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0. Introduction

A two-player symmetric game consists of a finite set of strategies indexed by
I={l1,..., n} and an n X n payofl matrix (a;). When an i player meets a j player
their payoffs are a; and a;, respectively.

In evolutionary game dynamics we imagine a large population of game players,
each with a fixed strategy. The state of the population is a vector in R} =
{xeR": x; = 0} where x; measures the subpopulation of i strategists. So the total
population size is |x| =Y; x;. The associated distribution vector lies in the simplex
A={peR%:Y,;p;=1} where p,=x;/|x|, the ratio of i strategists to the total
population. The dynamics comes from assuming that payoff is measured in units
of fitness, i.e. relative growth rate, and is added to some background growth rate.
Thus, we assume the system of differential equations:

dx;
5 = Xirtay) (0.1)
where r is the background, strategy-independent growth rate and a, =}, p;a; is
the average payoff to the ith strategist because his opponent is a j strategist with
probability p;.
Summing on i, and using x; =|x| p; we get the equation for the growth of the

total population size:
d|x|
T |x|(r +ayp,) (0.2)
where a,, =3 p:ay, =Y ; PiP;Gy-
Using d In p; = d In x; — d In |x| we obtain from (0.1) and (0.2) the system of
differential equations describing the evolution of the distribution vector:
dp;

Ezpi(aip_app)' (0.3)
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Thus, the relative rate of increase of the frequency of i players is given by the
average excess in payoff between an i player and a random member of the
population.

Notice that the background rate r need not be a constant. It can depend on
the population size |x| or even on the entire state vector x. But as long as its
effect on fitness is additive, it cancels out in (0.3) and so we obtain a dynamical
system on the simplex which depends only upon the payoff matrix. When it is
solved, the solution can be substituted back into (0.2) to get a single time-
dependent equation in population size.

Because the simplex 4 is compact, we can display the solution of (0.3) as a
smooth map ®:A4 XR— A called the flow of the system. With pe A fixed the
function of : @(p, t) is the solution path for the system with initial point p. With
t fixed we obtain a smooth map ®': 4 > A and the family of mappings satisfies
the group properties: ®@°=identity and @' &° = @'**, In particular, each @' is
a diffeomorphism, i.e. it has a smooth inverse, namely @ *. See, e.g. Abraham
and Marsden (1978) Section 2.1.

Suppose we attempt to solve system (0.1) numerically using the simplest
approach, namely Euler’s polygonal approximation method. This amounts to
replacing the derivative dx;/ dt by the difference quotient 8x;/r with 7> 0 a fixed,
small increment, i.e.

ox; = x;7(r +ay)
or alternatively after one step x is mapped to the vector x’ with
xi=x{l +7(r+ay)]
So the total population size changes by:
|x'| = [x|[1 +7(r +a,,)]
Because pi=x}/|x'| and p; = x;/|x| we get:
pi=pll+7(r+a,)l/[1 +7(r+a,)]

Ignoring the fact that r may not be constant we define 7= 7/(1 +7r) and so
the mapping from p to p’ can be written as p’ = F;( p) where F;: A > 4 is defined
by:

F:p):=p(l +7:aip)/(l +’;app)' (0.4)

Euler’s result that the polygonal solutions approach the solution of the
differential equation says that for any p in A and > 0:

Hm[F:]"(p) = @*(p)

where n 00 and 7- 0 so balanced that the product n7— 1. Here the exponent n
represents n-fold iteration of the map F; so n is a whole number. See, ¢.g.
Abraham and Marsden (1978) Theorem 2.1.26.

This result motivates the hope that the dynamics of the continuous time system
(0.3) might be similar to the dynamics of thé discrete time system:

6pi =Pi(aip_ app)/(l +app) (05)
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which is just a rewriting of (0.4) with 7=1, i.e. we consider the map F: 4> 4
defined by

F(p)i=p(1+a,)/(1+a,,). (0.6)

Since we have, in effect, subsumed 7 into the matrix we may need conditions
that the entries a; be small. The only conditions of this sort that we will always
impose are those necessary that F(p); be defined and nonnegative:

l+a;=0 and 1+a;>0 forij=1,...,n (0.7)

i.e. the matrix 1+a; is nonnegative with a strictly positive diagonal. These
conditions ensure that 1 +a;, = p;(1 +a;) and so 1 +a;,> 0 if p,> 0. In particular,
I+a,>0forall pin A

In the case where the matrix a; is itself symmetric, i.e. a; = a;, these systems
have been widely studied as two versions of the one-locus-n-allele model of
classical population genetics, {0.5) and (0.6) due to Wright and (0.3) due to
Fisher. Here the phrase weak selection (i.e. |a;| small) has been used as the label
on the bridge to cross from the biologically more reasonable discrete time system
to the mathematically more tractable differential equation. As discussed in Losert
and Akin (1983) the hope that the two systems will behave similarly seems well
justified in this symmetric case.

The general system of equations (0.3) was introduced by Taylor and Jonker
(1978) as we described above as a dynamic model for Maynard Smith’s applica-
tions of game theory to evolution (see Maynard Smith (1982) for a survey).
Independently, this system of equations was introduced by Eigen’s group studying
origin of life problems (see Eigen and Schuster (1979) for a survey). The discrete
time model (0.5) is due to Hines (1980) and to Losert and Akin (1983). In
particular, in the latter paper is proved the following result which we will use
repeatedly:

Theorem 1. Assuming conditions (0.7) the map F:A - A defined by (0.6) is a
homeomorphism, i.e. F is one-to-one and onto and the inverse function F~' is
continuous. F~' is differentiable in the interior of A and if 1 +a; >0 for all i, j then
F~': A~ A is a smooth map, i.e. F is a diffeomorphism.

In this paper we will examine the case antipodal to the population genetic
model, namely where the payoff matrix is antisymmetric. Since this condition
can be written a; +a; =0 such games are called zero-sum.

In addition to its interest as a special case of evolutionary game models this
class of systems has a separate pattern of applications all its own. Nagylaki
(1983a,b) has introduced (0.6) with antisymmetric a; as a model for gene
conversion. We would like to express our gratitude to Professor Nagylaki for our
introduction to the problem, for many helpful discussions and, above all, for his
emphasis on the radical difference between the discrete and continuous models
in the antisymmetric case.

In Sect. 1 we use a common pattern of assaying the behavior of certain
log-linear functions on orbits to provide an overview of the behavior of the two
kinds of models. The distinct behaviors thus revealed are examined in detail in
the later sections. In Sect. 2 we use techniques of Conley and Smale to construct
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a closed set to which — we believe — almost all orbits of the discrete system are
attracted. In Sect. 3 we show that the continuous system exhibits the conservative
behavior of classical Hamiltonian dynamics.

A related class of difference equations appears in Hofbauer (1984).

1. Classification and general behavior

From now on we will assume the payoff matrix is antisymmetric, i.e. a; = —a;.
This implies a,, =Y.; ; p:p;a; =0 for any point p and so the associated system of
differential equations on 4, (0.3), becomes:

. = PDilyp (1.1)

where a;, =Y, ; p;ay.
Whenever we consider the discrete time system we will assume conditions
(0.7) which in the antisymmetric case become:

laj|<1 foralli,j. (1.2)
The discrete time system (0.5) becomes:
Op: = pittsp. (1.3)
Equivalently, the discrete dynamic is given by the mapping F: 4 - 4 with
F(p)i=p(+ap). (1.4)

By Theorem 1 of the introduction, F is a homeomorphism and if the
inequalities of (1.2) are all strict F is a diffeomorphism. Recall that integrating
(1.1) yields the flow @: A xR—> A which displays all the solution paths at once.
Because F of (1.4) is invertible, we can define the discrete time flow F: A XZ > A
where Z is the set of integers. We use the same symbol F for map and flow
because when by analogy with @*: A > A we look at F': A~ A this map is just
F iterated ¢ times when ¢ is a positive integer and is F' iterated |¢| times when
t is a negative integer. F° is the identity map. Thus, if pe 4, @'(p) as a function
of ¢ in R is the solution path of (1.1) with initial condition p. Similarly, F'(p)
as a function of ¢ in Z is the solution path of (1.3) with initial condition p.

A point e of A is called an equilibrium if the solution path remains constant
at e as ¢ varies. The conditions that e be an equilibrium for (1.1) or (1.3) are
dp,/dt =0 for all i or 8p;=0 for all i respectively. So the two systems have the
same set of equilibria: e is an equilibrium if for all i either e; = 0 or a;, = 0 (or both).

Introducing the concept of support, we can restate the equilibrium conditions.
If x is a vector of R" then the support of x, denoted supp(x), is {i€ I: x; # 0}. In
particular, if pe A then p,> 0 for i e supp(p) and p; =0 for i¢supp(p). If J= I
we define -

R’ ={xeR":supp(x)c J}={xeR": x,=0forig J}.

R.=R"nAR’, A'=4nR’
R.={xeR": supp(x)=J}={xeR’: x,>0forieJ}
A" =AnRL={ped:supp(p)=J}.
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In particular, the set of interior vectors of A, denoted Aa, consists of the positive
vectors of 4, i.e. A= {pe A: p,>0 for all i}. The remaining points of A form the
boundary of A, 9A=A~A={pe A: p,=0for some i}.

Thus, e A is an equilibrium if a;, vanishes for every i in the support of e.
In particular, e is an interior equilibrium if e € A and a;, =0 for all i. At the other
extreme each vertex of the simplex is an equilibrium. This follows from the
general fact that the support remains constant on every solution path, i.e. each
A’ is an invariant set.

When p is not an equilibrium we are interested in describing its asymptotic
behavior, e.g. computing the limit as t—>co of @'(p) or F'(p). However, these
functions of ¢ need not tend to a unique limit point as ¢—o0. So instead we
consider w(p) defined to be the set of limits of all convergent subsequences
®'(p) or F'»(p) where t, is a sequence of values in R or Z approaching . An
exercise in topology yields the equivalent definition

wo(p) =O Us= {@*(p)} for (L.1)

_ (1.5)
0r(p)=(U= {F(p)} for(13),

where s, ¢ vary over R for (1.1) and over Z for (1.3). The bar denotes the closure
operation in A. As the decreasing intersection of compact sets w( p) is nonempty
in each case.

Instead of asking where p is going we can ask where it is coming from and
define a(p) to be the set of limits of convergent subsequences where t, > .

atD(P) =m Usst {d’S(P)} for (1.1)

- (1.6)
ap(p) =O Us=:{F*(p)} for(1.3).

For any point p, w(p) and «( p) are nonempty compact sets which are invariant
under the corresponding dynamic, e.g. if g € ws(p) then the entire solution path
®'(q) remains in we(p). In particular, if any of these four sets consists of a
single point, i.e. the corresponding limit exists, then that point is an equilibrium.
If e is an equilibrium then each of the four sets consists of e itself.

To illustrate these concepts and to introduce the reader to the difference
between the discrete and continuous time models we begin with the classic
example of a zero sum game, paper-rock-scissors. Here n =3 and the matrix is:

0 T -7
-7 0 T 0<r<l.

T -7 0

So a,, = 7(p; ., — pi_;) Where the arithmetic in the indices is modulo 3. As shown
in Fig. 1 the only equilibrium other than the three vertices is the center e with
e;=3. If we define the symmetric function 7(p) = p, p,p; on 4 it is easy to check
using (1.1) that dw/dt=0 at every point p. Thus, 7 remains constant on the
solution paths @'(p) for the differential equation. 7 =0 on the boundary of A
and m(e) =27. If 0<c <35 then the set {p: 7(p)=c} is a closed curve about e
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V2

V‘I V3 Fig. 1

which is invariant under the flow. If p # e is an interior point then the solution
@'(p) is periodic, cycling around the curve with ¢ = #(p). In particular, ag(p) =
wg( p) consists of the entire curve. The equilibrium e is stable but not asymptoti-
cally stable, i.e. if p is near e then the solution path @*(p) remains near but does
not approach e.

The invariance of the convex curve {7 = c} means that, as shown in Fig. 1,
the vector field associated with (1.1) is everywhere tangent to the curve. Now if
we look at the vector based at p # e, F(p) is exactly the tip of the arrow, which
lies outside the curve, i.e. it is closer to the boundary than p and so 7 (F(p)) <
w(p). Thus, if p is any nonequilibrium interior point the sequence of values
w(F'(p)) is a monotone decreasing function of ¢ as ¢ varies in Z. As we traverse
the orbit backwards in time F'(p) spirals inward toward e, i.e. ap(p)=e. As we
move forward in time F'(p) spirals outward toward the boundary but does not
approach any limiting equilibrium. Instead wg(p) is a closed invariant subset of
the boundary containing all three vertices. When ¢ is large F'(p) is close to the
boundary and appears to cycle around it. This cycling behavior of points near
the boundary contrasts with the behavior of points actually on the boundary all
of which approach some vertex equilibrium. Thus, the boundary is a closed
invariant set attracting all nonequilibrium interior solution paths for (1.3) but is
unlike a limit cycle in that points near the set do not behave like points on the
set itself.

The analysis of the rest of this section is based on two ideas. The first is to
hunt for functions like 7. In practice it is more convenient to take the logarithm
and define for beR":

L°(p)=Y b:Inp,  supp(p)=supp(h). (1.7)

Here the sum is taken over all i in the support of b. In order that the In p; be
finite for all such i, p; must be positive for i € supp(b). Thus, LPis dgﬁned and
smooth on {p: supp(p) = supp(b)}, an open subset of A containing 4.

We repeatedly use the strict concavity of the log function. For example, with
g€ A we define

I°(p)=-Y q:In(p;/q:),  supp(p)=>supp(q) (1.8)
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which differs from —L7(p) by the constant )’ g; In g;. Concavity implies that I?
can be used as a measure of displacement from g because

I(p)=-In} q(p;/q)=-In1=0

with equality only when the ratio p;/gq; is constantly 1 for all i in supp(q), i.e.
when p=gq. Thus, I? is a nonnegative function vanishing only at g.
The following Lemma describes the vectors b for which L? will prove useful.

1. Lemma. (a) Let b e R" such that a,; <0 for all j. Assume the continuous dynamic
(1.1) on A. At any point p with supp(p) = supp(b)
dL®

—=0

dt

with strict inequality unless a,; =0 for all j in supp(p).
(b) Let beR% such that ay <0 for all j. Assume the discrete time dynamic
(1.3). At any point p with supp(p) = supp(b)

8LP =<0

with strict inequality unless a;, =0 for all i in supp(b).
Proof. For (a) we have the easy direct computation

drL® dIn
WZE bjij=abp. (1.9)

As ay; <0 for all j the average a,, <0 and a,; <0 for any j in supp(p) implies
ap, <0.

Excluding the trivial case b =0, we can multiply b € R} by a positive constant
to assume ), b;=1, i.e. be 4. Then for (b) concavity of the log function implies:

8L°(p)=L"(F(p))—L"(p)=X b;In(F(p);/p,)
=Y biIn(1+ay,)<In(l+ay,)<Inl=0.

The first inequality is strict unless all a;,’s are equal for j in supp(b) and the
second is strict unless a,, =0. Thus, 8L° <0 and the inequality is strict unless
a,, =0 for all j in supp(d). Q.E.D.

Remark: We will see that the difference in behavior between (1.1) and (1.3) is
derived from the difference in conditions for strictness of the inequality. Suppose
beR’ and a,; =0 for all j. Then L® remains constant on the solution path of
(1.1) through p because a;, =0. But L® will still be strictly decreasing on the
solution path of (1.3) through p unless, in addition, a;, =0 for all i in supp(b).

The second major idea is the use of separation theorems for polyhedral sets.
Define:

E,={ee 4: a, =0forall i}
E,.={ee A: a, =0forall i, with at least one inequality strict}.

E_={eec A: a,, <0forall i, with at least one inequality strict}.
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2. Theorem. E,, E. and E_ are convex subsets of A consisting entirely of equilibria.
E, is exactly the set of interior equilibria. E. and E_ are subsets of the boundary.
For any antisymmetric matrix a; exactly one of the following two cases holds:
Interior equilibrium case: E, is nonempty and E. and E_ are both empty sets.
No interior equilibrium case: E, is empty and both E. and E_ are nonempty.

Proof:' By definition E, consists of all interior equilibria. Convexity of the three
sets is clear. Now suppose ec E,. 0=a,, =3, ea; and ea, =0 for all i implies
e;a;, =0 for all i. Hence, a;,, =0 for i in supp(e), i.e. e is an equilibrium, and
¢; =0 when a;. >0, i.e. e lies in the boundary of A. Finally, we note that if ec E.
and pe A4 then

0<>:. Dilie = Qpe = —Qgp = —Z €;p.

In particular, p ¢ E,. So if E, is nonempty, E, is empty. Suppose, on the other
hand, that E, is empty. Define

Y ={yeR": y,=a, forsome x in R}}.

Thus, Y is the convex cone on the columns of the matrix a;. The hypothesis that
E. =¢ implies that Y intersects the positive orthant R’} only at 0. We apply a
result from Karlin (1959), Theorem B.3.5 on page 404, a delicate separation
theorem, which says that there exists a strictly positive vector e such thaty ; ey, <0
for all y in Y. By multiplying by a positive constant we can assume > ;e; =1 and
so ec A. The inner product condition says a,, <0 for all x in R} and so a,; <0
for all j. Thus, a, = —a,;=0 for all j. If any inequality were strict then e would
lie in E, which is empty. So e 4 and a,, =0 for all j, i.e. ec E,.

Finally, replacing the matrix a; by its negative —a; leaves the set E, unchanged
and interchanges E. and E_. So the results for E_ follow from the above results
for E,. Q.E.D.

In applying the functions of Lemma | to the cases of Theorem 2 we will
repeatedly use versions of

3. Lemma. (a) Let g(t) be a twice differentiable real function with g"(t) uniformly
bounded. If lim, . g(t) exists and is finite then lim, ., g'(t) =0.

(b) Let g, be a sequence of real numbers. If lim,,_, g, exists and is finite then
limn—wo agn(=gn+l - gn) =0.

Proof: (b) is clear because if lim g, = L then lim g,,,—g,=L—-L=0.

For (a), assume that g”(¢) is bounded by M = 1. If the lim, .. g'(¢) =0 is not
true, then we can choose a sequence {f,} approaching c© such that g'(z,) is
bounded away from zero. We can suppose t,.>1,+1 and g'(t,)=2¢ with
0<e<l. Let g,,=g(t,) and g, = g(t, +¢/M). Because g" is bounded by M,
g'(t)= ¢ fort,<t<t,+¢/M. Sobythe mean value theorem g, | — g2, = e2/M>
0. By (b) lim,,_. g, does not exist and a fortiori lim,_, g(t) does not. Q.E.D.

We now turn to the main results of this section, the description of the fate of
interior points in the two cases.

! Parts of this argument are due to J. Hofbauer.
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4. Theorem. (Interior equilibrium case: E,# @)

(a) Assume the continuous dynamic (1.1). If e € E, andpe A, then the Jfunction
I¢(®D'(p)) remains constant as t varies in R. If pe A- E,, i.e. an interior nonequili-
brium point, then the closure of the solution path is a compact invariant set containing
wae(p) and ay(p) and contained in A —E,. In particular, there is no equilibrium
in this orbit closure.

(b) Assume the discrete dynamic (1.3). Ifec Eyandpc A—E, then I°(F'(p))
is a strictly increasing function of t in Z. F'(p) approaches the boundary and E,
as t—=> +00 and —oo, respectively, i.e. wg(p)<dA and ar(p)< E,.

Proof: If ee E, then ecRY and a,;= —a;, =0 for all j. The function I° differs
by a constant from —L° So by Lemma 1, dI/dt =0 (using (1.1)) and 8I°=0
(using (1.3)) at every interior point p. Furthermore, 8I°>0 at p unless a, =0
for all i, i.e. pe E,. Because F is invertible, p £ E, implies F'(p) £ E, for all ¢ in
Z and so I°(F'(p)) is a strictly increasing function of ¢ unless p € E,.

For (a) assume that p e A- E,. Then for all e € E,, I°(p) is positive and finite.
It is clear from the definition (1.8) that I°( p} approaches c© as p approaches 3A.
So the set {ge A: I°(q) = I°(p) for all e E,} is a closed subset of 4, and so is
compact, and lies entirely in A- E,. Furthermore, it is an invariant set because
the functions I°® are invariant. As this set contains p it contains the closure of
the solution path through p.

For (b) assume that pe A-E,.Forallee E, the sequence I°(F'(p)) is strictly
increasing in #. So the — possibly infinite — limits lim,, ., I°(F'(p))=L, and
lim,, _o I°(F'(p)) = L_ exist. Because I° is nonnegative and vanishes only at e,
it is clear that 0<L_<L,=<00, If g ap(p), choose {t,} a decreasing sequence
in Z with lim ¢, = —c and lim F'=(p)=gq. I°(q) =lim I*(F"(p))= L_< 0. Con-
sequently, g lies in the interior. Furthermore, applying Lemma 3 to g, = I°(F( p))
we get that 81°(q) =1im 81°(F™(p)) =0. But on A, 8I° vanishes only at points
of E,. Hence, g € E, and so the compact invariant set a(p) is contained in E,.

If g € we(p) and {1, } is an increasing sequence as above then we show L, =
and so q lies in 84. For if L, <co the above argument would again show g € E,.
But for every e in E, I°(q)=L_.>0. Thus, wp(p)<dd.

Remark: Result (b) with essentially this proof is due to Nagylaki.

5. Theorem. (No interior equilibrium case: E,=@).

(a) Assume the continuous dynamic (1.1). Ife,c E., e_c E_andpc A then
I*<(®P*(p)) is strictly increasing and I°~(®'(p)) is strictly decreasing int e R. wg(p)
and ag(p) are subsets of dA. In fact, if we define J.={ieI: a,,=0 for all e in
E.}and J_={iel:a,=0 forall e in E_}, then J, and J . are proper subsets of I
and

we(p) <= A’
ag(p)c 4’

(b) Assume the discrete dynamic (1.3). If e,c E. and pe A then I+(F'(p))
is strictly increasing in t€ Z. wr(p) and ax{p) are subsets of 3A. For the latter we
have

(1.10)

ap(p)<= A’ (1.11)
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Proof: That dI°+/dt >0, dI*-/dt <0 and 81°> 0 at all interior points follow from
Lemma 1.

To prove (1.10) we apply Lemma 3(a) noting that by the derivative calculation
(1.9) the second derivative of I°+(®P*( p)) is clearly bounded. Because I°+(®‘(p))
is increasing in ¢ and nonnegative it has a finite limit L, as t approaches —co.
So if ge ap(p), I*(q)=L, is finite and dI*+/dt=0 at gq. This implies that
supp(q) > supp(e,) and a,, =0 for all i in supp(q), i.e. supp(q)< J,. Hence,
as(p)< A'+. By definition of E., J, is a proper subset of I and so Al+c 3A. The
result for wy follows by replacing a; by —ay.

To prove (1.11) we apply Lemma 3(b) and in the same pattern as the above
argument we get that for g € ap(p), I°+(q) is finite and 8I°+=0 at g. This implies
that supp(e.)csupp(q)<=J, as in the continuous case. If ge wgr(p) then
lim,., +o0 I(F'(p)) <o implies g € A”+ while lim,_ . I*(F'(p))=cc implies that
supp(q) cannot contain supp(e.). So in either case g; =0 for some i and g €dA.

Remark: Because I*- need not be monotone on solution paths in the discrete
case, we cannot prove that wp is contained in A”-. This is a question to which
we will return. On the other hand, we get a sharper result than was stated for
points of ar(p). For g€ ar(p) we saw that 81° is zero at ¢ and so:

geap(p)=a,=0 forallicsupp(e,). (1.12)

These results reveal in detail the difference between the two sorts of dynamics.
In the interior equilibrium, continuous case 4 is filled with invariant manifolds
containing no equilibria. All interior equilibria are stable, though not asymptoti-
cally stable, because I° is an invariant function. We will examine this conservative
behavior in Sect. 3. By contrast for the discrete time dynamics we have:

6. Corollary. Assume the discrete time dynamic. If p is an interior nonequilibrium
point then as t-> in Z F'(p) approaches the boundary. Any closed invariant
subset of A contains equilibria.

'Proof: wx(p)< 34 for nonequilibrium interior p in both cases. Now let C be a
closed invariant subset of A and choose pe C with minimal support, i.e. if
J =supp(p) then there does not exist g€ C with supp(q) a proper subset of J.
1t follows that p is an equilibrium. Assume not. Then p is an interior nonequili-
brium point for the dynamic restricted to the strategies in J, and so wg(p)<o4’.
Because C is closed and invariant, pc C implies wr(p)< C. The points of
wp(p) lie in C and have support smaller than J. This contradicts the
minimality of p. Q.E.D.

Remark. Tt follows that the only periodic points, points p such that F'(p)=p
for some te€Z—0, are equilibria.

Now in the no-interior-equilibrium case, (1.10) implies that strategies i€ J_,
i.e. a;,_ <0 for some e_e E_, are eliminated by competition. In fact p, =0 on A'-
and ws(p)< A~ imply that beginning at any interior point p,

lim ®'(p);=0 foralligJ_ (1.13)
{—>00
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In particular, the queer recurrence behavior described in Akin and Hofbauer
(1982) cannot occur for anti-symmetric models.
The question arises whether the same result is true for the discrete time
dynamic. The answer appears to depend on the size of the entries ay.
Consider the payoff matrix parametrized by 1> 7> 0:

0 -5 4 -
; 5 0 1 -1
-5 -1 0 1
i1 -1 0

To the paper-rock-scissors game we have added a new strategy (labelled 0) which
behaves somewhat like paper (strategy 1). It is easy to check that:

E_={(0,3,3,3)}

We will see below that if 7> 0 is sufficiently small then lim, .. F7(p)o=0 for
all interior points p. In other words, the analogue of (1.13) holds and the new
strategy is eliminated. However, for 7 near 1, e.g. 7 = 0.9, numerical results suggest
most interior orbits do not eliminate 0 in the limit. Instead of approaching the
“edge cycle” 3>2- 1 >3 of the original game, most strategies appear to approach
the *‘edge-cycle” 3-2->0->1->3.

In Sect. 2, we will discuss the general recurrence patterns for the discrete time
model in the nondegenerate case. We conclude this section by introducing the
nondegenerate case and proving the analogue of (1.13) for 7 small enough.

Recall that det(ay) = det(a;) = det(—a;) = (—1)"det(a;), where det stands for
the determinant. So if n is odd the determinant of the antisymmetric matrix a;
is zero. If n is even then by perturbing the entries slightly we can preserve
antisymmetry and get a nonzero determinant. Hence, the set of nondegenerate
antisymmetric matrices is open and dense in the set of all antisymmetric matrices
when we define (a;) to be a nondegenerate antisymmetric matrix when for all
subsets J of I={1,..., n} containing an even number of elements:

det(a;: i,jeJ)#0. (1.14)

In other words, the even dimensional principal minors of a; are all nonzero.

7. Lemma. Assume a; is a nondegenerate antisymmetric matrix and J < 1. Suppose
there exists a nonzero vector x with supp{x)< J and a,, =0 for all i in J. Then J
has an odd number of elements, a,, # 0 forig Jand x; # 0 forie J (i.e. supp(x)=J).
Furthermore, if J has an odd number of elements then such a vector exists and is
unique up to a nonzero scalar multiple.

Proof: If J is even then the homogeneous system of equations ) ;. ;a;x; =0 (i€ J)
has only the trivial solution by (1.14). If J contains 2m +1 elements then (a;: i, j €
J) has rank 2m by (1.14) and so the system has a one dimensional solution space.
If {x;: jeJ} is a nonzero solution then defining x; =0 for i £ J yields a nonzero
vector x in R” with supp(x)<J and a;,, =0 for ie J. If x; =0 for some je J then
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we would have a solution for J —{j} which is even. If a;, =0 for some ig J then
we would have a solution for J U {i} which is even. As the even cases admit only
the trivial solution it must be that supp(x)=J and a;, #0 for ig J. Q.E.D.

8. Proposition. Assume a; is a nondegenerate antisymmetric matrix.

(a) If e is an equilibrium, i.e. ec A, a;, =0 for all i e supp{e) = J, then J has an
odd number of elements and e' is the only equilibrium with support equal to J.
Furthermore, a;, #0 for i £ J. In particular, there are only finitely many equilibria.

(b) If J< I there is a unique vector e, € A with J,=supp(e,)<J and a;,,, =0
for all i in J and there is a unique vector e_c A with J_=supp(e_)=J and a;,, <0
foralliinJ. Eithere,=e_, withJ,=J_=Jand a,_=a,,_ =0 foralliinJ (A7 has
an interior equilibrium) or J, and J_ are proper subsets of J with a,,,>0 for all
ieJ—J, and a,, <O for all ic J—J_ (A’ has no interior equilibrium).

(c) Assume the continuous dynamic (1.1) and let pe A with supp(p)=/J.
we(p)< A7 and ag(p)= A

(d) Assume the discrete dynamic (1.3) and let p € A with supp(p)=J. ap(p)=
{e.} and either p=e,=e_ or wp(p)<{xeA’: x;=0 for some ic J.}.

Proof: By Lemma 7, a;,, =0 for i € J and supp{x)=J has no solution if J is even
and a one dimensional manifold of solutions if J is an odd subset. In the latter
case there is an equilibrium with support J if and only if the line of solutions
intersects R’ —0. If so, normalizing to ), x; = 1, i.e. x € 4, yields a unique solution
x = e. In particular, there is at most one equilibrium for any support set and so
only finitely many equilibria.

In proving (b), (¢) and (d) we can assume J=1I, as the general result is
obtained by restricting to the subsystem with strategies only in J.

Since E,, E, and E_ are convex sets of equilibria and since there are only
finitely many equilibria, each set is either empty or contains exactly one point.
In the interior equilibrium case where E,# () then e, = e_ is the single point in
E,. If p is an equilibrium on the boundary then a;, # 0 for i€supp(p) and so
the conditions e A and a,, =0 for all i define this interior equilibrium uniquely.
When E,= &, then E, and E_ each contain a single point labelled e, and e_
respectively.

For (c), in the interior equilibrium case with J = I A’ = A’- = A and the result
follows from Theorem 4(a). When there is no interior equilibrium, Theorem 5(a)
implies wg(p) = A- and as(p) = A%+ Furthermore the proof shows that 1* and
I¢+ are finite on we{p) and a4( p) respectively. So the sets lie in the interiors.

For (d), in the interior case with J = I, the result follows from Theorem 4(b).
When there is no interior equilibrium Theorem 5(b) implies that wg( p) is in the
boundary and arp(p)< A+, Furthermore, by (1.12) if g€ ax(p), a;, =0 for all
ieJ. so g is the equilibrium with support J,,ie. g=e..

Finally, if the increasing sequence I°+(F‘(p)) had a finite limit then the same
argument would show wr(p)={e.}. But for gews(p), I*(q)>I(p)>0
because p is in the interior. Consequently, lim,_., I*(F‘(p)) =0 and so wg(p) N
{xedl:x;=0foriel,}=0. " Q.ED.

In preparation for our remaining result we require another separation
argument.
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9. Lemma. Assume a;; is a nondegenerate matrix with no interior equilibriurn. Assume
ai. <0, ie. kesupp(e_). There exists a vector beR" such that a,;>0 for all j,
b;>0 for all i # k and b, <0.

Proof: Let D be the n Xn diagonal matrix with D; =1 for i # k and Dy, =—1.
Define the 7 X2n matrix B by the block form

B=(A, D).

We are looking for a vector beR" such that bB is a positive vector. By Gale
(1960), Theorem 2.9 page 48, if such a vector b does not exist then there exist
vectors x, y € R not both zero such that Ax + Dy =0, i.e. a, =—y;<0for i#k
and g, =y, = 0. Clearly, x =0 implies y =0, too, and so x # 0. We can multiply
by a positive constant to get x € 4 such that a;, <0 for i # k and a,, = 0. Because
e_cR% and kg supp(e ) it follows that a,, =—a. ,=0. But a,._ <0 for all i and
$0 a,, =0 with strict inequality unless supp(x)c<supp(e_). Now with J=
supp(e_), e_ is the unique vector x in A with supp(x)<J and a;,, <0 for all i in
J by Theorem 8(b). So x = e_. This is impossible because a,, =0 while a,, <0.
Consequently, the vector b exists. Q.E.D.

10. Theorem. Assume a;; is a nondegenerate symmetric matrix (satisfying (1.2)).
For any 0<r=<1 let F, be the map obtained from (1.4) by replacing a,, by ra,,.
Consider the discrete dynamical system obtained from (1.3) by this replacement.
There exists To> 0 such that if 0<1 <1, then supp(p)=J implies wr (p)< A

Proof: Tt is sufficient to find a 7,>0 which will work when p is interior. Then
we apply the result to each support subset and use the minimum 7, from among
those so found. In the interior equilibrium case J_ is all of I and the result is
trivial (use 7, = 1). Finally, in the no interior equilibrium case look at k ¢ supp(e..)
ie. ai, <0. We will find a 7.>0 such that when 7< 7, and peAa, qge wr(p)
implies g, = 0. The result then follows by choosing 7= minimum 7, as k varies
over I —supp(e_).

With k fixed we choose the vector b given by Lemma 9 and try to apply
the argument of Lemma 1(b). At any vector g in 4 we have

8L%(q) =Y b; In (1 +7ay,).

But now the concavity of the log is no help. Instead apply Taylor’s theorem to
write In(1 +7u) = 7u + 7°R(r, u) where |R(7, u)|<1 for |u|<1 and 7<1/2.
Define
_ min{a,}

_2(Z|bj|)'

Then for all g in A 7, <a,,/2(}. |b;|) and so for 0 <7<,

Tk

5Lb = T(abq +TZ b]R(T, ajq)) = T(abq —%abq)
= ’Tabq/2> 0

Consequently, if 7=, L°(F.(p)) is increasing in t. If g € 64 and g, > 0 then
as x nears g the second term of

Lb(x) =Zj#k b} In xJ- +bk In Xi
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remains finite while the first approaches —oo because b;>0 for all j#k As
L*(F(p)) is finite and increasing in t, no subsequence of F.(p) can approach
q as t-> 0,

So g, =0 at every point of wr (p). Q.E.D.

Remark: In particular, for nondegenerate a; and 7>0 sufficiently small the
analogue of (1.13) holds: Beginning at any interior point:

}im Fi(p);=0 foralligJ_. (1.15)

2. Attractors in the discrete system

Let us begin by describing some concepts from topological dynamics due to
Conley and Smale.

If F is a homeomorphism of a compact metric space X onto itself we define
an e-chain to be a sequence {x,,..., x5} in X such that d(x;, F(x;_,))<e for
i=1,..., N, where d is the metric on X. Define the quasiordering on points of
X:

x>»y ifforevery & > 0 there exists an

. (2.1)
e-chain {x,, ..., xy} with x=x, and y = xu.

The ordering is clearly transitive and it is reflexive because {x} is an e-chain
connecting x with itself. However, the ordering is usually not antisymmetric.
Instead, the associated equivalence relation is defined by:

x=y ifx»yandy>»x (2.2)

and » induces a partial ordering on equivalence classes.

By uniform continuity x>»y implies F(x)» F(y) and F '(x)>» F '(y).
Clearly, the implications hold with » replaced by = as well.

Obviously, x » F(x) and more generally x » F*(x) when n>0. A point x is
called chain recurrent if F(x)>» x and so x= F(x). An invariant set A, i.e. a set
with F(A)= A, is called a chain recurrent set if x,, x,€ A implies x, = x,. For
example, if pe X and we define the limit points sets a(p) and w(p) by (1.5)
and (1.6) then «(p) and w(p) are chain recurrent sets. For if x,, x,€ w(p) for
example, and & > 0, choose 8 >0 so that d(x,, y) <8 implies d(F(x,), F(y))<e.
There exists rn;>0 such that d(x,, F"(p))<& and n,>n,+1 such that
d(x,, F™(p)) <e. Then {x,, F""(p), F"™(p),..., F™ '(p), x,} is an e-chain
from x; to x,.

Notice that a chain recurrent set consists entirely of chain recurrent points
because x e A implies F(x)e A. Also, it is easy to check that the closure of a
chain recurrent set is chain recurrent. If x is a chain recurrent point then its =
equivalence class is invariant because x ~ y implies F'(y) =~ F '(x) = x = F(x) =
F(y). So this class is a chain recurrent set. It is clearly the largest chain recurrent
set containing x and so is closed. The equivalence classes of chain recurrent
points are called the basic sets of F.
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The other key notion is defined in:

1. Lemma (Smale): Define o (F) to be the closure in X of | {a(p): pe X}.

For any closed invariant set A in X the following three conditions are equivalent:

(1) There exists a closed subset Q of X such that F(Q)c Interiorx Q and
A= V=0 F'(Q).

(2) Ana(F) is relatively open in a(F) and p & A implies a(p)n A= &.

(3) There exists a closed subset Q of X with Ac Interiorx Q and A=
(M=o F"(Q).

If A satisfies these conditions then it is called an attractor. A repellor is defined
to be an attractor for the map F'.

Proof: (1)=(2): Given Q as in (1), F*(Q) is a decreasing sequence of sets with
intersection A. So if p ¢ A then p ¢ F"(Q) for n sufficiently large, i.e. F""(p)£ Q
for n large and so a(p) is disjoint from Interior Q and in particular from
A. Also, An a(F)=Interior Qna(F) and so Ana(F) is relatively open in
a(F).

(2)=>(3): Because An a(F) is closed and is relatively open we can choose
Q a closed set containing A in its interior and such that Q na(F)=An a(F),
e.g. a(F)—(Ana(F))is closed in X and disjoint from A and so its complement
contains a closed neighborhood of A. A<( ), F"(Q) because A is invariant.
On the other hand, if p&( =0 F"(Q) then F™"(p)e Q for all n=0. So a(p)<
Qna(F)=Ana(F). By (2) a(p)c A implies pc A.

(3)=(1): See Smale (1970) Lemma 4.2 page 292. Q.E.D.

Remark: If Q satisfies condition (1) for A, let (} = X —Interior Q. Clearly
F(Q)cInt Q=Q<c F '(Int Q)=>F (Q)c X -QcInt Q. Then B=
(Np=o F '"(é) is a closed invariant set called the repellor dual to the attractor A.
It is easy to check that if pe X —(Au B) then a(p)< B and w(p)< A.

The relation between chain recurrence and attractors is:

2. Lemma. If A is an attractor, x€ A and x » y then y € A.

Proof: If Q satisfies condition (1) for A and ¢ >0 is smaller than the distance
between the disjoint compacta F(Q) and X —Int Q then any ¢ chain starting in
Q remains in Q. For every n=0 apply this argument to F"(Q) to show x>»y
and x € A implies y € F"(Q) for all n. Hence, yc A. Q.E.D.

In addition to their tremendous theoretical utility, the ideas associated with
chain recurrence are very suggestive for applications. The flow-with-errors, as
Conley calls it, is likely to be a more believable picture of the world we are trying
to model than the precise flow itself. Thus, the chain recurrence structure is likely
to be the most reliable information that the model imparts. The major reference
for these ideas is Conley’s (1978) beautiful lecture notes.

In applying these ideas to the map F:4 - 4 of (1.4) with a; a nondegenerate
antisymmetric matrix, we will be able to capture all of the chain recurrence
structures by using the equilibria. This is because by Proposition 1.8(d) a(p) is
an equilibrium for every p in A. Notice that the behavior of the forward and
backward dynamics of F are completely different. This contrasts with the flow
@' associated with a; because @' is just the flow for —aj.
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For the rest of the section we will assume:
a; is a nondegenerate, antisymmetric matrix.
We begin with some notation. If e is an equilibrium for a; then define:
I.(e)={i: a;, >0}
I_(e)={i: a, <0}

Io(e) =supp(e)
IO+(e):IoUI+ and IO_=I()UI_.

The following is just a restatement of Proposition 1.8(a) and (b) using this
notation.

3. Proposition. (a) For every equilibrium e, the set [ ={1, ..., n} is partitioned into
the mutually disjoint sets Ij(e), I.(e) and I_(e).
(b) If J< I there are unique equilibria e, and e_ associated with J such that

Iy(e) e T Iy (el)
Ie)cJ=I_(e-).

Furthermore, either e, =e_ and J = Iy(e,) = I(e_) or I,(e,) and I,(e_) are proper
subsets of J.

Now we define a relation between equilibria. If e, and e, are equilibria for
a; then

e, > e, if Iy(e;) = Iy (e). (2.3)

In other words, ;> e, if a,, =0 for all i in the support of e,. > is reflexive but
is usually not transitive.

‘4. Theorem. (a) For equilibria e,, e, in A, e, > e, if and only if there is a sequence
D1, D2, - - -, PN Of equilibria with p, = e,, py =€, and p;>p,> - - - > pn.
(b) Call E a terminal set of equilibria if e, € E and e, > e, implies e,€ E. When
E is terminal define the closed subcomplex of A, A(E) by

A(E)=J{4%+?: ec E}. (2.4)

A(E) is an attractor for F and E is the set of equilibria contained in A(E).

(¢) An equilibrium e is called minimal if e » e, implies e~ e,. The set Ey; of
minimal equilibria is terminal and e,, e,€ Ey; imply e, =~ e,. A(E,) is the unique
chain recurrent attractor for F. p>» x for all p in A and all x in A(Ey;). So A(Ey)
is contained in every attractor.

(d) If A is an attractor for F then A= A(E) for the terminal set E={ec A: e
is an equilibrium},

Proof: If e, > e, then let J=1I,,(e,). For J e is e, and so for any point p with
supp(p)=J, ag(p)=-e,. Given £>0 we can choose p with supp(p)=J and
|p— e, < & because e, lies in A”. Choose n>0 such that |F~"(p)— e,/ <. Then
{e;, F7"(p), F """ (p),..., F'(p), e;} is an £-chain from e, to e,. So ¢, > e,.
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Now we turn to (b). As A(E) is a union of faces A” it is closed and invariant.
a(F) is the finite set of all equilibria and so A(E)n a(F) is relatively open in
a(F) (every subset is open and closed in a(F)). If ¢, is an equilibrium in A(E)
then e, € A™+®) for some e in E. So e>e, and e, € E because E is terminal.
Finally, if supp(p) =J then a(p)=e, for J. So a(p)n A(E)# J,i.e. e, € A(E),
implies e, € E and so pe A"+“2) < A(E). Thus, A(E) satisfies condition (2) of
Smale’s lemma.

Now we complete the proof of (a). If e, is an equilibrium define E to be the
set of equilibria e,, such that there is a sequence p,, ..., py of equilibria with
e, =p;, e;=pn and p; > p, - - - > pn. E is clearly terminal and so by (b) A(E) is
an attractor. If e is equilibrium and e, » e then ec A(E) by Lemma 2. So ec E
by (b). This completes the proof of (a).

(c) Suppose e is minimal and e> e;. We show that e, is minimal. Assume
e, > e,. Then by (a), e» e, and e>e,. So ¢, =e=e,. Thus, ¢, is minimal and
E,, is terminal. The hard part is to show that all the equilibria in E,, are equivalent.
The key is to consider the vertices of the simplex. Letting i stand for the vertex
whose i coordinate is one, we recall that i is an equilibrium. Furthermore, if i # j
then because J = {i, j} is an even set A” has no interior equilibrium and so e, # e_
for J. Thus e, =i and e_=j (or the other way) and so i > j. In other words, any
two vertices are comparable with respect to >. Also if e is an equilibrium and
iely.(e) then e>i Now let e, e,€ Ey. Choose vertices such that e¢;>i and
e,> j. Because i and j are comparable we can suppose i>j. Hence, e; > j and
e,>» j. Because e, e,€ Ey, we have e;=j=e,.

A(Ey,) is an attractor by (b). If pe A(E,,) and supp(p)=J then a(p)=-e.
for J and w(p) is a closed invariant subset of A” and so contains some equilibrium
e of A”. Because e. € a(p) and ec w(p), e, > p » e. Because A(E,,) is invariant
e, € A(Ey) and so is in E,,. Hence, e~ e, and p is equivalent to both. So all
the points of A(E,,) are chain equivalent to some equilibrium of E,; and all the
equilibria of E,; are equivalent to each other. Thus, A(E,,) is chain recurrent.

If pe A then w(p) contains some equilibrium p, and p>»p,. If p, is not
minimal then there exists an equilibrium p, with p; » p, and not p;=~p,. We
continue inductively building a sequence p » p, » p, - - - » py with p; #p,,, for
i=1,..., N—1. Since there are only finitely many equilibria and this process
cannot cycle by transitivity of » it must terminate at a minimal equilibrium. So
P >» pn With py € A(Ey,). '

Finally, if A is an attractor and E is the set of equilibria in A then E is
terminal by Lemma 2 and so A and A(E) contain the same set E of equilibria.
If p lies in either set then e=a(p) is in E and e > p. So p lies in both sets by
Lemma 2 again. Q.E.D.

The utility of this result comes from the simplicity of the relation (2.3) on the
finite set of equilibria. Using > to generate a transitive relation in part (a) we
obtain the chain ordering » on equilibria. Terminality of a set E is defined via
> and by (2.4) A’ < A(E) if and only if there exists e € A(E) such that e > j for
all j in J. So the set of attractors is determined by > as well.

5. Corollary. If a; is a nondegenerate antisymmetric matrix and I ={1, ..., n} then
an ordered partition (I, I, 1) of I is called an admissible triple for a; if there
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exists an equilibrium e for a; with I, (e) = I, for =0, +, —. The set of admissible
triples determines the relation > among the equilibria and so determines the set of
attractors. The set of admissible triples depends only on the component of (ay) in
the set of nondegenerate antisymmetric matrices (an open subset of the vector space
of antisymmetric matrices). In particular, if two such matrices can be connected by
a path of such matrices then they have the same set of attractors and in particular
the same minimal attractor A(Ey,).

Proof: Because e, > e, means I(e;) U I,(e) 2 Iy(e,) the relation > is determined
by the set of triples.

That (I,, I, I_) is an admissible for a; means that I is odd and the, unique
up to positive multiple, solution of },,_, a;x; =0 for all i in I, is a positive vector.
When normalized by ) ; x; = 1 the solution is a continuous function of the matrix.
So the solution for nearby matrices will also be positive. By continuity the
additional conditions a;, >0 for i€ I, and a;, <0 for i e I will also be preserved
for nearby (a;).

Thus, if we call two nondegenerate antisymmetric matrices equivalent when
they have the same set of admissible triples the previous paragraph shows that
the equivalence classes are open sets. Because the complement, in the nondegener-
ate set, of an equivalence class is the union of the remaining equivalence classes,
each equivalence class is relatively closed as well. Any open and closed subset
is a union of components. Q.E.D.

In the paper-rock-scissors example, E,; consists of the vertices and
A(Ep)=04. In the expanded example, E,, again consists of the vertices
but A(Ey) =420 A%, A3 While the recurrence structure described
above is independent of the choice of 7> 0 in the family ra; by Corollary 5, we
have seen that the exact location of w(p) in A(E,,) for p near A(E,;) may
depend on 7.

In these examples, the set of minimal equilibria consists of vertices alone.
This need not be true. For example, if a; is given by

0 —-a —-a —-a 3a
a 0 b —-b -—a
a -b 0 b —-al|, O<ab<i
a b -—b —a
—3a a 0

we leave it as an exercise for the reader to show that A(E,) = A*1:23  AlL23:41
A% which contains, in addition to the vertices, the equilibrium (0,3, 3,3, 0).
As we mentioned the nice attractor structure came from the fact that a(p) is
always an equilibrium. Because w(p) is usually more complicated the dual
repellor structure is less satisfactory. What we can say is summarized in:

6. Theorem. (a) If pe A, define E(w(p)) to be the set of equilibria contained in
the closed invariant set w(p). e, e;€ E(w(p)) implies e, =~ e,.

(p) A set E of equilibria is called initial if e, > e, and e, € E implies e, € E A
set E of equilibria is initial if and only if the complementary set E of equilibria is
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terminal. In that case
R(E)={peA: E(w(p))< E} (2.5)

is the repellor dual to the attractor A(E).
(c) Let Z be an = equivalence class of equilibria.

B(Z)={peAd:a(p)e Zand E(o(p))c Z} (2.6)

is the basic set of points =~ to the equilibria of Z. Every chain recurrent point is in
some basic set and different basic sets are disjoint.

Proof: (a) follows from the fact that w(p) is always a chain recurrent set.

Clearly E is initial if and only if the complementary set E is terminal. Let R
be the dual repellor for A(E). We prove that R=R(E). If pe A(E) or if
ped—(RUA(E))then w(p)= A(E). So pe R(E~) implies p € R. Conversely, if
p€ R then w(p)<= R because R is invariant and so w(p) A(E)= . Hence,
E(w(p))~E= and so pe R(E).

For (c) note that if e, =a(p) and ec w(p) then e, »p>» F(p)»e. So if
e. =~ e then p is chain recurrent. Conversely, if p is chain recurrent then the set
{F"(p): neZ} is a chain recurrent set and so its closure, which includes a(p)
and w(p), is a chain recurrent set. Thus, p is a chain recurrent point if and only
if @(p) and E(w(p)) are contained in a single =~ equivalence class. Notice that
if E={e;: e»e forein Z} and E ={e,: e, » e for e in Z} then E is initial and
E is terminal although instead of being disjoint E N E=Z B(Z)=R(E)n A(E).

Q.E.D.

Remark: By Theorem 4, A(E,;) is a basic set. It is the only basic set which is
an attractor.

The definition of the dual repellors does not allow us to describe them. In
particular, we leave unproved the following:

7. Conjecture. If E is the set of equilibria complementary to the set of minimal
equilibria, then the dual repellor R(E) to the attractor A(E\s) has empty interior
with respect to A.

The set of points pe A such that w(p) < A(E,,) is precisely A — R(E). This
set is open because R(E) is closed. The conjecture says that it is dense as well.
So if the conjecture is true then for “almost all”’ interior points the solution paths
approach A(EM) as te€Z approaches 0. If the conjecture is false there is an
open set in A such that F'( p) remains bounded away from A(E,,) although
every interior point can be connected by an e-chain to points of A(E,,) for every
e>0.

For example, in the modified paper-rock-scissors example R(E~ ) is the one-
dimensional stable manifold for the equilibrium e, = (3, 0,4, 2). This is a smooth
invariant curve connecting e_ with e,.

The problem with the conjecture is illustrated by Fig. 2. There we have a
degenerate equilibrium for a differential equation in the plane. Instead of a
one-dimensional stable manifold we have a fat inset of points approaching the
origin. In our case all of the equilibria are actually hyperbolic for F and so do
not cause this kind of problem. However, R(I;") consists not only of the stable
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Fig. 2

manifolds for the individual equilibria, i.e. points p such that w(p) € E, but of
the insets for the general basic sets B(Z) for Z # E,,. Just as avoiding the problem
of Fig. 2 is usually accomplished by showing that the equilibrium is hyperbolic,
a proof of the conjecture in general would appear to require a hyperbolic structure
on the basic sets.

Notice that in our examples, E,, included all of the vertices. In general, if
any vertex is not in E,, the corresponding coordinate is certainly eliminated.

8. Theorem. Suppose J, u J,=1I and J,~J,= (J. Suppose
a;<0 forallieJ, andje J,, (2.7)

ie. i>j for all ieJ, and jelJ,. Define p,=Y {pi:ieli}. If p;<1 then
lim,,., F'(p); =0 ie. all indices icJ, are eliminated. In particular, A(Ey) < A
and no vertex of Ey, is in J,. Conversely, if Jy={ie I:i¢ Ey;} and J,=I—1,, then
J, and J, satisfy (2.7).

Proof: Directly from the definition:
dpr,=YA{ppja;:ieJandje I}
=Y {ppja;:ieJ,and je J,} (2.8)

because Y, {p;p;a;: i, j€ J;} =0 by antisymmetry. So if p;, is neither 0 nor 1, i.e.
there exist ieJ; and jeJ, with p,>0 and p;>0, then 6p; <0. By the usual
application of Lemma 1.3(b) the decreasing sequence F’(p); has limit 0 as
t-> 400 and 1 as t—» —oo.

(d)<(c) is obvious.

If (d) is true then by Theorem 8 the vertex at iy is an attractor with iy = w(p)
for all p such that p; > 0. This implies the last paragraph of the theorem and
incidentally shows (d)=>(b). Q.E.D.

Remark: (2.8) is true for the continuous system (1.1) when 8p,, is replaced by
dp,/dt. So the limit results of Theorem 8 and its corollary are true for the
continuous case as well.
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Hence A” is an attractor (let Q={pe A: p, <3} for (1) in Smale’s lemma)
and so contains A(E,,), the minimal attractor.

Conversely, if J,={i2 E,;} then because any two vertices are comparable,
ieJ, and j#J, implies i >j. Q.E.D.

In particular, we have the special case dealt with by Nagylaki:

9. Corollary. The following conditions are equivalent:

(a) Ep contains a single equilibrium.

(b) A(E,,) consists of a single point.

(c) A has no interior equilibrium and with J =1, e_ is a vertex.

(d) There exists ioe I such that a; ;>0 for all j # i,.

If these conditions hold and p; > 0 then lim,., F'(p); = 1. In particular, w(p)
is the vertex associated with iy for every interior point p.

Proof: (b)=>(a) is obvious.

(a)=(d) because if Ey ={e} and i esupp(e) then e> i, and iy€ E,; thus
implies i, = e. Because all vertices are comparable and i, is the unique minimal,
j> i, for all j# i;. This is (d).

3. Hamiltonians for the continuous system

Associated with a matrix a; is the linear map and its dual which we will write
as [a]. So in our previous notations:

([alx)i=an=}; X;a;;

xeR"
(x[a])j =4y =Y X

The condition that e be an interior equilibrium for (1.1) simply says, in
addition to e € A, that e is in the annihilator or kernel of the linear map [a], i.e.
[ale=0. If R§={xeR": ¥, x; =0}, the perpendicular complement to the vector
1=(1,1,...,1)in R" then we define the subspace B to be the intersection of the
annihilator with Rg:

B={xeR;:[alx =0}

In this section we will prove that systems (1.1} admitting interior equilibria
are Hamiltonian on 4 and will in the process examine the invariant manifolds
for the system. More generally, we will assume that B is not the entire annihilator.
This is equivalent to:

1. Assumption: There is a unique vector g in R” such that 1- g=1, [alg=0 and
be B implies b- g =0, where b- g=3, bg,.

In other words, g is the vector generating the perpendicular complement of
B in the annihilator, normalized by Y ;q;=1. In general, g need not be a
nonnegative vector even when interior equilibria exist.

Define A to be the perpendicular complement of B in R§:

A={xeRy:b- x=0forall be B}.

Notice that Rg is the subspace of vectors tangent to our state space A
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The vectors of B yield invariant functions for the dynamical system. Recall
that for b€ R" we define the function L°(p) =Y. b, In p; on A. Lemma 1.1(a) says
that for b e B, dL”/dt is identically zero. Let us rewrite this result in the notation
of vector fields and differential forms.

The vector field X“: 4 - Rg associated with (1.1) is defined by

X{=pa, atped (3.1)
We can compute, as we did for (1.9):
dL*(X®)=a,, =blalp atped (3.2)
where the latter equation uses our new notation.
In particular, b€ B implies b[a]=—[a]b =0 and so
dL?(X%)=0 ond forbe B. (3.3)

:Fhus, the functions L slice 4 into separate invariant manifolds (a foliation
of A). To exhibit this structure we define for zeR" the linear map E*: A >R by

E*(p)=p- z=z ZiDi. (3.4)

Now choose bases {b',...,b"} and {z',...,z°} for B and A respectively.
Notice that r +s=n—1 because A and B form an orthogonal decomposition for
R;. Define L®?: A>R" and E*: A->R°® by

L%(p)=(L"(p),..., L (p))
E*(p)=(E*(p),..., E¥(p)).

2. Theorem. (3) The image of E* is an open convex set O inR* and EAXL®: > A
O XR" is a diffeomorphism, i.e., it is one-to-one and onto with a smooth inverse.

(b) Fixing a vector k in R” we get a smooth s-dimensional manifold (E* X
L%Y'O x k on which every function L® for be B is constant. Varying k yields an
r-parameter family of manifolds called the horizontal foliation and denoted FA.
Each point p of A lies in a unique leaf of the foliation I defined by k=L?(p).
The leaves of T* are invariant manifolds for (1.1), i.e. X* is tangent to I, at p
forall pe A. .

(c) Fixing a point w in O we get a convex r-dimensional cell E* Y (w) in A
Varying w yields an s-parameter family of manifolds called the vertical foliation
and denoted $®. Each point p of 4 lies in a unique leaf D} defined by w=E*(p).
Points p,, p, in 4 lie in the same leaf of $® if and only if the difference vector
p1—p,isinB. .

(d) For b, zeR" define the vector fields VL® and VE* on A by:

(VL®);=b;~(1- b)p;
(VE?);=p(z—(p- 2))
where 1-b=Y,b,and p- z=Y,p;z;= E*(p). We then have
dLb(VE®)=dE*(VL")
=b-z—(1-b)(p- 2).

(3.5)

atpe 4 (3.6)

atpe A (3.7)
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In particular,
dL*(VE*)=dE*(VL’)=0 ifbeB, zcA.

So for z € A the vector field VE® at p is tangent to the leaf T ;. Conversely, if Y is
a vector tangent to I at p then Y =VE” at p for some z€ A.

Proof: This theorem is proved in Akin (1979) page 81ff. The hard part is showing
that E* X L? is a diffeomorphism. From this the foliation results are clear because
the leaves are obtained by fixing various coordinates on A when we think of
E“ X L” as a coordinatization. Invariance of X*“ follows from (3.3). The leaf of
P8 E*'Y(w), is a convex cell because E* is linear. Also linearity implies
E*(p,)=E*(p,) if and only if z- (p,— p,) =0 for all z in A. Because p, —p,€ R}
this is equivalent to p, — p, in the perpendicular complement of A which is B.
As the notation suggests VL? and VE* are gradients with respect to a suitable
Riemannian metric called the Shahshahani metric. We do not need that result
and instead treat (3.6) as a definition. The equations of (3.7) are easy direct
computations. Notice that if be B and ze Athen b-zand 1:-b=0. Q.E.D.

In general, a vector field is called a gradient if it is the dual of some df with
respect to a Riemannian metric. f is then called the associated potential function.
The potential function increases on all nonequilibrium solution paths. The
Shahshahani metric was originally introduced to show that the game dynamic
(0.3) is a gradient field with potential (1/2)a,, when the matrix a; is symmetric.

A vector field is called Hamiltonian if it is the dual of some df with respect
to a symplectic form, i.e. a nondegenerate exterior two-form. f is called the
associated Hamiltonian function. The Hamiltonian function is then conserved
on all solution paths. What we will show is that when a; is antisymmetric and
assumption 1 holds then the restriction of X to each invariant manifold I f,‘ is
Hamiltonian with Hamiltonian function — LY. The necessary two-form is construc-
ted using an antisymmetric matrix related to a;.

3. Proposition. There exists an antisymmetric matrix u; whose associated linear
map [u] has image A. Furthermore, forall ze A [ualz =z and [au]z=z—(q- z)1,
where [ua] and [au] are the linear maps associated with the product matrices
(ua)y = Yi unaiy and (au); =Y aiy;.

Proof: Recall that for any antisymmetric operator the image and the kernel are
perpendicular complements. In particular, the restriction to the image is nonsin-
gular. So we can define a partial inverse operator by inverting on the image and
mapping the kernel still to zero. Composing the new operator with the old one
in either order we get a map which is zero on the kernel and the identity on the
image, i.e. the orthogonal projection on the image. The new operator is antisym-
metric because the old one was and so its matrix is antisymmetric.
We apply all this not to a; but to d; defined by

a
where 1=(1,1,...,1) in R".
It is easy to check that g; is antisymmetric and d;, =0 for all i. Now if bR}

-1 -1
y=ay—n ag+n ay (3.8)

~ -1 -1
Ap=0qp TN Ap1= Ay — N Ayp.
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So if b is in B, dy =0 for all i. Conversely, if d; =0 for all i then a;=n"ay,.
Multiply by ¢; from assumption 1 and sum on i: a,, = —a,, =0 and so n'a;,=0
and a; =0 for all i,i.e. be B. _

Thus, the kernel of [d] is spanned by 1 and the vectors in B. The image of
[d] is therefore perpendicular to 1 and so lies in Rg. There it is the perpendicular
complement of B which is A. ’

As the image of [d] is A we can apply the results of the first paragraph to
define the partial inverse operator [u] with antisymmetric matrix u;. The kernel
of [u] is spanned by 1 and the vectors of B i.e.

[u]l=0 and [u]lb=0 forbeB. (3.9)

Furthermore, for z€ A we have [ud]z=[du]z =1z

Now [a]z differs from [a]z by a multiple of 1 because z is in AcRg. So
[u]l =0 implies [ua]z ={u]lalz =[u]l@]z=[ud]z =z

To compute [au]z we apply [4] to the vector ¢ of assumption 1:

dg=ai,—n 'ay+n"'ay=—-n""a,
because a; annihilates ¢, i.e. from (3.8):
@y = d;— dig +
and
(au)y = (au); +% (—aig + Qg ) i
1

= (du)y_z ujkqu = (du)y—‘qj +n"
k

where we have used Y, u; = 0 by (3.9) and [ud](q) = the perpendicular projection
of g to A which is ¢g—n~'1 because q is perpendicular to B.
Hence, for ze Ac Ry

([aulz);=([au]z);—q - z=z;—q" z » Q.E.D.

What remains is an exercise in the use of differential forms. We follovg the
exterior algebra conventions of Abraham and Marsden (1978). Define on 4 the
two-form:

=}~ dp n dp
2i,jPin ’

=iy u;d In p; A d In p; (3.10)
ij

=d[%2 u; In pd Inpj] atped.
ij

The third version shows that o is exact and so is closed.

Recall that if w is a two-form and X is a vector field then the inner product
of X and o, denoted ixw is the one-form defined by ixw(Y)=w(X, Y). For
example using X =V E* we compute:

is gz = —dL*™ (3.11)
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as follows:

o(VE? Y)=3Y uld Inp(VE*)d In p,(Y)—d In p,(Y)d In p,(VE?)]
i

= Z u;(zi—(p-2z))d Inp;(Y) (by antisymmetry of uy)
=Z_ ([u]z);d In p(Y) (because Z u; = 0)

=—d (g (z[u]); In pj>( Y).

4. Theorem. The restriction of w to each leaf of % is a symplectic form, i.e. a
closed, nondegenerate two-form. Suppose q € R" such that 1- g=1 and [alq=0,
e.g. the vector q of assumption 1. On each leaf of T the vector field X*° is w-dual
to d(—L?), i.e. for any vector Y tangent to T4 at p:

ixﬂw(Y)=d(—L")(Y) (3.12)

Proof: Fix pe A and recall that evaluating the vector fields VE* at p as z varies
over A we get all of the vectors tangent to J

Now suppose z, Z€ A and apply (3.11) and then (3.7) with b= z[u] to get

o(VE* VE?) = igp:0(VE?)
= —dL™(VE?) = —z[u]Z

because 1- z[u]=z[u]1=0.

Recall that [#] is an antisymmetric operator with image A. So —z[u]Z =0 for
all Z in A implies 0 =—z[u]=[u)z and so z=0 because [u]is nonsingular on A.

This means that if Y is a vector tangent to J at p,and so Y =Y E* for some
z, and iyw vanishes at all vectors tangent to J at p then Y =0. This is what it
means for  to be nondegenerate on Thus we have that the restriction of
w to I is a symplectic form.

Similarly, we need only prove Eq. (3.12) with Y =VE~ for z € A. Assume first
that g is the vector of assumption 1. Apply (3.11) and (3.2)

ix:w(VE®) = —igprw(X*)
=dLM"(X*) = z[u][alp = z[ua]p.
Because u; and a; are both antisymmetric the transpose of ua is au and so
z[ua]p = plau]z. By Proposition 3, [au]z=2z—(q- z)1 and so we get
ix«w(VE*)=(p-2)-(q- 2).
On the other hand, from (3.7) and 1 g=1 we get:
dL*(VE*)=(q- z)~(p" 2).

This proves (3.12) with our special choice of vector g. In general, if 1+ §=1
and [a]g =0 then the difference b =g —q lies in B and so L= L* + L. Because
dL®(Y) =0 for all vectors Y tangent to J 2 (3.12) holds with g replaced by 4.

Q.E.D.
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If e is an interior equilibrium then 1-e=1 and [a]e=0. Recall that the
function I° defined by (1.8) differs from —L°® by a constant. We immediately get
the following:

5. Corollary. If E,, the set of interior equilibria, is nonempty then on each leaf of
T the vector field X*® is w-dual to dI° for all e E,.

Note that if e E, and pe 4 then p € E, if and only if the difference vector
p—e lies in B, i.e. if [ale =0 then [a]p =0 if and only if [a] (p—e)=0. So by
Theorem 2(c), E, is either empty or is exactly a single leaf of the vertical foliation
D5, So every horizontal leaf intersects E, in exactly one point and we can define
the function £: 4 > E, by {e(p)} = J"zf,‘m E,, i.e. £(p) is the unique equilibrium
with the same horizontal leaf as p. ¢ is a smooth function because if e is any
fixed point of E,: e(p)=(E* x L?)™'(E“(e), L®(p)). Using £(p) we can define
the nonnegative function I: AR by

I(p)=I""(p)=~% e(p); In (p:/ (p):). (3.13)

Given any e € E,, on the horizontal leaf 72 £( p) = e is constant and so as p varies
in 72, I(p)=I°(p). So I =0 and vanishes, in the leaf, only at e. Consequently,
I =0 precisely on the set E,. Because I =1I¢ on 92, X° is w-dual to dI on each
horizontal leaf.

The Hamiltonian function associated with a Hamiltonian vector field is unique
up to additive constant given the symplectic form. Notice that the different
candidates we have given for the Hamiltonian: — L9, I°, I do differ by an additive
constant on any fixed horizontal leaf. That this constant may differ from leaf to
leaf is a reminder of the fact that equation of duality (3.12) is only true for vectors
tangent to the leaves.

While these results are all restricted to the leaves we can use them to construct
a volume form on all of 4 which is preserved by the flow of X

6. Theorem. s = dimension A is even and r = dimension of B is n—1—s5s. Choose
{b',..., b"} a basis for B and define

Q=w>AdLP A+ -ndLY, (3.14)

where w*'? is the s-form w Aw* + - Aw (/2 times). 2 is a volume form on Ao, ie
a nonvanishing n— 1 form, and ( is invariant for the flow associated with X"°.

Proof: We will just sketch the argument which is a technical application of the
Lie derivative operator Ly« associated with the vector field X For simplicity
we will assume {b', ..., b"} is an orthonormal basis for B, i.e. b*- b'=1if k=1
and =0 if k# I Changing the basis just multiplies {2 by a nonzero constant.

Because each function L® with b in B is invariant for X the Lie derivative
Ly<dL® =0 for be B. So:

Lyaf2 = Lya(@*?)AdL® A+ - - ndL"".
Because Lyaw; A wy = (L ew) A @, £ @, A Lxew, with the choice of sign depending

on the degree of w,. (Recall that the antisymmetric matrix u; is nonsingular when
restricted to A and so A has even dimension.)
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Now if {z',..., z°} is a basis for A then because A is perpendicular to B in
Ry (3.7) implies

dLY(VE*)=0, k=1,...,randl=1,...,s.
On the other hand, because the basis for B is orthonormal (3.7) also implies

k= 1 1 k=l
dL (VE® ={ ’
( ) 0 k#l

Consequently, if 7 is any s-dimensional form
rAdL? A+« AdLY(VE®,... VE*,VE®, ...,VE")
=7(VE",...,VE®). (3.15)

We apply this result first with 7= /% and then with 7= Ly«(w*'?). Because
the restriction of @ to each horizontal leaf is a symplectic form, »*/> restricts to
a volume form on each leaf and this means

W’ VE®,...,.VE*)#0,

i.e. ®*? does not vanish when applied to a basis for the tangent space of the
leaf. (3.15) then implies that 2 never vanishes.

On the other hand, X is Hamiltonian on the leaves and this means that the
restriction of Lyew is 0 on the leaves and hence so is the restriction of Ly(w®?).
Consequently,

Ly *(VE*, ..., VE*)=0

at every point. (3.15) and the previous computation for Ly«(2 then imply that
Ly} is identically 0. By definition of the Lie derivative, {2 is thus an invariant
form for X“. Q.E.D.

We conclude with some general remarks.

Because they are usually structurally unstable, Hamiltonian differential sys-
tems are only appropriate when the conservation effects are essential in the
underlying theory (e.g. mechanical systems) rather than accidental consequences
of the choice of model design (e.g. the original Lotka—Volteria predator-prey
equations). In particular, we think that Nagylaki is absolutely correct in his
preference for the discrete time model for the biological applications he has in
mind. On the other hand. Hamiltonian dynamics per se is an actively growing,
fruitful branch of pure mathematics. It is our hope that these simple appearing
systems may provide a rich new collection of examples.
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