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A Nash equilibrium is a stationary point for a class of evolutionary dynamics.
However, not all stationary points of these dynamics are Nash equilibria. An
‘‘evolutionary equilibrium”’ is the limit of stationary points of an evolutionary
process as the proportion of the population that mutates goes to zero. The set of
these evolutionary equilibria is a nonempty subset of the set of perfect equilibria
(and thus of the set of Nash equilibria) and a superset of the set of regular equilibria
and the set of ESS. Journal of Economic Literature Numbers: C72, C73. © 1994
Academic Press, Inc.

1. INTRODUCTION

The replicator model, developed by evolutionary biologists, formalizes
the concept of “‘survival of the fittest.”” In this model, strategies are
genetically determined and individuals have more offspring the more suc-
cessful their strategies. Although individuals do not act as Bayesian max-
imizers, in equilibrium, individuals will be playing strategies that are best
responses given the distribution of strategies of their opponents.

There is a very large literature in game theory which discusses different
definitions of equilibrium. The most frequently used by economists is
““‘Nash Equilibrium’’ although there are numerous examples where the
equilibrium concept is not restrictive enough.! Attempts to strengthen the
notion of Nash equilibrium led to equilibrium concepts such as ‘‘perfect
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discussions. Comments by Joyce Berg, Kim Border, George Mailath, John Nachbar, Jiambo
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provided by the John Randoiph Haynes and Dora Haynes Fellowship and the Alfred P.
Sloan Dissertation Fellowship is duly appreciated.

! See for instance van Damme (1987).
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EVOLUTIONARY EQUILIBRIA RESISTANT TO MUTATION 11

equilibrium’’ and *‘proper equilibrium.”’? This paper examines the relation-
ship between the evolutionary process, as modeled according to the repli-
cator model, and existing equilibrium concepts in game theory.?

The replicator model uses a differential (or difference) equation to de-
scribe the distribution of strategies in the population. In order to examine
the dynamic equilibria of the replicator model, one must solve a system
of nonlinear differential equations. This is usually done through numerical
simulations. However, there are static equilibrium concepts that can be
defined for the replicator model and which can be solved analytically.
One particularly well known static equilibrium concept is the evolution-
arily stable strategy (denoted in this paper by ESS) defined by Maynard
Smith and Price (1973). This paper defines a different static equilibrium
concept called ‘‘evolutionary equilibrium.”” The equilibrium concept is
based on an arbitrarily small proportion of the population mutating towards
an arbitrary strategy.

Section 2 describes the replicator model and its relationship with the
concepts of Nash and perfect equilibrium. Section 3 defines and establishes
formal properties of an evolutionary equilibrium, proving that an evolu-
tionary equilibrium exists for a large class of payoff matrices. Section 4
analyzes the relationship between evolutionary equilibria and other equi-
librium concepts in game theory. The set of evolutionary equilibria is
shown to be a subset of the set of perfect equilibria and a superset of the
set of regular equilibria. Throughout the paper the terms that are being
defined are written in italics.

2. THE REPLICATOR MODEL

This section describes the replicator model and reviews Bomze’s (1986)
result regarding the connections between properties of the replicator
model and game theoretic equilibria.

Suppose there is a large population* where each individual adopts a
strategy i € {1, ..., n}.” The number x, denotes the proportion of individu-
als adopting strategy i. The column vector x = (x,, ..., x,)’ describes the

? These equilibrium concepts were introduced in Selten (1975), and Myerson (1978).

3 The following papers discuss similar issues: Crawford (1988), Friedman (1991), Nachbar
(1990), and Samuelson (1988). The following papers discuss these issues in some more
specialized contexts: Axelrod and Hamilton (1981), Boyd and Lorberbaum (1987), and
Crawford (1989).

4 Specifically suppose the set of individuals is isomorphic to the natural numbers.

* Hines (1980), Hines (1982), and Zeeman (1980), consider evolutionary dynamics where
individuals adopt mixed strategies.
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proportion of the population that adopts each possible strategy. Thus
x € A" where

A= {xER'L: > = 1}.
i=1

Individuals live for one period. During that period, each individual is
randomly matched to one other individual. Individuals reproduce asexu-
ally, but the number of offspring that an individual has depends on (1)
the strategy of the individual, and (2) the strategy of the randomly matched
opponent. If an individual selects strategy i and is matched with an individ-
ual that selects strategy j, the individual who adopts strategy i has a;
offspring (a; = 0). An offspring selects the same strategy as the parent.
The matrix A, where

ap  ap Ay

dy  ay azp,
A= s

anl an2 Ay

is called the payoff matrix for the evolutionary game.
Given these assumptions, the proportion of the population adopting
strategy / at time ¢ + 1, x!*!, is

1o o (AXY),
= ‘x'-Ax"

n n n -
where (Ax); = 2 a;xand x - Ax =3 37| a; x; x;.% The last expression

can be rewritten as

[ S| _ t(Ax')i_x"Axl
Axi=x! X=X
x"Ax

or by dropping the time subscripts

=x‘(AJc),-—Jc'Ax

Ax.
i ! x-Ax

= RP(x). (n

¢ The validity of this statement is proven in Boylan (1992). Notice that by the definition
of the inner product, 2, x{ (Ax%,/x’'- Ax’) = 1. Since all a; are nonnegative, if x’ € A", then
x} ((Ax")/x"- Ax') is nonnegative, and thus x'*' € A"
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The system of difference equations Ax = RP(x) is called the replicator
model in discrete time. When the payoff function, A, is not obvious, the
replicator model in discrete time is denoted by RY.

Let At = —— be the time interval between periods (where 7 € R, ,);

x-Ax
then

Ax; = x;[(Ax), — x- Ax} At
By letting At — 0 the last expression can be written as
X; = x(Ax); — x-Ax] = R¥(x).” )

The system of differential equations ¥ = R%(x) is called the replicator
model in continuous time. Again, when the payoff function, A, is not
obvious, the replicator model in continuous time is denoted by RS.®

Notice that if the vector of strategies (x, x) is a Nash equilibrium of
the normal game (A, A”) then the vector x is a stationary point of the
replicator model. However, there are stationary points of the replicator
model that are not Nash equilibria of the normal form game. Bomze (1986),
shows that such stationary points are not stable.

ProposITION 1 (Bomze). (i) If the vector x is a stable stationary point®
of the replicator model in continuous time, then the vector of strategies
(x, x) is a Nash equilibrium. (ii) If the vector x is an asymptotically stable

7 This derivation is entirely heuristic. Let @ = max; |a; — 1|. Akin and Losert (1984), use
Euler's theorem to prove that as a goes to 0 the solution of the replicator dynamics in
discrete time converges to the solution of the replicator dynamics in continuous time.
However, the convergence is pointwise, not uniform, and thus the limit of the two trajectories
can be quite different. For constant sum games, for instance, the replicator dynamics in
continuous time is a center while the replicator dynamics in discrete time is an unstable
focus (for a definition of these terms see Arnold, 1973).

8 Let the function X: R, x R" — R" be such that for all 1 € R, and x° € A",

0
LX) Rk, x)  and  X(O.x7 =",
(The existence and uniqueness of the function X follow from the differentiability of the map
RC.) Notice that (Z; ;) = 2, ¥; = 0 and thus if £, x?= 1, then for all i, = X(z, x% = 1.
Notice also that if x; = 0, then %, = 0. Therefore if x? = 0, then for all ¢, X(¢, x% = 0.
Consequently, if x® € A" and r € R, , then X(s, x% € A"

® An equilibrium ¥ is stable if given any positive scalar ¢, there is a positive scalar § such
that for all strategies x in the ball centered at # and with radius 8, x € B(%, 8) [ A", and
for all positive t, X(t, x) € B(%, £) N A"
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stationary point'® of the replicator model in continuous time then the
vector of strategies (x, x) is an isolated perfect equilibrium.

Unfortunately, asymptotically stable stationary points are difficult to
characterize and do not always exist. This paper further characterizes the
relationship between the replicator model and game theory by examining
stationary points of the replicator model that are resistant to mutation.

3. EVOLUTIONARY EQUILIBRIUM

This section defines the notions of generalized evolutionary system,
evolutionary equilibrium, and nondegenerate payoff matrix. We prove
that there exists an evolutionary equilibrium for all nondegenerate payoff
matrices.

Consider the class of laws of motion, ¥, such that strategies that are
more successful are adopted more often. Specifically,

¥, = {H: A*— TA"|H is continuously differentiable,
and sign H; = sign x{(Ax); — xAx]},

where TA" is the tangent space of the simplex; i.e.,

TA" = {x ERY x; = 0}.

In order to make the notation less cumbersome, when no confusion can
arise, the subscript A in ¥, is dropped. Note that ¥ includes the replicator
model in discrete and continuous time.!!

Biologists have studied models where the frequency of types is affected
not only by selection, as in the replicator model, but also by mutation.
Mutation is the process through which a proportion of the population
adopts a type independently of how well the type fared in previous periods.

1 An equilibrium £ is asymptotically stable if it is stable and if § can be chosen such that
Vx € B(%, §), lim,_,, X(x, t) = £.

1 One can also think of H € ¥ as a learning rule: suppose two individuals play a symmetric
game for an infinite number of times. Each individual selects a mixed strategy x for a large
number of periods. After a while, each individual observes the average payoff, x- Ax, and
the payoff of all the pure strategies the individual adopted, (Ax);. The individual then selects
a new mixed strategy x + H(x). If a strategy i is successful, (Ax); > x- Ax, then strategy {
is played with greater frequency, H,(x) > 0.
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Denote by m(x) = (m(x),..., m,(x)) the change in population caused
by mutation; this function has been modeled in different ways:

1. In Burger (1989), the proportion of the population of strategy i
that mutates to strategy j is some constant m;. Thus,

my(x) = Z xm; — x; Z m;.

2. Hofbauer and Sigmund (1988), page 23, and Burger (1988), con-
sider a mutation function where, first the population changes through
fitness (which is described by the payoff matrix) and then a certain propor-
tion of the population mutates. In this case,

myx) = Z [x; + H(x)] m; — [x; + H{(x)] ; my.

3. Hines (1982), considers a model where individuals select mixed
strategies (instead of pure strategies). If an individual selects strategy s,
then mutation leads an individual to select strategy s + € where e is a
random variable independent from individual to individual.

4. Foster and Young (1990), consider a mutation function, I', which
is continuous, satisfies x-I'(x) = 0, and is such that the boundaries are
reflecting. The stochastic process W is a continuous, white-noise process.
In this case,

m(x) = T(x)W().

5. Maynard Smith and Price (1973), define evolutionary stable strat-
egy using the mutation function

m(x) = ey,

where y € A can depend on x and € > 0.

This paper defines the set of equilibria that is consistent with a large
class of possible mutation functions, M, where

Mt = {m: A" — TA"|m is bounded, continuously differentiable

and(VSC{l,...,n})Zx,:1:>zm,-(x)50}.
i€S

€S
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Again, when it does not lead to confusion, the superscript n is dropped.
Notice that we can interpret members of # and M as vector fields. Then
the last constraint implies that at the boundary the vector field points
inwards. This class of mutation function includes the mutation functions
(1), (2), and seems to be a mild restriction over the mutation functions
considered in (5). The stochastic mutation rate functions considered in
(3) and (4) are outside the deterministic model considered here.

For an evolutionary game with payoff matrix A, the generalized repli-
cator model H € ¥, the mutation function m € M, and a scalar . € (0,
1), define an evolutionary system by the following differential equation:

Ax = (1 - u) H(x) + um(x) (discrete version)

X = (1 — w) H{x) + um(x) (continuous version).

We define an evolutionary equilibrium as a stationary point of the evolu-
tionary system for all mutation function in M. Formally, a vector % is an
evolutionary equilibrium for the payoff function A and the generalized
replicator model H € ¥, if for every function m in M, there is a scalar
u' € (0, 1) and a vector valued function x: (0, w') — A" such that for all

n e O, u),
(I = p) Hx(u)) + pm(x(uw)) = 0

and lim,, | ¢ x(p) = £.2

Note that in particular applications the set of mutations may be re-
stricted. In such cases the set of evolutionary equilibria is a superset of
the set of evolutionary equilibria when the set of mutation functions is
M.

The following theorem by Jiang (1963) (which generalizes the better
known theorem by Fort, 1950) is used in the proof of the existence of
evolutionary equilibria. Let X be a compact convex subset of a normed
space, let d be the metric defined on X defined by the norm, and let C(X,
X) be the set of continuous function with domain and range in X. Then
(C(X, X), p) is a metric space where

p(f, g) = sup,ex d(f(x), g(x)).

Finally, let F: C(X, X) — X be the fixed point correspondence; i.e., for
all f€ C(X, X),

12 A different stability notion is structural stability (see Hirsch and Smale, 1974, p. 312)
which requires that trajectories of the perturbed system to be homeomorphic to the original
system. Note that evolutionary equilibria need not be dynamically stable.
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F(f) = {x € X|f(x) = x}.

A set D is said to be totally disconnected if all the connected subsets of
D are singletons.

THEOREM 1| (Jiang). Suppose F(f) is a totally disconnected set. Then
there is a vector p in F(f) that satisfies the following property. For every
neighborhood U of p there is an € > 0 such that:

g€CX,X) and p(f,g)<e>F()NU#J.

The vector p described in the theorem is called an essential fixed point.

For all subsets of the strategy set 1 C {1, ..., n}, let A|, be the matrix
(a;)ie1 je;- A matrix A is nondegenerate if for all I C {1,. .., n} such that
#(I) = 2, the matrix A[, is nonsingular."

LEMMA 1. If A is nondegenerate then H € ¥, has finitely many
stationary points.

Proof. Let A be a nondegenerate payoff matrix. Let S = {x € A"|i €
I © x; > 0} be a face of the simplex. Then (x5, 0_5) € § is a stationary
point of RY if and only if there is a scalar A such that Agxg = 1. Since
the matrix Ag is invertible, there is a unique stationary point (x5, 0).
Furthermore, since the simplex has finitely many faces there are finitely
many stationary points of RS. By the assumptions on ¥, this implies that
H has finitely many fixed points. &

PrOPOSITION 2.  For all nondegenerate payoff matrices A there is an
evolutionary equilibrium.

Proof. Fix a payoff matrix A and a generalized replicator function
H € #,. We first construct a function, H’, whose fixed points correspond
to the stationary points of H. Then we use Theorem 1 to prove the exis-
tence of an essential fixed point. Finally we show that essential fixed
points of H' are evolutionary equilibria for A (where the law of motion
is H). Let

13 The only property used in the paper is that there are finitely many symmetric equilibria
in all the submatrices Als. I think that a necessary and sufficient condition for the latter
property is

Vi, )y c{t,..., n}, a; = a; > a; * a;.

Notice that either assumption is much weaker than the Lemke and Howson nondegeneracy
condition (for a definition of the Lemke and Howson nondegeneracy condition see van
Damme, 1987, p. 52).
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H: A"— R"be defined by H' =1 + H.

Notice that fixed points of H' are stationary points for H. Unfortunately
the function A’ does not map its domain, A", into itself. In order to remedy
this problem we extend the function A’ to a domain EA” which is invariant
under the extension, H. Specifically let

M= maX,eamicq. .. H;’(x)l + 1

EA" = {x ERY> x;=1, Vie{l,...,n}x,€[-M, M]};
=1

a. EA"— {0, 1)

a(x) = min{a € [0, 1)|a/nl + (1 — &) x € A"};
H: EA"— EA"

H(x) = H' (a(x)/n1 + (1 — a(x))x).

Notice that fixed points of H' are stationary points for H and that all the
fixed point of H are in A" (and thus are fixed points of H').'* By assumption
A is nondegenerate; thus, by Lemma 1 there are finitely many stationary
points of H and Theorem 1 is applicable. Let g = (1 — u) H +
u(m + I). Then for small enough u, g: EA" — EA"
and p(H, g) < e. A fixed point of g corresponds to a stationary point of
(1 — w) H + wm. Thus the set of perturbations allowed in the theorem
includes the ones in the definition of evolutionary equilibrium.

Fix a mutation function m € M. Since all the conditions are satisfied,
we use Theorem 1 to prove the existence of an evolutionary equilibrium.
Thus there is an £ such that for every ¢ > 0 there is a u, and a function

x(n): (0, u,) — A"
such that Yu € (0, w«,)
(1 = ) Hx(w)) + pm(x(u)) =0
and sup,cp )| x,(#) — %|< e. Then since there are finitely many fixed

points of H there is an &’ > 0 such that B(x, ') N F(H) = {x}. For u €
©, w.) let x(u) = x.(). Then x: (0, ) — A is such that

¥ Proof. Suppose that H(x) = x and x & A". Since H-1 = 0, there exists a strategy i
such that x; < 0. !,et y € 9 4, be such that y = a(x)/nl + (1 — a(x))x. Then y; = 0. But
this implies that H,(x) = H;(y) = 0. Contradiction.
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(1 — @) H(x(w)) + pm(x(u)) = 0,

and x(u) — %. Therefore, £ is an evolutionary equilibrium. ®

The next game shows that nondegeneracy is not a necessary condition
for the existence of an evolutionary equilibrium. The game A, where

S

]
= =)
o o o
- o &

is degenerate (JA4,,] = 0) and has-(0, 0, 1) as an evolutionary equilibrium.
However, some degenerate payoff matrices do not have evolutionary
equilibria; the game B, where

is degenerate since |By,| = 0. Let m be such that for all i, m,(x) = q; —
x;, where 2; a; = 1 and a; > 0. Then for all positive u, the only stationary
points of the generalized replicator with mutation are points such that
X, = a,. Thus there are no evolutionary equilibria.

We have shown that if the payoff matrix A is nondegenerate then every
law of motion H € ¥ has an evolutionary equilibrium. However, it is
possible that different laws of motion give different set of evolutionary
equilibria. The next proposition proves that all laws of motions H €
¥, C ¥ have the same set of evolutionary equilibria, where

%, = {H: A" — TA"|3f: A — R, such that fis continuously
differentiable and H = f- R¢}.

THEOREM 2. Let H, H' € ¥y and suppose x is an evolutionary equilib-
rium for H. Then % is an evolutionary equilibrium for H'.

Proof. Without loss of generality suppose that H' = f - H, where fis
strictly positive and continuously differentiable. Fix m' € M and let m =
m'/f € M. Since £ is an evolutionary equilibrium for % there is a scalar
@’ € (0, 1) and a vector valued function x: (0, 1') — A” such that for all

r e, pu),
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(1 — p) H(x(p)) + pm(x(u)) =0

and lim, | x(u) = x. Consequently, we have that for all u € (0, u'),

(I = w) H'(x(w) + pm’(x(w)) = f(] — p) Hx(p)) + pm(x(u))] = 0

apd lim, |, x(u) = £. Since m’ was arbitrary, £ is an evolutionary equilib-
rium for H'. =

The rest of this section gives a local definition of evolutionary equilib-
rium which is then shown to be equivalent to the first definition.

For all O C A" let ML° be the set of mutation functions that are equal to
zero outside O; i.e.,

MO = {m € M|m]|m, = 0}

A vector £ is an O-evolutionary equilibrium for the payoff function A and
the generalized replicator model H € % if for every function m in M,
there is a scalar u' € (0, 1) and a vector valued function x: (0, u') — A"
such that for all x € (0, u'),

(1 — p) Hix(p)) + pm(x(u)) = 0

and lim,, | o x(u) = X. A vector % is a local evolutionary equilibrium if there
exists a neighborhood O of % such that £ is an O-evolutionary equilibrium.

Clearly, an evolutionary equilibrium is a local evolutionary equilibrium.
The converse is also true.

THEOREM 3. A local evolutionary equilibrium is an evolutionary equi-
librium.

Proof. Let % be a local evolutionary equilibrium and thus an O-evolu-
tionary equilibrium. Let m € M and let m® be equal to m on O and
identically zero outside O. Since £ is an O-evolutionary equilibrium there
exists a function x: (0, ') — A" such that x(u) — x and for all u € (0,

©')
(1 — w) Hx(u)) + um®(x(w)) = 0.

Let " € (0, u’) be such that for all u € (0, u"), x(n) € O. Then for all
© € (0, u"),
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(1 — p) H(x(u)) + um(x(u)) = 0.

Therefore £ is an evolutionary equilibrium. ®

4. RELATIONSHIP BETWEEN EVOLUTIONARY EQUILIBRIUM AND OTHER
EquiLiBRIUM CONCEPTS

The rest of the paper relates evolutionary equilibria to other game
theoretic equilibria, i.e., equilibrium concepts that are derived from assum-
ing that individuals are Bayesian maximizers and by making assumptions
about the individuals’ beliefs. There are three reasons for being interested
in these relationships: (i) showing that an evolutionary equilibrium corre-
sponds to a game theoretic equilibrium allows us to argue that individuals
act “‘as if”’ they are Bayesian maximizers; (ii) there are ways of computing
game theoretic equilibria that can be used to compute evolutionary equilib-
ria; (ili) evolutionary stability acts as a refinement of the set of Nash
equilibria.

The following nine equilibrium concepts are analyzed: Nash equilib-
rium, undominated Nash equilibrium, perfect equilibrium, strict domi-
nance solvability, regular equilibrium, proper equilibrium, strictly proper
equilibrium, ESS, and essential equilibrium.

The main results in this section are: an evolutionary equilibrium is a
symmetric perfect equilibrium (Section 4.3); a symmetric regular equilib-
rium is an evolutionary equilibrium (Section 4.5); an ESS is an evolution-
ary equilibrium (Section 4.8); not all symmetric proper equilibria are evolu-
tionary equilibria (Section 4.6); not all evolutionary equilibria are strictly
perfect equilibria (Section 4.7).

4.1. Nash Equilibrium

Let x € A". A vector of strategies (£, X) is a symmetric Nash equilibrium
for the symmetric game (A, A7) if for all strategiesy € A", - AX =y AX.
The concept of Nash equilibrium is the most widely used equilibrium
concept in game theory although it is often considered to be too weak
(see, however, Bernheim, 1984 and Pearce, 1984).

PROPOSITION 3. An evolutionary equilibrium, %, is a symmetric Nash
equilibrium (%, x).

Proof. Let x be an evolutionary equilibrium. (i) Suppose that there is
a strategy, say 1, such that ¥, = 0. In order to prove that x is a Nash
equilibrium we need to show that (Ax), = fAx. Let m be such that
m,(x) > 0 for all x in a neighborhood of %. Then since x is an evolutionary
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equilibrium there is a ' > 0 and a function x: (0, u’) — A such that for
every u in (0, n'),

(1 — p) H(x(w)) + um(x) = 0.
This implies that for all & in (0, u'),
(Ax(w)), — x(pu) Ax(u) < 0.

Thus (Ax), = £AX. (i) Suppose that %, > 0 and X; > 0. Then, (AX);, —
%Ax = 0 and (Ax); — ¥Ax = 0. Thus (AX), = (AX),. Therefore % is a Nash
equilibrium. =

4.2. Undominated Nash Equilibrium

In this subsection we show that not all perfect equilibria are evolutionary
equilibria and thus that not all Nash equilibria are evolutionary equilibria.

A strategy i is weakly dominated if there exists a mixed strategy y such
that the payoff for using y is at least as great as the payoff for using i
regardless of the other players’ strategy and strictly better for some strat-
egy; i.e., for all x € A", y-Ax = (Ax); and there is a z € A” such that
y Az > (Az);.

The principle that strategies that are weakly dominated should not be
played is very intuitive, although when used repeatedly it can give results
that are surprisingly strong.'® The next lemma characterizes the relation-
ship between evolutionary equilibria and weakly dominated strategies.

LEMMA 2. Letx be an evolutionary equilibrium. Then X; = 0, if strategy
i is weakly dominated.

Proof. Suppose that mixed strategy y weakly dominates strategy 1 and
suppose, without loss of generality, that 1 &€ support (¥). Suppose that £
is an evolutionary equilibrium and %, > 0. Let m € M be such that in a
neighborhood of ¥ (where x, > 0)

m(x) = —1, and for all i € support (y), mi(x) = 1.

Then since £ is an evolutionary equilibrium there exists a constant u’ and
a function x: (0, ©’) — A such that for u € (0, ') and for all i € support
»),

15 yan Damme shows that in a game where player one first decides whether to discard $1
and then plays a battle of the sexes game, repeated elimination of weakly dominated strategies
results to player one getting the highest possible payoff.
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A-wWH(y)+p=0, (3)
(1-wH(y)—pn=0, 4)

and lim,_,, x(x) = %. Condition (3.3) implies that
x(u) Ax(p) > (Ax(u));;

condition (3.4) implies that for all u € (0, ')
(Ax(u))y > x(p) Ax(p).

Thus (3.3) and (3.4) combined give

(Ax(w); > 2, yi(Ax(w);

which contradicts the assumption of weak domination. ®

Thus an evolutionary equilibrium is an undominated Nash equilibrium
(a Nash equilibrium where dominated strategies are given zero weight).

4.3. Perfect Equilibrium

There are several ways in which perturbations have been introduced
in solution concepts. Evolutionary equilibria consider perturbations in the
law of motion; essential equilibria (which are analyzed later in this section)
consider perturbation in the payoff function; finally, perfect equilibria
consider equilibria that are ‘‘resistant’’ to some perturbation of the strat-
egy set.

Let R, = {x € R|(Vi) x;, > 0}, A7, = A"MN R,. Let £ € A". A
vector of strategies (X, X) is a symmetric perfect equilibrium if there exist
sequences {¢'} and {x’}, where ¢’ € R, , and x! € A" _, such that: (i) for
all 1, x} > &’ only if i € argmax(Ax");; (ii) lim,,, £’ = 0; (iii) lim,_, x* =
x.

PROPOSITION 4. An evolutionary equilibrium is a symmetric perfect
equilibrium.

Proof. The result follows from Lemma 2 and the result (van Damme
(1987), Theorem 3.2.2) that for a two person finite normal game an equilib-
rium is perfect if and only if every weakly dominated strategy is played
with probability 0. =

The next example shows that not all symmetric perfect equilibria are
evolutionary equilibria. Let
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>
I
(=2 S
O = =
—_— R =

The vector (%, ¥) where ¥ = (0, 1, 0) is a symmetric perfect equilibrium
(since strategy 2 is not weakly dominated) but £ is not an evolutionary
equilibrium.'® Incidentally, all trajectories of the replicator model in con-
tinuous time that start in the interior of the strategy simplex converge to
(1,0, 0).

4.4. Strict Dominance Solvability

The next proposition establishes that an evolutionary equilibrium is
resistant to the elimination of dominated strategies. Thus, restricting the
replicator model to rationalizable strategies will not reduce the set of
evolutionary equilibria.

PROPOSITION 5.  Suppose that strategy j dominates strategy i and sup-
pose that % is an evolutionary equilibrium for the payoff matrix A. Let
A_; be the payoff matrix where the ith row and column have been deleted.
Then for all H € ¥y, %, is an evolutionary equilibrium for the payoff
matrix A_;.

Proof. Let m' € M""! be a mutation function. Let m € M" be such
that

3 {mj’(x) ifj#i
M= 0 =i

Since f is an evolutionary equilibrium, then for small enough w’ > 0 there
is a function x: (0, u') — A" such that x(u) — % and for all u € (0, u'),

(1 — p) Hy(x(u) + pm(x(w)) = 0.

Since % is a Nash equilibrium and since strategy i dominates strategy j,
then ¥A% = (AX); > (AX);. Then there is a small enough p” > 0 such that
for all u € (0, 1),

16 Proof. Suppose £ is an evolutionary equilibrium. Let m € M be such that m(x) =
(1, —1, 0) for every x in a neighborhood of £ and let x(u) be the corresponding sequence
of stationary points for the generalized replicator model. Since for all x in a neighborhood
of %, x- Ax > (Ax),, for small enough u we must have x;(u) = 0. For such u, H(x(p)) >
0 and thus (1 — w) H,(x(w)) + pm;(x(p)) > 0. Thus, ¥ cannot be an evolutionary equilibrium.
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x(u) Ax(u) > (Ax(n));.

Since m;(x) = 0 then x(u) = 0. Therefore, for all u € (0, u"),
(1 —w HA_,. (x_(u)) + um' (X_.'(IJ-)) =0,

and £ is an evolutionary equilibrium for A_;. =

An equilibrium is strictly dominance solvable if it can be obtained by
reducing the game to a single cell by iterated deletion of dominated strat-
egies.

PROPOSITION 6. A strictly dominance solvable equilibrium is an evolu-
tionary equilibrium.

Proof. Suppose that £ is an evolutionary equilibrium, strategy 1 domi-
nates strategy 2 in the normal game A;; .4, and strategy 3 dominates
strategy 4 in the game A. By Lemma 2, %, = 0. Suppose %, > 0. Choose
the function m such that for every x in a neighborhood of x, m;(x) = 1,
m,(x) = —1. Then for small enough u, (Ax(un)), > (Ax(w)),. But this is
impossible since x,(x) — 0. Thus %, = 0. =

4.5. Regular Equilibrium

The concept of regular equilibrium was introduced by Harsanyi (1973).
The following description of the equilibrium is based on van Damme
(1987) and is simplified to two-person symmetric games. Let z = (x, y)
be a vector of strategies for the game (A, A7). Let k € supp(x), let [ €
supp(y) and let m = (&, I). Let F(x|k) be such that

n

(Vi # k) F(x|k) = x[(Ay), — (Ay),]  and  Fux|k)=> x;,— 1.

i=1

Similarly, let F(y|l) be such that
Vi#D)Gy|D) = y[(Ax),— (Ax)] and  GylD=Dy -1l
=1

Finally, let

_ 9 H(z|m)

H(z|m) = (F(x|k), G(y|)T  and  J(z|m) Py

=%
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A vector ? is a regular equilibrium if for some m € supp(x) X supp(y),
H(z|m) = 0 and det J(z|m) # 0.

Intuitively, a regular equilibrium is one for which the best response
mapping is continuously differentiable at a neighborhood of the Nash
equilibrium.

ProOPOSITION 7. A symmetric regular equilibrium is an evolutionary
equilibrium for the law of motion H € ¥,

Proof. Without loss of generality, suppose H = RC. Theorem 9.4.3 in
van Damme (1987), states that a Nash equilibrium (%, %) is regular if and
only if dR®/dx|,_; is nonsingular. Notice that if dR\dx|,_; is nonsingular
and g is small enough then

11 = ) LR + mm()|scg s

is nonsingular. Therefore, if (£, X) is a regular equilibrium then by the
implicit function theorem, £ is an evolutionary equilibrium. ®

The next example shows that not all games with nondegenerate payoff
matrices A have a regular equilibrium.
Let

2,2 2,2)

AAN) = (
( ) 2,2 1,1

Clearly the matrix is nondegenerate and the only perfect equilibrium is
“top,”” “‘left.”” The Jacobian of the best response function (as defined by
Harsanyi, 1973) at the equilibrium point is

0 00

det =0

(=R
-0 O

1 0
0 0
0 1

and thus the game has no regular equilibria. It is clear that all the trajector-
ies of the replicator model that start in the interior of the simplex converge
to (1, 0).

4.6. Proper Equilibrium

In this subsection we show that not all proper equilibria are evolutionary
equilibria.

Let ¥ € A", A vector of strategies (X, X) is a symmetric proper equilibrium
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Player 1

L C
//& . \
3 4 \\u,o %{( 5,1

Fi1G. 1. Game with a proper equilibrium which is eliminated by forward induction.

if there exist sequences {¢‘}and {x'}, where e’ € R, , and x' € A", , such
that: (i) for all 1, x| < g'x}if (Ax"); < (Ax');; (ii) lim,_,, ' = 0; and (iii)
lim_, x‘= x.

The game in Fig. 1 is used by Tan and Werlang (1988), to show the
insufficiency of the concept of proper equilibrium. There are two proper
equilibria in the game: Rr and LI. By a forward induction argument Tan
and Werlang argue that since C is dominated by L, C should never be
played and therefore | should never be employed.'” Therefore properness
allows unreasonable equilibria, such as LI.

Are Rr and Ll evolutionary equilibria for the law of motion R€? We
can construct a symmetric game by assuming that two individuals are
randomly assigned to the roles of player 1 and player 2. Figure 2 shows
the extensive form for such a game.

An evolutionary game is constructed by normalizing the symmetric

Nature

FiG. 2. Symmetrization of extensive game in Fig. 1.

17 L1 corresponds to the equilibrium where player 2 warns player 1 that he will play 1.
Then player 1 has the choice of playing L and receiving 3, playing C and receiving 2, and
playing R and receiving 0. If player 2 gets to move he realizes that player 1 did not believe
in his bluff. Then player 2 is better off not to follow with his threat and play r.
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Rr
Rl
Cr
Cl
Lr
L1

~ O DO
~ W DN O
| O W | 00| 0O

| O v L o o

~Jj ] B | O =

Wi O ={ YD

Fi1G. 3. Symmetrization of the game in Fig. 2.

extensive game. Figure 3 shows the symmetrization of the game in Fig.
2. Notice that the matrix is degenerate. The strategy Rr is clearly a strict
Nash equilibrium and thus a regular equilibrium (van Damme, 1987, Theo-
rem 2.3.3) and thus an evolutionary equilibrium (Proposition 7).

Notice that £ = (0, 0, 0, 0, 0, 1) is a symmetric proper equilibrium."®
Suppose that £ is an evolutionary equilibrium. Then for all x in a neighbor-
hood of i let

m(x) =(1,0,0,0, 1, —2).

Choose p small enough so that x(u) Ax(n) > 5.5 and x4 > 0.9. Then
X(p) = x3() = x4() = 0. The assumptions on m also give that x,(u) >
0 and (Ax), > xAx > (Ax)s which is impossible given the payoff function.
Thus % is not an evolutionary equilibrium.'

4.7. Strictly Perfect Equilibrium

A Nash equilibrium is strictly perfect if it is resistant to all perturbations
of the strategy set. Formally, (%, ) is a symmetric strictly perfect equilib-
rium if there exists a vector n € R, such that for all sequences {n'},
where 1! € (0, m,), there exists a sequence {x'}, where x' € A", such that:
(i) foralliand ¢, x{ = n}; (ii) x{ = n{ implies that i € argmax;(Ax‘);; (iii)
lim,_,. n'=0; (iv) lim_,, x" = %.

The concept of strict perfect equilibrium resembles the concept of evolu-
tionary equilibrium but as the following example illustrates not every
nondegenerate game has a symmetric strictly perfect equilibrium.

Let

BJust setx, = /(1 + & + 4e)if i # 5,6, x5 = /(1 + & + 4e),and x, = /(1 + & +
4g?).

1% Selten (1983) extends the concept of ESS to extensive games. The first extension is
called direct ESS. In this game the only direct ESS is Rr. (The intuition for this is that the
strategy Lr generates the same payoffs as the strategy Li.) The second extension is called
limit ESS. In this game both L! and Rr are direct ESSs. (The intuition for this is as follows:
if the population adopts L/, the mutants that adopt Rr get a strictly lower payoff when there
are trembles.)
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[ 1 0
A=[1 0
1 0 -1

Then the game (A4, A7) has no symmetric strictly perfect equilibrium
but has a unique evolutionary equilibrium £ = (1, 0, 0).?° Similarly, all
orbits of the replicator model in continuous time that start in the interjor
of the simplex converge to (1, 0, 0).

4.8. ESS

The most widely used equilibrium concept in evolutionary game theory
is the concept of evolutionary stable strategy (ESS). While evolutionary
equilibria consider dynamic perturbations, ESS considers stable perturba-
tions. A strategy ¥ € A" is an ESS if for any other strategy y € A" — {x}
there is an ¢’ such that for all e € (0, £')

Ay + (1 —g)X) > y-Aley + (I — g)%).

Thus contrary to the notion of evolutionary equilibrium, ESS considers
mutation in a static framework. This condition can be rewritten in the
following way. Strategy £ is an ESS if for all strategies y different than
x, one of the two conditions holds

(1) X-AX>y-AX

0 Proof. The vector (£, £) is the unique symmetric perfect equilibrium, A is nondegenerate
and thus X is an evolutionary equilibrium. Consider the perturbation

1 2
2ot el 588

Suppose x(g) — (1, 0, 0). Then

x(e) + x3(e) = x\(g) + x3(e);
i.e., x(g) = x3(¢). This implies that

xi(e) + xi(e) = xi(e) + xi(e),
or x,(&) = x;(¢). But this is possible only if

x(e) — x;3(8) = x)(g) + x3(8).

Contradiction.
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(ii) ¥-Ax = y-Afand £-Ay > yAy.

The next proposition relates ESS to the replicator model in continuous
time.

PROPOSITION 8 (Zeeman 1980). An ESS as an asymptotically stable
stationary point of the replicator model R¢.»!

Unfortunately the requirements of ESS and asymptotically stable sta-
tionary points seem too strict as demonstrated by the following example.
Let

where € € (0, ). The only Nash equilibrium is £ = (4, 4, 4). The Hessian
of the law of motion is positive definite, therefore # is not asymptotically
stable and hence £ is not an ESS. Furthermore, since £ is the only Nash
equilibrium, the game has no asymptotically stable stationary points and
thus no ESS. Finally, since the determinant of the Hessian is nonzero, &
is a regular equilibrium and thus an evolutionary equilibrium.

Suppose that ¢ < 0. Then % is an ESS and is thus an asymptotically
stable stationary point for the replicator model. The replicator model in
discrete time is not stable at x since one of the eigenvalues of the linearized
system is greater than one. Thus ESS are not necessarily asymptotically
stable points of the replicator model in discrete time.

PROPOSITION 9. A hyperbolic stationary point of the replicator model
in continuous time is an evolutionary equilibrium for the law of motion
RC.

Proof. A stationary point is hyperbolic if none of the eigenvalues of
dRC¢/dx have zero real parts. Thus the proposition follows from the implicit
function theorem. ®

2l The proposition does not hold for RP. Let

0 1+e¢ -1
A=] -1 0 1+e
1+e¢ -1 0

’

where ¢ > —1. Then (3, 4, %) is an ESS but not an asymptotically stable equilibrium for RP.



EVOLUTIONARY EQUILIBRIA RESISTANT TO MUTATION 31

PROPOSITION 10. An ESS is an evolutionary equilibrium for the law
of motion H € ¥g.

Proof. Without loss of generality take H = RC. Let £ be an ESS. In
the proofs of Theorem 9.2.8, 9.4.8 van Damme (1987) shows that there
is an open ball U centered at x such that the function

V:U—-R
V(I)Enxfi

is a Lyapunov function and such that £ is the only fixed point of R in
U. Take c to be large enough so that V~!'(c) C U. Let X be the solution
of the differential equation x = R€. For x € U, let F(x) = X(1, x). Then
F is continuous and maps V~!(c¢) into V~'(c). Then by an argument similar
to the one in Proposition 2 one can show that x is an evolutionary equilib-
rium for R¢. =

Finally notice that not all ESS are regular equilibria. For example, the
game matrix discussed in Section 4.5 has no regular equilibria but has (1,
0) as the unique ESS.

4.9. Essential Equilibrium

A Nash equilibrium (x, y) is essential®? for a game (A, B) if for an
arbitrarily small perturbation of the payoff matrix (A’, B’) there is a Nash
equilibrium to (A’, B') close to (x, ¥). This notion predates the concepts
of hyperstable equilibrium introduced by Kohlberg and Mertens (1986).2

A symmetric Nash equilibrium (%, ) for the game (A, A7) is symmetric
essential if for any symmetric game with payoffs close enough to A there
is a symmetric Nash equilibrium close to (%, £). The next propositions
characterize the set of symmetric essential equilibria.

ProprosITION 11 (Bomze). A regular equilibrium is an essential equi-
librium.

ProrosiTiON 12 (Bomze). An ESS is a symmetric essential equi-
librium.

PrOPOSITION 13. Restrict the set of mutations to functions of the form

2 The equilibrium concept is defined by Wu and Jiang (1962).

3 A subset, H, of the set of Nash equilibria for the game (A, B) is hyperstable if it is
minimal according to the following condition: Given any small perturbation of the payoff
matrix, (A’, B’), there is a Nash equilibrium to (A’, B'), (x’, »’), close to the set H.



32 RICHARD T. BOYLAN
mi(x) = x[(Cx); — xCx].

Then a symmetric essential equilibrium is an evolutionary equilibrium.

Proof. Suppose £ is a symmetric essential equilibrium of the game (A,
AT). Let my(x) = x[(Cx);, + xCx] and let A,= (0 - p)A+ uC. Then

X(u) = (1 — ) x(u) [(Ax(w)); — x(u) Ax(w)]
+ px(p) [(Cx(u)); — x(u) Cx(w)]
= xi(p) [(A,x(p); — x(p) A, x(u)] =0

if (x(w), x(w)) is a Nash equilibrium of the game (A,, AD. But since £ is
a symmetric essential equilibrium then for any perturbation of the payoff
there is a Nash equilibrium arbitrarily close to £. Therefore £ is an evolu-
tionary equilibrium. =

5. CONCLUSION

The paper establishes the relationship between evolutionary notions of
equilibrium and game theoretic notions of equilibrium. In the evolutionary
model: (i) the proportion of the population that adopts a strategy is depen-
dent on the distribution of strategies in the population and (ii) mutation
affects the dynamics. An evolutionary equilibrium is a mix of strategies
which is a stationary point for the law of motion of the replicator model
with arbitrarily small levels of mutation. We show that an evolutionary
equilibrium exists for all nondegenerate payoff matrices and that evolution-
ary selection, as described by the concept of ‘‘evolutionary equilibrium,”
can result in elimination of some unintuitive equilibria.
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