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This paper provides an analog to the aggregate monotonicity condition 
introduced by Samuelson and Zhang [J. .&on. Theory, 19921 in a study of 
continuous dynamics. Our condition guarantees that limit points of discrete 
selection dynamics are rationalizable strategies. We show that the condition will be 
satisfied by the discrete replicator dynamic if the population does not change 
rapidly. These results reconcile the Samuelson-Zhang theorem, which implies that 
limit points of continuous replicator dynamics must be rationalizable, with an 
example of Dekel and Scotchmer [J. Bon. Theory, 19921, which shows that limit 
points of the discrete replicator dynamic may place positive probability on strictly 
dominated stategies. Journal of Economic Literature Classification Numbers: C72, 
c73. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

This paper presents a condition on discrete game dynamics which 
guarantees that limiting outcomes must survive iterated deletion of strictly 
dominated strategies. We are motivated by two recent studies. Samuelson 
and Zhang [9] have given conditions under which the limit points of 
continuous game dynamics must be rationalizable. To prove their result, 
they introduce a monotonicity condition that is satisfied by the replicator 
dynamic of evolutionary game theory. In contrast, Dekel and Scotchmer 
[2] have shown by example that the discrete replicator dynamic need not 
eliminate a strategy that is strictly dominated by a mixture of the other 
strategies. We wish to reconcile these results by providing conditions under 
which discrete dynamics rule out dominated strategies and relating those 
conditions to the discrete replicator dynamic. 

*We thank Tilman Borgers, Richard Boylan, Vincent Crawford, Eddie Dekel-Tabak, 
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Ministry of Education and Sobel thanks the NSF for financial support. 

407 
0022-0531192 $5.00 

Copyright 0 1992 by Academic Press. Inc. 
All rights of reproductxm in any form reserved 



408 CABRALESANDSOBEL 

We obtain the following results. First, we provide an analog to the 
Samuelson-Zhang condition; our assumption guarantees that limit points 
of discrete selection dynamics are rationalizable strategies. Second, we 
show that the condition will be satisfied by the discrete replicator dynamics 
if the population does not change rapidly. These results help to relate the 
Samuelson-Zhang theorem to the Dekel-Scotchmer example. 

Section 2 of the paper introduces the basic model. Section 3 examines 
the Dekel-Scotchmer example. Section 4 discusses the monotonicity 
assumptions needed in the continuous and discrete models and explains the 
relationship to each other and to the replicator dynamic. Section 5 proves 
a result that gives conditions under which limit points of discrete selection 
dynamics must be rationalizable. 

Our framework and main result simply translate the Samuelson and 
Zhang result to a discrete setting. We use their notation whenever possible. 

2. PRELIMINARIES 

We deal with a finite two-player game.’ We let I be the set of n, pure 
strategies of player 1; J denotes player 2’s set of n, pure strategies. Player 
k’s payoff function is denoted by rrk(i, j) for (i, j) E Ix J. Let S” denote the 
standard (n - 1)-dimensional simplex. We extend rrk( .) to the space of 
mixed strategies S”’ x SB2 in the usual fashion by linearity. Hence, for 
(x, y) E S”’ x S”l, nllk(x, v) = Cy’r C;s, rck(i, j)xivj; we will identify the 
pure strategy i with the degenerate distribution that places probability one 
on the ith pure strategy. In keeping with the usual framework for 
evolutionary game theory, it is useful to imagine that there are infinite 
populations of players who take on the roles of player 1 and 2; that players 
from each population are randomly and anonymously paired; and that all 
individuals play pure strategies so that an element of S* represents the 
fraction of members of the population that play each pure strategy. 

Samuelson and Zhang consider continuous dynamics determined by 
functions (f, g), where 

ii=fi(x, y) i= 1, . . . . n, and jj=gj(x, y) j= 1, . . . . n, (1) 

that satisfy, for all (x, JJ) E S”1 x S”*, 

(Cl) f( .) and g( .) are Lipschitz continuous, 

(C2) Cli,f,(x, Y)=O=C~=l gjcx, y), 

’ We choose to work with two-player games because that is the standard setting for 
evolutionary dynamics and is the context for the Dekel-Scotchmer and Samuelson-Zhang 
papers. Our results generalize in a straightforward manner to n-player games. 
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(C3) for all XE S”‘, if xi = 0, then fi(X, y) > 0, 

(C4) for all y E P, if yj = 0, then gj(x, y) > 0, and 

(CR) lim., + o [fi(x, YVXJ and limv,,o Cg,(x, Y)/Yjl exist and are 
finite. 

The first condition is the standard regularity condition needed to 
guarantee the existence and uniqueness of solutions to the dynamic system 
(1) for any initial condition. Conditions (C2)-(C4) guarantee that the path 
of solutions stays within the strategy simplices. (CR) is a regularity condi- 
tion which implies that growth rates fi(x, y)/x, and gj(x, y)/yj can be 
extended continuously to the boundary of S”’ x Sn2; we shall denote these 
extensions, given by the limits in (CR), by fi(O, y)/O and g,(x, 0)/O. This 
condition prevents strategies that are present in the population from being 
eliminated in finite time. Samuelson and Zhang also impose another 
condition that is crucial for their result on rationalizability. We discuss this 
condition in Section 4. 

We will instead look at discrete dynamics defined by continuous 
functions (F, G), where F: S”’ x Sn2 + S”’ and G: S”’ x Sn2 + Sn2 and 

x,(t+ l)=Fi(x(t), y(t)) i= 1, . . . . n, and 

yj(t+ l)=Gj(x(t), y(t)) j= 1, . . . . n2. 
(2) 

(Dl) If xi>O, then F,(x, y)>O and ify,>O, then G,(x, y)>O. 

(DR 1 lim., + o [Fi(x, y)/xiJ and lim,,, [Gj(x, y)/y,] exist and are 
positive and finite. 

(DR) plays the same role as (CR). 
We wish to know whether the set of limit points of a solution (x(t), y(r)) 

to (1) or (2) places positive probability on dominated strategies. First we 
make precise our definitions. 

Strategy x’ ES”’ is strictly dominated in M, c S”’ relative to M2 c S”’ if 
there exists XE M, such that rc,(x, y) > X,(X’, y) for all YE M,. Let 
D,(M,, Mz) be the set of mixed strategies in M, that are not strictly 
dominated in M, relative to Mz. The strategy x E S”’ survives strict iterated 
admissibility (SIA) if there exist sequences of the form S”’ = M,,, 
M ii, . . . . Ml. and Sn2 = Mzo, Mzl, . . . . M,, where MI,,+ 1 = D,(M,,,, M,,) 
and Mzn+ 1 =dz(M1,, M,,) for n = 1, . . . . T- 1, with M,,=B,(M,,, M2=) 
and M,,= Dz(M,,, M,,) and with x E M, T. Similar definitions apply for 
player 2. 

(x*, y*) is said to be a limit point of a solution (x(t), y(t)) to (1) or (2) 
if there exists an increasing sequence of times, { tn};= i, such that 
lim, + m (x(t,), y(t,)) = (x*, y*). According to this definition a limit point 
is the limit of a sequence of points generated by the dynamics. 
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Pearce [S] shows that in two-player games the pure strategies that 
survive SIA coincide with the set of pure strategies that are rationalizable 
(Bernheim [ 1] and Pearce [8]) in the set of all mixed strategies. We will 
say that a solution (x(t), y(t)) to (1) or (2) avoids nonrationalizable 
strategies if all limit points survive SIA. 

3. DISCUSSION OF THE DEKEL-SCOTCHMER EXAMPLE 

Dekel and Scotchmer [2] present an example in which for almost all 
initial conditions, limit points of paths generated by the discrete replicator 
dynamic place positive probability on a strategy that is strictly dominated 
by a mixture of the other strategies. Since the theorem of Samuelson and 
Zhang guarantees that this cannot occur for the continuous replicator 
dynamic, the example is puzzling. We briefly discuss the example in this 
section. 

The example is given in Fig. 1.’ For both players an equal mixture of the 
first three strategies dominates the fourth strategy. To discuss stability, we 
define the replicator dynamic. The continuous replicator dynamic (S*, g*) 
takes the form 

fi*(x, Y)‘C7-c,(& Y)-~,(-% Y)lXi 
and 

gi*(x, Y) = Cn,(x, A - n,(x, VII Yji 

in the discrete replicator dynamic (F*, G*), F*(x, y) E x+f*(x, y)/ni(x, JJ) 
and G*(x, v) -y + g*(x, y)/7r2(x, y) so that, for example, x,(t + 1) - 
xi(t)=fi*(x, y)/ni(x, y). Friedman [3], Hofbauer and Sigmund [S], and 
Nachbar [7] discuss the replicator dynamic. 

Dekel and Scotchmer show that for any dynamic path x(t) that satisfies 
the discrete replicator dynamic with x(O) completely mixed, x4(t) converges 
to zero if and only if x,(O) =x,(0)=x,(O). Hence, for almost all initial 

*Note that the game is symmetric. Dekel and Scotchmer analyze the game as if there is 
only one population of players, and analyze symmetric dynamics. While Samuelson-Zhang 
and we explicitly allow asymmetric dynamics, this difference cannot account for the different 
results: Strategies evolving according to asymmetric replicator dynamics of a symmetric game 
starting from a symmetric initial condition are identical to symmetric replicator dynamics. 
This observation follows because the path of the asymmetric replicator dynamic of a sym- 
metric game starting from a symmetric initial condition is symmetric for all time. We would 
expect stochastic dynamics to differ depending on whether there where one or two popula- 
tions of players. This difference is not captured by the deterministic replicator dynamic, but 
may be captured in part by the difference between the static ESS stability conditions for 
symmetric and asymmetric contests. 
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ROCK SCISSORS PAPER DUMB 
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ROCK l,l 2.35,O 0,2.35 0.1,l.l 

SCISSORS 0,2.35 191 2.35,O 0.1,l.l 

PAPER 2.35,O 0,2.35 121 0.1,l.l 

DUMB 1.1,O.l 1.1,O.l 1.1,O.l 030 

FIGURE 1 

conditions, the dominated strategy is not eliminated in the limit.3 Their 
argument is subtle, but it hinges on two observations. First, the discrete 
replicator dynamic restricted to the game determined by the upper three- 
by-three submatrix of Fig. 1 (the rock-scissors-paper game) must 
approach the boundary of C, = {x E S4 : x4 = O}. Second, if a dynamic path 
has a limit point on C,, then x4 does not converge to zero. The first obser- 
vation follows standard analyses of the rock-scissors-paper game (see, for 
example, Hofbauer and Sigmund [ 5, p. 1341 and Weissing [ 11 I). The 
second observation follows (loosely) by noting that if a dynamic path does 
approach the boundary of .X0, then x4 will grow because, while it is not a 
best response to the population strategy, it does better than the population 
average. 

Samuelson and Zhang’s result implies that all limit points of the 
continuous replicator dynamic (that start from the interior of the strategy 
simplex) are contained in LCO. What accounts for the difference? Here we 
offer brief comments. The next two sections of the paper provide a general 
treatment. First, continuous replicator dynamics applied to the rock- 
scissors-paper game determined by the upper three-by-three submatrix in 
Fig. 1 do not approach the boundary.4 For this reason, after a finite inter- 
val, the population does not return to states in which the dumb fourth 
strategy is better than average. 

3 Dekel and Scotchmer modify the replicator dynamic to allow inheritance of mixed 
strategies. For this specification they prove that limit points of the discrete replicator dynamic 
cannot by dominated. 

4 Continuous replicator dynamics in the rock-scissors-paper game approach the boundary 
if (all other numbers held constant) the payoffs that are equal to 2.35 in Fig. 1 are less than 
2 (see Hofbauer and Sigmund [S, p. 1613). In this case, however, the fourth strategy is not 
dominated. 
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Second, we note that if a constant is added to each of the entries in 
Fig. 1, then continuous replicator dynamic does not change, but the dis- 
crete dynamic does change. Indeed, if C> 20/7 is added to all of the entries 
in Fig. 1, then (l/3, l/3, l/3) is a globally asymptotically stable strategy of 
the rock-scissors-paper game under the discrete replicator dynamic; both 
discrete and continuous replicator dynamics converge to (l/3, l/3, l/3,0) in 
this case. Discrete replicator dynamics need not behave like continuous 
replicator dynamics when payoffs (fitnesses) are low; they have 
qualitatively similar properties if a sufficiently large constant is added to all 
payoffs.5 

4. MONOTONICITY FOR DISCRETE AND CONTINUOUS DYNAMICS 

In this section we introduce the monotonicity condition needed for our 
result and relate it to the Samuelson-Zhang monotonicity condition. We 
provide a sense in which the conditions are equivalent when the time 
between periods in a discrete dynamic converges to zero. We discuss the 
special case of the replicator dynamic. Finally, we point out that there 
is a correspondence between the conditions in the following sense: Any 
regular continuous dynamic that satisfies the Samuelson-Zhang condition 
maps to a regular discrete dynamic that satisfies our condition, and 
conversely. 

Samuelson and Zhang introduce a condition, which they call aggregate 
monotonicity, that. combined with (Cl) through (C4) and (CR) implies 
that continuous selection dynamics avoid nonrationalizable strategies.6 The 
regular selection dynamic (f, g) satisfies aggregate monotonicity if 

(AMI ~,(Ls Y) > ncI(~‘, Y) implies CYL, (Pi -PI)Cfi(x, Y)lxil > 0 
and n,(x, q) > n,(x, 4’) implies CyZ_ 1 (qj-qj)Cgj(x, y)/yjl > 0. 

’ The fact that adding a positive constant to payoffs changes the qualitative behavior of the 
discrete replicator dynamic is not troubling for biological applications; relative reproduction 
rates should not be invariant with respect to adding constants. It is disturbing for economic 
applications if players are expected utility maximizers. We see no reason, however, why adap- 
tive behavior of economic agents must obey invariance properties derived from the assump- 
tion of full rationality. On the other hand, as Eddie Dekel-Tabak has pointed out to us, some 
of the stories that can be used to motivate studying the replicator dynamic in economic 
contexts suggest that dynamics should be invariant with respect to all increasing monotonic 
transformations. It is unlikely that strictly dominated strategies are assigned probability zero 
in all limits of increasing monotonic transformations of the continuous replicator dynamic. 

6 Samuelson and Zhang introduce another, easier to satisfy, monotonicity condition, the 
requirement that a, (i, y) > X,(/C, y) implies that Ji(x, y)/x,>JJx, y)/xk and show that this 
condition implies that regular selection dynamics avoid strategies that are dominated by pure 
strategies. The condition and result carry over with no changes to the discrete case. Friedman 
[3] and Nachbar [7] impose the same condition. 



LIMITS OF SELECTION DYNAMICS 413 

Similarly, we say that the regular discrete selection dynamic (F, G) 
satisfies aggregate log monotonicity if 

(LM) nl(p, Y)>~,(P’, Y) implies C?1=, (~i-~I)logCFi(x, ~)lxtl>O 
and n,(x, q) > X,(X, q’) implies C;‘= I (qj - qj) log[G,(x, y)/yj] > 0. 

(LM) is the assumption that we need in order to prove our main result. 
While it does not appear to be a direct translation of (AM) to the discrete 
dynamic, (AM) and (LM) serve identical purposes. Consider the function 
E(x, p) EC?‘, pi log i. It is straightforward to check that the first condi- 
tion of (AM) holds along a solution to ( 1) if and only if 

dE(x, p)/dt > dE( x, p’)/dt if x,(P, Y) > x,(P’, Y), (3) 

and the first condition of (LM) holds if and only if 

E(x(t + 11, PI - E(x(t), P) > E(x(t + I), P’) - E(x(t), P’) 

if ~1(~y Y) > ~l(~‘v Y). (4) 

Conditions (3) and (4) assert that on a solution path in both the 
continuous and discrete dynamics, E( .) grows faster for better strategies. 

In order to see how discrete dynamics change as the interval between 
adjustments shrink, begin with a system of the form 

i(t) = h(z). (5) 
Let 

H(z; A) = z + h(z)A. (6) 

The difference equation z(t + d) = H(z( t); d) corresponds to (5) since 
[z(t +A)-z(t)]/A =/r(z) for all A. Assume (by analogy to (DR)) that for 
each i, lim .,+oCHik AYzil exists and is finite so that we can extend 
H,(z; A)/zi to the boundary of the mixed-strategy simplex by continuity. 
Since log( 1 +x) is approximately equal to x when x is close to zero, if 
CyL, (pi-p:)[hi(z)/zi] >O then there exists A,>0 such that for all 
A E (0, A,,), Cy’i (pi -pi) log[H,(z; A)/zi] > 0. Moreover, A, can be taken 
to be independent of z. It follows that aggregate monotonicity for the 
continuous dynamic implies aggregate log monotonicity of the discrete 
dynamic for sufficiently small period length. 

Since our primary objective is to reconcile results relating to the dis- 
crete and continuous replicator dynamic, we will study that case in a bit 
more detail. It is straightforward to verify that the continuous replicator 
dynamic satisfies (AM); the Dekel-Scotchmer example, combined with 



414 CABRALES AND SOBEL 

Proposition 2 (which we state and prove in the next section) demonstrates 
that the discrete replicator dynamic need not satisfy (LM).’ 

Now imagine that the period length shrinks. A natural interpretatron is 
that if the period length is A, then only the fraction A of the population 
reproduces in proportion to its fitness; the remainder of the population 
lives on in its past composition. In this case, the relationship between the 
population distribution of strategies at consecutive time periods is 

x;(t+A)-xi(t)=(l-A)O+A[n,(i,y(t)) 

- n1 CxCt)3 .Y(t))lXi(f)/711 CxCt), Ytt)h (7) 

where the first term on the right hand side of (7) reflects the assumption 
that the fraction (1 -A) of the population does not change, while the 
second term on the right hand side reflects the assumption that the 
remaining fraction of the population changes according to the replicator 
equation. Dividing both sides of Eq. (7) by x,(t) we obtain 

which is a special case of the transformations given by (6) that we used 
before (for player 1 let hi(x, y) = { rc, (i, y)/rcl (x, y) - 1 } xi). Hence, since 
the continuous replicator dynamic always satisfies (AM), the discrete 
replicator dynamic will satisfy (LM) when the time between periods is 
sufftciently short. 

For the replicator dynamic there is another way to see the relationship 
between continuous and discrete dynamics. Add a large positive constant 
C to all payoffs. Doing so does not changef*( -), but it increases rtl( .) by 
C. It follows that the ratiof*(x, y)/rrl(x, JJ) can be made arbitrarily close 
to zero with the addition of a large enough constant. That is, one can find 
a constant C large enough so that if C is added to all payoffs, then (AM) 
implies (LM); hence (LM) is satisfied for the replicator dynamics if we add 
a sufficiently large constant to all payoffs. Adding a constant to all of the 
payoffs has a natural interpretation in the biological context. Here the 
payoffs represent fitnesses. If the strategies chosen in the game make only 
a small contribution to relative fitness, then different strategies will not 
grow rapidly in a time period. In this case the discrete dynamic behaves 
like the continuous dynamic.* 

’ Proposition 2 assumes (DR), which does not hold for the discrete replicator dynamic in 
the Dekel-Scotchmer example of Fig. 1. Adding a small positive constant to all of the payoffs 
in Fig. 1 allows the discrete replicator dynamic to satisfy (DR) for the game without 
destroying the qualitative properties of limiting behavior in the example. Hence it is the failure 
of aggregate log monotonicity, not the failure of regularity, that leads to the possibility that 
dominated strategies are limits of the discrete replicator dynamic. 

s Hotbauer and Sigmund [S, pp. 273-2741 make the same observation. 
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There is a one-to-one relationship between discrete dynamics that satisfy 
aggregate log monotonicity and continuous dynamics that satisfy aggregate 
monotonicity. Given any continuous dynamic (A g) define the log- 
associated discrete dynamic (F, G) by Fi(x, y) = w(x, y)xieJ’“‘Y)‘xl and 
Gj(x, y) = p(x, y) yje Gcx.Y)‘-b, where w(x, y) and ~(x, y) are normaliza- 
tions; 0(x, y) = [C/k, xie/‘(“,-“““‘] -’ and ~(x, y) E [CT= i yjeQ(z;*y’Lb] -‘. 
It is clear that (f, g) satisfy (CR) if and only if the associated (F, G) satisfy 
(DR). Also, the following proposition is an immediate consequence of the 
definitions. 

PROPOSITION 1. The continuous dynamic (f, g) satisfies aggregate 
monotonicity if and only if the log-associated discrete dynamic (F, G) 
satisfies aggregate log monotonicity. 

Let (f*, g*) denote the continuous replicator dynamics. Theorem 3 in 
Samuelson and Zhang shows that (f, g) is a regular, aggregate monotone 
continuous dynamic if and only if fi(x, y) = 1(x, y)f,*(x, y) and 
gj(x, y) =B(x, y)gi*(x, y) for A( .) and p( .) continuous and positive.’ 
Combined with Proposition 1, we have a characterization of the set of 
regular, aggregate log monotone discrete dynamics: They are simply the 
discrete dynamics log-associated with multiples of continuous replicator 
dynamics. As we use this characterization in the next section, it is useful to 
state it separately. 

COROLLARY. The discrete dynamic (F, G) satisjies log aggregate 
monotonicity if and only if there exist positive and continuous functions 
w( .), p(e), A( .) and fi( .) on S”’ x P such that log[F,(x, y)/x,] = 
4x, Y)C~l(iy Y) - nI(x, ~11 + log 4x, Y) and 
Bb-, Y)C~~(X, j) - ~(4 Y)I + loi3 144 Y) 

log CGj (x3 Y )/Yjl = 

In the corollary o( .) and p( .) are normalizations that guarantee that the 
dynamics satisfy F: S”’ x Sn2 + S”’ and G. S”’ x Sn2 + Snz. If 1(x, y) = 
p(x, y) = 1, then F( .) and G( .) are the log-associated dynamics derived 
from the continuous replicator dynamic. 

’ Samuelson and Zhang’s Theorem 3 only claims that if (f, g) is a regular, aggregate 
monotone continuous dynamic then x (x, y) =,4(x, y) f,*(x, y) and g,(x, y) = j?(x, y) g,?(x, y) 
for A( .) and b( .) positive. Continuity of I( .) and B( .) follow from the continuity and 
regularity of (J g) and (/*, g*). The converse implication follows immediately from the 
definitions. 



416 CABRALESAND SOBEL 

5. AGGREGATE LOG MONOTONE DISCRETE DYNAMICS 
AVOID DOMINATED STRATEGIES 

Proposition 2 states that every limit point of a regular, aggregate log 
monotone dynamic must be an optimal response to some mixed strategy of 
the other player. Moreover, the mixed strategy can be taken to be a limit 
of averages of strategies played in the past. In particular, if a pure strategy 
is strictly dominated then it must receive zero weight in the limit of any 
regular, aggregate log monotonic selection dynamic that starts from an 
interior point. 

The carrier of a mixed strategy U, denoted C(U), is the set of all pure 
strategies it gives positive probability. 

PROPOSITION 2. Let (F, G) be a regular, aggregate log monotonic selec- 
tion dynamic. Zf (x(t), y(t)) is an evolutionary path with (x(O), y(0)) 
completely mixed and (x*, y*) is a limit point of (x(t), y(t)), then there 
exist subsequences {s,} and {t, > of the positive integers; a constant K and 
positive weights cr(s; s,) and P(t; t,) for s = 0, 1, . . . . s, and t = 0, 1, . . . . t,, 
such that for all n, IF&,’ a(.~; s,) = C>:t j?(t; t,) = 1, cc(s; s,) < K/s, 
and B(t; t,) < K/t,; and (X, J) such that X = lim,,, C;:O1 cr(s; s,)x(t), 
j=lim n-rco CL’ P(t; t,) y(t), and 

x1(& J)>zl(x, j) forall XES”’ and iEC(x*) (8) 

and 

TT~(x,~)>~~(%, y) foraN YES”> and j~C(y*). (9) 

Proof: We prove (8). Since x~(T)/x~(O)=~~~~ xi(t+ 1)/x,(t)= 
LIT:: Fi(X(t), Y(t))/Xi(t), 

l”gCxi(T)lxi’(T)l -logCxi(o)lxi’(o)l 
T-l 

By (LM) and the corollary, there exists A( .) such that the right-hand side 
of (10) is equal to CT:,i 1(x(t), y(t))[7c1(i, y(t))-z,(i’, y(t))]. Hence (10) 
implies, for all i and i’, 

T-l 

= 1 4x(t), y(t))Cnl(i y(t)) - n,(i’, y(t))l. (11) 
t=0 
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Let /i(T) =Cf:t J.(x(t), y(t))/T. Since A( .) is continuous and positive on 
S”’ x S”* it attains its positive maximum and minimum values M and m so 
that 

M>A(T)>m>O. (12) 

Define p(r; T) = 2(x(t), y(t))/( 7’/i( T)); by (12) and the definition of /i( .), 
p( .) is positive, P(t; T) < M/[mT], and CT:,’ fl(t; l,) = 1. Define 
j(T) z Cf_-,’ fl( t; T) y(t); using linearity of R I (. ), we can rewrite (11) as 

{logCx;(T)lx;~(T)l -l~~C~i(O)/~~~(O)l}/T 

=NT)Cn,(i, Y(T))-~,(i’,j(T))l. (13) 

By the definition of x*, there exists E > 0 such that it is possible to find a 
subsequence of T= 1,2, . . . . denoted by {rn}, for which x,(t,) > E for all 
ie C(x*). By compactness, it is possible to select this subsequence so that 
i.F(fJl and CN&J> converge as n approaches infinity. Denote these limits 
by jj and A*. Taking limits in (13) ( using xj(t)e [0, l] and x,(O)>O) it 
follows that if i~C(x*), then O<n*[n,(i, y)-rrl(i’, jj)] with equality if 
I’m C(x*). Since /i* >O by (12), (8) holds. Similar logic establishes (9). 

The proof of Proposition 2 uses techniques found in Schuster, Sigmund, 
Hofbauer, and Wolff [lo] who prove that time averages of periodic 
solutions to the replicator equation are Nash equilibria. Note that the 
proof does not use the assumption that there are only two players. 

While (LM) provides a sufficient condition for a dynamic to avoid 
dominated strategies, it is not a necessary condition. In particular, 
dynamics that only increase the probability on strategies that respond 
optimally to the opponent’s recent actions need not satisfy (AM) or (LM); 
dynamics in this class must avoid strictly dominated strategies, however. 
Gul [4] and Milgrom and Roberts [6] show that limit points of 
adjustment processes in this class must be rationalizable. 

We can use Proposition 2 to show that selection dynamics are consistent 
with adaptive learning in the sense of Milgrom and Roberts [6]. Given a 
set of strategies R, let U,‘(R) be the set of s-undominated strategies for 
player n given that opponents are using strategies in R. A sequence of 
strategies {xn(t)} is consistent with e-adaptive learning by player n if for all 
i there exists T such that for all t > T, x,(t) E UIIE( {x(s) : ids < t}). It is 
consistent with adaptive learning if it is consistent with s-adaptive learning 
for all E > 0. When {x(t)> is a path derived from a selection dynamic that 
satisfies (LM) that begins from a totally mixed initial condition, for any 
E > 0 there exists a T sufficiently large so that if t > T, then x(t) is an s-best 
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response to an average of past population strategies. Hence the sequence 
(x(t)} is consistent with adaptive learning.” 

In view of Proposition 2, it is a simple matter to prove the discrete 
analog of Samuelson and Zhang’s Theorem 2. 

PROPOSITION 3. Let (F, G) be a regular, aggregate log monotonic selec- 
tion dynamic. Let x’ E SnlfaiZ strict iterated admissibility. Zf (x(t), y(t)) is an 
evolutionary path with (x(O), y(0)) completely mixed, there exists a function 
v(t) with lim, _ m v(t) = 0 such that for every t, there exists a pure strategy 
i(t) in the C(x’) such that xi(,) < v(t). A similar statement holds for a strategy 
of player 2 that fails strict iterated admissibility. 

Proposition 3 differs from Samuelson and Zhang’s Theorem 2 in only 
two respects: It treats discrete rather than continuous dynamics; and it 
assumes (LM) rather than (AM). Samuelson-Zhang’s proof can be 
adapted to the discrete context with only small changes. We choose to 
present a proof based on Proposition 2, rather than the direct proof of 
Samuelson and Zhang in order to establish that limit points of the dynamic 
must be best responses to averages of past strategies. 

Proof: Let (x(t), y(t)) be an evolutionary path with (x(O), y(0)) 
completely mixed. Let P be the set of limit points of {x(t)> and Q be the 
set of limit points of (y(t)}. Define sets A, and A, by 

A, = (~4 ES”’ : u fails SIA and there exists x* E P such that C(U) c C(x*)} 

and 

It suffices to show that A, u A, is empty. We will assume instead that 
A, u A2 is not empty and argue to a contradiction. For a’ E A, u AI, let 
K(d) be such that a’ E MIK~a~~\MIK~o~~+ 1 or a’ E M2K~a~~\MZK~o~~ + I, 
depending on whether a’ E S”’ or Sff2. Let a be a minimizer of K( -) on 

lo x(t) may place positive probability on pure. strategies that fail to be s-best responses to 
population strategies. Consequently discrete selection dynamics that satisfy (LM) are consis- 
tent with adaptive learning if we take our strategy set to be the entire simplex of mixed 
strategies. They need not be consistent with adaptive learning if we limit attention to pure 
strategies. As we think of population strategies x(t) as arising from individuals playing pure 
strategies, some of the individuals may never bc consistent with adaptive learning since they 
could bc playing pure strategies that are not s-best responses to the population’s strategy. 
However, the proportion of players that are not using s-best responses goes to zero as time 
goes to infinity. 
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A, u Al, and let k = K(a). Without loss of generality, assume a E A I . Since 
~~Mlk\Mlk+l~ there exists b E Mlk such that 

~,(a, Y)--n,(h Y)<O for all y E M,, (14) 

or, in words, b strictly dominates a relative to M,,. Let Y consist of all 
those y E Snz such that yj > 0 only if jE MZk. It follows from (14) that 

~,(a, y)-n,(b, y)<O for all YE Y. (15) 

Since k is a minimum of K( . ), 

lim y,(t)=0 for j$Mzk. (16) 
r-m 

By Proposition 2 and the definition of a we know that there exists a 
subsequence { tn} such that a responds optimally to j, where 
y=lim n-t co C>:,i B(t; t,) y(t) for positive weights P(t; t,), t = 0, 1, . . . . t,, 
b(t; t,)<K/t,, and CF:,’ /?(I; t,)= 1. From (16) and b(t; t,) 6 K/t,, for 
t = 0, 1, . ..) t, it follows that jj = 0 for j$ M,,. Therefore, jj E Y. Hence (15) 
implies that a cannot be an optimal response to J; the contradiction 
completes the proof. 
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