
Rules of Thumb for Social Learning
Author(s): Glenn Ellison and Drew Fudenberg
Source: The Journal of Political Economy, Vol. 101, No. 4 (Aug., 1993), pp. 612-643
Published by: The University of Chicago Press
Stable URL: http://www.jstor.org/stable/2138741
Accessed: 09/12/2010 02:18

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=ucpress.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to The
Journal of Political Economy.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/stable/2138741?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ucpress


Rules of Thumb for Social Learning 

Glenn Ellison and Drew Fudenberg 
Harvard University 

This paper studies agents who consider the experiences of their 
neighbors in deciding which of two technologies to use. We analyze 
two learning environments, one in which the same technology is 
optimal for all players and another in which each technology is bet- 
ter for some of them. In both environments, players use exoge- 
nously specified rules of thumb that ignore historical data but may 
incorporate a tendency to use the more popular technology. In some 
cases these naive rules can lead to fairly efficient decisions in the 
long run, but adjustment can be slow when a superior technology 
is first introduced. 

I. Introduction 

This paper presents two simple models of how economic agents de- 
cide which of two technologies to use when the relative profitability 
of the technologies is unknown. In both models, agents base their 
decisions, at least in part, on the experience of their neighbors; this 
is what we mean by "social learning." We believe that social learning is 
frequently an important aspect of the process of technology adoption, 
where "technology" should be broadly construed: Although our main 
examples concern the adoption of agricultural technology, we believe 
that the models may also be applicable to the diffusion of new man- 
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agement practices and to parents' decisions whether to send their 
children to a public or a private school.' 

The learning environments we study have three main features: 
First, agents observe both their neighbors' choices and the payoffs 
that these choices generate. Second, agents periodically reevaluate 
their decisions, as opposed to making a once-and-for-all choice. 
Third, we consider the possibility that players may be sufficiently 
heterogeneous that under full information they would not all make 
the same choice. 

Instead of assuming that the adoption process is described by the 
equilibrium of a game played by fully rational agents, we suppose 
that players use exogenously specified, and quite simple, "rules of 
thumb." We have several reasons for proceeding in this fashion. First, 
in some of the environments we consider, fully Bayesian learning 
requires calculations that may be too complicated to be realistic. A 
second motivation for our approach is that, to the extent that the 
technology choice may be substantially different from previous deci- 
sions the players have faced, we would be uncomfortable with the 
assumption that the technology adoption process is described by an 
equilibrium. A somewhat different motivation is simply technical ex- 
pediency: we did not see an easy way to incorporate various consider- 
ations we feel are important into a rational-actor equilibrium model. 

The paper is structured around two simple models of learning 
environments. The first model has a homogeneous population of 
players choosing between two competing technologies, with the pay- 
off to each technology subject to an aggregate independent and iden- 
tically distributed (i.i.d.) shock. Each period, only some fraction of 
the players have the opportunity to revise their choices; the other 
players continue using whichever technology they used in the previ- 
ous period. 

Our analysis begins with a particularly "naive" rule of thumb in 
which players ignore all historical data and simply choose whichever 
technology worked better in the previous period. This rule will lead 
the popularity of the two technologies to fluctuate unless one of the 
technologies has a higher payoff for all values of the shock. We subse- 
quently consider rules that incorporate "popularity weighting," a ten- 
dency to choose a more popular technology even if it was somewhat 
less profitable last period. We find that the appropriate use of popu- 
larity weighting leads players to adopt and stick with the better tech- 

1 See Rogers and Shoemaker (1971) for an extensive discussion of empirical research 
on adoption processes, especially in development. Mansfield (1968) and Ryan and 
Gross (1943) are classic studies of technology adoption in basic industries and in agri- 
culture, respectively. 



614 JOURNAL OF POLITICAL ECONOMY 

nology, provided that the technology with the higher mean payoff is 
also the more likely to have the higher payoff ex post. Intuitively, a 
strategy that is more popular today is likely to have done well in the 
past, so that the relative popularity of the technologies can serve as 
a proxy for their historical performance. Thus it is fairly clear that 
popularity weighting rules can lead to better decisions. We find that 
one particular choice of popularity weights picks out the better tech- 
nology in the long run, regardless of the initial state of the system 
or the size of the payoff difference; however, this gain in long-run 
efficiency may have the cost of slowing the adoption of technological 
improvements. 

Our second model has a heterogeneous population, with each tech- 
nology better for some of the players. Thus the question here is not 
whether the better technology will be adopted, but rather whether 
the new technology will be adopted by the appropriate players.2 We 
suppose that there is a continuum of players distributed uniformly 
over a line and that nearby players have similar payoffs to the two 
technologies. Moreover, we suppose that players base their decisions 
on the relative performance of the two technologies at locations that 
are within one "window width" of their own. This window width, 
which is exogenous in our model, can be thought of either as the 
result of an informational constraint-players may not observe out- 
comes at faraway locations-or as the result of the players' prior 
belief that faraway locations are sufficiently different that experiences 
there are not relevant to their own decisions. 

Once again, players revise their technology choices using simple 
rules of thumb. In particular, we suppose that players do not know 
exactly how location influences relative payoffs and thus simply com- 
pare the average payoffs of the two technologies in their window, as 
opposed to using more sophisticated statistical methods. 

The heterogeneous population model provides a number of pre- 
dictions about the types and magnitudes of the errors that are likely 
to be made. The spatial nature of the process allows some degree of 
social learning even without popularity weighting, and the long-run 
state of the system is approximately efficient when the window width 
is small. However, small window widths imply that the system con- 
verges more slowly, which can be costly if the initial state is far from 
the optimum. Roughly speaking, increasing the popularity weighting 
in the spatial model has about the same effect as decreasing the win- 
dow width, improving long-run performance while slowing conver- 

2 Note that when the players are heterogeneous, a central planner would need to 
know the relative payoffs of the competing technologies for every player in order to 
implement the optimum by fiat. 
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gence. In contrast to the homogeneous-population model, no amount 
of popularity weighting will lead to an exactly efficient long-run state. 

The assumptions of our models are perhaps most descriptive of 
the diffusion of agricultural technologies. We would expect that 
farmers are able to observe, at least roughly, the output of their 
neighbors as well as their neighbors' choices of crops and techniques. 
Further, farmers' payoffs are subject to aggregate stochastic shocks 
due to the weather. Concerning inertia, it has been frequently noted 
that farmers as a group seem very hesitant to try new technologies. 
These comments do not suggest that all farmers are equally hesitant; 
for example, Slicher von Bath (1963, p. 243) notes that during the 
English agricultural revolution, "land tilled in very ancient ways lay 
next to fields in which crop rotations were followed." Even during 
the twentieth century, there is typically a substantial lag between the 
date farmers first learn of the existence of a technology and the date 
they adopt it: Ryan and Gross (1943) found that farmers in two rural 
communities on average adopted hybrid seed corn 7 years after they 
first heard of the innovation, with adoption spread over a 5-10-year 
period; studies cited in Rogers and Shoemaker (1971, p. 129) report 
lags of 2-4 years for the adoption of weed spray in Iowa and fertilizer 
in Pakistan.3 Finally, when capital and insurance markets are poorly 
developed, it seems plausible that farmers' technology decisions will 
be determined primarily by short-term considerations, and that farm- 
ers will be unlikely to experiment with a technology with a lower 
expected return. 

As for the assumptions of the heterogeneous model, it seems plau- 
sible that the payoffs to various crops may differ at different loca- 
tions, depending on the soil, climate, and terrain of each farm, and 
that when a new technology is first introduced there may be consider- 
able uncertainty about where it should be used. Consequently, the 
fact that the technology did well in one area or country may not 
provide much reason to adopt it in another.4 

These various features seem particularly clear in the diffusion of 
the agricultural practices known as the "new husbandry" during the 
English agricultural revolution. (The new husbandry refers to a vari- 

3 Note that the spread of literacy and modern communication media will speed up 
the rate at which farmers become aware of a new technology's existence, but they do 
not seem to have eliminated the lag between becoming informed and deciding to 
adopt. 

4 Centrally based agricultural reformers are often hampered by their lack of under- 
standing of the variation in farmers' tastes and production costs. For example, Apodaca 
(1952) describes how a planner tried to induce a New Mexico community to adopt a 
hybrid corn. The innovation was adopted and then discontinued despite doubling 
yields since the villagers decided that the taste and consistency of the corn were inap- 
propriate for making tortillas. 
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ety of new crops and new crop rotations that arrived in England from 
Flanders in the seventeenth century, based on the idea of growing 
crops such as clover or turnips instead of leaving the land fallow; 
see, e.g., Kerridge [1967], Timmer [1969], and Mingay [1977].) In 
particular, the new husbandry was attempted and then abandoned 
at a number of locations, which shows both that the returns to the 
technology varied with location and that the form of this dependence 
was not known. 

The spatial structure of the heterogeneous-population model can 
be taken literally when the model is applied to agricultural innova- 
tions. We believe that the model can also be applied to other settings, 
such as the diffusion of management practices in large industries or 
the choice of private schools; the location variable should be inter- 
preted as a point in characteristic space, and individuals with similar 
characteristics believe that their payoffs are similar. 

Turning from the assumptions of the models to the conclusions, 
we note that the homogeneous-population model predicts that the 
speed with which a new technology is adopted is correlated with the 
extent of the payoff difference. Such a correlation between the extent 
of improvement and the speed of adoption has been noted in the 
empirical discussions of Mansfield (1968) and Rogers and Shoemaker 
(1971), but has not, as far as we know, been addressed in the learning 
literature.5 The homogeneous-population model also predicts that 
new technologies that result in a small probability of a big improve- 
ment and a large probability of a small loss will be adopted slowly, if 
at all; this is consistent with the slow diffusion of seat belts and vacci- 
nations noted by Rogers and Shoemaker (1971, p. 139). Further, the 
fact that the combination of inertia and popularity weighting can lead 
to efficient long-run behavior in the homogeneous-population model 
may make the apparent occurrence of these phenomena less puz- 
zling. Likewise, in the heterogeneous-population model, the parame- 
ter values that favor long-run efficiency-namely, small window 
widths and high popularity weights-lead to slow diffusion. This may 
help to explain the observed slow diffusion of some agricultural tech- 
nologies.6 

There have been several previous models of the role of social learn- 
ing in technology adoption. Perhaps the earliest is the contagion pro- 
cess, which models adoption as a random matching process in which 
players switch to the new technology the first time they meet someone 

5However, the correlation is easy to explain as the result of an optimal investment 
policy under complete information if adopting the innovation requires investing in a 
capital good. 

6 The most striking case of slow diffusion may be that of the new husbandry, which 
diffused at a rate of 1 mile per year both in England and in France. 
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who is using it. This process yields the familiar "S-shaped curve" for 
the time path of adoption that has been widely used in empirical 
work, for example by Griliches (1957) and Mansfield (1968). 

Recent papers by Banerjee (1992, in press), Bikhchandani, Hirsh- 
leifer, and Welch (1992), and Smith (1992) study more sophisticated 
models of social learning in homogeneous populations, in which play- 
ers must decide which of two choices is better. The primary question 
of interest in these models is whether social learning implies that 
the population eventually identifies the better choice. These papers 
suppose that players observe one another's choices, but that players 
do not observe the payoffs that these choices generate. Manski 
(1990) considers estimation procedures for an individual agent in a 
heterogeneous population; he does not analyze the resulting social 
dynamics. 

Although we believe that the models we develop, based on bounded 
rationality and players' observance of their opponents' payoffs, are a 
useful supplement to this previous work on social learning, we should 
say that we are not completely satisfied with the precise form of the 
rules we consider. In particular, in the first model, use of history does 
not seem so complicated as to be unreasonable.' Our purpose is not 
to argue that any one of these models is particularly compelling, but 
rather to identify general properties that seem to occur in some of 
the more obvious formulations. One recurrent conclusion is that in 
a number of cases the long-run state of the system is fairly efficient, 
even though the individual decision rules are quite naive. 

II. A Simple Model of Homogeneous Populations 

Before we consider social learning in systems with a heterogeneous 
population, it is interesting to consider the simpler case in which the 
same technology is optimal for all players. This model can be thought 
of as describing behavior at a single site in the model we consider 
later on, where the relative payoffs vary with location. Suppose that 
there is a large (continuum) population of players at a single site, 
each of whom must choose whether to use technology or technology 
g. In each period, all players using the same technology receive the 
same payoff.9 We suppose that the payoffs to the two technologies at 
date t, uf and ug, are related by the equation 

U9- f = 0 + Et,(1) 

7Cross (1983) develops a model of boundedly rational adaptive choice with a similar 
information structure. 

8 In the second model the environment is complicated enough that a great many 
periods would be required to obtain good estimates, as we discuss in Sec. III. 

9 Given our assumption that players observe one another's payoffs, nothing would 
be changed if we allowed each player's payoff to be subject to idiosyncratic shocks. 
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where 0 is a fixed but unknown constant parameter and the Et are 
i.i.d. shocks with zero mean and cumulative distribution function H. 
We shall assume that p 1 - H(-0) - prob[ug - uf 0] is strictly 
between zero and one. 

In the initial period, denoted zero, a fraction x0 of the players are 
using technology g. After each period, a fraction a of the players are 
selected at random to have the opportunity to revise their choices.'0 
We suppose that the players who are revising their choices can ob- 
serve the average payoffs of both technologies in the previous period. 
The simplest behavior rule we consider is the "unweighted" rule un- 
der which all players who revise their choice pick the technology that 
did best in the preceding period. Under this adjustment rule, the 
evolution of the system is described by 

{ ( 1 - a) x + a with probability p = prob [u 9 uf], 

t+l = (1 - a)xt with probability 1 - p = probig < u],(2 

so that 

E(xt+IxIxt)=(1 -t)xt + o?p. (2') 

Note that players treat the adoption and discontinuance decisions 
symmetrically, which corresponds to the case in which the costs of 
"transition" are small. This symmetry is probably extreme, but we 
think that it may be preferable to the standard practice in modeling 
technology diffusion, which supposes that once agents try the new 
innovation they continue using it forever: Studies of the English ag- 
ricultural revolution, as well as studies of more recent innovations 
cited in Rogers and Shoemaker (1971, p. 115), suggest that the 
amount of discontinuance is an important factor in the diffusion 
process. 

Our model supposes that players do not have access to the entire 
history of payoff observations. To justify this assumption, we suppose 
that individual players revise their choices too infrequently to want 
to keep track of each period's results and, more strongly, that the 
market at this particular "location" is too small for a record-keeping 
agency to provide this service. Also, the private gain from using his- 
tory may be small in the cases, detailed below, in which the system 
without history converges to the efficient outcome. 

The following result is standard; it follows from, for example, theo- 

10 As mentioned in the Introduction, this inertia is consistent with the empirical 
evidence that there is often a substantial lag between the time individuals first learn of 
the existence of a new technology and the time they adopt it. The inertia might come 
from decision costs; it would also arise if the choice of a technology is embodied in a 
costly capital good that will not be replaced until it wears out. 
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rem 10 of Norman (1968). (It is also a consequence of part b of 
proposition 2 below.) 

PROPOSITION 1. The system (2) is ergodic; that is, the time average 
of x, converges to its expectation with respect to its unique invariant 
measure pu. Moreover, E ,(x) = p, and var,(x) = p(I - p)xt1(2 - at). 

III. A Single Location with Popularity Weighting 

Proposition 1 says that observing the long-run fraction of players 
using technology g reveals the fraction of the time in which g has 
been the better choice. If the distribution H of E is symmetric or 
nearly so, the technology that is more often better has the higher 
expected payoff." This suggests that if all other players in the popu- 
lation are choosing whichever technology has the highest current 
score, each player could gain by considering the relative popularity 
of the two technologies as well as the recent payoffs. Intuitively, the 
current popularity provides some information about the past history 
of the process and, thus, can serve as a proxy for it. 

Of course, if all players consider popularity in guiding their 
choices, the level of popularity becomes less informative, and in the 
extreme case in which players consider only popularity, the popular- 
ity conveys no information at all. This leads us to consider the behav- 
ior of the system when all players give popularity an intermediate 
weight. As we shall see, there are popularity weights that, if used by 
all players, lead them all to adopt the better technology. One way to 
interpret this result is that in this case, even when popularity 
weighting is used by all players, the popularity remains a "sufficient 
statistic" for the history. 

To explore the idea of popularity weighting, we develop a simple 
parametric model. As above, we consider a continuum of players and 
suppose that only a fraction a of them update their choices each 
period. Now, though, instead of choosing the technology that did 
best last period, the choice rule is 

choose g if ug - uf m(1 - 2xt) (3) 

Under this rule, the probability that those players who revise their 
choices choose g is prob[O + Et ? m(l - 2xt)] = 1 - H(m(l - 2xt) 
- 0); when all players use rule (3), the fraction using g evolves ac- 
cording to 

f(1 - a)xt + a with probability 1 - H(m(l - 2xt) - 0), (4 
t+l (LI - (X)X1 with probability H(m(I - 2x,) - 0). 

" This conclusion holds provided that the degree of asymmetry of H is small com- 
pared to I 0 |. 
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The parameter m indexes the amount of popularity weighting; the 
case m = 0 corresponds to the unweighted case discussed above. 
When x = 1/2, both technologies are equally popular; in this case 
players choose the technology with the highest current payoff for any 
value of m. As m grows, players become more willing to choose the 
currently popular technology even if its current payoff is lower.'2 
Note that the expression 1 - 2x is unitless, so the parameter m is 
measured in the same units as the payoffs are. Thus to preserve the 
same decision rule when the payoff functions are multiplied by a 
constant X, the parameter m must be multiplied by the same con- 
stant. 13 

We use the linear specification of popularity weighting primarily 
for analytic convenience. It combines nicely with a second simplifying 
assumption that we make in this section, that the distribution H of 
the shocks per period et is uniform on [ -a, a]. This allows us to 
explicitly compute the long-run behavior of the system for any m. It 
also ensures that the linear class of weighting rules we consider in- 
cludes one rule that leads the asymptotic distribution to concentrate 
on the optimal choice, namely m = ar. 

To analyze the dynamics of the system, we first identify situations 
in which it is certain to converge. Since the lowest possible value of 
i is - -, the lowest possible observation of ug - uf is 0 - vr. Hence, 
if xt is sufficiently large that 0 - cr ? m(1 - 2xt) or, equivalently, if 
Xt 2 xg (m - 0 + o)/2m, the fraction using technology g is certain 
to increase. Likewise, if x < V =-(m - 0 - o)/2m, the fraction using 
f is certain to increase. (Note that C > 0 implies Vf < xg.) Because the 
probability of an upward step is minimized at x, = 0, this probability 
must be at least prob[O + E 2 m] = (r - m + 0)/2r = - (m/r) xf. 
Thus when Vf < 0, so that the system cannot "lock on" to downward 
steps, the probability of an upward step is uniformly bounded away 
from zero. Similarly, ifxg > 1, the probability of a downward step is 
uniformly bounded away from zero. 

The discussion above shows that (with knife-edge cases ignored) 
there are four possibilities for the long-run behavior of the system: 
(1) If xg < 1 and Vf < 0, the system is certain to eventually make 
enough upward jumps that xt > xg, so that from any initial position 

12 The empirical literature suggests that popularity weighting is a factor, but reliable 
estimates of m are hard to come by. Rogers and Shoemaker (1971, p. 142) say that 
"many students of peasant life feel" that innovations must be 20-30 percent better to 
be adopted; they also cite a President's Science Advisory Committee figure of 50-100 
percent. From our reading, it is not clear whether these premia reflect popularity 
weighting or switching costs. 

13 An alternative explanation of the need for resealing is to use the fact that the rule 
m = a yields the optimal long-run decision. Since u is the standard deviation of the 
payoff differences per period, resealing the utility function rescales a in the same way. 
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the system converges with probability one to x, - 1. (2) If xg > 1 and 
f > 0, the system converges to x, = 0 from any initial position. (3) 

If 0 < f and xg < 1, the system will converge (with probability one) 
to zero if xo ' xf and will converge to one if xO ? xg; for xO E (xf, xg), 
the system will also eventually converge to a steady state, but it has a 
positive probability of ending up at each of the two steady states of 
the system. (4) If Vf < 0 and xg > 1, the system will not converge to 
either steady state. Instead, the fraction xt will continue to fluctuate. 

These observations do most of the work required to establish the 
following claims. 

PROPOSITION 2. 

a) Popularity weighting m = or is "optimal" in the sense that from 
any xO the system converges with probability one to the state in 
which everyone uses the better technology. 

b) m > Cr is "overweighting" in that the system converges with proba- 
bility one to a steady state; which steady state is selected may 
depend on the initial condition xO. More precisely, the system 
converges to the better technology if 101 ' m - cr, whereas for 
101 < m - cr the behavior of the system depends on the initial 
condition x0. If xO 2 (m + cr - 0)/2m, the system converges to 
one with probability one; if xO ' (m - cr - 0)/2m, the system 
converges to zero with probability one. If 101 < m - cr and xO E 
((m - Cr - 0)/2m, (m + Cr - 0)/2m), the system will eventually 
converge to one of the steady states, but both steady states have 
a positive probability. 

c) With "underweighting," that is, m < cr, the system need not con- 
verge to a steady state. It does converge (with probability one) to 
the better technology if 101 ' a - m, but for 101 < cr - m, the 
system has a nondegenerate invariant distribution IL, with 

1 0 
2 2(r -m) 

and 

oa0ExE,(1 - x) 
var 

X 
- (2-(x)cr-2(1-t)m 

Proof. (a) If m = ar, then xg = (2m - 0)/2m is less than one iff 0 > 

0, and Vf = -0/2m is greater than zero iff 0 < 0. The conclusion 
now follows from the argument in the text. (b) If suffices to check 
that forO > m - a> 0, xf < 0 and xg < 1; for -0 > m - o> 09, f 
> 0 and xg > 1; and for m - C > 01, f> 0 and xg < 1. (c) A similar 
computation shows that when 101 > Cr - m, the system must converge. 
Appendix B establishes that the system has a unique invariant distri- 
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bution when u7 - m > 101 and computes the corresponding mean and 
variance. Q.E.D. 

COROLLARY. For any prior distribution over 0 with a finite expected 
value whose support contains [- a, a], the expected long-run payoff 
is continuous and increasing in m on the interval [0, a]. 

Proof. Increasing m increases the set of 0's for which the system 
converges to the better choice and increases the "tilt" of the mean 
toward the better choice for smaller 0's. Q.E.D. 

Proposition 2 shows that the system is certain to converge to the 
correct choice if the popularity weight m = or and that the payoff loss 
from a wrong choice must be small if m is close to this level. Thus it 
is interesting to ask whether there is any particular reason to suppose 
that popularity weights equal or close to Cr are likely to be used or, 
conversely, whether there are forces in the model that would drive 
the players to use different weights. As a partial response, our work- 
ing paper (Ellison and Fudenberg 1992) considers a game in which 
players simultaneously choose their individual popularity weights, 
and it shows that the optimal weight m = Cr is its unique equilibrium 
outcome. This result is only a partial response because it supposes 
more sophistication in the determination of the popularity weights 
than we find compelling. However, the result does show that popular- 
ity weighting need not conflict with individual incentives. We conjec- 
ture that optimal popularity weighting might emerge from an adap- 
tive process because individuals have a private incentive to increase 
m whenever m < (x. 

The reader may be concerned that the results in proposition 2 
seem to rely on the fact that the uniform distribution has compact 
support: an observation that ug - uf > C implies that 0 > 0. However, 
similar conclusions can be obtained without compact support. Appen- 
dix A shows that the nonlinear rule "switch only if the observed pay- 
off difference is large compared to the popularity" leads to a long-run 
distribution that places most of its weight on the better choice when- 
ever the distribution of errors is "infinitely revealing in the tails." This 
nonlinear rule has the additional advantage that it does not depend 
on the exact form of the distribution of the noise, whereas the optimal 
linear rule for the uniform distribution must be tailored to the distri- 
bution's support. Appendix A also reports simulations of a more com- 
plex rule that seems to work well even when the tails are not infinitely 
revealing. 

While our formal results concern the eventual steady state of the 
system, the speed of convergence is of some interest as well. In partic- 
ular, consider an initial position in which x0 is small, so that g corre- 
sponds to a "new" technology, and suppose that 0 > 0, so that the new 
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technology is in fact an improvement. Then the share of technology g 
increases whenever 0 + et > m(l - 2x,); since the probability of this 
event increases with 0, so does the expected rate of adoption.'4 As we 
noted in the Introduction, such a correlation between the extent of 
improvement and the speed of adoption has been noted in empirical 
work. 

Note also that for fixed 0, the speed of convergence decreases as af 
increases, so that each period's observation becomes less informative. 
Furthermore, if the new technology usually does slightly worse than 
the old one but occasionally does much better (i.e., if the new technol- 
ogy has a higher mean payoff but a lower median), then naive learn- 
ing rules that look only at the recent relative performance will be 
biased toward the wrong choice. This is consistent with the observa- 
tion that seat belts, insurance, and vaccinations have been slow to 
diffuse. 

Finally, before leaving the homogeneous-population framework, 
we would like to report simulation results for one simple modification 
of popularity weighting that seems to improve the short-run perfor- 
mance of the system without changing its long-run behavior. We now 
suppose that players consider "trends" in the relative popularity of 
the two technologies as well as the popularity itself. 

More precisely, suppose that players now choose technology g iff 
the realized difference in payoffs ug - uf exceeds the expression 
m(l - 2x,) - c(xt - xt- 1), where xt - xt- 1 is the trend in popularity. 
Since the trend variable converges to zero along any path in which 
the system converges to a steady state, the system still converges to 
the better technology with probability one when m = a. However, 
if the initial state is far from the optimum, as is the case when a 
superior technology is first introduced, one would expect that respon- 
siveness to trends would help to increase the speed with which the 
new technology is adopted. 

To test this intuition, we ran three simulations, each with the noise 
term e uniformly distributed on [-ar, a] and popularity weighting 
m = a. In the first, the fraction a who adjust each period was .5, 
and the mean payoff difference 0 was .5u; in the second, a = .5 
and 0 = .lo; in the third, a = .1 and 0 = .02cr. In all cases, we 
counted the number of periods required for the system to move from 
initial state xO = .05ar to x = .99o. The results, reported in table 1, 
show that trends can improve the speed of convergence. 

14 Unless the payoff difference is so extreme that 0 - a > m, in which case the rate 
of adoption is independent of 0. Note that the rate is also an increasing function of 0 
when m = 0, provided that 0 is smaller than a. 
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TABLE 1 

TREND WEIGHTING AND THE SPEED OF CONVERGENCE 

a = .5, O = .5cr a = .5, O = .cr a = .1, O = .02cr 

C= 0 11 39 940 
c= 5 10 26 710 
C= 10 10 28 470 

NOTE.-On the basis of estimated standard errors, the first two digits are correct at the .95 level. 

IV. Heterogeneous Populations with Linear 
Technologies 

Now we turn to the study of heterogeneous populations, in which 
different technologies may be optimal for different individuals. As 
before, we suppose that there are only two technologies, denoted f 
and g, with the mean difference in payoffs, E(ug - uf), equal to 0. 
Now though, we think of 0 as representing a location along a line, so 
that players at different locations have different 0's. In particular, the 
optimal rule (both socially and privately) is for players with positive 
0 to use g and players with negative 0 to usef, so that the distribution 
of technology choice has a cutoff or break point at 0 = O. 

It will be important in what follows that the relative advantage of 
using technology g at location 0 may be correlated with the "absolute 
advantage" of location 0, for example, the productivity of the "land." 
To capture this, we suppose that the payoffs to the technologies have 
the following linear form: 

ug(O) = 0 + P30 + Elt, 

Uf(0) = 10 + E2t 
(5) 

With this parameterization, 13 > 0 implies that technology g does 
better at "good" locations, and 13 < 0 implies that g does better at bad 
ones. The player's location in 0-space determines his average payoff 
to the two technologies. We suppose that players base their decisions 
on the average performance of the two technologies at locations in 
their "observation windows"; the observation window of the player at 
0 is the interval [0 - w, 0 + w]. We call w the "window width." 

As in the study of a homogeneous population, we begin by analyz- 
ing the simple rule in which players use whichever technology did 
better in their window last period; later we shall enrich the model to 
allow for popularity weighting. To define this rule formally, suppose 
that the distribution of players over locations has a constant density, 
which we normalize to equal one, and let i-g(0) be the average score 
realized by those players in the interval [0 - w, 0 + w] who used g 
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at period t, with the convention that iu9(0) = - if every player in 
the interval used f; the average -uf(0) is defined analogously. 

The (unweighted) decision rule for the player at 0 is then 

play g at period t + 1 iff ui(0) - u7 (0) 0. (6) 

In the previous sections we considered a model with a continuum 
of players and inertia, so that the fraction of players using each strat- 
egy can never shrink all the way to zero in finite time. In our study 
of spatial models, though, we shall suppose that there is no inertia at 
individual locations, so that all players at each location revise their 
choices each period. We do so in part for reasons of convenience and 
in part because learning seems too easy when all players observe 
the payoffs to both technologies in every period. Moreover, it seems 
plausible that in rural areas with low population density a technology 
could be abandoned by everyone in an observation window after a 
few bad draws in succession. 

We have two interpretations in mind for this model. First, the loca- 
tion parameter 0 may correspond to geographical location, with the 
performance of the technologies linked to variables such as climate 
or terrain that are in turn correlated with location. Second, the model 
may describe adoption decisions at a single village, where players are 
differentiated by idiosyncratic payoff-relevant characteristics such as 
wealth and household size. We want to think of the payoff-relevant 
variables as being unobservable but correlated with the observed loca- 
tions. The idea is that players do not know exactly which aspects of 
their locations are payoff-relevant or how these aspects influence 
their payoffs. This is why we do not allow the players to regress the 
observed payoffs of each technology on the corresponding values of 
0. When one is studying geographic diffusion, the observation win- 
dow might reflect the player only observing the outputs of his neigh- 
bors, and the window width w might be fairly small. When one is 
studying adoption at a single site, the observation window corre- 
sponds to the players' beliefs about which other players are suffi- 
ciently similar for their experiences to be relevant, and players might 
well observe the actions and outcome of others who are outside of 
their window. To the extent that the relevant characteristics are diffi- 
cult to determine, the window widths in this interpretation might be 
fairly large.'5 

As a first step in analyzing the decision rule (6), suppose that the 
noise terms Elt and E2t are identically zero, so that the system is deter- 

15 In both interpretations, players might prefer to weight observations of their imme- 
diate neighbors more heavily than those of players who are farther away but still 
within the observation window; this may be particularly attractive when the observation 
window is large. 
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ministic. Suppose further that the current state of the system is de- 
scribed by a cutoff rule. That is, suppose that there is a Ot such that 
all players with 0 2 %, choose g and all those with 0 < Ot choose f. 
Then the period t + 1 state will be described by a cutoff rule as well. 
To see this, note that all players at 0 > Ot + w see only g being played 
and, hence, will play g in the next period; similarly, all players at 0 
< Ot - W play. Players at every 0 E [Ot - w, Ot + w] see bothf and 
g being played, with 

r0+w 
f+W + f sds A 

Ut (_) f t d _ =3(O-w + (7) 
2t 

Thus for Ot - W < 0< 0" < ot + w,we have 

_ 0" - 0'_ a 

u9(0)- {t(0") = ugt(0 ) 7(of)+ 2 

so that if the player at 0' plays g in period t + 1, then so does the 
player at 0". Hence the state at period t + 1 is described by a cutoff 
rule. 

Our analysis restricts attention to the evolution of these cutoffs. 
Given our assumption that the payoff difference between the two 
technologies is monotone in location, cutoff rules seem natural; one 
might suspect that even if the initial state is not a cutoff rule, the 
system will converge to one. However, we have not attempted to 
verify this result because in the absence of a cutoff rule the system is 
much harder to analyze. 

A steady-state cutoff rule must have the property that the player 
at the steady-state cutoff is indifferent between f and g given his 
observations. Thus the steady state is the unique solution of -u7(0*) 
= uf(0*). This gives (P + 1)[0* + (w12)] = 13[0* - (w12)] and thus 

0* -(213 + 1)w (8) 

Note that although the optimal cutoff is 0 = 0 for any value of 1, 
the steady-state cutoff equals zero only if 13 = - 1/2. When 13 = 0, for 
example, so that the payoff to f is identically zero and the payoff to 
g is equal to 0, the steady state occurs at - w/2 (see fig. 1). The discrep- 
ancy between the steady state and the optimum arises from our as- 
sumption that players do not directly observe 0 and, hence, use only 
the average payoffs received by the two technologies in making their 
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decisions. Note that the maximum steady-state payoff loss at any loca- 
tion is the absolute value of 0*, which is small if ,3 is not too large (in 
absolute value) and the window width w is small. 

Having determined the steady-state cutoff, we next examine the 
behavior of the system away from the steady state. It is easy to show 
that, from an initial cutoff 00, the cutoff will move toward the steady 
state 0* at a distance of w each period until it is within w12 of 0*. 
Once 0, is within this interval, the system typically enters a stable 
two-period cycle about 0*. For ease of reference, we summarize this 
as a proposition. 

PROPOSITION 3. From an initial cutoff 00, the system determined by 
(6) and (7) evolves according to 

ot+W ot<0* 2 

2' 2 
btl= |-0t + 20* 0tE - H +' 2.),9 

wt- to 0tA0* + 2 

Proof. If t7(0t - w) - ( > 0, then all players who observe 
both technologies being played (i.e., all players in the interval [0t - 

W, Ot + w]) use g in period t + 1. Substituting Ot = 0, - w into 
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equation (7), we see that this is the case if (13 + 1)0t 2 1(0 - w) or 
Ot 2 -w = 0* + (w12). Similarly, if Ot < 0* - (w12), all players who 
see both technologies being played choose f in period t + 1. Finally, 
if o E [0* - (w12), 0* + (wI2)),Ot+1 will satisfy (I + 1)(+1 +ot + 

w) = 3(Ot+I + ot - w), so that Ot+ = -Ot - (21 + 1)w = -Ot + 

20*. Q.E.D. 
Next we consider the behavior of the model with noise, that is, with 

Eilt and E2t nondegenerate i.i.d. random variables. Let zt = E2t - Eilt 

denote the difference in the two shocks, and let 0 * = 0* + zt; 0t is 
the steady state of the system when E2T - El, is identically equal to zt 
for all T. Because behavior rule (6) depends only on the difference 
between the payoffs to f and g and not on their levels, the evolution 
of the system from Ot when the shock is z, is the same as that given 
in equation (9), with the term 0* replaced everywhere by 0*. 

PROPOSITION 4. If the period t cutoff is Ot and the period t shock is 
Zt, the period t + 1 cutoff is given by 

ot +W ot <ot*-2 

0t+I =|-t +2t* tE t 2't 2) (I10) 

ot-W ot-t 2 

Proof. For locations 0 E [Ot - W, Ot + W], the difference between 
the average payoffs of the two technologies in 0's observation window 
(the interval [0 - w, 0 + w]), that is, u0(0, E It) - uf{(0, E2t), is 

0 + Ot + (2_ + )w 0 + ot - 20t - 7 
2 At 2 

Since t > 0* + (w12) implies 0 + Ot 20: for all 0 - W, ot > 

0t* + (w12) implies that all players who observe both technologies 
choose g. Similarly, Ot < 0* + (w12) implies that all players who see 
both technologies chooser. Finally, if t E [0t - (w12), 0* + (w12)), 
the period t cutoff is given by + 1= - t + 20*. Q.E.D. 

PROPOSITION 5. When the zt are i.i.d. draws from a distribution that 
has a strictly positive density on a compact support, the dynamic 
process generated by (10) has a unique invariant distribution F, and 
the expected probability distribution at date t converges to F uni- 
formly over initial probability distributions pt. 

Proof. Appendix C shows that the system is a random contraction 
in the sense of Norman (1972) and satisfies uniqueness condition 2.11 
of Futia (1982). 
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TABLE 2 

STEADY-STATE VARIANCE FOR UNIFORM NOISE 

VARIANCE OF 

w/U System (10) System (11) 

.5 .2134 .25 

.1 .0483 .05 

.05 .0246 .025 

.01 .0050 .005 

We have not been able to characterize this distribution directly. 
Instead, we have computed an invariant distribution of the simpler 
system generated by 

A 0t + wV 0t C t 

ot+1 A A 0* 
0t t 

lo- 
to 

ot0t* (.l 

Note that system ( 11) differs from (10) only when t falls in an interval 
of width w. Normally we think of the variance of zt as being much 
larger than the window width; in this case it may be reasonable to 
guess that the invariant distributions of (10) and (11) are close to- 
gether. 

We should point out that the simplified system (11), unlike (10), 
does not have a unique invariant distribution: Because all steps have 
size w, from initial position 00, the support of (1 1) is concentrated on 
the grid Oo + kw, and so different initial conditions lead to different 
invariant distributions. Moreover, the supports of the date t distribu- 
tion are different for t even and for t odd. Despite these qualitative 
differences between systems (10) and (1 1), the absolute magnitude of 
the effect of the initial condition is small when w is small, which 
supports the conjecture that the two systems are similar. Table 2 
provides further support for this belief by comparing Monte Carlo 
estimates of the steady-state variance of (10) with the variance of the 
particular invariant distribution of (11) that is computed in proposi- 
tion 6 below. As conjectured, the two variances are close when w is 
small. 

To examine the invariant distributions of (11), suppose that the 
noise terms zt are i.i.d. with mean zero and cumulative distribution 
function H. Then Ot follows a Markov process with the transition from 
ot to ot + w having probability prob[0* + z ot] = 1 - H(ot - 0*). 
The invariant distribution has a particularly simple form when the zt 
are uniform on [- ar, a] and the grid {00 ? kw} contains the points 
0*, 0* - a, and 0* + (x. 
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PROPOSITION 6. Suppose that the z, are uniform on [- cr, or] and 
that M = alw is an integer. Then one invariant distribution of (11) 
is the binomial prob(0 = 0* + kw) = [2M!I(M - k)!(M + k)!]2 2M; 

this is the limit of the time average distribution when the initial condi- 
tion belongs to the grid 0* + kw. 

Remark. -Recall that the mean of this distribution is 0*, its variance 
is uw/2, and the distribution is asymptotically normal as w tends to 
zero. 

Proof. To show thatf is an invariant distribution, it is sufficient to 
verify that it meets the "detailed balance condition" that, for all 0 
and 0', the (unconditional) probability flow from 0 to 0' equals the 
probability flow in the reverse direction. Thus we shall verify that 

f(O) prob(0+ 1 = 0'I Ot = 0) = f(0') prob(0t+ l = 0 l Ot = 0') 

or, equivalently, that 

f(0) prob(0+tl = 0l0t = 0') 
f(0') prob(0t+I = 0' IOt= 0) 

Since the probability of a jump of more than w is zero, it suffices 
to check that this condition holds between adjacent states, so take 
0 = 0* + kw and 0' = 0* + (k + 1)w for some integer k between 
-Mlw and (M - 1)1w. For such states, we have 

f(P) 2-2M[2M!I(M + k)!(M - k)!] M + k + 1 

f(0') 2-2M[2M!I(M + k + 1)!(M - k - 1)!] M - k 

and 

prob(0t+ = = 0 O 0') [ + (k + 1)w]/2_ (M + k + 1)w 

prob(0t+1 = 0' ot = 0) (or - kw)12u (M - k)w 

so detailed balance holds. Q.E.D. 
As one would expect, the variance of the steady state is increasing 

in w because small w corresponds to small steps in each period. Note 
that the social optimum is the constant 0 = 0 and that the expected 
welfare loss (compared to = 0) when the cutoff is 0t is 

ot ot2 fodo 
2 

Hence, in the long run the average welfare loss per period (from the 
invariant distribution computed in proposition 6) is 

!E(02) = [E(o)]2 + 
I var(0)= [(21 + 1)2W + 
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so that steady-state welfare is decreasing in w. For small w, despite 
the lack of either memory or popularity weighting, the spatial nature 
of the process allows the long-run outcome to be approximately effi- 
cient. 16 

While small w's are thus desirable from the viewpoint of the time 
average payoff, they entail a significant short-run welfare loss when 
the initial state is far from the optimum, because in this case the 
system will take a long time to approach the neighborhood of the 
optimum. This is true for two reasons: First, ot is limited to move at 
most w per period. Second, in the presence of noise, a typical path is 
likely to take far more than O01w periods to reach a neighborhood of 
0*, because many steps will be taken in the wrong direction. 

For a fixed initial condition and social discount factor, the socially 
optimal window width will trade off the speed of convergence and 
the steady-state variance, with larger w's being optimal the farther 
the initial condition is from zero. If the social planner does not 
know the initial condition or the location of the social optimum, the 
size of the optimal w will depend on the planner's prior beliefs. This 
trade-off between speed of adjustment and the variance of the steady 
state seems a natural feature of the sorts of model we consider.'7 

At this point we would like to make a few observations about how 
the conclusions might change if the players did keep records of their 
past observations. Since players at locations within or of 0* will play 
both technologies infinitely often, they could eventually learn which 
technology is better for themselves by keeping such records. How- 
ever, a few calculations suggest that this learning process will be fairly 
slow if the random shock to the payoffs has a sizable common compo- 
nent and w is small. 

To see this, suppose that the payoffs to each technology are subject 
to a common shock nt as well as the idiosyncratic shocks we assumed 
before, so that system (5) is replaced by 

Ug(0) = 0 + 10 + Elt + Ott 

(5') 
U{(0) = 10 + E2t + Ott~ 

16 Although our leading example of very small window widths is the English agricul- 
tural revolution, small window widths should not be seen as requiring illiterate agents. 
Anecdotal evidence suggests that farmers often distrust the information of central 
authorities and experts, and prefer to see how innovations work out in their neighbor- 
hood. As noted earlier, Ryan and Gross (1943) found that the experiences of neighbors 
were an important factor in the adoption of hybrid seed corn by twentieth-century 
Iowa farmers. 

17Although we have not checked the details, it seems that a combination of large 
window widths with a rule of proximity-weighted averages could combine faster con- 
vergence with a small long-run variance. 
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If the variance of mt is relatively large, then observations of only one 
technology at date t are not very informative, and only observations of 
both technologies in the same period will be helpful. Players at loca- 
tions far from 0* rarely see both technologies played and hence would 
need a very long memory to learn. Players at locations 0 closer to 0* 
do see both technologies played more often. For these players the 
systematic payoff difference between the technologies is smaller, and 
hence it may require many observations to be fairly confident that 
one is better. Our informal approximations, reported in Appendix 
E, suggest that this is indeed the case and, in particular, that the 
number of periods required to be fairly confident which technology 
is better is on the order of (urlw)312; when w is small, a very long 
history would be required for players to do much better than with 
our simple rule. Of course, players could use history even when the 
advantage to doing so is slight or slow to develop, but in these cases 
it seems less obvious that players would be led to abandon simple 
rules. 

V. Examples of Nonlinear Technologies 

Before considering the implications of popularity weighting in a het- 
erogeneous population, we would like to discuss some examples of 
what can happen without popularity weighting when the payoffs as 
a function of location do not take the linear form presumed in equa- 
tion (5). Suppose, for example, that the "old" technologyf has returns 
that are identically zero, and g(O) = cos(O), so that regions in which 
g is optimal alternate with regions in which f is. If there is no noise 
in the system and the window width is relatively small, then even if 
all players in locations 0 E [- -aI2, r/2] adopt the new technology g, 
the new technology will not spread to the other regions in which it is 
optimal. In this example there are substantial social gains from having 
the new technology "tested" at a number of diverse locations. It may 
also be interesting to note that when the local process may fail to 
spread as widely as it should, random shocks to payoffs can increase 
social welfare; that is, welfare can increase as the variance of the noise 
term zt increases from zero. Suppose that the technologies aref(O) = 
o and g(O) = cos(0), and that the initial state has all players to the 
right of 00 using g and players to the left using f. Without noise, the 
cutoff will move to 0* - 3rrI2 and stay there (see fig. 2). When 
the support of zt is sufficiently large, there will eventually be enough 
consecutive draws of very negative zt that the cutoff reaches r/2. 
From this point, the system may no longer have a single cutoff, since 
players to the left of r/2 will tend to switch to g and those to the right 
switch back to f. Essentially, the noise leads the players in region II 
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to use the new technology long enough that it can spread from region 
I to region III. 

The next example shows that in certain extreme cases the specifi- 
cation error involved in ignoring how payoffs vary with "location" 
can allow a technology that is everywhere inferior to completely drive 
out a better one. This is the case depicted in figure 3, in which f(O) 
= 0 and g(O) = 0 - E. If the current cutoff occurs at 0, then the 
player at 0 E [0-w, 0 + w] computes Ug(0) = 0 - E + {[0 - - 

w)]12}, and Vf(O) = - w + {[0 -( - w)]/2}. Since Ug(O) - -uf(O) 

f(B) 

O m .......................... / 
18(e).. 

uf (B) I-',,,,, 

/ 1 7 ~~~ ~~Iv 
I i I+ 

O-w F I B+w 

FIG. 3 
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= w - E, if w> E all players who observe both technologies choose 
technology g. Hence Ot, = Ot - W, and eventually g will take over 
the entire population. 

We should point out that these technologies are quite special: an 
inferior technology can drive out a better one only if the difference 
in payoffs If - g I is small compared to the errors caused by estimating 
the payoffs by their average values in the window. These errors have 
magnitudes of w(df/dO) and w(dg/dO), which bound the difference 
between the payoffs at 0 - w and 0 + w. Thus if w is small, the 
difference in payoffs If - gI must be small as well in order for the 
inferior technology to dominate; hence even though the wrong tech- 
nology is adopted everywhere, the payoff loss at each location is not 
substantial. (In the example above, the payoff loss at each location is 
E, and E must be less than w in order for g to dominate.) 

For small window widths, a more substantial payoff loss arises when 
the new technology is not adopted in a region in which it is a substan- 
tial improvement. This was the case in the example in which g = 
cos(0) and f = 0, so that the regions in which g should be adopted 
are disconnected. We can also modify the example of figure 3 so that 
g is better than f at every location (and so in particular is better on a 
connected set) and yet a substantial payoff loss results from g failing 
to spread. In figure 4, the payoffs to f and g are such that g is much 
better than fin the neighborhood of 0 = 0 but is only slightly better 
than for extreme 0 values. Hence, if technology g is first introduced 

0 

.* Is(s) 
* f(e) 

Ft.et+ 

FIG. 4 
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at these extreme values, it will be driven out of the population before 
it can be tried in the center region. 

VI. Heterogeneous Populations and Popularity 
Weighting 

Our analysis of social learning in homogeneous populations showed 
that popularity weighting could improve the aggregate performance 
of the learning process. We shall now investigate the implications of 
popularity weighting in our model of a heterogeneous population 
with linear technologies. 

To model popularity weighting, let x,(0) be the fraction of players 
in the interval [0 - w, 0 + w] who use technology g. In the spirit of 
the popularity weighting rule (3), we now modify the decision rule 
(6) used in Sections IV and V and suppose that players use the deci- 
sion rule 

play g at period t + 1 iff iu(0) - u{(0) ? m[l - 2xt(0)], (12) 

where, as before, the parameter m indexes the importance of popu- 
larity in the players' decisions. 

Since the analysis of this system is quite close to that of the system 
without popularity weighting, we shall give the results without proof. 
As in Section IV, if the state in period t corresponds to a cutoff rule, 
so will the state in period t + 1. In addition, without noise terms the 
system has the same, unique, steady-state cutoff 0* = - (2 I + 
1) w/2. However, the introduction of popularity weighting does 
change the dynamics in two ways. First, in the absence of noise terms, 
the system converges to the steady-state cutoff from any initial cutoff; 
the oscillations described in proposition 3 do not arise. Second (and 
relatedly), movements of less than one window width become more 
common since players are more hesitant to use a less popular tech- 
nology. 

The following proposition gives a more precise description of the 
dynamics. 

PROPOSITION 7. From an initial cutoff 00, the system described by 
decision rule (12) and payoffs (5) evolves according to 

0t+1 - 

Ot + w ifot < - +- 

| ' [2 + w H t )]i t E 
* 

[t- M + 2) 0* + (m +-] 

-t -w if Ht>t*+ (m +2 

(13) 
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Proof. The proof is omitted. The calculations involved are straight- 
forward and quite similar to those of proposition 3. Note that the 
dynamics above reduce to those of proposition 3 when m = 0, as they 
should do. 

To see that, in the absence of noise, the system converges to 0* 
from any initial cutoff, note that the cutoff moves a full window width 
as long as I 0t - 0* 1 > m + (w12). Eventually, then, I A, - 0* I < m + 
(w12), and from then on Ot+1 - 0* = [(2m - w)I(2m + w)](kt - 0*), 
so that the system converges to 0* at a geometric rate. 

Note also that for a given t, the system will move less than a full 
window width whenever the realization of 0* is in an interval of width 
2m + w. This shows that popularity weighting makes the system more 
"sluggish" and suggests that it will reduce the variance of the long-run 
distribution. To verify this intuition and determine the extent to 
which popularity weighting reduces the variance, we characterize the 
long-run distribution in one special case. 

PROPOSITION 8. 

a) If the zt are i.i.d. draws from a distribution that has a strictly 
positive density on a compact support, the dynamic process de- 
fined by (5) and (12) has a unique invariant distribution. 

b) If the zt are i.i.d. draws from the uniform distribution on [-, 
a] and m 2 2a, the invariant distribution f is concentrated on the 
interval [0* - r - (w12), 0* + or + (w12)] and satisfies Ef(o) = 

0* and varf(O) = or2 wI6m. 

Proof. The proof of part a is omitted; the argument is very close 
to that for proposition 5. For part b, Appendix D shows that there is 
a deterministic, finite time T for which the cutoff OT is in the inter- 
val [0* - ( - (w12), 0* + a + (w/2)], and that once this interval 
is reached, OT+s remains in the interval for all subsequent periods 
T + s. 

Given a T satisfying these claims, we have 

IOT+s - 0T+S < I OT+s - 0* + I T+s 0*< 2) 

which is less than m + (w/2) from our assumption that m > 2ou. Hence, 
the evolution of 0T+s from T on is determined by the second case in 
proposition 7. Writing c = (2m - w)I(2m + w) and applying this rule 
repeatedly, we find that 

s-1 

OT+s = (1 - C) C T+s-T-1 + CsOT- 

T=O 
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Hence, 
s-i 

E( T+sI OT) = (1 - C) cTE(O*) + c'OT -- E(O*) 
T=O 

and 
- (1-c) or2 2 wu2 = u2w 

var(OT+Ol6T) = (1 c)2 c2T var(O*) - 
3(1+ c) - 12m 6m 

T=0 

Q.E.D. 
Comparing the steady-state distributions for m > 2a with that for 

no popularity weighting, we see that popularity weighting reduces 
the long-run variance by a factor of u/3m. 

The welfare consequences of increasing m for fixed w are similar 
to those of decreasing w for fixed m: in both cases, the steady-state 
distribution becomes more efficient, whereas the speed at which the 
system converges decreases. It may be interesting to note, however, 
that in this simple model there is one way to change the parame- 
ters to speed up the rate of convergence (when the initial cutoff is 
far from the optimum) without altering the steady-state variance, 
namely, increasing the window width w while holding the ratio of 
wim fixed.'8 

VII. Concluding Remarks 

The various models we have presented suggest that even very naive 
learning rules can lead to quite efficient long-run social states, at least 
if the environment is not too highly nonlinear. Moreover, popularity 
weighting can contribute to this long-run efficiency, and the use of 
popularity weighting passes a crude first-cut test of consistency with 
individual incentives. Of course, there are many other plausible speci- 
fications of behavior rules for social learning, so it is interesting to 
speculate about the robustness of our conclusions. 

We discussed one extension, the use of trends, in Section III. There 
are a number of other extensions that we have not considered but 
that seem important. Players might use rules of thumb that make 
some use of historical data. Also, players might be arranged in more 
complex networks than the simple linear structure we have consid- 
ered. In addition, our results suppose that rules of thumb are exoge- 
nous. It would be interesting to complement these results with an 

18 However, as w increases, the specification bias grows. When w is large, it may be 
more natural to suppose that players weight the experience of those nearby more than 
that of those who are farther away but still within their window. 
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analysis of a dynamic process by which players adjust their rules of 
thumb along with their choice of technology. 

Finally, we should point out that popularity weighting is not always 
as beneficial as our results might suggest. Consider the problem of 
children in a poor neighborhood choosing whether to pursue higher 
education. If students who have done so in the past tend to move out 
of the neighborhood and past residents are underrepresented in the 
observation window, then the choice of higher education will appear 
less popular than it really is, and decisions based on popularity may 
be biased against this choice.'9 

Appendix A 

Optimal Popularity Weighting with Other Distributions 

To better understand the forces generating part a of proposition 2-that a 
single choice of popularity weight yields the optimal long-run distribution 
uniformly over all values of 0-we show that analogous results obtain when 
the per period noise term Et has distribution F with unbounded support. 

Suppose first that a = 1, so that the entire population adjusts every period, 
and hence the state x, takes on only the values zero and one. If we let s, 
denote the vector [prob(x,) = 0, prob(x,) = 1], we have st+1 = sEA, where 
the transition matrix is 

A= [F(m -0) 1-F(m-0) 1 
(-m -0) 1- F(-m -0) 

Since this matrix is strictly positive, the system is ergodic; the unique invariant 
distribution V* is given by 

P* = 0)F(-m 
- 0) = 0) =F(-m - 0) + 1 - F(m - 0) 

If F is the standard normal distribution, then as m increases, the ratio 
F(-m - 0)/[1 - F(m - 0)] converges to zero if 0 > 0 and converges to 
infinity if 0 < 0. Hence for large m, the ergodic distribution of the system 
places probability near one on the correct choice. Moreover, the same is true 
for any distribution for which the ratio F( - m - 0)/[ 1 - F(m - 0)] converges 
to zero if 0 > 0 and to infinity if 0 < 0. (This is what is meant by saying that 
the tails of the distribution are "infinitely revealing.") 

With a more involved argument, we have shown that the same conclusion 
holds for any ax E (0, 1) when players use the (discontinuous) popularity 
weighting "if xt 2 1/2, choose g iff ug - u -m; if x, < i/2, choose g iff 
u9 - uf 2 m." The details are available on request; the intuition for the result 
follows. 

Note first that when m = oo the system is deterministic with stable steady 
states at zero and one. If m is finite but very large compared to a and to 
the standard deviation of the distribution, then steps the "wrong way" (i.e., 
decreasing steps when xt > 1/2) are rare "innovations," and when the distribu- 

19 We thank Roland Benabou for this observation. 
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TABLE Al 

prob[x, -- 1 1 0 = .2a, xo = .2r] 

Distribution a = .2 a = .1 a = .05 

Normal .53 .77 .95 
Laplace .55 .79 .94 
Logistic .53 .78 .96 

Standard error .0005 .0004 .0002 

tion is symmetric, transits from zero to one-half and from one to one-half 
both take the same number of innovations. If the tails of the distribution are 
infinitely revealing, then as m -> innovations toward the better technology 
become infinitely more likely than innovations toward the inferior one. The 
analysis of Freidlin and Wentzell (1984) suggests that the limit of the ergodic 
distributions will be concentrated on the better technology. To establish this 
formally, we partition the interval into a large number of (appropriately 
chosen) small subintervals and approximate the original system by two finite- 
state Markov processes, whose ergodic distributions will serve as bounds on 
the ergodic distribution of the original system. We then use the discrete-time, 
finite-state translation of Freidlin and Wentzell's results (Kandori, Mailath, 
and Rob 1993; Young 1993) to confirm the intuition above; that is, the limits 
of the ergodic distributions of the finite-state process are concentrated on 
the subinterval corresponding to the better choice. 

The discussion above suggests that infinitely revealing tails are sufficient 
for there to be a single popularity rule that is approximately optimal for all 
0. Moreover, this rule has the nice feature that it need not be tailored to the 
exact form of the distribution. Even when the tails are not infinitely revealing, 
however, there is another popularity rule that seems to perform very well, 
namely 

choose g iff ug - u 2> F- 1 (I - xt). (A1) 

With this rule, 

E(xt+i xt) = (1 - ot)xt + oxprob[0 + Et?F'(1 - xt)] 
= Xt + ot[1 - F(-0 + F-(1 - xt)) -xt], 

so that E (xt+ 1 | xt) > xt if and only if 0 > 0; the system drifts toward the correct 
choice. Although the system may converge to the wrong technology with 
positive probability, simulations for the logistic and Laplace distributions 
(which both have nonrevealing tails) suggest that when at is small the system 
is very likely to converge to the right choice. Table Al displays one set of 
simulations, for the case 0 = .2or, xO = .2or. The table suggests that the 
behavior for all three distributions is similar, even though the latter two do 
not have infinitely revealing tails. Intuitively, when at is small, the system 
evolves through a series of small steps that allow the drift to outweigh the 
random forces. We conjecture that there may be a general result along these 
lines. 
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Appendix B 

Proof of Part c of Proposition 2 

If or - m > 101, then neither zero nor one is an absorbing state. Our first 
step is to show that there is a unique invariant distribution. To do so, we first 
note that the stochastic system (4) is a random contraction in the sense of 
Norman (1972).20 A random contraction is a stochastic system in which the 
realization of an i.i.d. auxiliary variable (call it w) is used to determine which 
of a family of mappings up E V is used to send xt to xtl, and each up. is a 
contraction "on average." In our context, X corresponds to the realized dif- 
ference in payoffs, and there are only two maps (p.: cp+(xt) = (1 - a)xt + 
a and up (xt) = (1 - a)xt, both of which are contractions, so that (4) is indeed 
a random contraction. Norman's results then imply that the Markov opera- 
tor associated with system (4) is quasi-compact. We next note that when 
101 < or - m, the system (4) satisfies the uniqueness criterion 2.11 of Futia 
(1982): for any neighborhood U of the point x = l/2 and any point x' in 
[0, 1], there is an n such that the probability that the system starting at x' is 
in U exactly n periods later is strictly positive. (If m ? or, the uniqueness 
condition fails since both x = 0 and x = 1 are absorbing.) 

The last step is to compute the mean and variance of the invariant distribu- 
tion V. Using E,,(xt) = EF,(xt+ 1), we have 

E , (x) = ( 1 - a)E , (x) + a I p(x) d?,(x), 

where p(x) = [((u - m + 0)/2or] + (m/ur)xt is the probability that 0 + Et 2 
m(1 - 2xt), which is the probability that xt+1 = (1 - a)xt + a. Simple algebra 
then shows that E = 1/2 + [0/2(ur - m)]. 

To compute the variance, we first write the identity 

EIL(x2) = f{[1 - p(x)][(1 - a)x]2 + p(x)[(1 - a)x + a]2}dV,(x) 

= E (x2) [(1 - a)2 + 2t(I ])m 

E [2a(1 - a)(u - m + 0) a2mi + a2(r - M + 0). + Exi 2u 2u~ 

solving for E,,(x2) and computing var(x) = E,(x2) - [E ,,(x)]2 give the desired 
result. Q.E.D. 

Appendix C 

Proof of Proposition 5 

To begin we rewrite (10) in the following equivalent form: 

=min[0t + w, 2(0* + zt) - Ot] if 0* + zt 2 0t, (10') 

{ max[Ot - w,2(0* + zt) - Ot] if 0* + zt< t- 

To show that the system (10) is a "random dynamical system" as described 
by Futia (1982), we note that the auxiliary events are the zt. The probability 

20 See Futia's (1982) survey for a summary of Norman's results and other techniques 
for establishing that the invariant distribution is unique. 
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distribution Q on the z's does not depend on the current state, and so in 
particular it is continuous in the state, and the map (p(0, z) defined by Ot+l = 

P(0t, Z) is easily seen to be continuous in 0 for fixed z, so that (10) is indeed 
a random dynamical system. 

Next we check that it is a random contraction, as in Futia's definition 6.2. 
Because the map Q is constant in 0, the constant M in part a of the definition 
can be taken to equal zero. Next we must show that for all z and all 0 $ 0', 
d(p(0, z), p(0', z)) 5 d(0, 0'), and for all 0 and 0', there is a positive probability 
of z such that d(p(0, z), p(0', z)) < d(0, 0'). 

To show that d(p(0, z), p(O', z)) 5 d(0, 0'), we note that for all 0 and 0' and 
all z, either (a) both 0 and 0' move in the same direction (e.g., [wp(O, z) - 
0][ p(O', z) - 0'] > 0) or (b) p(0, z) - 0 ? 0 - p(0', z) - 0'. Case a has three 
subcases: (1) up moves both locations by w, so that d(p(0, z), p(O', z)) = d(0, 
0'); or (2) the location closer to 0* + z moves less than w, and the state farther 
away moves w, so that d(p(0, z), p(0', z)) < d(0, 0'); or (3) both locations move 
by less than w, in which case the two locations are reflected about the point 
0* + z, and d(p(0, z), p(O', z)) = d(0, 0'). 

In case b, suppose without loss of generality that 0 < 0'; then case b implies 
that 0 5 0* + z 5 0', and so d(0, 0') = d(0, 0* + z) + d(O* + z, 0'). With 
the triangle inequality, this implies that 

d(p(0, z), p(0', z)) - d(0, 0') 5 d(q(0, z), 0* + z) + d(O* + z, p(0', z)) 
- d(0, 0* + z) - d(O* + z, 0') (C1) 

= [d(p(0, z), 0* + z) - d(0, 0* + z)] 
+ [d(O* + z, (p(0, z)) - d(O* + z, 0')], 

and inspection of (10') shows that each of the terms in brackets is nonpositive. 
Thus d(p(0, z), p(O', z)) 5 d(0, 0') for all z, 0, and 0'. 

To show that for all 0 and 0' there is a positive probability that d(p(0, z), 
P(O', z)) < d(0, 0'), let 0 < 0', and suppose first that 0 - 0* > -u + (w/2). 
Then for sufficiently small E > 0, there is a positive probability that z lies in 
any sufficiently small neighborhood of 0 - 0* + e - (w12), and for z's in 
this neighborhood, 0 moves less than w to the left and 0' moves w, so that 
d(p(0, z), p(0', z)) < d(0, 0'). If 0 - 0* 5 -r + (w/2) but 0' - 0* < (r - 
(w/2), a similar argument establishes the existence of a range of z's such that 
both 0 and 0' move to the right, with 0' moving less than 0. Finally, if 0 - 
0* 5 -c + (w/2) and 0' - 0* a c - (w/2), then 0' - 0 > w, and d(p(0, z), 
w(O', z)) < d(0, 0') for z's in a neighborhood of 0 + (w/2). Thus (10') is a 
random contraction. 

The last step in the proof is to verify that (10') satisfies Futia's uniqueness 
condition 2.11, which requires that there be a point 00 such that, for any 
neighborhood U of 00 and any 0, there is an n such that when the system 
begins at 0, it has a positive probability of being in U in period n. It is easy 
to see that, for example, 00 = 0* satisfies this condition. Q.E.D. 

Appendix D 

Proof of Part b of Proposition 8 

To complete the proof, we must show that there exists a deterministic, finite 
time T such that (i) I OT - 0* I < CF + (w/2) and (ii) I'T+s -*I < a + (w/2) 
for all subsequent dates T + s. Define dt = I Ot - 0* 1. Note that since (0 * - 
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Ot) and (Ot+ 1 - Ot) have the same sign and IO 
- 0I | or, (0* - 't) and (t+ 

- Ot) have the same sign whenever dt > uf + (w/2). Hence, 

dt= Idt - (I|t+ - Ot ) (D1) 
whenever dt > of + (w/2). 

As a first step toward proving claim i, we show that for any initial condition 
there exists a finite T' such that, regardless of the sample path, either dT' < 
r + (w/2) or dT' | OT'+1 - .T 1 To see this, note that (DI) implies that until 

such a T' is reached, dt - dt+1 = t- 1, and from proposition 7, 

t- 0tI = minkw (2mw + )(Ot - O*)} -: mintwX (wm2+ w) (2)} 
Thus, until the conditions defining T' are satisfied, the decrease in dt is 
bounded below by a positive constant that is independent of the sample path. 

If dT' 
- 

o + (w/2), setting T = T' completes the proof of claim i. The 
remaining case is cr + (w/2) < dT' |IT'+1 - OTI. In this case, (Dl) implies 
that dT'+ 1 = I OT'+ 1 - OT| - dt, which is less than w - [C + (w/2)] = (w/2) 
- or < (w/2) + a. Hence we can set T = T' + 1 to complete the proof of 
claim i. 

To prove claim ii, note that when I T- 0* 1 < or + (w12), we have I O- 

O I ' [or + (w/2)] + or, which is less than m + (w/2) from the assumption 
that m > 2or. From proposition 7 we then have 

OT+1 OT \+ 2m + w- (T OT 

and since both 0T and 'T lie in the interval [O* - or - (w/2), 0* + or + 
(w/2)], so does OT+ 1. The claim now follows from induction on s. Q.E.D. 

Appendix E 

This appendix gives a rough approximation of how many periods a player 
using the entire history of observations would need to identify the better 
technology with a confidence level of 85 percent. Suppose that Et = Elt - 

E2t is uniform on [-a, a], so that var(ug - uf) = r2/3. Then the player at 
location 0 will need about u2/302 observations of the payoff difference to 
have an 85 percent confidence level. (Recall that we have assumed that only 
observations of the payoff difference are used since the levels are subject to 
a common shock.) 

Now the player at location 0 will not observe both technologies in every 
period; he observes both at t only if Ot E [0 - w, 0 + w]. We approximate 
the distribution of Ot by an N(O, aw/2) random variable and approximate the 
probability of the event Ot E [0 - w, 0 + w] by 2w times the density of this 
variable at 0.The expected wait for or2/302 observations of both technologies 
simultaneously is then approximately 

k302, /2w,/( 2 ) exp ) 

This expression is minimized at 0 = (urw)1"2, where its value is (e1T112/6) 
X ((l/w)312 
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