OA = A - / (  = {p ~ A: Pi = 0 for some i}. 

Thus, e c A is an equilibrium if ale vanishes for every i in the support  of  e. 
In particular, e is an interior equilibrium if e ~ / t  and ale -- 0 for all i. At the other 
extreme each vertex of the simplex is an equilibrium. This follows from the 
general fact that the support  remains constant on every solution path, i.e. each 
a J is an invariant set. 

When p is not an equilibrium we are interested in describing its asymptotic 
behavior, e.g. computing the limit as t-~oo of qb'(p) or F'(p). However,  these 
functions of  t need not tend to a unique limit point as t ~ .  So instead we 
consider w(p) defined to be the set of  limits of  all convergent subsequences 
Ct , (p )  or Ft~ where t, is a sequence of  values in ~ or 77 approaching ~ .  An 
exercise in topology yields the equivalent definition 

r162  {qSS(p)} for(1.1) 
t 

(1.5) 
~op(p)=(-'/U,~>, {FS(p)} for(1.3), 

t I 

for (1.1) and over 7/for  (1.3). The bar denotes the closure 
decreasing intersection of compact  sets o)(p) is nonempty 

where s, t vary over R 
operation in A. As the 
in each case. 

Instead of asking where p is going we can ask where it is coming from and 
define a ( p )  to be the set of limits of  convergent subsequences where t,-->co. 

a~(p)=(-~Us<~,{dP'(p)} for (1.1) 
t 

(1.6) 
~v(p)=t'-qUs~,{FS(p)} for (1.3). 

t 

For any point p, to(p) and a ( p )  are nonempty compact  sets which are invariant 
under the corresponding dynamic, e.g. if q c w~(p)  then the entire solution path 
Ct(q)  remains in w~,(p). In particular, if any of these four sets consists of  a 
single point, i.e. the corresponding limit exists, then that point is an equilibrium. 
I f  e is an equilibrium then each of the four sets consists of  e itself. 

To illustrate these concepts and to introduce the reader to the difference 
between tile discrete and continuous time models we begin with the classic 
example of  a zero sum game, paper-rock-scissors. Here n = 3 and the matrix is: 

(~ 
- - T  

- r  0 O < z < l .  

T - - T  

So air = "r(pi+~-P~-I) where the arithmetic in the indices is modulo 3. As shown 
in Fig. 1 the only equilibrium other than the three vertices is the center e with 
el =�89 I f  we define the symmetric function ~-(p) =PlP2P3 on A it is easy to check 
using (1.1) that dzr/dt = 0 at every point p. Thus, 7r remains constant on the 
solution paths q~'(p) for the differential equation. ~r = 0 on the boundary of A 
and r  I f  0 < c < ~ 7  then the set {p: ~- (p)=  c} is a closed curve about e 
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v3 Fig. 1 

which is invariant under the flow. I f  p ~ e is an interior point then the solution 
~t(p)  is periodic, cycling around the curve with c = ~ (p ) .  In particular, a~(p) = 
to~,(p) consists of  the entire curve. The equilibrium e is sfable but not asymptoti- 
cally stable, i.e. i f p  is near e then the solution path qgt(p) remains near but does 
not approach e. 

The invariance of  the convex curve {~r = c} means that, as shown in Fig. 1, 
the vector field associated with (1.1) is everywhere tangent to the curve. Now if 
we look at the vector based at p ~ e, F(p) is exactly the tip of  the arrow, which 
lies outside the curve, i.e. it is closer to the boundary than p and so 7r(F(p)) < 
I t(p) .  Thus, if p is any nonequilibrium interior point the sequence of values 
7r(Ft(p)) is a monotone decreasing function of t as t varies in Z. As we traverse 
the orbit backwards in time Ft(p) spirals inward toward e, i.e. O~F(p) = e. As we 
move forward in time Ft(p) spirals outward toward the boundary but does not 
approach any limiting equilibrium. Instead tOF(p) is a closed invariant subset of  
the boundary  containing all three vertices. When t is large Ft(p) is close to the 
boundary and appears to cycle around it. This cycling behavior of  points near 
the boundary  contrasts with the behavior of  points actually on the boundary all 
of which approach some vertex equilibrium. Thus, the boundary  is a closed 
invariant set attracting all nonequilibrium interior solution paths for (1.3) but is 
unlike a limit cycle in that points near the set do not behave like points on the 
set itself. 

The analysis of  the rest of  this section is based on two ideas. The first is to 
hunt for functions like 7r. In practice it is more convenient to take the logarithm 
and define for b ~ R ' :  

Lb(p) =~ bi lnp, ,  supp(p)  D supp(b).  (1.7) 

Here the sum is taken over all i in the support  of  b. In order that the In p~ be 
finite for all such i, p~ must be positive for i~ supp(b).  Thus, L b is defined and 
smooth on {p: supp(p)  D supp(b)}, an open subset of  A containing /(. 

We repeatedly use the strict concavity of  the log function. For example, with 
q c A we define 

Iq(p) = -~, q, ln(p,/q~), supp(p)  = supp(q)  (1.8) 
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which differs from - L q ( p )  by the constant Y, q~ In % Concavity implies that I q 
can be used as a measure of  displacement from q because 

I q ( p )  >i - l n  E q~(P~/q~) >~ - I n  1 = 0 

with equality only when the ratio p~/q~ is constantly 1 for all i in supp(q), i.e. 
when p = q. Thus, I q is a nonnegative function vanishing only at q. 

The following Lemma describes the vectors b for which L b will prove useful. 

1. Lemma. (a) Let b ~ R" such that abj ~ O for  all j. As sume  the continuous dynamic 
(1.1) on A. A t  any point p with s u p p ( p ) ~  supp(b) 

dL b 

dt 

with strict inequality unless abj = 0 for  all j in supp(p).  
(b) Let  b ~ R~+ such that ab~ <~0 for  all j. A s sume  the discrete time dynamic 

(1.3). A t  any point p with supp(p) D supp(b) 

6L b <~ 0 

with strict inequality unless a~ v = 0 for  all i in supp(b). 

Proof  For (a) we have the easy direct computation 

dL b d In 
dt - • b j - -~-  pj = abp. (1.9) 

As abj <~0 for all j the average abp <~0 and abj < 0  for any j in supp(p)  implies 
abp < O. 

Excluding the trivial case b = 0, we can multiply b c ~ ~_ by a positive constant 
to assume Y~ bj = 1, i.e. b c A. Then for (b) concavity of the log function implies: 

6Lb( p)  = Lb( F(  p) ) -  Lb (p )  = Y. bj ln( F ( p ) J p j )  

= ~  bj ln(1 +ajp)<~ln(1 +abp)<~ln 1=0. 

The first inequality is strict unless all ajp'S are equal for j in supp(b) and the 
second is strict unless abp = 0. Thus, 6L b< - 0 and the inequality is strict unless 
ajp = 0 for all j in supp(b). Q.E.D. 

Remark:  We will see that the difference in behavior between (1.I) and (1.3) is 
derived from the difference in conditions for strictness of the inequality. Suppose 
b ~ ~ ~ and abj = 0 for all j. Then L b remains constant on the solution path of 
(1.1) through p because abp = 0. But L b will still be strictly decreasing on the 
solution path of (1.3) through p unless, in addition, a~p =0  for all i in supp(b). 

The second major idea is the use of  separation theorems for polyhedral sets. 
Define: 

E o = { e ~  z~: aie= 0 for all i} 

E+ = {e C A: aie >t 0 for all i, with at least one inequality strict}. 

E_ = {e c A : a~e ~< 0 for all i, with at least one inequality strict}. 
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2. Theorem. Eo, E+ and E_ are convex subsets of  A consisting entirely of  equilibria. 
Eo is exactly the set of  interior equilibria. E+ and E_ are subsets of  the boundary. 

For any antisymmetric matrix aii exactly one of  the following two cases holds: 
Inter ior  equil ibrium case: Eo is nonempty and E+ and E_ are both empty sets. 
No interior equil ibrium case: Eo is empty and both E+ and E_ are nonempty. 

Proof: ~ By definition Eo consists o f  all interior equilibria. Convexi ty  o f  the three 
sets is clear. N o w  suppose e ~ E§ 0 =aee = ~i eiaie and eia~e >1 0 for  all i implies 
eiaie---0 for  all i. Hence,  a~e = 0 for i in supp(e) ,  i.e. e is an equilibrium, and 
e~ = 0 when aie> 0, i.e. e lies in the bounda ry  o f  A. Finally, we note that  if e e E§ 
and p e z{ then 

0 < ~, piaie = ape = -aep = - ~  eiaip. 

In particular,  p r Eo. So if E§ is nonempty ,  Eo is empty. Suppose,  on the other 
hand,  that  E§ is empty. Define 

Y = {y E Rn: yi = aix for  some x in R~_}. 

Thus, Y is the convex cone on the columns of  the matrix aij. The hypothesis  that  
E + = 0  implies that  Y intersects the positive orthant  R~_ only at 0. We apply a 
result f rom Karlin (1959), Theorem B.3.5 on page 404, a delicate separation 
theorem, which says that there exists a strictly positive vector e such that  Y.~ e~y~ <- 0 
for all y~ in Y. By multiplying by a positive constant  we can assume Y.~ e~ = 1 and 
so e ~ A .  The inner p roduc t  condit ion says aex<~O for  all x in R~ and so aej<~O 
for all j. Thus,  aj, -- -aej >>- 0 for all j. I f  any inequali ty were strict then e would  
lie in E+ which is empty. So e ~ z~ and aje = 0 for all j, i.e. e ~ Eo. 

Finally, replacing the matrix a u by its negative - a u  leaves the set Eo unchanged  
and interchanges E§ and E_.  So the results for E_ follow from the above results 
for E§ Q.E.D. 

In  applying the functions of  Lemma 1 to the cases o f  Theorem 2 we will 
repeatedly use versions o f  

3. Lemma. (a) Let g( t) be a twice differentiable real function with g"(t)  uniformly 
bounded. I f  limt_,~ g( t) exists and is finite then limt_.~ g'( t) = O. 

(b) Let gn be a sequence of  real numbers. I f  limn~o~ gn exists and is finite then 
lim~_,~ ~g~(=g~+l - g ~ )  = 0. 

Proof: (b) is clear because if lira g~ = L then lira g~+~-g ,  = L - L = O .  
For  (a), assume that  g"(t) is bounde d  by M >/1. I f  the lim,~.~ g'(t) : 0 is not  

true, then we can choose  a sequence {t~} approach ing  ~ such that  g'(t ,)  is 
b o u n d e d  away f rom zero. We can suppose  t ~ + ~ > t , + l  and g'(t~)>~2e with 
0 <  e < 1 .  Let g2, -= g(t~) and g2,+l = g(t~ + e / M ) .  Because g" is bounded  by M, 
g'( t ) >>- e for  tn <~ t <~ t~ + e / M. So by the mean  value theorem g2~§ - g2n ~ eEl M ~ 
0. By (b) l im~o~g~ does not  exist and afortiori l i m ~ g ( t )  does not. Q.E.D. 

We now turn to the main results o f  this section, the description o f  the fate o f  
interior points in the two cases. 

Parts of this argument are due to J. Hofbauer. 



Evolutionary dynamics of zero-sum games 239 

4. Theorem. ( In ter ior  equi l ibr ium case: Eo ~ 0) 
(a) Assume the continuous dynamic (1.1). I f  e ~ Eo and p ~ ~1, then the function 

Ie( ~ ' ( p )  ) remains constant as t varies in ~. I f  p ~ /( - Eo, i.e. an interior nonequili- 
brium point, then the closure of  the solution path is a compact invariant set containing 
toe~(p) and ae~(p) and contained in / ( - E o .  In particular, there is no equilibrium 
in this orbit closure. 

(b) Assume the discrete dynamic (1.3). I f  e ~ Eo and p c ~1 - Eo then Ie ( Ft ( p ) ) 
is a strictly increasing function o f t  in 7/. F t (p )  approaches the boundary and Eo 
as t ~  +oo and -co, respectively, i.e. ~ov(p)c OA and a v ( p ) c  Eo. 

Proof: I f  e E Eo then  e c R~_ and aej =-a je  = 0 for  all j. The funct ion ]e differs 
by a cons tan t  f rom - L  e. So by L e m m a  1, d U / d t = O  (using (1.1)) and 6I~>~0 
(using (1.3)) at every interior  point  p. Fur thermore ,  t~Tle> 0 at p unless aip = 0  
for  all i, i.e. p ~ Eo. Because F is invertible,  p C  Eo implies F t ( p ) ~  17.o for  all t in 
7/ and so I e ( F ' (p ) )  is a strictly increasing funct ion of  t unless p ~ Eo. 

For  (a) assume tha t  p ~ ~ - Eo. Then  for  all e ~ Eo, U ( p )  is posi t ive and finite. 
It  is clear f rom the definit ion (1.8) that  U ( p )  approaches  oo as p approaches  0A. 
So the set {q ~ A: U ( q ) =  U ( p )  for  all e ~ Eo} is a closed subset  o f  A, and so is 
compac t ,  and  lies entirely in z~ -  Eo. Fur thermore ,  it is an invar iant  set because  
the funct ions  I e are invariant.  As this set contains  p it contains the closure of  
the solut ion pa th  th rough  p. 

For  (b) assume that  p ~/{ - Eo. For  all e c Eo the sequence  U ( F ' ( p ) )  is strictly 
increasing in t. So t h e - - p o s s i b l y  i n f i n i t e - - l i m i t s  lim,_~__oo U ( F t ( p ) ) =  L_ and 
lim,_~_o~ U ( F t ( p ) )  = L_ exist. Because U is nonnegat ive  and vanishes only at e, 
it is clear  that  0 ~< L_ < L+ ~< oo. I f  q c av (p) ,  choose  {t,} a decreasing sequence  
in Z with l im t, = - c o  and  l im Ft~ = q. Ie(q)  =l i ra  U(F~~ = L_ < oo. Con-  
sequently,  q lies in the interior. Fur thermore ,  apply ing  L e m m a  3 to g~ = U ( F ' . ( p ) )  
we get that  6U(q)  = lim ~U(Ft . (p ) )  = 0. But on /(, 61 ~ vanishes only at points  
of  Eo. Hence,  q ~ Eo and so the compac t  invar iant  set ~F(P)  is conta ined  in Eo. 

I f  q ~ w r ( p )  and  {t,} is an increasing sequence  as above then  we show L+ = 
and so q lies in aA. For  if  L§ < o~ the above  a rgument  would  again show q ~ Eo. 
But for  every e in Eo U(q)  = L §  0. Thus,  tOF(p) C OA. 

Remark: Result  (b) with essentially this p r o o f  is due to Nagylaki .  

5. Theorem. (No  inter ior  equi l ibr ium case: Eo = 13). 
(a) Assume the continuous dynamic (1.1). I f  e§ c E+, e_ c E_ and p c/{  then 

I ~+( crP t (p))  is strictly increasing and I ~ ( ~ t  (p))  is strictly decreasing in t c R. to~ (p) 
and a~(p)  are subsets of  OA. In fact, i f  we define J+ = { i ~ I :  aie-=O for all e in 
E+} and J_ = {i ~ I: ai~ = 0 for all e in E_}, then J+ and J_ are proper subsets of  I 
and 

o~.(p)= a ~ 
~ ( p ) ~  ~+. (1.1o) 

(b) Assume the discrete dynamic (1.3). I f  e+ ~ E+ and p ~ /1 then U§ 
is strictly increasing in t ~ 7/. tOv(p) and aF(P) are subsets of  OA. For the latter we 
have 

c~v(p) = aJ§ �9 (1.11) 
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Proof: That dU+/dt > O, dle-/dt < 0 and 3U+> 0 at all interior points follow from 
Lemma 1. 

To prove (1.10) we apply Lemma 3(a) noting that by the derivative calculation 
(1.9) the second derivative of U+(~t(iv)) is clearly bounded. Because 1%(ok'(iv)) 
is increasing in t and nonnegative it has a finite limit L+ as t approaches -oo. 
So if q c a~(iv), Ie+(q)= L+ is finite and dI%/dt=O at q. This implies that 
supp(q) D supp(e+) and ale+ = 0 for all i in supp(q),  i.e. s u p p ( q ) c  J+. Hence, 
~a,(P) c A J+. By definition of E+, J+ is a proper  subset of  I and so AJ+c azl. The 
result for wa, follows by replacing a o by -a~ .  

To prove (1.1 1) we apply Lemma 3(b) and in the same pattern as the above 
argument we get that for qc av(iv), U*(q) is finite and 61%=0 at q. This implies 
that supp(e+)csupp(q)cJ+ as in the continuous case. I f  q~OOF(iv) then 
limt_,+oo Ie+(Ft(p))< 0o implies q ~ A ~§ while lim,+oo U+(F~(p))= 0o implies that 
supp(q) cannot contain supp(e+). So in either case q~ = 0 for some i and q ~ 0A. 

Remark: Because Ie- need not be monotone on solution paths in the discrete 
case, we cannot prove that r is contained in A j .  This is a question to which 
we will return. On the other hand, we get a sharper result than was stated for 
points of  av(iv). For q~ av(iv) we saw that ,~1% is zero at q and so: 

q ~ aF(p)~aiq = 0 for all i 6 supp(e+). (1.12) 

These results reveal in detail the difference between the two sorts of  dynamics. 
In the interior equilibrium, continuous case ~ is filled with invariant manifolds 
containing no equilibria. All interior equilibria are stable, though not asymptoti- 
cally stable, because I e is an invariant function. We will examine this conservative 
behavior in Sect. 3. By contrast for the discrete time dynamics we have: 

6. Corollary. Assume the discrete time dynamic. I f  v is an interior nonequilibrium 
point then as t~oo in 77 Ft(iv) approaches the boundary. Any closed invariant 
subset of A contains equilibria. 

'Proof: wv(iv) c aa  for nonequilibrium interior p in both cases. Now let C be a 
closed invariant subset of A and choose iv~ C with minimal support,  i.e. if 
J = s u p p ( i v )  then there does not exist q ~ C with supp(q) a proper  subset of  J. 
It follows that iv is an equilibrium. Assume not. Then iv is an interior nonequili- 
brium point for the dynamic restricted to the strategies in J, and so r c aa J. 
Because C is closed and invariant, iv E C implies wv( iv)c  C. The points of  
r lie in C and have support smaller than J. This contradicts the 
minimality of  iv. Q.E.D. 

Remark. It follows that the only periodic points, points p such that F' (p )=p  
for some t c 7 / -  0, are equilibria. 

Now in the no-interior-equilibrium case, (1.10) implies that strategies i ~ J_, 
i.e. aie_< 0 for some e_ ~ E_, are eliminated by competition. In fact pi = 0 on A j- 
and oJ~(p) c a J- imply that beginning at any interior point p, 

l imqb t (p ) ,=O f o r a l l i ~ J _  (1.13) 
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In particular,  the queer  recurrence behavior  described in Akin and H o f b a u e r  
(1982) cannot  occur  for anti-symmetric models.  

The quest ion arises whether  the same result is true for the discrete time 
dynamic.  The answer appears  to depend  on the size o f  the entries a~. 

Cons ider  the payoff  matrix parametr ized by 1 > r > 0: 

0 --�89 ~ - ~  

r 1 0 1 - 1  

- �89 - 1  0 1 

1 - 1  0 

To the paper-rock-scissors  game we have added  a new strategy (labelled 0) which 
behaves somewhat  like paper  (strategy 1). It is easy to check that: 

E _ = { ( 0 , 1  1 l 5, 

E+ = 0, +, 

We will see below that if ~-> 0 is sufficiently small then lim,_,~ F~(p)o  = 0 for 
all interior points p. In  other  words,  the analogue of  (1.13) holds and the new 
strategy is eliminated. However ,  for r near 1, e.g. r = 0.9, numerical  results suggest 
most  interior orbits do not eliminate 0 in the limit. Instead o f  approach ing  the 
"edge  cycle"  3 ~ 2 ~ 1 ~ 3 of  the original game, most  strategies appear  to approach  
the "edge-cyc le"  3-~ 2 ~ 0 ~  1 ~ 3 .  

In  Sect. 2, we will discuss the general recurrence patterns for the discrete time 
model  in the nondegenera te  case. We conclude this section by introducing the 
nondegenera te  case and proving the analogue of  (1.13) for r small enough.  

Recall that  det(a0) = det(aj~)= d e t ( - a 0 )  = ( -  1)"det(a~j), where det stands for 
the determinant .  So if n is odd  the determinant  of  the ant isymmetr ic  matrix a~ 
is zero. I f  n is even then by perturbing the entries slightly we can preserve 
ant isymmetry  and get a nonzero  determinant.  Hence,  the set o f  nondegenera te  
ant isymmetr ic  matrices is open  and dense in the set of  all ant isymmetric  matrices 
when we define (au) to be a nondegenerate antisymmetric matrix when for all 
subsets J o f  I = { 1 , . . . ,  n} containing an even number  o f  elements: 

det(a0 : i , j  c J )  # O. (1.14) 

In other  words,  the even dimensional  principal  minors o f  agj are all nonzero.  

7. Lemma. Assume  a~ is a nondegenerate ant isymmetric  matrix  and J c L Suppose 

there exists a nonzero vector x with supp(x)  c J and a~x = 0 fo r  all i in J. Then J 

has an odd number o f  elements, aix # O f o r  i ~ J and xi # O fo r  i ~ J (i.e. supp(x)  = J) .  
Furthermore, i f  J has an odd number o f  elements then such a vector exists and is 
unique up to a nonzero scalar multiple. 

Proof: I f  J is even then the homogeneous  system of  equations }~j~j aux j = 0 (i c J )  
has only the trivial solution by (1.14). I f  J contains 2m + 1 elements then (a~ : i, j 
J )  has rank 2m by (1.14) and so the system has a one dimensional  solution space. 
If  {xj : j ~ J} is a nonzero  solution then defining xi = 0 for i ~ J yields a nonzero  
vector x in ~n with supp(x)  c J and aix = 0 for i E J. I f  xj = 0 for some j E J then 
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we would have a solution for J -  {j} which is even. If  aix = 0 for some i ~ J then 
we would have a solution for J u {i} which is even. As the even cases admit only 
the trivial solution it must be that supp(x)  = J and aix # 0 for i ~ J. Q.E.D. 

8. Proposition. Assume  a o is a nondegenerate ant isymmetric  matrix. 
(a) l f  e is an equilibrium, i.e. e ~ A, aie= 0 fo r  all i ~ supp(e) = J, then J has an 

odd number o f  elements and e' is the only equilibrium with support equal to J. 

Furthermore, a ie#  0 f o r  i ~ J. In particular, there are only f ini tely many  equilibria. 
(b) I f  J c I there is a unique vector e + c A with J+ =- supp(  e + ) c J and aie+ >~ 0 

fo r  all i in J and there is a unique vector e_ ~ A with J_ - supp(e_) c J and aie- <~ 0 

fo r  all i in J. Either e+ = e_, with J+ = J_ = J and a~e+ = a~e_ = O f o r  all i in J ( A J has 

an interior equilibrium) or J+ and J_ are proper subsets o f  J with a~e§ 0 f o r  all 
i ~ J - J+ and a~e_ < 0  f o r  all i ~ J - J_ ( A j  has no interior equilibrium). 

(c) A s s u m e  the continuous dynamic (1.1) and let p e a  with s u p p ( p ) = J .  
o ~ ( p )  c ~1J and ~ ( p )  c ~lJ+. 

(d) A s s u m e  the discrete dynamic (1.3) and let p ~ A with supp(p)  = J. C~F( p ) = 
{e+} and either p = e+ = e_ or toF(p) c ( x  ~ A J: xi = 0 f o r  some i ~ jr+}. 

Proof: By Lemma 7, a~x = 0 for i ~ J and supp(x)  = J has no solution if J is even 
and a one dimensional manifold of solutions if J is an odd subset. In the latter 
case there is an equilibrium with support  J if and only if the line of  solutions 
intersects ~Y~-0. I f  so, normalizing to Y~ x~ = 1, i.e. x ~ A, yields a unique solution 
x = e. In particular, there is at most one equilibrium for any support  set and so 
only finitely many equilibria. 

In proving (b), (c) and (d) we can assume J = / ,  as the general result is 
obtained by restricting to the subsystem with strategies only in J. 

Since Eo, E+ and E_ are convex sets of  equilibria and since there are only 
finitely many equilibria, each set is either empty or contains exactly one point. 
In the interior equilibrium case where Eo ~ 0 then e+ = e_ is the single point in 
Eo. I f  p is an equilibrium on the boundary then aip 3 0  for i ~ s u p p ( p )  and so 
the conditions e ~ A and ale = 0 for all i define this interior equilibrium uniquely. 
When Eo = Q ,  then E+ and E_ each contain a single point labelled e+ and e_ 
respectively. 

For (c), in the interior equilibrium case with J = I ,~J+ = / { J -  ----/~ and the result 
follows from Theorem 4(a). When there is no interior equilibrium, Theorem 5(a) 
implies to~,(p)= A s- and ~ ( p ) c  As+. Furthermore the proof  shows that I ~ and 
I e+ are finite on to~,(p) and a~,(p) respectively. So the sets lie in the interiors. 

For (d), in the interior case with J = / ,  the result follows from Theorem 4(b). 
When there is no interior equilibrium Theorem 5(b) implies that toF(p) is in the 
boundary and c~F(p)c A J+. Furthermore, by (1.12) if q c  a F ( p ) ,  a~q = 0  for all 
i ~ Jr+ so q is the equilibrium with support  J+, i.e. q = e+. 

Finally, if the increasing sequence I % ( F ' ( p ) )  had a finite limit then the same 
argument would show WF(p)={e+} .  But for q ~ t o F ( p ) ,  I % ( q ) > I e + ( p ) > O  
because p is in the interior. Consequently, l i m t ~  I e+(F ' (p ) )  = co and so w F ( p ) n  
{x~ zls: xi = 0  for i~ J+}= Q.  Q.E.D. 

In preparat ion for our remaining result we require another separation 
argument. 
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9. Lemma. Assume ao is a nondegenerate matrix with no interior equilibrium. Assume 
ake ( O  , i.e. k ~ s u p p ( e _ ) .  There exists a vector bcg~" such that abj>O for all j, 
bi > O for all i ~ k and bk < O. 

Proof: Let D be the n • n diagonal  matrix with D ,  = 1 for i # k and Dkk = --1.  

Define the n x 2 n  matrix B by the block form 

B = (A, D).  

We are looking for  a vector  b ~ •" such that  bB is a positive vector. By Gale 
(1960), Theorem 2.9 page 48, if such a vector  b does not  exist then there exist 
vectors x, y ~ ~+ not  both  zero such that  Ax +Dy =0 ,  i.e. aix = - y ~ 0  for  i # k 
and a ~  = Yk i> 0. Clearly, x = 0 implies y = 0, too,  and so x # 0. We can multiply 
by a positive constant  to get x e A such that ai~ ~< 0 for i # k and a ~ / >  0. Because 
e ~ R ~ and k ~ supp(e  ) it follows that  axe_ = --ae_~/> 0. But a~e_ ~< 0 for all i and 
so a ~ < 0  with strict inequality unless s u p p ( x ) = s u p p ( e _ ) .  N o w  with J =  
supp(e_) ,  e_ is the unique vector x in A with s u p p ( x ) c  J and ai~ ~< 0 for all i in 
J by Theorem 8(b). So x = e_. This is impossible because ak~ I> 0 while age_ < 0. 
Consequent ly ,  the vector  b exists. Q.E.D. 

10. Theorem. Assume a~j is a nondegenerate symmetric matrix (satisfying (1.2)). 
For any 0 < �9 < 1 let F, be the map obtained from (1.4) by replacing aip by ~a~p. 
Consider the discrete dynamical system obtained from (1.3) by this replacement. 
There exists To>0 such that if  0 <  ~'<~ To then supp(p )  = J implies WF~(p)C A J-. 

Proof: It is sufficient to find a r0>  0 which will work when p is interior. T h e n  
we apply  the result to each support  subset and use the min imum ro f rom among  
those so found.  In  the interior equil ibrium case J_ is all of  I and the result is 
trivial (use ~o = 1). Finally, in the no interior equilibrium case look at k~  supp(e_) 
i.e. ake <0. We will find a z k > 0  such that when ~'<~'rk, and pc~{, q c w e . ( p )  
implies qk = 0. The result then follows by choosing Zo = min imum Zk as k varies 
over I - s u p p ( e  ). 

With k fixed we choose  the vector  b given by Lemma 9 and try to apply 
the a rgument  of  Lemma 1 (b). At any vector  q in A we have 

t~Lb( q) =2  bi In (1 + Taiq). 

But now the concavi ty  o f  the log is no help. Instead apply Taylor 's  theorem to 
write ln(1 +'ru) = "ru +r2R(r, u) where IR(~-, u) I <~ 1 for lul ~ 1 and r<~ 1/2. 

Define 
min{abj} 

~k - 2 (2  tbjl) " 

Then for  all q in A ~'k <~ abq/2(~ I bjl) and so for 0 < ~- ~< ~'k 

~L ~ = "~(a~ +'~ ~ bjR(.~, aj~)) >1 ~(% -�89 

= Tabq/2 > O. 

Consequent ly ,  if ~'~< rk, Lb(F'~(p)) is increasing in t. I f  q c 0A and qk > 0 then 
as x nears q the second term of  

Lb(x) = ~j~k bj in xj + bk In xk 
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remains finite while the first approaches  -oo  because bj > 0 for all j # k. As 
Lb(F',(p))  is finite and increasing in t, no subsequence o f  F'~(p) can approach  
q as t - ~ .  

So qk =0 at every point  o f  toF,(P). Q.E.D. 

Remark: In  particular,  for nondegenera te  a~j and r > 0  sufficiently small the 
analogue o f  (1.13) holds:  Beginning at any interior point:  

lim Ft~(p)~=O fo ra l l  i ~ .  (1.15) 
t --~co 

2. Attractors in the discrete system 

Let us begin by describing some concepts  f rom topological  dynamics  due to 
Conley and Smale. 

I f  F is a homeomorph i sm of  a compac t  metric space X onto itself we define 
an e-chain to be a sequence {Xo, . . . ,  XN} in X such that d(x~, F(Xi_l) ) < e for  
i = 1 , . . . ,  N, where d is the metric on X. Define the quasiordering on points o f  
X :  

x >> y if for every e > 0 there exists an 
(2.1) 

e-chain { x l , . . . ,  xN} with x = xl and y = xN. 

The ordering is clearly transitive and it is reflexive because {x} is an e-chain 
connect ing x with itself. However,  the ordering is usually not  antisymmetric.  
Instead,  the associated equivalence relation is defined by: 

x~- y if x >> y and y >> x (2.2) 

and >> induces a partial ordering on equivalence classes. 
By uni form continuity x>>y implies F(x )  >>F(y) and F - l ( x )  >> F - l ( y ) .  

Clearly, the implications hold with >> replaced by ~ as well. 
Obviously,  x >> F(x )  and more generally x >> Fn(x)  when n > 0. A point  x is 

called chain recurrent if F(x)  >> x and so x -~ F(x) .  An invariant set A, i.e. a set 
with F ( A ) =  A, is called a chain recurrent set if xl, x2 ~ A implies xl ~ x2. For  
example,  if p ~ X and we define the limit points sets a(p )  and to(p) by (1.5) 
and (1.6) then a (p )  and to(p) are chain recurrent sets. For  if xl, x2E to(p) for 
example,  and e > 0, choose  6 > 0 so that  d(x~, y) < 8 implies d(F(xO,  F(y))  < e. 
There exists n l > 0  such that d ( x l , F " ' ( p ) ) < 8  and n 2 > n l + l  such that 
d(x2, F"2(p)) < e. Then {xl, F"I+1(p), F n l + 2 ( p ) , . . . ,  F"2-1(p), x2} is an e-chain 
from x~ to x2. 

Not ice  that a chain recurrent set consists entirely o f  chain recurrent points 
because x ~ A implies F ( x ) c  A. Also, it is easy to check that the closure o f  a 
chain recurrent set is chain recurrent. I f  x is a chain recurrent point  then its 
equivalence class is invariant because x ~ y implies F -1 (y) ~ F -1 (x) ~ x ~ F(x )  
F(y) .  So this class is a chain recurrent set. It is clearly the largest chain recurrent 
set containing x and so is closed. The equivalence classes o f  chain recurrent 
points are called the basic sets of  F. 
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The other key notion is defined in: 

1. Lemma (Smale): Define a(F)  to be the closure in X of U {a(p) :  p e X}. 
For any closed invariant set A in X the following three conditions are equivalent: 
(1) There exists a closed subset Q of X such that F(Q)cIn ter iorx  Q and 

A = [ ~ o F n ( Q ) .  
(2) A c~ a(F)  is relatively open in c~(F) and p r A implies a(p)  n A -- ~ .  
(3) There exists a closed subset Q of X with A c In ter iorxQ and A= 

O,~oFn(Q) .  
I r A  satisfies these conditions then it is called an attractor. A repellor is defined 

to be an attractor for the map F ~. 

Proof: (1)O(2) :  Given Q as in (1), F"(Q) is a decreasing sequence of sets with 
intersection A. So if p ~ A then p ~ F" (Q)  for n sufficiently large, i.e. F - n ( p ) ~  Q 
for n large and so a(p)  is disjoint from Interior Q and in particular from 
A. Also, A n  a ( F ) =  Interior Q c~ a ( F )  and so A n  a(F)  is relatively open in 
a ( F ) .  

( 2 ) 0 ( 3 ) :  Because A n  a ( F )  is closed and is relatively open we can choose 
Q a closed set containing A in its interior and such that Q n a ( F ) =  A n  a ( F ) ,  
e.g. a ( F )  - ( A n  a ( F ) )  is closed in X and disjoint from A and so its complement 
contains a closed neighborhood of A. A c  ~ , ~ o  Fn(Q) because A is invariant. 
On the other hand, if p e (-~,~0 F"(Q) then F - " ( p ) e  Q for all n/>0. So a ( p ) c  
Q n a ( F ) = A c ~ a ( F ) .  By (2) a ( p ) c  A implies p e A .  

(3 )O(1) :  See Smale (1970) Lemma 4.2 page 292. Q.E.D. 

Remark: If Q satisfies condition (1) for A, let ( ~ = X - I n t e r i o r  Q. Clearly 
F ( Q ) c l n t Q ~ O c F - l ( I n t Q ) ~ F - l ( O ~ ) c X - Q c l n t t ~ .  Then B =  
("),~o F-n(t~)  is a closed invariant set called the repellor dual to the attractor A. 
It is easy to check that if p e X -  (A u B) then a ( p ) c  B and t o ( p ) c  A. 

The relation between chain recurrence and attractors is: 

2. Lemma. I f  A is an attractor, x e A and x >> y then y e A. 

Proof: If Q satisfies condition (1) for A and e > 0 is smaller than the distance 
between the disjoint compacta F(Q) and X -  Int Q then any e chain starting in 
Q remains in Q. For every n t> 0 apply this argument to F"(Q) to show x >> y 
and x e A  implies y e F n ( Q )  for all n. Hence, y e A .  Q.E.D. 

In addition to their tremendous theoretical utility, the ideas associated with 
chain recurrence are very suggestive for applications. The flow-with-errors, as 
Conley calls it, is likely to be a more believable picture of the world we are trying 
to model than the precise flow itself. Thus, the chain recurrence structure is likely 
to be the most reliable information that the model imparts. The major reference 
for these ideas is Conley's (1978) beautiful lecture notes. 

In applying these ideas to the map F: A ~ A of (1.4) with au a nondegenerate 
antisymmetric matrix, we will be able to capture all of  the chain recurrence 
structures by using the equilibria. This is because by Proposition 1.8(d) a ( p )  is 
an equilibrium for every p in ,3. Notice that the behavior of the forward and 
backward dynamics of F are completely different. This contrasts with the flow 
q~' associated with a!j because q~-' is just the flow for -aii. 
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For  the rest o f  the section we will assume: 

a0 is a nondegenerate ,  ant isymmetric  matrix. 

We begin with some notation. I f  e is an equilibrium for a0 then define: 

I+(e) = {i: a i e >  0} 

I_(e)  = {i: aie< 0} 

Io(e) = supp(e)  

Io+(e)= I o u  I+ and Io_= I o u  I_.  

The following is just a restatement of  Proposi t ion 1.8(a) and (b) using this 
notation.  

3. Proposition. (a) For every equilibrium e, the set I = { 1 , . . . ,  n} is partitioned into 
the mutually disjoint sets Io(e), I+(e) and I_(e) .  

(b) I f  J c I there are unique equilibria e+ and e_ associated with J such that 

Io(e+) c J c  Io+(e+) 

Io(e_) c J c Io_(e_). 

Furthermore, either e+ = e_ and J = Io( e + ) = Io( e_ ) or Io( e + ) and Io( e_ ) are proper 
subsets o f  J. 

N o w  we define a relation between equilibria. I f  el and e2 are equilibria for 
ao then 

e l >  e2 iflo(e2) c Io+(eO. (2.3) 

In  other  words,  el > e2 if aie~ >I 0 for all i in the support  o f  e2. > is reflexive but  
is usually not  transitive. 

4. Theorem. (a) For equilibria el, e2 in zl, el >> e2 i f  and only i f  there is a sequence 
Pl, P2, �9 � 9  PN o f  equilibria with Pl = el, PN = e2 and Pl > P2 > " " " > PN. 

(b) Call E a terminal set o f  equilibria i f  el ~ E and e~ > e2 implies e2 c E. When 
E is terminal define the closed subcomplex o f  A, A ( E )  by 

A ( E )  = U  {d l~ e c  E}. (2.4) 

A ( E )  is an attractor for  F and E is the set o f  equilibria contained in A ( E ) .  
(c) A n  equilibrium e is called minimal i f  e >> el implies e ~ e~. The set Era o f  

minimal equilibria is terminal and el, e2c Era imply el "~ e2. A(Era)  is the unique 
chain recurrent attractor for  F. p >>x for  all p in za and all x in A ( E M ) .  S o  A ( E r a )  

is contained in every attractor. 
(d) I f  A is an attractor for  F then A = A ( E )  for  the terminal set E = {e c A: e 

is an equilibrium}. 

Proof: I f  el > e2 then let J = Io+(el). For  J e+ is el and so for any point  p with 
s u p p ( p ) = J ,  a F ( p ) = e l .  Given e > 0  we can choose p with s u p p ( p ) = J  and 
I P -  e2[ < e because e2 lies in A J. Choose  n > 0 such that I F - ' ( p ) -  ell < e. Then 
{el, F - n ( p ) ,  F - " + I ( p ) , . . . ,  F - I ( p ) ,  e2} is an e-chain from el to e2. So el >> e2. 
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N o w  we turn to (b). As A(E) is a un ion  of  faces A s it is closed and invariant. 
~ ( F )  is the finite set o f  all equilibria and so A(E):~ a(F) is relatively o p e n  in 
~ ( F )  (every subset is open  and closed in a(F)). If  el is an equil ibrium in A(E) 
then el c A l~ for some e in E. So e >  el and e I c E because E is terminal. 
Finally, if supp(p )  = J then a (p)  = e+ for  J. So a (p)  c~ A ( E )  # Q ,  i.e. e+ e A(E),  
implies e+e E and so p e dr~ A(E).  Thus, A(E) satisfies condi t ion (2) o f  
Smale 's  lemma. 

N o w  we complete  the p roof  of  (a). I f  e 1 is an equilibrium define E to be the 
set o f  equilibria e2, such that there is a sequence p ~ , . . . ,  PN of  equilibria with 
e~ =p~,  e2 =PN and Pl >P2 " " " >PN.  E is clearly terminal and so by (b) A(E) is 
an attractor. I f  e is equil ibrium and e~ >> e then e ~ A(E) by Lemma 2. So e c E 
by (b). This completes the p roo f  o f  (a). 

(c) Suppose  e is minimal  and e > e~. We show that  e~ is minimal. Assume 
e~ >> e2. Then  by (a), e >> el and e >> e2. So el ~ e ~ e2. Thus, et is minimal and 
EM is terminal.  The hard  part  is to show that all the equilibria in EM are equivalent. 
The key is to consider  the vertices o f  the simplex. Letting i s tand for the vertex 
whose i coordinate  is one, we recall that  i is an equilibrium. Furthermore,  if i # j  
then because  J = {i,j} is an even set A s has no interior equilibrium and so e+ ~ e_ 
for J. Thus e+ = i and e_ = j  (or the other  way) and so i > j .  In other  words,  any 
two vertices are comparab le  with respect to > .  Also if e is an equil ibrium and 
i c Io+(e) then e >  i. N o w  let e~, e2c EM. Choose  vertices such that  el > i and 
e2>j. Because i and j are comparable  we can suppose  i>j. Hence,  el >>j and 
e2 >>j. Because el, e2 ~ E ~  we have el ~ j  ~ e2. 

A(EM) is an at tractor  by (b). I f  p ~ A(EM) and s u p p ( p ) =  J then a ( p ) =  e+ 
for J and ~o (p)  is a closed invariant subset o f  d J and so contains some equilibrium 
e o f  d s. Because e+~ a ( p )  and e e  w(p) ,  e+>>p >> e. Because A(E~)  is invariant 
e+cA(EM) and so is in EM. Hence,  e ~ e +  and p is equivalent  to both. So all 
the points o f  A(EM) are chain equivalent to some equilibrium of  EM and all the 
equilibria o f  EM are equivalent to each other. Thus, A(E~)  is chain recurrent. 

I f  p e a  then w(p )  contains some equil ibrium Pl and P>>Pl. I f  pl is not  
minimal then there exists an equil ibrium Pz with p~ >>P2 and not  p~ ~P2. We 
cont inue inductively building a sequence p >>Pl >>P2 " " " >>PN with p~ ~Pg+l for 
i =  1 , . . . ,  N - 1 .  Since there are only finitely many  equilibria and this process 
cannot  cycle by transitivity o f  >> it must  terminate at a minimal equilibrium. So 
P >>PN with PN C A(E~).  

Finally, if A is an attractor and E is the set o f  equilibria in A then E is 
terminal  by Lemma 2 and so A and A(E) contain the same set E o f  equilibria. 
I f  p lies in either set then e = ~ ( p )  is in E and e >>p. So p lies in both sets by 
Lemma 2 again. Q.E.D. 

The utility o f  this result comes f rom the simplicity o f  the relation (2.3) on the 
finite set o f  equilibria. Using > to generate a transitive relation in part  (a) we 
obtain the chain order ing >> on equilibria. Terminali ty of  a set E is defined via 
> and by (2.4) A J c A(E)  if and only if there exists e ~ A(E) such that e > j  for  
all j in J. So the set of  attractors is determined by > as well. 

5. Corollary.  I f  a o is a nondegenerate antisymmetric matrix and I = { 1 , . . . ,  n} then 
an ordered partition (Io, I+, I_) of I is called an admissible triple for a o if there 
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exists an equilibrium e for a U with Is(e) = I~for ce =0,  +, - .  The set of  admissible 
triples determines the relation > among the equilibria and so determines the set of  
attractors. The set of  admissible triples depends only on the component of  (au) in 
the set of  nondegenerate antisymmetric matrices (an open subset of  the vector space 
of  antisymmetric matrices). In particular, if  two such matrices can be connected by 
a path of  such matrices then they have the same set of attractors and in particular 
the same minimal attractor A(  EM ). 

Proof: Because e~ > e2 means Io(e~) u I+(el) ~ Io(e2) the relation > is determined 
by the set of  triples. 

That (I0, I+, I_) is an admissible for a~ means that I0 is odd and the, unique 
up to positive multiple, solution of Y,j~Xo a~jxj = 0 for all i in I0 is a positive vector. 
When normalized by ~j xj -- 1 the solution is a continuous function of the matrix. 
So the solution for nearby matrices will also be positive. By continuity the 
additional conditions a~x > 0 for i c I+ and a~x < 0 for i ~ I_ will also be preserved 
for nearby (a~). 

Thus, if we call two nondegenerate antisymmetric matrices equivalent when 
they have the same set of  admissible triples the previous paragraph shows that 
the equivalence classes are open sets. Because the complement,  in the nondegener- 
ate set, of  an equivalence class is the union of the remaining equivalence classes, 
each equivalence class is relatively closed as well. Any open and closed subset 
is a union of components.  Q.E.D. 

In the paper-rock-scissors example, EM consists of  the vertices and 
A(EM)=aA.  In the expanded example, E ~  again consists of  the vertices 
but A ( E ~ )  = A{~ A{~ A {2'3}. While the recurrence structure described 
above is independent of  the choice of  r >  0 in the family rag by Corollary 5, we 
have seen that the exact location of to(p) in A ( E ~ )  for p near A ( E ~ )  may 
depend on r. 

In these examples, the set of  minimal equilibria consists of  vertices alone. 
This need not be true. For example, if av is given by 

0 - a  - a  - a  3a 

a 0 b - b  - a  

a - b  0 b - a  

a b - b  0 - a  

- 3 a  a a a 0 

, 0 < a , b <  1 

we leave it as an exercise for the reader to show that A ( E  M ) = A{~ U A{1"2"3"4} k.J 
; a ! - 1  ,_ 0). A {~ which contains, in addition to the vertices, the equilibrium w, 3, 3, 3, 

As we mentioned the nice attractor structure came from the fact that a(p )  is 
always an equilibrium. Because w(p)  is usually more complicated the dual 
repellor structure is less satisfactory. What we can say is summarized in: 

6. Theorem. (a) I f  p ~ A, define E(to(p))  to be the set of  equilibria contained in 
the closed invariant set to(p), el, e2c E(to(p))  implies el ~ e2. 

(b) A set E of  equilibria is called initial if  el > e2 a n d  e 2 E E implies el c E. A 
set E of  equilibria is initial if and only if  the complementary set E of  equilibria is 
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terminal. In that case 

R ( E )  = {p ~ A: E ( w ( p ) )  c /~}  (2.5) 

is the repellor dual to the attractor A (E) .  
(c) Let Z be an ~ equivalence class of  equilibria. 

B ( Z )  = {p ~ A: a (p )  ~ Z a n d  E(to(p))  c Z}  (2.6) 

is the basic set of points ~ to the equilibria of  Z. Every chain recurrent point is in 
some basic set and different basic sets are disjoint. 

Proof: (a) follows from the fact that w(p)  is always a chain recurrent set. 
Clear ly/~ is initial if and only if the complementary set E is terminal. Let R 

be the dual repellor for A(E) .  We prove that R = R ( / ~ ) .  I f  p e A ( E )  or if 
p ~ A - (R  u A ( E ) )  then to(p) = A(E) .  So p ~ R(/~) implies p ~ R. Conversely, if 
p 6  R then ~o(p)c  R because R is invariant and so w ( p ) O  A ( E ) =  0 .  Hence, 
E ( w ( p ) ) n  E = 0  and so p ~  R(/~). 

For (c) note that if e + = a ( p )  and e c w ( p )  then e+ >> p >> F ( p )  >> e. So if 
e+ ~ e then p is chain recurrent. Conversely, if p is chain recurrent then the set 
{F"(p) :  n ~ 7/} is a chain recurrent set and so its closure, which includes a ( p )  
and w(p) ,  is a chain recurrent set. Thus, p is a chain recurrent point if and only 
if a (p )  and E ( w ( p ) )  are contained in a single -~ equivalence class. Notice that 
if E = {el: e >> el for e in Z} and /~  = {e~: e~ >> e for e in Z} then/~  is initial and 
E is terminal although instead of being disjoint E n / ~  = Z. B ( Z )  = R ( E )  n A (E) .  

Q.E.D. 

Remark: By Theorem 4, A(EM) is a basic set. It is the only basic set which is 
an attractor. 

The definition of the dual repellors does not allow us to describe them. In 
particular, we leave unproved the following: 

7. Conjecture. I f  E is the set of equilibria complementary to the set of  minimal 
equilibria, then the dual repellor R(  E)  to the attractor A(  EM) has empty interior 
with respect to A. 

The set of  points p ~ A such that w ( p ) c  A(EM) is precisely a - R ( / ~ ) .  This 
set is open because R(/~) is closed. The conjecture says that it is dense as well. 
So if the conjecture is true then for "a lmost  all" interior points the solution paths 
approach A(oEM) as t e 7/ approaches oo. I f  the conjecture is false there is an 
open set in d such that F ' (p )  remains bounded away from A ( E ~ )  although 
every interior point can be connected by an e-chain to points of  A(EM) for every 
e > 0 .  

For example,  in the modified paper-rock-scissors example, R(/~) is the one- 
dimensional stable manifold for the equilibrium e+ = (~, 0, +, ~). This is a smooth 
invariant curve connecting e_ with e+. 

The problem with the conjecture is illustrated by Fig. 2. There we have a 
degenerate equilibrium for a differential equation in the plane. Instead of a 
one-dimensional stable manifold we have a fat inset of points approaching the 
origin. In our case all of  the equilibria are actually hyperbolic for F and so do 
not cause this kind of problem. However, R(/~) consists not only of  the stable 
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Fig. 2 

manifolds for the individual equilibria, i.e. points p such that ~o(p) E/~, but of 
the insets for the general basic sets B ( Z )  for Z ~ EM. Just as avoiding the problem 
of Fig. 2 is usually accomplished by showing that the equilibrium is hyperbolic, 
a proof of the conjecture in general would appear to require a hyperbolic structure 
on the basic sets. 

Notice that in our examples, Eta included all of the vertices. In general, if 
any vertex is not in Eta the corresponding coordinate is certainly eliminated. 

8. Theorem. Suppose Jt ~ J2 = I and Jl n .]2 = ('~. Suppose 

aij < 0 for all i ~ Jl and j  ~ J2, (2.7) 

i.e. i > j  for  all i~J1 and j ~ J 2 .  Define PJI= y , {p i : i~J1}"  I f  p j~<l  then 
lim,_,~ F'  ( p ) j, = 0 i.e. all indices i e Jl are eliminated. In particular, A(  Eta ) c A J2 
and no vertex of  EM is in Jl . Conversely, i f  Jl = { i ~ I: i ~ Eta} and .12 = I -  Jl , then 
Jl and J2 satisfy (2.7). 

Proof: Directly from the definition: 

8pj, = Y. {pip iaij : i c J1 a n d j  ~ I} 

= ~ {piPjaij : i ~ J1 a n d j  ~ J2} (2.8) 

because ~ {pipja~j: i , j ~  J~} =0 by antisymmetry. So if pj, is neither 0 nor 1, i.e. 
there exist i ~ Jl and j ~ -/2 with p~ > 0 and pj > 0, then 8pj~ < 0. By the usual 
application of Lemma 1.3(b) the decreasing sequence Ft (p ) j ,  has limit 0 as 
t ~ + o o a n d  1 as t ~ - o o .  

(d)<=> (c) is obvious. 
If  (d) is true then by Theorem 8 the vertex at io is an attractor with io = ~o(p) 

for all p such that P~o > 0. This implies the last paragraph of the theorem and 
incidentally shows (d) ~ ( b ) .  Q.E.D. 

Remark: (2.8) is true for the continuous system (1.1) when 8pj, is replaced by 
dpjJdt .  So the limit results of Theorem 8 and its corollary are true for the 
continuous case as well. 
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Hence A J2 is an attractor (let Q = { p c  A: p:l<~�89 for (1) in Smale's lemma) 
and so contains A ( E ~ ) ,  the minimal attractor. 

Conversely, if J1 = {i ~ EM} then because any two vertices are comparable,  
i~J1 a n d j E J 1  implies i>j .  Q.E.D. 

In particular, we have the special case dealt with by Nagylaki: 

9. Corollary. The following conditions are equivalent: 
(a) E~ contains a single equilibrium. 
(b) A(EM) consists of a single point. 
(c) A has no interior equilibrium and with J = I, e_ is a vertex. 
(d) There exists io E I such that aioj > 0 for all j ~ io. 
I f  these conditions hold and P~o> 0 then lim~_~ Ft(P)~o = 1. In particular, to(p) 

is the vertex associated with io for every interior point p. 

Proof: ( b ) ~ ( a )  is obvious. 
( a ) ~ ( d )  because if EM={e} and io~supp(e)  then e >  io and ioeEM thus 

implies io = e. Because all vertices are comparable and io is the unique minimal, 
j > io for all j ~ io. This is (d). 

3. Hamiltonians for the continuous system 

Associated with a matrix aij is the linear map and its dual which we will write 
as [a]. So in our previous notations: 

([a]x)i = aix = Y.j xja 0 x c ~  n. 
(x[a])j  = axj = •i xia~ 

The condition that e be an interior equilibrium for (1.1) simply says, in 
addition to e e z~, that e is in the annihilator or kernel of the linear map [a], i.e. 
[a]e = 0. I f  Ng = {x ~ R": S~ x~ = 0}, the perpendicular  complement  to the vector 
1 = (1, 1 , . . . ,  1) in R", then we define the subspace B to be the intersection of the 
annihilator with N~ : 

B = {x  ~ ~g : [ a ]x  = 0 } .  

In this section we will prove that systems (1.1) admitting interior equilibria 
are Hamil tonian on zl and will in the process examine the invariant manifolds 
for the system. More generally, we will assume that B is not the entire annihilator. 
This is equivalent to: 

I. Assumption: There is a unique vector q in R n such that 1 �9 q = 1, [a]q = 0 and 
b e B  implies b. q = 0 ,  where b. q=-Y~,b~q,. 

In other words, q is the vector generating the perpendicular complement  of 
B in the annihilator, normalized by Z~q~ = 1. In general, q need not be a 
nonnegative vector even when interior equilibria exist. 

Define A to be the perpendicular complement  of  B in R~ : 

A = { x ~ :  b. x=Ofora l l  b~ B}. 

Notice that Rg is the subspace of vectors tangent to our state space zl. 
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The vectors of B yield invariant functions for the dynamical system. Recall 
that for b ~ ~" we define the function Lb(p) = ~ bi In Pi on d. Lemma 1.1(a) says 
that for b ~ B, dLb/dt  is identically zero. Let us rewrite this result in the notation 
of vector fields and differential forms. 

The vector field Xa: A ~E~  associated with (1.1) is defined by 

X~=piaip a t p ~  A. (3.1) 

We can compute, as we did for (1.9): 

dLb(X  a) -- abp = b[a]p a t p ~ / (  (3.2) 

where the latter equation uses our new notation. 
In particular, b ~ B implies b[a] = -[a]b  = 0 and so 

dLb(X a) = 0 on / (  for b ~ B. (3.3) 

Thus, the functions L b slice /( into separate invariant manifolds (a foliation 
of / ( ) .  To exhibit this structure we define for z c ~n the linear map EZ: A ~ g~ by 

EZ(p) = p .  z = Y. zipi. (3.4) 
i 

Now choose bases { b l , . . . ,  b'} and { z l , . . . , z  s} for B and A respectively. 
Notice that r + s = n - 1 because A and B form an orthogonal decomposition for 
R~. Define LB: d ~ R  r and EA: /~--R s by 

LB(p) = (Lb'(p) , .  .. , Lbr (p)) 
(3.5) 

E a ( p )  = ( E Z ' ( p )  . . . .  , E Z ' ( p ) ) .  

2. Theorem. (a) The image of  E a is an open convex set �9 in R s and E A x L B :/( --> A 
�9 •  is a diffeomorphism, i.e., it is one-to-one and onto with a smooth inverse. 

( b )  Fixing a vector k in ~ we get a ,smooth s-dimensional manifold ( EA • 
LB)-I�9 •  on which every function Lb for b e  B is constant. Varying k yields an 
r-parameter family of  manifolds called the horizontal foliation and denoted j-A. 
Each point p o f / (  lies in a unique leaf of  the foliation j-Ap defined by k = LB(p).  
The leaves of  ~-A are invariant manifolds for (I.1), i.e. X ~ is tangent to j-ap at p 

for all p ~ /(. 
(c) Fixing a point w in 0 we get a convex r-dimensional cell EA-I(w)  in /(. 

Varying w yields an s-parameter family of  manifolds called the vertical foliation 
and denoted ~B. Each point p of/(  lies in a unique leaf l)~ defined by w = EA(p) .  
Points Pl, P2 in /( lie in the same leaf of  ~B if  and only if  the difference vector 

P l - - P 2  is in B. 
(d) For b, z ~ R "  define the vector fields VL  b and VE z on / (  by: 

(~T Lb)i = b i - ( 1 ,  b )pi 
at p ~ /( (3.6) 

(VE' ) I  = p , ( z ~ - ( p .  z)) 

where 1 �9 b = ~ i b i  and p .  z=~p~z~= E~(p). We then have 

dLb(~ E z) = dE~(~T L b) 
at p c / (  (3.7) 

= b" z - ( l -  b)(p" z). 
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In particular, 
d L b ( ~ T E Z ) = d E Z ( V L b ) = o  i f b ~ B ,  z e A .  

So for  z ~ A the vector field V E Z at p is tangent to the leaf  ~-A. Conversely, i f  Y is 
~-~A a vector tangent to ~[p a t p  then Y = ~ T E  z a t p f o r  some z c A .  

Proof: This theorem is proved in Akin (1979) page 81ft. The hard part  is showing 
that E A • L B is a diffeomorphism. From this the foliation results are clear because 
the leaves are obtained by fixing various coordinates on ~ when we think of 
E A • L B as a coordinatization. Invariance of X a follows from (3.3). The leaf of 
~ u ,  E A - t ( W ) ,  is a convex cell because E A is linear. Also linearity implies 
E A ( p O  = EA(p2)  if and only if z. (PI -P2)  = 0 for all z in A. Because Pl - p 2 c  ~ 
this is equivalent to P l - P 2  in the perpendicular complement  of  A which is B. 

As the notation suggests ~ L  b and ~TE z are gradients with respect to a suitable 
Riemannian metric called the Shahshahani metric. We do not need that result 
and instead treat (3.6) as a definition. The equations of  (3.7) are easy direct 
computations.  Notice that if b ~ B and z ~ A then b.  z and 1 �9 b = 0. Q.E.D. 

In general, a vector field is called a gradient if it is the dual of  some d f  with 
respect to a Riemannian metric, f is then called the associated potential function. 
The potential function increases on all nonequilibrium solution paths. The 
Shahshahani metric was originally introduced to show that the game dynamic 
(0.3) is a gradient field with potential (1/2)app when the matrix a 0 is symmetric. 

A vector field is called Hamiltonian if it is the dual of  some d f  with respect 
to a symplectic form,  i.e. a nondegenerate exterior two-form, f is called the 
associated Hamiltonian function. The Hamiltonian function is then conserved 
on all solution paths. What we will show is that when a U is antisymmetric and 
assumption 1 holds then the restriction of X a to each invariant manifold ~A is 
Hamiltonian with Hamiltonian function - L  q. The necessary two-form is construc- 
ted using an antisymmetric matrix related to a~. 

3. Proposition. There exists an antisymmetric matrix u~ whose associated linear 
map [u] has image A. Furthermore, for  all z ~ A [ua]z = z and [au]z = z - (q .  z) l ,  
where [ua] and [au] are the linear maps associated with the product matrices 

(ua)ij = Z k  Uikakj and (au)ij = ~, aikUkj. 

Proof: Recall that for any antisymmetric operator the image and the kernel are 
perpendicular  complements.  In particular, the restriction to the image is nonsin- 
gular. So we can define a partial inverse operator  by inverting on the image and 
mapping the kernel still to zero. Composing the new operator with the old one 
in either order we get a map which is zero on the kernel and the identity on the 
image, i.e. the orthogonal projection on the image. The new operator  is antisym- 
metric because the old one was and so its matrix is antisymmetric. 

We apply all this not to a 0 but to ~;j defined by 

aij = a i j -  n- l  ail + n- la j l  (3.8) 

where 1 = (1, 1 , . . . ,  1) in ~". 
It is easy to check that 4 0 is antisymmetric and cTn = 0 for all i. Now if b c ~ 

~lib ~ a ib  q-  n 1 a b  I = a ib  _ n 1 a l b .  
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So if b is in B, 4ib =0  for all i. Conversely, if 4~b =0  for all i then a~b = n-~a~b. 
Multiply by q~ from assumption 1 and sum on i: aqb = --abq = 0 and so n- la~b = 0 

and a~b = 0 for all i, i.e. b 6 B. 
Thus, the kernel of [4] is spanned by 1 and the  vectors in B. The image Of 

[~] is therefore perpendicular to 1 and so lies in R~. There it is the perpendicular 
complement of B which is A. 

As the image of [4] is A we can apply the results of the first paragraph to 
define the partial inverse operator [u] with antisymmetric matrix u~j. The kernel 
of [u] is spanned by 1 and the vectors of B i.e. 

l u l l = 0  and [ u ] b = O  f o r b ~ B .  (3.9) 

Furthermore, for z E A we have [u4]z  = [4u]z  = z. 

Now [~]z differs from [a]z  by a multiple of 1 because z is in A c R~. So 
[u]I = 0 implies [ua]z  = [u][a]z = [u][4]z  = [u4]z  = z. 

To compute [au]z  we apply [4] to the vector q of assumption 1: 

aiq ~ -  aiq -- n - l  ail  q- n - l  aql = - - r l - l  ail 

because au annihilates q, i.e. from (3.8): 

and 

( a u )  o = (au)i j  + 2  ( - 5 , q  + 4 m ) u k  j 
k 

= ( ( t u ) o - Z  ujk4~ = (4u)i j  - q j  + n - l  
k 

where we have used ~ k  Ukj = 0 by (3.9) and [ud](q) = the perpendicular projection 
of q to A which is q - n - l l  because q is perpendicular to B. 

Hence, for z e A c ~ 

([ au]z ) i  = ([ Su]z ) ,  - q . z = zi - q " z. Q.E.D. 

What remains is an exercise in the use of differential forms. We follow the 
exterior algebra conventions of Abraham and Marsden (1978). Define on z~ the 
two-form: 

~j PiPj 

=�89 ~ ujid lnp~ ^ d lnpj (3.10) 
z, J 

= d [ � 8 9  a t p ~ / t .  
", j 

The third version shows that o) is exact and so is closed. 
Recall that if oJ is a two-form and X is a vector field then the inner product 

of X and w, denoted i• is the one-form defined by i x w ( Y ) = w ( X ,  Y ) .  For 
example using X = VE" we compute: 

i ~ z w  = - d L  TM (3.11) 
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as fo l lows:  

~ ~Ez ,  Y ) =  �89 E uj,[d In pi(VEZ)d In pj( Y ) -  d In pi( Y )d  In p:(VEz)] 
i , j  

= ~, uj~(zi- (p" z))d In pj(Y)  (by ant isymmetry o f  uij) 
l, j 

=~ ([u]z):d In p j (Y)  (because  ~. uji = 0  / 
j \ i / 

4. Theorem. The restriction of ~o to each leaf of  j-A is a symplectic form, i.e. a 
closed, nondegenerate two-form. Suppose q e N ~ such that 1 �9 q = 1 and [a]q = O, 
e.g. the vector q of assumption 1. On each leaf of  J -A the vector field X ~ is ~o-dual 
to d ( -Lq ) ,  i.e. for any vector Y tangent to J-2 at p: 

ixoco( Y)  = d ( - L q ) (  Y). (3.12) 

Proof: Fix p ~ z[ and recall that evaluating the vector fields VE  ~ at p as z varies 
over A we get all o f  the vectors tangent  to ~ .  

N o w  suppose  z, Z~ A and apply (3.11) and then (3.7) with b = z[u] to get 

,o(~ E z, C E ~ ) = i~z~o(r  E ~ ) 

= -dLZ["l((YE ~) = -z[u]~ 

because 1 �9 z[u] = z [u ] l  = 0. 
Recall that  [u] is an ant isymmetric  opera tor  with image A. So -z[u]~ = 0 for 

all ~ in A implies 0 = -z[u]  = [u]z and so z = 0 because [u] is nonsingular  on A. 
This means that  if Y is a vector tangent  to 3 ~  at p, and so Y = VE ~ for some 

z, and ivo) vanishes at all vectors tangent  to 3 v  A at p then Y = 0. This is what  it 
means for  ~o to be nondegenera te  on ~A.  Thus, we have that the restriction o f  
r to J-~ is a symplect ic  form. 

Similarly, we need only prove Eq. (3.12) with Y = VE z for z ~ A. Assume first 
that  q is the vector  o f  assumpt ion 1. Apply  (3.11) and (3.2) 

ixocO(fT E ~) = -ivEzoo( X ~) 

= dLZ[u](x ~) = z[u][a]p = z[ua]p. 

Because u/j and a 0 are both  ant isymmetr ic  the t ranspose o f  ua is au and so 
z[ua]p =p[au]z. By Proposi t ion 3, [au]z= z - ( q .  z) l  and so we get 

ixocO(fTE')=(p �9 z ) - ( q ,  z). 

On the other  hand,  f rom (3.7) and 1 �9 q = 1 we get: 

dLq(VE z) = (q" z ) - ( p ,  z). 

This proves (3.12) with our  special choice o f  vector  q. In  general, if 1 �9 t~ = 1 
and [a ]~  = 0 then the difference b = ~ -  q lies in B and so L q = L q + L b. Because 
dLb(y)  = 0  for all vectors Y tangent  to ~A (3.12) holds with q replaced by q. 

Q.E.D. 
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I f  e is an interior equilibrium then 1 �9 e = 1 and [a le  = 0. Recall that  the 
funct ion I e defined by (1.8) differs f rom - L  e by a constant.  We immediately get 
the following: 

5. Corollary. I f  Eo, the set  o f  interior equilibria, is nonempty  then on each l e a f  o f  
~-A the vector  f ie ld  X "  is w-dual  to d i  e f o r  all e ~ Eo. 

Note  that  if e ~ Eo and p ~/{ then p ~ Eo if and only if the difference vector 
p - e lies in B, i.e. if [a]e = 0 then [a]p = 0 if and only if  [a]  ( p -  e) = 0. So by 
Theorem 2(c), Eo is either empty or  is exactly a single leaf o f  the vertical foliation 
~a .  SO every horizontal  leaf intersects Eo in exactly one point  and we can define 
the funct ion e: ,~ -> E0 by { e (p)} = ~A C~ Eo, i.e. e (p)  is the unique equilibrium 
with the same horizontal  leaf as p. e is a smooth  funct ion because if e is any 
fixed point  o f  Eo: e ( p ) =  ( E A x  L B ) - I ( E A ( e ) ,  L B ( p ) ) .  Using e ( p )  we can define 
the nonnegat ive funct ion I:/~--> ~ by 

I ( p )  = I~(P)(p)  = - •  e ( p ) i  In ( p , /  e ( p ) , ) .  (3.13) 
i 

Given any e ~ Eo, on the horizontal  leaf j-A e ( p )  = e is constant  and so as p varies 
in j-A, I ( p )  = I e ( p ) .  So 1 />0  and vanishes, in the leaf, only at e. Consequent ly ,  

~i-lA X a I = 0 precisely on the set Eo. Because I = U on 3t e, is to-dual to d I  on each 
horizontal  leaf. 

The Hamil tonian  funct ion associated with a Hamil tonian vector field is unique 
up to additive constant  given the symplectic form. Notice that the different 
candidates  we have given for the Hamil tonian:  - L  q, I e, I do differ by an additive 
constant  on any fixed horizontal  leaf. That  this constant  may differ f rom leaf to 
leaf is a reminder  o f  the fact that  equat ion o f  duality (3.12) is only true for vectors 
tangent  to the leaves. 

While these results are all restricted to the leaves we can use them to construct  
a volume form on all o f /~  which is preserved by the flow o f  X #. 

6. Theorem. s = dimens ion  A is even and  r = d imens ion  o f  B is n -  1 -  s. Choose  

{ b l , . . . ,  b r} a basis f o r  B and  define 

g2 = tos/2 A d L  b~ ^"  �9 �9 A d L  br, (3.14) 

where to,/2 is the s - form to A to" �9 �9 A to ( S / 2  t imes) .  12 is a vo lume  f o r m  on ~1, i.e. 
a nonvan i sh ing  n -  1 f o r m ,  and g2 is invar iant  f o r  the f l ow  associated  with X a. 

Proof:  We will just sketch the argument  which is a technical applicat ion o f  the 
Lie derivative opera tor  Lxo associated with the vector field X a. For  simplicity 
we will assume { b ~ , . . . ,  b r} is an or thonormal  basis for B, i.e. b k .  b ~= 1 if k = l 
and =0  if  k r  Changing  the basis just  multiplies O by a nonzero  constant.  

Because each funct ion L b with b in B is invariant for X ~, the Lie derivative 
t x a d L  b = 0 for b ~ B. So: 

L x . O  = L x " (  to s/2) A d L  b~ A" " " A d L  b~. 

Because Lxaw 1 A 0.) 2 = ( Lxa(.ol) A (.02 -t- tO 1 A Lxao) 2 with the choice o f  sign depending 
on the degree o f  tol. (Recall that  the ant isymmetric  matrix u o is nonsingular  when 
restricted to A and so A has even dimension.)  
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Now if {z~, . . . ,  z S} is a basis for A then because A is perpendicular to B in 
R~ (3.7) implies 

d L b k ( V E  zt) = O, k = 1 , . . . ,  r and I = 1 , . . . ,  s. 

On the other hand, because the basis for B is orthonormat (3.7) also implies 

{10 k = l, dLbk (V Eb~) = k ~ I. 

Consequently, if r is any s-dimensional form 

r A dL  blA" �9 " ̂  dLb'(fT E Z l , . . . ,  V E Z~, ~ E b l , . . . ,  ~ E br) 

= r ( V E Z ' , . . . , V E Z ~ ) .  (3.15) 

We apply this result first with r = w s/2 and then with r = Lxo(Ws/2).  Because 
the restriction of w to each horizontal leaf is a symplectic form, ca "/2 restricts to 
a volume form on each leaf and this means 

tos/2(~ EZ',  . . . , CT E zs) # O, 

i.e. to ~/2 does not vanish when applied to a basis for the tangent space of the 
leaf. (3.15) then implies that ~ never vanishes. 

On the other hand, X"  is Hamiltonian on the leaves and this means that the 
restriction of Lx,tO is 0 on the leaves and hence so is the restriction of Lx"(ws/2). 
Consequently, 

Lx,w~/2(fT EZ~, . . . , (T E ~)  = 0  

at every point. (3.15) and the previous computation for L x 4 2  then imply that 
L• is identically 0. By definition of the Lie derivative, I2 is thus an invariant 
form for X% Q.E.D. 

We conclude with some general remarks. 
Because they are usually structurally unstable, Hamiltonian differential sys- 

tems are only appropriate when the conservation effects are essential in the 
underlying theory (e.g. mechanical systems) rather than accidental consequences 
of the choice of model design (e.g. the original Lotka-Volteria predator-prey 
equations). In particular, we think that Nagylaki is absolutely correct in his 
preference for the discrete time model for the biological applications he has in 
mind. On the other hand. Hamiltonian dynamics per se is an actively growing, 
fruitful branch of pure mathematics. It is our hope that these simple appearing 
systems may provide a rich new collection of examples. 
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