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Commonsense is a method of arriving at workable conclusions from false premises by
nonsensical reasoning.

Schumpeter

1. INTRODUCTION

Which equilibrium should be selected in a game with multiple equilibria?
This paper pursues an evolutionary approach to equilibrium selection based
on a model of the dynamic process by which players adjust their strategies.
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A more orthodox approach to the equilibrium selection problem is to
invent refinements of the Nash equilibrium concept. In the same spirit,
numerous refinements of the notion of an evolutionarily stable strategy
have been proposed. From this perspective, it may be troubling that
the equilibrium selected by a dynamic model such as ours often depends on
the fine details of the modeling or on the initial conditions prevailing at the
time the process began. But we consider this dependence to be a virtue
rather than a vice. The institutional environment in which a game is
learned and played can matter for equilibrium selection. Theories of
equilibrium selection cannot neglect such details. Instead, we must be
explicit about which aspects of a game's environment and the process by
which players learn to play the game are significant and how they determine
which equilibrium is selected.

In Binmore et al. [7] we discussed the differences between the long-run
and ultralong-run behavior of an evolutionary model. Our concern in this
paper is with equilibrium selection in the ultralong run. The ``ultralong
run'' refers to a period of time sufficiently long, not only for trial-and-error
learning to direct the agents in our model to an equilibrium, but also for
random shocks to bounce the system repeatedly from one equilibrium into
the basin of attraction of another, so establishing a steady-state frequency
with which each equilibrium is visited. If all but one of the equilibria
are visited with negligible frequency, then we say that the remaining
equilibrium is ``selected'' in the ultralong run.1

The pioneers in extracting ultralong-run equilibrium selection results
from explicit learning models are Kandori et al. [19] and Young [33]. In
the Kandori, Mailath and Rob model, agents choose best responses given
their information, prompting us to describe them as maximizers. However,
after agents have decided on an action, there is a small probability *>0
that they will switch their choice to some suboptimal alternative. Such
switches are said to be mutations. The ultralong-run distribution over
population states is then studied in the limit as * � 0. A striking prediction
of both Kandori et al.'s and Young's models is that, as this limit is taken,
the distribution over population states concentrates all of its probability on
the risk-dominant equilibrium in 2_2 symmetric games.

This paper is motivated by a simple belief: that people make mistakes. It
may be that people are more likely to switch to a best reply than otherwise,
but people are unlikely to be so flawless that they always switch to a best
reply when reassessing their strategies. Furthermore, we do not expect
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1 Kandori et al. [19] call such an equilibrium a ``long-run equilibrium.'' We reserve the
term ``long run'' for a period of time long enough for the system to reach the first equilibrium
it will visit. We consider long-run phenomena important but concentrate on the ultralong run
in this paper.



File: 642J 225503 . By:BV . Date:23:05:97 . Time:14:47 LOP8M. V8.0. Page 01:01
Codes: 3559 Signs: 2962 . Length: 45 pic 0 pts, 190 mm

these mistakes to be negligible, and hence do not think it appropriate to
examine the limiting case as the mistakes become arbitrarily small. We
refer to agents who are plagued by such mistakes as muddlers and refer to
such learning as noisy learning. These mistakes might seem egregious in the
stark models with which we commonly work, but arise quite naturally in
the noisy world in which games are actually played.

Kandori et al. [19] and Young [13] obtain tractable and precise results
from their models by considering the limit as noise, in the form of mutations,
becomes vanishingly small. Given our belief that mistakes in learning are
not insignificant, we cannot adopt a similar approach. Instead, we examine
a model in which at most one agent at a time changes strategies. This
yields a birth�death process for which we can obtain a simple closed-form
solution even when the noise is bounded away from zero.2 We pay a price
for this convenience: the stationary distribution typically does not concentrate
its probability around a single equilibrium. Instead, the nonnegligible noise
ensures that the distribution disperses a significant fraction of its probability
throughout the state space. We show, however, that as the size of the
population grows, aggregate noise is eliminated and the stationary distribu-
tion in 2_2 symmetric games becomes increasingly concentrated near a
single equilibrium, allowing equilibrium selection results to be obtained for
large populations.

Noisy learning has implications for equilibrium selection. In the symmetric
2_2 games studied in this paper, maximizing models choose between two
strict Nash equilibria by selecting the risk-dominant equilibrium. When
risk-dominance and payoff-dominance conflict, our muddling model
sometimes selects the payoff-dominant equilibrium.

Examining muddlers rather than maximizers also has the consequence
that the expected waiting time before the ultralong-run predictions of the
model become relevant can be greatly reduced. To see why, consider the
possibility that a population of agents has found its way to an equilibrium
that is not selected in the ultralong run. In the maximizing models of Kandori
et al. [19] and Young [33], a large number of effectively simultaneous
mutations are now necessary for the system to escape from the equilibrium's
basin of attraction. In contrast, our muddling model requires only one
mutation to step away from the equilibrium, after which the agents may
muddle their way out of its basin of attraction. If the mutation probability
is small, multiple mutations are much less likely than a single mutation and
the former model accordingly has much longer expected waiting time. At
the same time, we again note that our model yields precise equilibrium
selection results only in the limit as the population size gets large, and our
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2 Amir and Berninghaus [1] provide a complementary analysis based on a birth�death
process.
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expected waiting times grow as does the population. Our relatively rapid
convergence thus comes at the cost of noisier equilibrium selection results.

Section 2 presents the muddling model. Section 3 examines the dynamics
of the resulting equations of motion and takes up the problem of expected
waiting times. Section 4 discusses ultralong-run equilibrium selection for
the muddling model. The results of Sections 2�4 depend only on the
assumptions that there is some tendency for agents to move in the direction
of a best reply and that they occasionally make mistakes in doing so.

Section 5 turns to a specific example of the learning process. In the context
of this example, we derive conditions under which the payoff-dominant or
risk-dominant equilibrium will be selected. Section 6, with the help of yet
more structure, considers the evolutionary stability of the learning rules
studied. We ask whether a population using a certain learning rule, and
hence receiving the payoffs associated with the corresponding ultralong-run
distribution over population states, can be invaded by a mutant learning
rule from the same (narrow) class of learning rules. If it can, then we have
grounds for questioning its robustness. We find conditions under which
evolution has a tendency to select learning rules that in turn yield the risk-
dominant equilibrium for symmetric 2_2 games.

2. A MUDDLING MODEL

The Game. We begin with the symmetric 2_2 game G of Fig. 1. We
assume that there is a single population containing N agents. Time is
divided into discrete intervals of length {. In each time period, an agent is
characterized by the strategy X or Y that she is programmed to use in that
period. An agent playing X receives a payoff of A in a population in which
all agents play X. We assume that the process by which agents are matched
to play the game is such that an agent playing X receives an expected
payoff of ?X (k)=kA+(1&k) C when proportion k of her opponents play
X and proportion (1&k) play Y. She receives ?Y (k)=kB+(1&k) D when
playing Y under similar circumstances.

Fig. 1. The game G.

238 BINMORE AND SAMUELSON
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Muddled Learning. We consider a general model of muddled learning
and a specific example in which much sharper assumptions are made. The
general model is built around Assumptions 1�3.

The model has four parameters: the time t at which the system is
observed, the length { of a time period, the population size N, and the
mutation rate *. The ultralong-run behavior of the system is examined by
taking the limit t � �. We then take the limit { � 0. This gives a model in
which agents revise their strategies at uncoordinated, idiosyncratic times.3

Finally, we take the limits N � � and * � 0 in order to sharpen the
results. A discussion of the implications of taking limits in different orders
appears in Binmore et al. [7].

A population state x is the number of agents currently playing strategy X.
The fraction of such agents is denoted by k=x�N. Learning is taken to be
an infrequent occurrence compared with the play of the game. At the end
of each period of length {, a mental bell rings inside each player's head,
where the units in which time is measured are chosen so that the probability
of such an occurence is {. An agent for whom the bell tolls is said to receive
the learn-draw.

Learn-draws are independent across agents and across time. An agent
who does not receive the learn-draw retains her current strategy while an
agent receiving the learn-draw potentially changes strategies.

Because we consider the case { � 0, occurrences in which more than one
agent receives the learn-draw in a single period will be very rare. As a
result, we will find that the system can be described in terms of the
probabilities that, when a learn-draw is received, the number of agents
currently playing strategy X increases or decreases by one. Let r(*, N)(x) be
the probability that, given a single player (and only a single player)
receives the learn-draw, the result is to cause a player currently strategy Y
to switch to X. (Hence r(*, N)(N)=0.) Similarly, let l(*, N)(x) be the
probability that, given a single player receives the learn-draw, the result is
to cause a player currently playing X to switch to Y. (Hence l(*, N)(0)=0.)

We think of the parameter *�0 that appears in r(*, N)(x) and l(*, N)(x)
as the rate of mutation, where ``mutation'' is a catch-all term for a variety
of minor disturbances that modelers would normally suppress in the
belief that they are too small to be relevant. Since our focus will be on
what happens as * � 0, we assume that r(*, N)(x) and l(*, N)(x) are con-
tinuous on the right at *=0. We refer to r(0, N)(x) and l(0, N)(x) as the
learning process.
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3 Other approaches will be necessary if strategy revisions are coordinated, perhaps by the
regular arrival of information in an economic context or by the presence of breeding seasons
in a biological context.
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Assumption 1.

[1.1] r(0, N)(0)=l(0, N)(N)=0;

[1.2] (x # [1, ..., N&1], *>0) O r(*, N)(x)>hN(x)>0;

[1.3] (x # [1, ..., N&1], *>0) O l(*, N)(x)>hN(x)>0;

[1.4] (x # [1, ..., N&1], *>0) O 0<h<r(*, N)(x)�l(*, N)(x)�H<�;

[1.5] lim* � 0 r(*, N)(0)�* # (h, H); lim* � 0 l(*, N)(N)�* # (h, H);

where hN(x) is a positive-valued function on [1, ..., N&1] and h and H are
constants. Assumption 1.1 asserts that the learning process alone cannot
cause an agent to switch to a strategy not already present in the popula-
tion. This assumption is not strictly necessary but we consider it realistic.4

Assumptions 1.2�1.3 are the essence of the muddling model. They ensure
that r(0, N)(x) and l(0, N)(x) are positive (except in the pure population
states x=0 and x=N). The learning process may thus either increase or
decrease the number of agents playing strategy X, and hence may either
move agents toward or away from best replies, as long as both strategies
are present in the population. We shall shortly interpret Assumption 1.4 as
ensuring that our muddling agents are not too close to being maximizers.
It is important here that h and H do not depend on * or N. Assumption 1.5
states that mutations can push the population away from a state in which
all agents play the same strategy and ensures that the probability of switching
away from a monomorphic state is of the same order of magnitude (for
small mutation probabilities) as the probability of a mutation. We interpret
this as the statement that a single mutation suffices to introduce a new
strategy into a monomorphic population.

Assumption 2. There exist functions r*(k) and l*(k) which are continuous
in * and k for 0�*�1 and 0�k�1 such that

[2.1] r(*, N)(kN)=r*(k)+O(1�N)

[2.2] l(*, N)(kN)=l*(k)+O(1�N).

Assumption 2 is the requirement that only the fraction of agents playing X
is significant when N is large.

Assumption 3.

[3.1] 0<k<1 O (r0(k)>0 and l0(k)>0);

[3.2] ?X (k)>?Y (k) � r0(k)>l0(k);

[3.3] ?X (k)<?Y (k) � r0(k)<l0(k).
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4 It is natural when learning is driven by imitation or when changes in the composition of
the population are caused by biological reproduction.
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Assumption 3.1 ensures that the muddling present in the learning process
does not disappear as the population grows large. Assumptions 3.2�3.3
require that the learning process is always more likely to move in the
direction of a best reply than away from it. In light of this, Assumption 1.4
has the effect of preventing the probability of moving in the direction of the
best reply from becoming arbitrarily large compared with the alternative
and hence ensures that our muddling agents are not arbitrarily close to
being maximizers.5

Aspirations and Imitation: An Example. This section presents a simple
learning model satisfying Assumptions 1�3. Binmore et al. [7] present a
biological example.

In each period of length {, pairs of agents are randomly drawn (inde-
pendently and with replacement) to play the game. Such draws occur
sufficiently frequently that the probability of each agent playing at least one
game in each period can be taken to be unity. Given that agents are drawn
randomly and with replacement, this implies that each agent will have
played an infinite number of games with a distribution of opponents that
accurately reflects the distribution of strategies in the population.6

For this example, we interpret the payoffs given in game G as expected
payoffs. Realized payoffs are random, being given by the average expected
payoff in the game G plus the outcome R of a random variable R� which
potentially captures a variety of random shocks that perturb payoffs.7 This
randomness in turn may be an important reason why learning proceeds in
a muddling rather than maximizing fashion.

241NOISY EQUILIBRIUM SELECTION

5 Blume [8] examines a model satisfying Assumption 3, with agents being more likely (but
not certain) to switch to high-payoff strategies and with switching probabilities being
smoothly related to payoffs.

6 Since we consider the case when { � 0, this assumption is a very strong version of requiring
that the game be played arbitrarily rapidly. We view this as an approximation of the case
when play is frequent relative to strategy revision, which we consider a natural setting for
evolutionary models. Kandori et al. [19] assume that agents play an infinite number of times
in each period or that a round-robin tournament is played in each period. No� ldeke and
Samuelson [25] assume a round-robin tournament. Young's model [33] is less demanding in
this respect, though all agents still have access to the result of each game as soon as it is
played. An alternative model which assumes that agents do not play all other agents and
which exploits this fact to obtain short waiting times, is examined by Robson and Vega
Redondo [27].

7 The random variable R� yields a shock common to each payoff received by an agent in the
given period. The distribution F of R� is independent and identically distributed across players.
It would also be interesting to study cases in which the distribution of R� differs across players,
or in which this source of noise is correlated across individuals, perhaps as a result of environ-
mental factors that impose a common risk on all agents. Papers in which the latter type of
uncertainty appears include Fudenberg and Harris [14] and Robson [26].
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An agent who receives the learn-draw recalls her average realized
payoff in the last period and assesses it as being either ``satisfactory'' or
``unsatisfactory.''8 If the average realized payoff exceeds an aspiration level,
then the strategy is deemed satisfactory and the agent makes no change in
strategy. If instead the average realized payoff falls short of the aspiration
level, then the agent loses faith in her current strategy and abandons it. We
refer to the probabilities that a player who has received the learn-draw will
abandon her current strategy as death probabilities in order to stress the
mathematical parallels between this model and that of Binmore et al. [7].
For each expected payoff ?, the corresponding death probability is given
by

g(?)=prob(?+R<2)=F(2&?), (1)

where 2 is the aspiration level, R is the realization of the random payoff
variable R� , and F is the cumulative distribution of R� .

We assume that F is log-concave.9 A sufficient condition for the log-
concavity of F is that its density f be log-concave (Bagnoli and Bergstrom
[2, Lemma 1]), or equivalently that f satisfy the monotone likelihood ratio
property. The latter is a necessary and sufficient condition for it to be more
likely that low average realized payoffs are produced by low average
expected payoffs, and hence for realized payoffs to provide a useful basis
for evaluating strategies (see Milgrom [23]).

If agent i has abandoned her strategy as unsatisfactory, she must now
choose a new strategy. We assume that she randomly selects a member j of
the population. With probability 1&*, i imitates j 's strategy.10 With
probability *, i is a ``mutant'' who chooses the strategy that j is not playing.

We refer to this as the aspiration and imitation model. The fact that we
are free to specify the aspiration level 2 and the distribution F allows
several familiar formulations to appear as special cases.11 For example,
suppose that the payoffs satisfy A>D>B>C, so that the game has two

242 BINMORE AND SAMUELSON

8 Satisficing models have long been the primary alternative to models of fully rational
behavior, being pioneered in economics by Simon [28�30] and in psychology by Bush and
Mosteller [9], and pursued in such work as Winter [32] and Nelson and Winter [24]. More
recently, satisficing models built on aspiration levels have been examined by Bendor et al. [3]
and Gilboa and Schmeidler [15�17].

9 This means that ln F is concave or, equivalently, that f�F is decreasing, where f is the
density of the cumulative distribution F. See Bagnoli and Bergstrom [2] for a discussion of
log-concavity and its implications. Many common distributions are log-concave, including the
chi, chi-squared, exponential, logistic, normal, Pareto, Poisson, and uniform distributions.

10 She may thereby end up playing the strategy with which she began, having perhaps had
her faith in it restored by seeing it played by the person she chose to copy.

11 Even more flexibility could be obtained by allowing the aspiration level to differ across
agents and across states, perhaps depending upon prevailing payoffs. This is consistent with
our general model, but we do not pursue it here in order to keep the example simple.
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strict Nash equilibria. If we choose F to put a probability mass of one on
the value zero and take 2 to be the payoff of the mixed strategy equi-
librium of the game, then we have random-best-reply dynamics, with
agents who are chosen to learn switching strategies only if their current
strategy is not a best reply.12

An interesting special case is that in which F is the uniform distribution
on the interval [&|, |], where [A, B, C, D]/[2&|, 2+|]. Death
probabilities are then linear in expected payoffs. In this case, the model is
equivalent to one in which each agent plays only once in each period.

We can calculate r(*, N)(x) for the aspiration and imitation model. For
the number of agents playing X to increase, given that an agent has received
the learn-draw, three events must occur: (i) The agent who receives the
learn-draw must be playing strategy Y. If x agents are currently playing
strategy X, then the probability that an agent drawn to learn is playing
strategy Y is given by (N&x)�N. (ii) The learning agent must abandon her
current strategy. Because the average payoff of an agent playing strategy Y
is (xB+(N&x&1) D)�(N&1), this occurs with probability g((xB+
(N&x&1) D)�(N&1)), where g is defined by (1). (iii) The learning agent
must choose X for her new strategy. This occurs with probability
((1&*) x+*(N&x&1))�(N&1), since with probability (1&*) x�(N&1),
the learning agent chooses to imitate an agent playing X and does so
without mutation, and with probability *(N&x&1)�(N&1) the learning
agent chooses to imitate an agent playing Y but is a mutant and chooses
strategy X. Putting these probabilities together, we have

r(*, N)(x)=
N&x

N
g \xB+(N&x&1) D

N&1 + (1&*) x+*(N&x&1)
N&1

. (2)

Similarly,

l(*, N)(x)=
x
N

g \(x&1) A+(N&x) C
N&1 + *(x&1)+(1&*)(N&x)

N&1
. (3)

Combining these for the case where * � 0 and N � �, we have

r0(k)
l0(k)

=
g(?Y (k))
g(?X (k))

. (4)
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12 It may appear counterintuitive to speak of best-reply dynamics when agents are choosing
strategies by simply imitating others, but a model in which agents abandon only inferior
replies but choose strategies by imitation is analogous to a model in which agents are
randomly chosen to switch to best replies.
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3. DYNAMICS

Stationary Distribution. To examine the ultralong-run behavior of our
learning model, we study the stationary distribution of the system. For a
fixed set of values of the parameters {, *, and N, we have a homogeneous
Markov process 1(*, N, {) on a finite state space. In addition, the Markov
process is irreducible, because Assumptions 1.2, 1.3 and 1.5 ensure that for
any state x # [0, 1, ..., N], there is a positive probability both that the
Markov process moves to the state x+1 (if x<N), in which the number
of agents playing X is increased by one; and that the process moves to the
state x&1 (if x>0), in which the number of agents playing X is decreased
by one. The following result is then standard:

Proposition 1. The Markov process 1(*, N, {) has a unique stationary
distribution. For any initial condition, the expected proportion of time to date
T spent in each state converges as T � � to the corresponding stationary
probability; and the distribution over states at a given time T converges to the
stationary distribution.

Proof. Kemeny and Snell [21, Theorems 4.1.4, 4.1.6, and 4.2.1.]. K

Let #(*, N, {) be the probability measure induced by the stationary
distribution, with #(*, N, {) hereafter simply called the stationary distribution.
Then #(*, N, {)(x) is the probability attached to state x. We study the
distribution #(*, N) obtained from #(*, N, {) by taking the limit { � 0.

As { � 0, the event in which more than one agent receives the learn-draw
occurs with negligible probability. The model is thus a birth�death process,
as studied in Karlin and Taylor [20, Chap. 4]. The following result is
standard, where (5) is known as the ``detailed balance'' equation:13

244 BINMORE AND SAMUELSON

13 See, for example, Karlin and Taylor [20, p. 137]. The techniques of Freidlin and
Wentzell have become common, and can be used to give an alternative proof of this result.
Freidlin and Wentzell [12, Lemma 3.1 on p. 177] show that #(*, N)(x+1)�#(*, N)(x) is given by
the ratio of the sum of the products of the probabilities of the transitions in all (x+1)-trees
to the similar calculation for x-trees (where an (x+1)-tree is a collection of transitions with
the properties that every state other than x+1 is the origin of one and only one transition,
there is a path of transitions from every state except x+1 to x+1, and there are no cycles).
In the limit as { becomes small, the only trees that are relevant are those that involve no
transitions that occur with probability {2 or less, i.e., involve only transitions from a state to
one of its immediate neighbors. There is only one such tree for each of states x+1 and x,
consisting of a transition from each state other than x+1 (or x) to the immediate neighbor
that lies closest to x+1 (or x). These two trees differ only in one probability: The x+1-tree
contains the probability r(*, N)(x) while the x-tree contains l(*, N)(x+1), giving (5).
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Fig. 2. Stationary distribution.

Proposition 2. Consider states x and x+1. Then the limiting stationary
distribution lim{ � 0 #(*, N, {)=#(*, N) exists and satisfies:

#(*, N)(x+1)
#(*, N)(x)

=
r(*, N)(x)

l(*, N)(x+1)
. (5)

To interpret (5), consider a game with two strict Nash equilibria. Let k*
be the probability attached to X by the mixed-strategy Nash equilibrium of
the game and let x*�N#k*. (Note that x* need not be an integer.) Then
if x>x*, we must have #(*, N)(x+1)>#(*, N)(x) if * is sufficiently small and
N large, (because strategy X must be a best reply here, so that Assump-
tion 3.2 gives r0(x�N)>l0(x�N), and then Assumptions 2 and 3.1 give
r(*, N)(x)>l(*, N)(x+1)). The stationary distribution #(*, N) must then
increase on [x*, N]. Similarly, from Assumption 3.3, #(*, N)(x+1)<
#(*, N)(x), and #(*, N)(x) must decrease on [0, x*].14 The graph of # there-
fore reaches maxima near the endpoints of the state space. These endpoints
correspond to the strict Nash equilibria of the game at which either all
agents play X or all agents play Y. Its minimum is achieved at x*, as
shown in Fig. 2.

The convenience of the detailed balance Eq. (5) is available because we
have restricted attention to two-player 2_2 games. Extending the analysis
to larger games will require new techniques, though some of the basic ideas
will reappear. In particular, we hope to establish conditions under which
the stationary distribution concentrates its probability near equilibria of

245NOISY EQUILIBRIUM SELECTION

14 The precise statement here is that for fixed =>0, there is sufficiently large N and small
* such that #(*, N) increases on [x*+=, N&=], decreases on [=, x*&=], and whose minimum
and maximum on [x*&=, x*+=] differ by less than =.
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larger games (cf. Proposition 4 below). Ascertaining how the model selects
between these equilibria will then require calculations involving the relative
likelihoods of transitions between equilibria. In a two-player 2_2 game,
there is only one way such a transition can proceed, and calculating the
relative likelihoods of the transitions is straightforward (cf. Corollary 1
below). In larger games, there will be many routes by which such a transition
might proceed, and considerable work remains to be done in transforming
these multiple routes into tractable conditions.

Convergence. How long is the ultralong run? We provide a comparison
of the convergence properties of our muddling model and the model of
Kandori et al. [19]. To do so, we fix the population size N and follow
Kandori et al. in examining the limit as the probability of a mutation * gets
small. We consider the case of a game with two strict Nash equilibria.

How is our continuous-time model to be compared to the discrete model
of Kandori et al.? Fix the unit in which time is to be measured. This unit
of measurement will remain constant throughout the analysis, even as we
allow the length of the time periods between learn-draws in our muddling
model to shrink. Our question then concerns how much time, measured in
terms of the fixed unit, must pass before the probability measure describing
the expected state of the relevant dynamic process is sufficiently close to its
stationary distribution. To make the models comparable, we assume that
the episodes in which every agent learns in the Kandori et al. model occur
at each of the discrete times 1, 2, . . .. We then recall that { is the probability
of a birth per { units of time in our model. In the limit as { � 0, the expected
number of times in an interval of time of length one (which will contain
many of our very short time periods) that an agent in our model learns is
then one, matching the Kandori et al. model.

Recall that 1(*, N, {) is the transition matrix for the Markov process of
our muddling model given mutation rate * and period length {. The matrix
1(*, N, {) depends on { because the probability of an agent receiving the
learn-draw in a given period depends on the period length. Notice also that
as { decreases, the number t�{ of periods up to time t increases.

Proposition 3. There exists a function h#(*) such that for any initial
distribution #0 and sufficiently small *, 15

lim
{ � 0

(1-lim sup
t � �

&#0[1(*, N, {)]
t�{&#(*, N) &1�(t&1))�h#(*)t*, (6)

where #0 is the initial distribution.
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15 We say that the fusions f (*) and g(*) are comparable and write ftg, if there exist
constants c and C such that for all sufficiently small *, c | g(*)|�| f (*)|�C | g(*)|. & }& is the
max norm.
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The gap between the distribution of the muddling Markov process at
time t and the stationary distribution, given by &#0[1(*, N, {)]

t�{&#(*, N) &,
thus decreases exponentially, with the gap eventually decreasing to at most
(1&h#(*))t&1. It is a standard result that finite Markov processes
converge at exponential rates. The proof, contained in the Appendix,
involves a straightforward calculation of the rate and an examination of the
limit { � 0.

Let 9(*, N) be the transition matrix of the Kandori et al. model given
mutation rate * and population size N, and let �(*, N) be its stationary
distribution. Ellison [10] shows that there exists a function h� : R � R such
that

1-sup
� 0

lim sup
t � �

&�0[9(*, N)]
t&�(*, N)&1�t=h�(*z)t*z, (7)

where �0 is the initial distribution, �0[9(*, N)]
t is the distribution at time

t, and z is the minimum number of an agent's opponents that must play the
risk-dominant equilibrium strategy in order for the latter to be a best reply
for the agent in question. Hence, we again have exponential convergence,
at a rate that is arbitrarily close to 1&h�(*z) for large t.

Together, (7) and (6) imply that for very small values of *, the muddling
model converges much faster than does the Kandori et al. model. In
particular, let T�(') be the length of time required for Kandori et al. model
to be within ' of its stationary distribution, i.e., for &�0[9(*, N)]

t&
�(*, N)&�'. Then from (7), for sufficiently large t and hence sufficiently
small ', we have the approximation '=(1&h�(*z))T�('). Fixing a
sufficiently large such T�(') and small ', let T#(') be an analogous
measure for our muddling model. Then from (7), we have the approxima-
tion '�(1&h#(*))T#(')&1. These approximations can be made arbitrarily
precise by taking t large, giving, for small values of * and large t,

T�(')
T#(')&1

�
ln(1&h#(*))
ln(1&h�(*z))

r
h#(*)

h�(*z)
t

1
*z&1. (8)

If, for example, N=100 and z=33, so that 1�3 of one's opponents must
play the risk-dominant strategy in order for it to be a best reply, then it
will take 1�*32 times as long for the Kandori et al. model to be within ' of
its stationary distribution as it takes the muddling model. Ellison [10]
obtains a similar comparison for the Kandori, Mailath and Rob model and
his ``two-neighbor'' matching model. Ellison notes that if N=100 and
z=33, then halving the mutation rate causes his two-neighbor matching
model (and hence our muddling model) to take about twice as long to
converge, while the Kandori, Mailath and Rob model will take 223 (>8
billion) times as long to converge.
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What drives this difference in rates of convergence? The Kandori et al.
model relies upon mutations to accomplish its transitions between equi-
libria. For example, the stationary distribution may put all of its probability
on state 0, but the initial condition may lie in the basin of attraction of
state N. Best-reply learning then takes the system immediately to state N,
and convergence requires waiting until the burst of z simultaneous mutations,
required to jump over the basin of attraction of N and reach the basin of
attraction of 0, becomes a reasonably likely event. Since the probability of
such an event is of the order of *z, this requires waiting a very long time
when the mutation rate is small. In contrast, the muddling model requires
mutations only to escape boundary states (see Assumption 1). Once a
single mutation has allowed this escape (cf. Assumption 1.5), then the noisy
learning dynamics can allow the system to ``swim upstream'' out of its
basin of attraction.16 The probability of moving from state N to state 0 is
given by >1

x=N l(*, N)(x). When mutation rates are small, the learning
dynamics proceed at a much faster rate than mutations occur, so that only
one term in this expression (l(*, N)(N)) is of order *. Convergence then
requires waiting only for a single mutation, rather than z simultaneous
mutations, and hence relative waiting times differ by a factor of *z&1.

The difference in rates of convergence for these two models will be most
striking when the mutation rate is very small. The comparison we have
chosen, especially the examination of the limit as the mutation rate
approaches zero, puts the Kandori et al. model in the worst possible case.
In [7], we present an example in which N=100, z=33, and *=0.001. The
expected waiting time in the Kandori et al. model is approximately
1.7_1072, while that of the muddling model is approximately 5000. We
expect the waiting times to be closer for larger mutation rates because
increasing * makes the Kandori et al. model noisier (and conceptually
closer to a muddling model), reducing its waiting time. We would also
expect the waiting times to be closer if we forced the noise in our learning
process to become negligible. Both observations are variations on the point
we want to make with the comparison. Incorporating nonnegligible noise
into a model can hasten its convergence. Even if unexplained, exogenously
determined perturbations (mutations) are to be treated as negligible,
expected waiting times can still be short if one is realistic in building noise
into the learning process itself.

We have examined waiting times for a fixed population size N. Our
model yields sharp equilibrium selection results as N � �, but need not do
so for small values of N. In addition, the expected waiting time diverges in
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16 A similar distinction, including the ``swimming upstream'' analogy, appears in Fudenberg
and Harris [14].
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our model as N increases, becoming arbitrarily long as N gets large.17

There accordingly remains plenty of room for skepticism as to the
applicability of ultralong-run analyses based on examining stationary dis-
tributions. In particular, we can achieve crisp equilibrium selection results
only at the cost of long waiting times, and the finding that waiting times
can be short must be tempered by the realization that the resulting station-
ary distribution may give noisy equilibrium selection results. In many
cases, however, a population that is not arbitrarily large and a stationary
distribution that allocates probability to more than one state may be the
most appropriate model, even though it does not give unambiguous equi-
librium selection results.18 Equilibrium selection is then not our only con-
cern. Our model allows tractable, closed-form solutions to be obtained
when the population is not so large as to eliminate aggregate noise from
the model.

4. EQUILIBRIUM SELECTION

We now consider equilibrium selection. We concentrate on the case of
large populations and small mutation rates. In particular, we begin with
the limiting stationary distribution of the Markov process as { � 0 and
then study the limits N � � and * � 0. The order in which these two limits
are taken is one of the issues to be examined. Of these two limiting
operations, we consider restricting attention to small mutation rates to be
especially unrealistic. Allowing the mutation rate to be bounded away from
zero complicates the analysis but affects neither the techniques nor the
basic nature of the results.19 We consider the assumption of a large popula-
tion to be the more realistic of the two limits in many applications, though
it clearly does not apply to all cases of interest. Once again, we assume
throughout this section that Assumptions 1�3 hold.

Two Strict Nash Equilibria. We first assume A>B and D>C, so that
the game G has two strict Nash equilibria. As in the previous section, we
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17 Hence, convergence in our model is not fast in the second sense which Ellison [10]
discusses because our waiting times do not remain bounded as N gets large.

18 N often need not be very large before most of the mass of the stationary distribution is
attached to a single state. In the example in [7], in which N=100, z=33, and *=0.001, the
stationary distribution places more than 0.97 probability on states in which at most 0.05 of
the population plays strategy X.

19 Consider, for example, the case of two strict Nash equilibria. If the mutation rate is positive,
then taking the limit as N � � produces a stationary distribution that concentrates all of its
probability near one of the strict Nash equilibria, being closer as the mutation rate is smaller.
The criterion for determining which equilibrium is ``selected'' in this way is a variant of (12),
with the limits on the integral being adjusted to account for the positive mutation rate.
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let #(*, N) denote the limiting stationary distribution of the Markov process
on [0, 1, ..., N] as { � 0. We also use #(*, N) to denote the corresponding
Borel measure on [0, 1]. Thus, for an open interval A/[0, 1], #(*, N)(A)
is the probability of finding the system at a state x with x�N # A. To avoid
a tedious special case, we assume

|
1

0
(ln r0(k)&ln l0(k)) dk{0, (9)

where Assumptions 1.4 and 2 ensure that the integral exists.

Proposition 4. Let (9) hold. Then there exists a unique Borel probability
measure #* on [0, 1] with limN � � lim* � 0 #(*, N)=lim* � 0 limN � � #(*, N)=
#*, where the limits refer to the weak convergence of probability measures.
In addition, #*(0)+#*(1)=1.

Proof. We first calculate limN � � lim* � 0 #(*, N) . This becomes our
candidate for #*.

Fix N. From Assumptions 1.1�1.3, we have

lim
* � 0

r(*, N)(0)
l(*, N)(1)

= lim
* � 0

l (*, N)(N)
r(*, N)(N&1)

=0.

Using (5) and the fact that lim* � 0(r(*, N)(x)�l(*, N)(x+1)) is nonzero and
finite for every value x # [1, 2, ..., N&1] (by Assumptions 1.2�1.3), this
result ensures that lim* � 0[#(*, N)(0)+#(*, N)(1)]=1. As the mutation rate
approaches zero, the system thus spends an increasing amount of time
``stuck'' at its endpoints, so that in the limit all probability must accumulate
on these endpoints.

Hence, we set #*(0)+#*(1)=1, and the only remaining question
concerns the ratio of these two values. To fix this ratio, we note that for
fixed N and *, we have

#(*, N)(N)
#(*, N)(0)

= `
N&1

x=0

r(*, N)(x)
l(*, N)(x+1)

.

We then take logarithms to obtain

ln
#(*, N)(N)
#(*, N)(0)

= :
N&1

x=0

[ln r(*, N)(x)&ln l(*, N)(x+1)]. (10)

The next step is to take the limit of the expression in (10) as * � 0. Because
r(0, N)(0)=l(0, N)(N)=0, simply replacing * with 0 on the right side of (10)
yields a sum that is undefined, containing one term that equals positive
infinity and one that equals negative infinity. However, Assumption 1.5
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ensures that the sum of these two terms has a finite limit as * � 0. The remain-
ing terms in (10) can be grouped into pairs, with the two terms of each pair
involving the same value of x and with Assumption 1.4 then ensuring that the
sum of each pair approaches a finite limit. As a result, we can write

lim
* � 0

ln
#(*, N)(N)
#(*, N)(0)

= :
N&1

x=0

[ln r(0, N)(x)&ln l(0, N)(x+1)],

where the right side is defined to be the appropriate limit. Assumptions 2,
1.4 and 1.5 and Lebesgue's dominated convergence theorem ([5, Theorem
16.4]) now give

lim
N � �

lim
* � 0

1
N

ln
#(*, N)(N)
#(*, N)(0)

=|
1

0
(ln r0(k)&ln l0(k)) dk. (11)

Letting our candidate for #* satisfy #*(0)=1, if the right side of (11) is
negative, and #*(1)=1, if the right side of (11) is positive,20 we then have
that limN � � lim* � 0 #(*, N)=#*.21

It remains to verify that lim* � 0 limN � � #(*, N)=#*. First, we show that
lim* � 0 limN � �#(*, N)([0, 1])=1. Consider the sets [k1 , k2+=] and
[k2 , k2+=], for 0<k1<k2+=<k2+k2+=<k*, where k* is the prob-
ability attached to strategy X by the mixed strategy equilibrium. Then for
sufficiently small *, we have

#(*, N)([k1 , k1+=])
#(*, N)([k2 , k2+=])

� `
k2N&1

x=(k1+=) N

r(*, N)(x)
l(*, N)(x+1)

,

where (from Assumptions 3.2, 3.3) every term in the product on the right
side of this inequality is less than one. Hence, for sufficiently small *, we
have that limN � � #(*, N)([k2 , k2+=])=0. A similar argument applies to
closed subintervals of [k*, 1] and yields the result.

Next, let (9) be negative. We show that lim* � 0 limN � � #(*, N)(1&k, 1]=0
for sufficiently small k. Because (9) is negative we can fix k$ sufficiently
small that maxk"�k$ �1&k"

k$ (ln r0(k)&ln l0(k)) dk<0. Let [Ni]�
i=1 be an

increasing sequence of values of N with the property that kNi is an integer
for each i.22 We then have

#(*, Ni)((1&k$, 1])
#(*, Ni)(k$)

�k$Ni max
x$ # [Ni&k$Ni , Ni]

`
x$&1

x=k$Ni

r(*, Ni)(x)
l (*, Ni)(x+1)

.
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20 If the right side of (11) equals zero, then both #*(0) and #*(1) may be positive. The
limiting arguments are much more tedious in this case, prompting us to invoke (9).

21 This is a weak convergence claim. By Theorem 2.2 of Billingsley [4], it suffices for weak
convergence to show limN � � lim* � 0 #(*, N)(A)=#*(A) for any relatively open subinterval A
of [0, 1], which immediately follows from #*(0)+#*(1)=1 and (11).

22 Generalizing to arbitrary sequences requires somewhat more tedious notation.
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This in turn gives

lim
i � �

ln
#(*, Ni)((1&k$, 1])

#(*, Ni)(k$)

� lim
i � � \ln(k$Ni)+Ni max

k" # [1&k$, 1] |
1&k"

k$
(ln r*(k)&ln l*(k)) dk+ ,

where the integral on the right side is negative. Denoting the value of this
integral by c, it suffices to show that limN � � k$NecN=0. But this follows
from l'Hôpital's rule.

An analogous argument for the case in which (9) is positive establishes
lim* � 0 limN � � #(*, N)([0, k))=0 for small k. Hence, for sufficiently small
k, lim* � 0 limN � � #(*, N) assigns probability to [0, k) (or (1&k, 1]) if and
only if #* assigns probability to [0, k) (or (1&k, 1]), ensuring that
lim* � 0 limN � � #(*, N)=#* in the sense of weak convergence. K

We thus have that, in the limit as mutation probabilities get small and
the population gets large (in any order), the stationary distribution of the
Markov process attaches probability only to the two pure strategy
equilibria. In ``generic'' cases (those for which (9) holds), probability will be
attached to only one of these equilibria, which we refer to as the selected
equilibrium.

Which Equilibrium? A number of papers have recently addressed the
problem of equilibrium selection in symmetric 2_2 games. Young [33]
and Kandori et al. [19] are typical in finding that the risk-dominant
equilibrium is always selected. Robson and Vega Redondo [27] offer a
model in which the payoff-dominant equilibrium is always selected.
However, (11) provides a criterion which shows that our model sometimes
selects the payoff-dominant equilibrium and sometimes selects the risk-
dominant equilibrium.

Corollary 1. [1.1] The selected equilibrium will be (X, X) [(Y, Y)]
if

|
1

0
ln(r0(k)&ln l0(k)) dk>[<] 0. (12)

[1.2] The payoff-dominant equilibrium in game G can be selected even
if it fails to be risk dominant.

Proof. Corollary 1.1 follows immediately from (11). To establish
Corollary 1.2, consider the aspiration and imitation model. Let

2=0, A=2, B=1, D=0, C=&1.
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Then neither of the two pure strategy Nash equilibria, given by (X, X) and
(Y, Y), risk-dominates the other, but (X, X) is the payoff-dominant
equilibrium. Let F be a uniform distribution on the interval [&2, 2]. Then
death probabilities are linear in expected payoffs, with g(2)=0, g(1)= 1

4 ,
g(0)= 1

2 , g(&1)= 3
4 , g(?Y (k))= 1

4k+ 1
2(1&k) and g(?X (k))= 3

4 (1&k).
Inserting these probabilities in (2)�(3), taking the limits * � 0 and N � �
and inserting in (11) gives

ln
#*(1)
#*(0)

= lim
N � �

N |
1

0
(ln g(?Y (k))&ln g(?X (k))) dk

= lim
N � �

N |
1

0
(ln( 1

4k+ 1
2 (1&k))&ln( 3

4 (1&k))) dk,

#*(1)
#*(0)

= lim
N � � \4

3+
N

, (13)

ensuring that (X, X) is selected. The game can be perturbed slightly to
make (Y, Y) risk-dominant while still keeping (X, X) payoff-dominant
without altering the fact that (X, X) is selected. K

We can provide some intuition as to why this result differs from that of
Kandori et al. [19], whose model selects the equilibrium with the larger
basin of attraction under best-reply dynamics, namely the risk-dominant
equilibrium. In the perturbed version of the game that we considered in the
previous proof, the equilibrium (X, X) has a basin of attraction smaller
than (Y, Y)'s, but in (X, X)'s basin the death probability of X relative to Y
is very small, being nearly zero for states in which nearly all agents play X.
This makes it very difficult to leave (X, X)'s basin, and yields a selection in
which all agents play X. Only the size of the basin of attraction matters in
Kandori et al., while in our model the strength of the learning flows matters
as well.

Best-Response Dynamics. The previous paragraph suggests that our
muddling model should be more likely to select the risk-dominant
equilibrium the closer is the learning process to best-reply learning. We can
confirm this.

Let A>B and D>C, and let x*�N>1�2, so that there are two strict
Nash equilibria, with (Y, Y) being the risk-dominant equilibrium. Fix r0(k)
and l0(k) satisfying Assumptions 1�3. Then let

r~ 0(k)=,BX (k)+(1&,) r0(k)

l� 0(k)=,BY (k)+(1&,) l0(k),
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where BX (k) equals 1 if X is a best response (k>k*) and zero otherwise,
and BY (k) equals one if Y is a best response (k<k*) and zero otherwise.
We say that r~ 0(k) and l� 0(k) are a convex combination of the best-response
dynamics and r0(k) and l0(k). As , increases to unity, r~ 0 and l� 0 approach
best-response dynamics.

Proposition 5. If r0(k) and l0(k) satisfy Assumptions 1�3, then the
selected equilibrium in game G is the risk-dominant equilibrium for any
convex combination of the best-response dynamics and r0(k) and l0(k) that
puts sufficient weight on the former.

Proof. Let k*#x*�N>1�2, so that (Y, Y) is the risk-dominant
equilibrium. Condition (12) will fail for sufficiently large ,, and hence the
selected equilibrium will be (Y, Y), if

lim
, � 1 |

k*

0
[ln((1&,) r0(k))&ln(,+(1&,) l0(k))] dk

+|
1

k*
[ln(,+(1&,) r0(k))&ln((1&,) l0(k))] dk

= lim
, � 1 |

k*

0
[ln(r0(k))&ln(,+(1&,) l0(k))] dk (14)

+|
1

k*
[ln(,+(1&,) r0(k))&ln(l0(k))] dk (15)

+ln(1&,) \|
k*

0
dk&|

1

k*
dk+<0. (16)

The sum of terms (14) and (15) approaches a finite number as ,
approaches unity. Because (Y, Y) is risk dominant, k*> 1

2 and (16)
approaches negative infinity, and hence the result. K

No Pure Strategy Equilibria. Our equilibrium selection results address
the case of two strict Nash equilibria. We can contrast these results with
the case of games in which B>A and C>D, so that there is a unique,
mixed-strategy Nash equilibrium. Then an argument analogous to that of
Proposition 4 yields:

Proposition 6. Let k* be the probability attached to X in the
mixed-strategy equilibrium. Then lim* � 0 limN � � #(*, N)(A)=0 if k* � A.
However, lim* � 0 #(*, N)(0)+lim* � 0 #(*, N)(1)=1.
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The order of limits makes a difference in this case. If mutation rates are
first allowed to approach zero, then the ultralong-run dynamics are driven
by the possibility of accidental extinction coupled with the impossibility of
recovery, attaching probability only to the two nonequilibrium states in
which either all agents play X or all agents play Y. If the population size
is first allowed to get large, then accidental extinctions are not a factor and
the selected outcome is the mixed strategy equilibrium. Our inclination
here is to regard the latter as the more useful model.

5. RISK-DOMINANCE

The comparative statics results of the previous section involve changes in
the learning rule. We now fix a learning rule and examine changes in the
payoffs of the game.

Some additional assumptions are required to establish comparative static
results. Assumptions 1�3 are silent on the question of how changes in
payoffs affect the learning dynamics as long as the inequalities in Assump-
tion 3 are satisfied. We accordingly consider the aspiration and imitation
model. We investigate games with two strict Nash equilibria (A>B and
D>C) and ask when the risk-dominant equilibrium will be selected. The
support of the random variable 2&R� is assumed to be a closed interval
encompassing A, B, C, and D.

We begin with the case in which there is no conflict between payoff and
risk-dominance:

Proposition 7. If the payoff-dominant equilibrium in game G is also risk
dominant, then the payoff-dominant equilibrium is selected.

Proof. In the aspiration and imitation model, the criterion given by
(12) for the selection of equilibrium (X, X) becomes

|
1

0
(ln F(2&?Y (k))&ln F(2&?X (k))) dk

=|
1

0
ln F(2&kB&(1&k) D) dk&|

1

0
ln F(2&kA&(1&k) C) dk>0.

(17)

Let (X, X) and (Y, Y) be risk-equivalent in game G, so that A+C=B+D,
and let A=D. Then (17) holds with equality. Now make (X, X) the payoff-
dominant equilibrium by increasing A and decreasing C by a like amount,
so as to preserve A+C=B+D (and hence to preserve the risk-equivalence
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of the two strategies). Because ln F is concave, this mean-preserving spread
in the interval of values over which ln F is integrated decreases the second
integral in (17). The expression (17) then becomes positive and the payoff-
dominant equilibrium (X, X) is selected. Next, note that adding a constant
to A and C or subtracting a constant from D and B so as to also make
(X, X ) risk-dominant increases (17) and hence preserves the result that the
payoff-dominant equilibrium is selected. K

We now consider cases where the payoff- and risk-dominance criteria
conflict. Let (Y, Y) be the risk-dominant equilibrium, so k*, the probability
attached to X by the mixed-strategy equilibrium, exceeds 1

2, but let (X, X)
be payoff-dominant. Let ?* be the payoff in game G from the mixed-
strategy equilibrium. We will consider variations in the payoffs A, B, C, D
that leave k* and ?* unchanged. For example, we will consider a decrease
in D accompanied by an increase in B calculated so as to preserve k* and
?*, as illustrated in Fig. 3. We thus restrict attention to variations in the
payoffs A, B, C, and D for which C=C(A) and B=B(D), where
(1&k*) C(A)+k*A=k*B(D)+(1&k*) D=?*.

Proposition 8. If the payoff-dominant equilibrium is selected given payoffs
A, B, C and D, with mixed-strategy equilibrium k* and mixed-strategy equi-
librium payoff ?*, and if D>B, then there exists D

�
<?* such that the

payoff-dominant equilibrium is also selected for any payoffs A, B$, C, and D$
that preserve k* and ?* and satisfy D$ # [D, D

�
).

Fig. 3. Payoff variations.
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Proposition 8 tells us that if the payoff-dominant equilibrium is selected
for payoffs A, B, C, and D with D>B, then the payoff-dominant equi-
librium is selected for an interval of values of D$ (with B$ satisfying
k*B$+(1&k*) D$=?*) containing D and containing ?* in its interior.
However, if we fix A, C, ?*, and k* and find that the payoff-dominant
equilibrium is selected for no values of D and B with D>?*, it may still
be that the payoff-dominant equilibrium is selected for some values of
D<?* (and hence D<B). The best case for the payoff-dominant
equilibrium thus occurs when either D=B or D<B. The payoff-dominant
equilibrium is favored by reducing the variation in payoffs to strategy Y or
even ``inverting'' them, so that while (Y, Y) is an equilibrium, the highest
reward to strategy Y is obtained if the opponent plays X.

Proof of Proposition 8. Fix k*> 1
2. Fix A and hence C(A). If we set

D=A, then Proposition 7 ensures that (Y, Y) will be selected, since it is
risk dominant and payoff undominated. Now let D decline and B increase
at slower rate (to preserve k*B+(1&k*) D=?* with k*> 1

2). Taking the
derivative of (17), we find that because ln F is concave, (17) increases until
D reaches ?* and is increasing at D=?*=B. Hence, if the payoff-
dominant equilibrium is selected for any value of D>?*, then it is also
selected for any smaller value D�?* and for some values of D<?*. K

Some Experimental Evidence. Given Proposition 8, it is interesting to
note that Straub [31] has conducted experiments to investigate the
conditions under which risk-dominant and payoff-dominant equilibria are
selected in 2_2 symmetric games with two strict Nash equilibria. He finds
that the risk-dominant equilibrium is the most common equilibrium played
in seven out of eight of the experiments. The exception, in which the
payoff-dominant equilibrium appeared, is the only game in which D<B.
Friedman [13] also reports experiments with 2_2 symmetric games with
two strict Nash equilibria. Friedman finds that the payoff-dominant
equilibrium is chosen more often in a game with D<B than in a game with
the same values of A and C and the same basins of attraction (same value
of k* and ?*) but with D and B altered to D=B. Both experiments are
consistent with Proposition 8.

6. ENDOGENOUS LEARNING

The heart of our model is a learning rule. Which rules are worthy of our
attention? A useful way to approach this question is to recognize that
learning rules themselves are likely to have been acquired through an
evolutionary process.
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We capture the evolution of learning rules in a ``two-tiered'' model. We
view the evolution of strategy choices, guided by a particular learning rule,
as proceeding at a pace that is rapid compared to the evolution of the
learning rule itself. We take our existing model to represent the evolution
of strategy choices given a learning rule. The payoffs received from the
strategy choices that emerge from this process then drive the evolution of
learning rules.

An attempt to model the evolution of learning rules raises the specter of
an infinite regress. A model in which agents learn how to play games now
becomes a model in which agents learn how to learn to play games. But
then why not a model in which agents learn how to learn how to learn, and
so on? We might escape the infinite regress if outcomes are not particularly
sensitive to the nature of the learning rules that agents use in learning how
to learn, so that there is no need for any learning past the second
stage. Toward this end, we look for cases in which learning rules satisfy
conditions analogous to evolutionary stability.23 If this robustness had
appeared at the first level, when examining how agents learn to play games,
we would not have been prompted to seek a level higher.

We again restrict attention to the aspiration and imitation model, with
the random variable R� assumed to have a strictly positive density on the
real line. In addition, we allow only the value of the aspiration level 2 to
be subject to change.24 We therefore label a learning rule by the aspiration
level 2 which it incorporates and we refer to the evolution of 2 as the
evolution of a learning rule. Only games with two strict Nash equilibria are
considered. The proof of the following is contained in the Appendix:

Proposition 9. Let 2$<2. Then for sufficiently large N and sufficiently
small *, the payoff to a player characterized by aspiration level 2$, in any
population consisting of aspiration levels 2 and 2$, exceeds the payoff to a
player characterized by 2.

The mechanism behind this result is straightforward. In any stationary
distribution, players spend long periods of time facing a mix of strategies
that is concentrated on a particular strategy (say Y) but also includes other
strategies. The highest expected payoffs will be garnered by those agents
whose learning rules cause them to spend the greatest proportion of the
time playing the best reply Y. These will be agents with learning rules that
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23 See Harley [18], Maynard Smith [22], and Ellison and Fudenberg [11] for work in this
vein.

24 We view the information available to agents and the distribution of R� as being part of
the technology of the game. It would be interesting to consider models in which players might
take steps, perhaps at a cost, to influence this latter distribution. Bendor et al. [3] suggest
that aspiration levels should adjust to equal the average equilibrium payoff. In Binmore and
Samuelson [6], we show that this is not always possible in a muddling model.
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make them relatively unlikely to switch away from high payoff realizations
and relatively likely to switch away from low payoff realizations. In the
aspiration and imitation model with log-concave F, these learning rules
involve smaller aspiration levels.

We thus have a tendency for evolution to select smaller aspiration levels.
What are the implications of smaller aspiration levels for the selected
equilibrium? Here we specialize to the standard normal distribution.25

Proposition 10. Let F be the standard normal distribution. Then for suf-
ficiently small 2, the selected equilibrium is risk-dominant.

Proof. Let A>C and D>B with A+C<B+D, so that (Y, Y) is risk-
dominant. It follows from (12) that a sufficient condition for the risk-dominant
equilibrium to be selected is that ln F(2&B)+ln F(2&D)&ln F(2&A)
&ln F(2&C)<0 hold for any such A, B, C and D. Let NA=
1&F(&(2&A)), and let NB , NC , and ND be defined analogously. Then it
suffices to show that, for small values of 2,

NBND

NANC
<1.

For the standard normal distribution, l'Hôpital's rule can be used to show
that lims � � Ns+z �Ns=e&z2�2e&sz. Hence, we need to show that, for small
values of 2 (and hence large values of &2),

e&(D&C) 2�2e&(D&C)(&2+C)

e&(A&B) 2�2e&(A&B)(&2+B)
<0.

This in turn is equivalent to showing that (A&B)[(A&B)+2(&2+B)]&
(D&C)[(D&C)+2(&2+C)]<0. As &2 gets large, we need only
examine the terms involving &2, which gives 2(&2)(A+C&B&D)<0.
This will hold for large &2 because (Y, Y) is risk-dominant, so that
A+C&B&D<0 and hence the coefficient of &2 is negative. K

We therefore have identified cases in which evolution will tend to select
learning rules that lead to the risk-dominant equilibrium. However, we
have examined the evolution in the context of a very narrow class of
learning rules, namely the aspiration and imitation model where F is the
normal distribution. Within this class of rules we have allowed evolution to
affect only the aspiration level. Furthermore, we have identified cases in which
lower aspiration levels fare better than higher aspiration levels but have not
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explicitly modeled the process by which different aspiration levels appear
and contend for survival. What happens in more general cases remains
open.

7. CONCLUSION

Evolutionary game theory offers the promise of progress on the problem
of equilibrium selection. At the same time, it is capable of reproducing the
worst features of the equilibrium refinements' literature, creating an ever-
growing menagerie of conflicting and uninterpreted results. To achieve the
former rather than the latter outcome, we think that evolutionary models
need to be provided with microfoundations which identify the links between
the dynamics of the model and the underlying choice behavior.

In this paper, we focus on an aspect of choice behavior that we consider
particularly important: we allow people to make mistakes in choosing their
strategies. Ours is thus a muddling rather than a maximizing model, with
the primary source of noise in our model being nonnegligible mistakes
within the learning process itself. Introducing muddling behavior has impli-
cations both for equilibrium selection (where we find that the payoff-domi-
nant equilibrium is sometimes selected) and also for questions of timing. In
particular, we find that the length of time needed to reach the ultralong run
may be shorter in a muddling than in a maximizing model, making it more
likely that the ultralong run will be of interest in potential applications.

The paper closes with a model in which the rules by which agents learn
to play games are themselves subject to evolutionary pressures. Our work
here is both preliminary and incomplete. But we believe this to be an
important area for further work.

APPENDIX: PROOFS

Proof of Proposition 3. Since we will be working in the limit as the
length of a time period { becomes arbitrarily short, we can assume that in
each time period of length {, either no agent receives the learn-draw (with
probability 1&{N) or a single agent receives the learn-draw (with
probability {N). Let 1� (*, N, {) be the resulting Markov process, let #̂(*, N, {) be
its stationary distribution and notice that #̂(*, N, {)=#(*, N) .

Fix a time t and a period length {, so that t�{ periods will have occurred
by time t. Let @(k, z) be the probability that out of z periods, there are exactly
k periods in which some individual receives the learn-draw. Then we have

#0[1� (*, N, {)]
t�{= :

t�{

k=0

@ \k,
t
{+ [1*(*, N)]

k,
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where 1*(*, N) is the transition matrix contingent upon one learn-draw
having been received and we take [1*(*, N)]

0 to be the identity matrix.
Hence, it suffices for (6) to show that for any #0,

lim
{ � 0 \1&"#0 :

t�{

k=0

@ \k,
t
{+ [1*(*, N)]

k&#̂(*, N, {)"
1�(t&1)

+�h#(*)t*. (18)

Let {n=1�n for n # [1, 2, . . .]. Then t�{n=nt, an equality we shall use
repeatedly. For each n, let [Znh , h # [1, ..., nt]] be a collection of random
variables, one for each of the periods that occur by time t, with each
random variable taking the value one if a learn-draw is received (with
probability {nN) and zero if a learn-draw is not received (with probability
1&{nN). Then @(k, nt) is the probability that exactly k of the random
variables [Znh , h # [1, ..., nt]] take the value one. Notice that, for any n,
we have �nt

k=1 {n N=nt{nN=tN, to that for any n, the sum over the collec-
tion [Znh , h # [1, ..., nt]] of the probabilities of receiving the outcome one
is finite and given by tN. Coupled with the fact that {n and {nN approach
zero as n gets large, this allows us to apply Theorem 23.2 of Billingsley [5]
to conclude that

lim
n � �

@ \k,
t
{n+=

(Nt)k

k!
e&Nt.

Hence, as {n gets small, @(k, t�{n)=@(k, nt) is given by a Poisson distribu-
tion with mean and variance Nt. It accordingly suffices for (18) to show,
for any #0, that

"#0 :
�

k=0

(Nt)k

eNtk!
[1*(*, N)]k&#(*, N)"�(1&h#(*))t&1. (19)

We first observe that #̂(*, N, {) 1� (*, N, {)=#̂(*, N, {)((1&{N) I+{N1*(*, N))=
#̂(*, N, {) , which we can solve and then take the limit { � � to obtain
#(*, N)1*(*, N)=#(*, N)I=#(*, N) . Then #(*, N) is the (unique) stationary
distribution of the matrix [1*(*, N)], and so

lim
k � �

#0[1*(*, N)]
k=#(*, N) .

The matrix [1*(*, N)] has many zero elements, but the matrix [1*(*, N)]
N is

strictly positive. Corollary 4.1.5 of Kemeny and Snell ([21], page 71) can
therefore be applied to show that

&#0([1*(*, N)]
N)t&#(*, N) &�(1&2S(*))t&1, (20)
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Where S(*) is the smallest transition probability in [1*(*, N)]
N. We must

then examine the probability S(*). It is not immediately obvious which is
the least likely transition in the matrix [1*(*, N)]

N. One possibility is that it
is the transition from the state in which all agents play Y (x=0) to the
state in which all agents play X (x=N). If so, then S(*) is given by

`
N&1

x=0

r(*, N)(x, N)=*[c$+%(*)], (21)

where c$ does not depend on * and lim* � 0 %(*)=0, and where the equality
follows because for all x # [1, 2, ..., N&1], lim* � 0 r(*, N)=r(0, N)>0. For
sufficiently small *, we have |%(*)|<= for some =>0. We then let c=c$&=
and C=c$+= to obtain S(*)t*. A similar argument establishes that any
transition within [1*(*, N)]

N can be made with at most one step that
requires a mutation, ensuring that S(*)t*.

An argument analogous to that leading to (20) gives, for any :>0,

&#0[1*(*, N)]
:Nt&#(*, N)&�(1&2S(*)):t&1.

This would allow us to conclude that there exists a function h#(*)t* such
that

lim sup
t � � "#0 :

�

k=0

(Nt)k

eNtk!
[1*(*, N)]

k&#(*, N)"
1�(:t&1)

�(1&h#(*)) (22)

holds for : # (0, 1) if we could conclude that

lim
t � �

#0 (Nt)k

eNtk!
[1*(*, N)]

k=0 (23)

for any k<:Nt. This in turn follows from the well-known observation that
as t grows, the Poisson distribution with mean and variance Nt approaches
a normal distribution with mean and variance Nt (e.g., Billingsley [5,
Problem 27.3 on p. 379]). Equation (23) is then limt � � prob[N(Nt, (Nt)1�2)
<:Nt]=limt � � prob[N(0, 1)<(:&1)(Nt)1�2]=0, which follows from
the fact that (:&1)(Nt)1�2 � &� as t � �.

Finally, we note that because (22) holds for any : # (0, 1), we must have
(19), which is the desired result. K

Proof of Proposition 9. Let the agents in the population be distributed
between the aspiration levels 2 and 2$ with 2$<2. For sufficiently large
population size and small mutation rates, there exist numbers pX (N, *),
pY (N, *), xY (N, *) and xX (N, *), with the sum of the first two numbers
arbitrarily close to one and the latter two numbers arbitrarily lose to 0 and
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1 respectively, such that the stationary distribution induced by the prevailing
collection of learning rules spends a proportion of at least pY (N, *) of the
time in states in which x�N<xY (N, *) (in which case Y is a best reply) and
pX (N, *) of the time in states in which x�N>xX (N, *) (in which case X is
the best reply). Call these sets of states PY and PX , and call the remaining
states PD .

The difference between the payoffs to aspiration levels 2$ and 2 is

pY (N, *) 6(PY)+ pX (N, *) 6(PX)+(1& pY (N, *)& pX (N, *)) 6(PD),

where 6(PY) is the expected payoff difference between aspiration levels 2$
and 2 conditional on the system being in the set PY , and 6(PX) and
6(PD) are defined analogously. Because the time spent in the set PD can
be made arbitrarily small by increasing N and decreasing *, it suffices to
show that pY (N, *) 6(PY) or PX (N, *) 6(PX) are positive, and at least one
is bounded away from zero as N increases and * decreases.

At least one of pY (N, *) and pX (N, *) must be bounded away from zero.
Suppose it is pY (N, *). Then

6(PY)= :
�

k=0
\ kpk

Y (N, *)
��

h=0 hph
Y (N, *)+ 6k(PY), (24)

where pk
Y(N, *) is the probability that a given episode during which the

system is in the set PY lasts k periods, and 6k(PY) is the expected per-
period payoff difference between learning rules 2$ and 2 during a collection
of periods in which the system stays in the set PY for exactly k periods.
Then for sufficiently small * we have

lim
N � �

:
�

h=0

hph
Y (N, *)=�, (25)

because, as N gets large, the system spends an arbitrarily small proportion
of its time in PD and every stay in PY must end with an entry into PD .

Next, let 6�(PY) be the difference in the payoffs to learning rules with
aspiration levels 2$ and 2, conditional on the system staying in the set PY

an infinite number of periods. As the length of a stay in the set PY

increases, the difference in payoffs between aspiration levels 2$ and 2,
contingent on such a stay, must approach 6�(PY). Assume temporarily
that 6�(PY)>0. Then for any =>0, there is a $$>0 such that for all
$>$$,

6$(PY)>6 �(PY)&=. (26)
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Then (26) and (25) (along with 6�(PY)>0) imply the desired result that
(24) is positive for sufficiently large N and small enough *, and does not
approach zero as N grows and * shrinks.

It then remains only to show that 6 �(PY) is positive when 2$<2. For
this, however, it suffices that F(2&z)�F(2) is increasing in 2 for any z>0.
In particular, for every state in the set PY , Y is a best reply and X is an
inferior reply. In addition, by making N sufficiently large, PY can be made
to allocate enough of its probability to such a small set that the lowest
payoff to a best reply over states in this set exceeds the highest payoff
to an inferior reply and this difference is arbitrarily large relative to the
expected difference in payoffs to a best reply or to an inferior reply over the
set PY . We can then think of the payoffs to each agent as being determined
by the stationary distribution of a two-state Markov process, with the two
states being ``best reply'' and ``inferior reply,'' and with the latter giving a
higher payoff than the former. Call this Markov process 1*. If F(2&z)�
F(2) is increasing in 2, then the ratio of the probability of abandoning a
best reply for an inferior reply to the probability of abandoning an inferior
for a best reply is lower for aspiration level 2$ then for 2. This in turn
implies that the stationary distribution of 1* must spend more time in the
best-reply state for learning rule 2$ than for 2. Then the former must then
receive a higher payoff, yielding the result. Finally, we then need only note
that F(2&z)�F(2) will be increasing in 2 if f (?)�F(?) is decreasing in ?,
which is equivalent to the log-concavity of F. K
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