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LETTERS TO THE EDITOR 

A Note on Evolutionary Stable Strategies 
and Game Dynamics 

In 1974 J. Maynard Smith introduced the fundamental notion of an 
evolutionarily stable strategy (ESS) in order to explain the evolution of 
genetically determined social behaviour within a single animal species. If the 
possible pure strategies for contests within a species are 1,2, . . ., ~1, and if 
A = (aij) is the payoff matrix, then aij is the payoff for the pure strategy i 
played against the pure strategy j; c aijqj is the payoff for the pure strategy i 

against the mixed strategy given by $ probability vector q = (ql, . . ., q,,); and 

PAq = 1 Piaijqj 
i,j 

the payoff for strategy p = (pi, . . ., p,) played against q. Let 

s, = {x = (Xl, . . . . xn):Cxj= 1, xi>0 for i= l,... ,n) 

be the simplex of all possible strategies. 
Dl : (Maynard Smith, 1974) A state p E S, is called an ESS if for all q # p 
either pAp > qAp or pAp = qAp and pAq > qAq. 

In Taylor & Jonker (1978) the authors used the fact that the payoff, in 
animal contests, corresponds “by definition” to the rate of increase. This 
suggests for the investigation of the evolution of behaviour the dynamical 
model given by 

~i/Xi = C aijxj. 
j 

With this equation, however, the strategies (xi, . . ., x,) don’t remain on the 
simplex. But since only the differences in payoff are relevant for the game, 
one may consider 

ii/xi = c aijxj- A, 
j 

where the function A is chosen in such a way that 1 ii = 0 whenever 
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c xi = 1. This leads to the equation 

ki = Xi(CUijXj- C XiUijXj) i = 1, . . ., n 
j i,j 

on the (invariant) simplex S,. 
Having derived this equation, Taylor & Jonker proceed to show, as their 

main result, that if p is an ESS satisfying a mild regularity condition, then p is 
an equilibrium state for (1) which is strictly stable (i.e. all eigenvalues have 
strictly negative real part). The converse is not valid. 

In this note, we give a simple characterization of ESS which implies 
immediately that every ESS is an equilibrium state for (1) which is 
asymptotically stable (all orbits near p converge to p). Thus both the 
hypothesis and the result are slightly weaker than in Taylor & Jonker 
(1978). We begin by reformulating Dl. 
D2: A state p E S, is called an ESS if for all 4 E S, one has 

provided s > 0 is sufficiently small. 
The equivalence of the two definitions is easily seen since (2) means 

(l-&)(PAP-qAP)+&(PA4-qAq) > 0. 

The interpretation of D2 is easy : if a mutation in a population with strategy p 
introduces a small population with strategy 4, then the p-population fares 
better than the q-population against the new (mixed) population 
(1 --~)p +~q. D2 then is equivalent to 
D3: A state p E S, is called an ESS if 

pAx > XAX 

for all x E S,, x # p, in a sufficiently small neighbourhood of p. 
This follows by multiplying (2) by E and adding (1 - c)pA(( 1 - e)p + ~q) on 

both sides. 
Let us now use the fact that p is the unique maximum of the function 

on S,, since the Lagrange multiplier must be equal to 

ap/ax, = P(Pi/Xi), 
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which implies that the Xi must be proportional (and hence equal) to the pi, at 
the maximum. The time derivative of P along the orbits of (1) is 

p = T apI% . xi = P T pi(C UijXj- C xiaijxj) 
j i,j 

= P(pAx - XAX). 

Hence D3 is equivalent to having P(x) > 0 for all x # p in a small 
neighbourhood of p. Thus 
D4: A state p E S, is an ESS if 

v=JJpqi-nx;i 
I I 

is a strict local Ljapunov function at p for (1). 
As a corollary of D4, one obtains that every ESS is asymptotically stable. 
As an example, we mention that for the case of the “4hypercycle”, where 

[ 
0 k, 0 0 

0 0 

k, 

0 

A= 

0 0 0 k, 

k, 0 0 0 1 
(with ki > 0) the unique equilibrium in the interior of S, is always globally 
stable; the function V is a Ljapunov function if all ki are equal, but it is never 
a strict Ljapunov function. For the “3-hypercycle”, the equilibrium is again 
always a global attractor, but V is a (strict) Ljapunov function if the three 
constants A, Jk, and & satisfy the (strict) triangle inequality. 

These examples imply that not every asymptotically stable equilibrium is 
an ESS, and that (as noted already by Haigh in an appendix to Maynard 
Smith (1974) even for II = 3 there need not be an ESS at all. Another 
example is given by 

(which corresponds to the game of scissors-paper-stone which is treated by a 
different ecological model in May & Leonard (1975). Here p = (l/3, l/3, l/3) 
and P = 0 on S, (every orbit in the interior is periodic). 

Since there is nothing special about the Ljapunov function V, it could be 
that under certain circumstances it would be more appropriate to study 
asymptotically stable equilibria of (l), rather than ESS. 
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Let us mention finally that equation (l), and relatives of it, have been 
investigated in Eigen (1971), Eigen & Schuster (1978) and Schuster, 
Sigmund, Wolff & Hotbauer (1978) in the context of self organization of 
macromolecules. It seems interesting that the same equation (1) plays a 
certain role at the two very ends, so to speak, of evolution, namely prebiotic 
evolution and evolution of animal behaviour. 

Recently we learned that Zeeman had already obtained a proof that every ESS is an 
attractor. His result has not been published yet. We would like to thank Professors 
Maynard Smith and Zeeman for helpful advice and making unpublished material 
available to us. 
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