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A class of evolutionary selection dynamics is defined, and the defining property,
convex monotonicity, is shown to be sufficient and essentially necessary for the
elimination of strictly dominated pure strategies. More precisely: (1) all strictly
dominated strategies are eliminated along all interior solutions in all convex
monotonic dynamics, and (2) for all selection dynamics where the pure-strategy
growth rates are functions of their current payoffs, violation of convex
monotonicity implies that there exist games with strictly dominated strategies that
survive along a large set of interior solutions. The class of convex monotonic
dynamics is shown to contain certain selection dynamics that arise in models of
social evolution by way of imitation. Journal of Economic Literature Classification
Number: C72. � 1996 Academic Press, Inc.

1. INTRODUCTION

A basic rationality postulate in non-cooperative game theory is that
players never use pure strategies that are strictly dominated. This postulate
only requires that a player's payoffs indeed represent her preferences over
outcomes. In particular, no knowledge of other players' preferences or
behavior is required. A more stringent rationality postulate is that players
never use pure strategies that are iteratively strictly dominated. In addition,
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this postulate requires that all players know each other's payoffs, that they
know that they know each other's payoffs, etc. up to a finite level k of
mutual knowledge, where k is the number of rounds required to halt the
procedure of iterated elimination of strictly dominated pure strategies (see,
e.g., Tan and Werlang [23]).

A fundamental question in evolutionary game theory thus is whether
evolutionary selection processes do eliminate all strictly dominated pure
strategies or even all iteratively strictly dominated pure strategies. If all
iteratively strictly dominated strategies do vanish, this provides an
evolutionary justification for the presumption that strategically interacting
agents behave as if it were mutual knowledge that they are rational in the
sense of never using strictly dominated strategies.1 Clearly, this justification
is more compelling the wider the class of evolutionary selection processes
for which this result is valid.

So far, the result has been established for so-called aggregate monotonic
selection dynamics in Samuelson and Zhang [21].2 This is a class of con-
tinuous-time dynamics that contains the biological replicator dynamics.
Samuelson and Zhang also show that all aggregate monotonic selection
dynamics are closely related to the replicator dynamics: the differential
equations for any dynamics in this class differ from the replicator equations
only by a positive factor, a factor which may be player specific and popula-
tion state dependent.

Here we generalize Samuelson's and Zhang's result to a considerably
wider class of evolutionary selection dynamics which we call convex
monotonic. We also show that this result is sharp within a wide class of
selection dynamics where the growth rate of each pure strategy is deter-
mined by a function of its payoff. For all dynamics in this class which fail
our condition there exist games in which strictly dominated strategies sur-
vive along (large sets of) solutions. The new class of dynamics is shown to
contain certain (not aggregate monotonic) selection dynamics that arise in
models of social evolution by way of imitation.

2. GAMES AND SELECTION DYNAMICS

Consider any finite n-player game in normal form, G=(I, S, u), where
I=[1, ..., n] is the set of players, S=>i # I Si is the set of pure-strategy
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1 The ``as if '' approach to rationality has a long tradition in economics, with early advocates
in Alchian [1] and Friedman [9]. See Weilbull [26] for a recent discussion of the ``as if ''
approach applied to game theory.

2 In contrast, the result is known not to be valid for the discrete-time version of the
replicator dynamics, see Dekel and Scotchmer [7].
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profiles, each player's pure-strategy set Si being finite, Si=[1, ..., mi], and
u : S � Rn is the combined payoff function. Let m denote the total number
of pure strategies in the game, m=m1+. . .+mn .

For each player i, let 2i denote her set of mixed strategies,

2i={xi # Rmi
+ : :

h # Si

xih=1= . (1)

We write eh
i # 2 for the mixed strategy for player i that assigns unit prob-

ability to her pure strategy h # Si . Geometrically, eh
i is the h th vertex of the

unit simplex 2i . A face of 2i is the convex hull of a subset of its vertices;
the face spanned by Si$/Si is denoted

2i (Si$)=co[eh
i : h # S i$]=[xi # 2i : xik=0 \k � Si$]. (2)

Let 3 denote the polyhedron in Rm of mixed strategy profiles,
3=3(S )=6i # I 2i . The face of 3 associated with any collection of pure
strategy subsets Si$/Si is accordingly defined by 3(S$)=6i # I 2i (S i$). As
usual, statistically independent individual randomizations extend the
domain of the payoff function u from the vertices of 3 to all of 3, and this
renders u polynomial. In fact, u is an n-linear function defined on the whole
Euclidean space Rm where 3 is embedded. We write ui ( yi , x&i) for the
payoff to player i when she plays yi # 2i and the others play according to
the strategy profile x # 3.

A pure strategy h # Si is strictly dominated if there is some (pure or
mixed) strategy yi # 2i such that ui ( yi , x&i)>ui (eh

i , x&i) for all x # 3. A
pure strategy is iteratively strictly dominated if it is strictly dominated in the
original game G, or in the reduced game G$ obtained by elimination from
G of all strictly dominated pure strategies in G, or in the further reduced
game G" obtained by elimination from G$ of all strictly dominated pure
strategies in G$, etc. The set S of pure-strategy profiles being finite, this pro-
cedure stops after a finite number of iterations (and the result is independ-
ent of the details of the elimination procedure, see, e.g., Fudenberg and
Tirole [10]).

In evolutionary game theory one considers large populations of
individuals who are randomly matched to play a given game. Following
Taylor [24] we here imagine one population for each player position in a
finite n-player game, where all individuals use pure strategies. Accordingly,
a mixed-strategy profile x # 3 is now interpreted as a population state,
where each mixed strategy xi represents the distribution of individuals in
population i # I over the set of pure strategies Si . Selection processes are
thought to operate over time on the composition of behaviors��pure
strategies��in each player population in the form of a regular selection
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dynamics on the polyhedron 3. By this is meant a system of (autonomous,
first-order) ordinary differential equations

x* ih=xih gih(x), (3)

where the function g : X � Rm has open domain X#3, is locally Lipschitz
continuous, and satisfies the orthogonality condition (`` } '' denotes the inner
product)

xi } gi (x)=0 [\i # I, x # 3]. (4)

This condition implies that the sum of population shares in each player
population remains constantly equal to one. Any regular selection
dynamics has a unique global solution x( } ) : R � X through any initial
state x(0) # 3, and leaves 3, as well as its interior int(3), and each of its
faces, invariant.

Following Samuelson and Zhang [21] we call a regular selection
dynamics (3) monotonic if it meets the following axiom:3

(M) ui (eh
i , x&i)>ui (ek

i , x&i) � gih(x)>gik(x).

They call a regular selection dynamics (3) aggregate monotonic if the
growth-rate functions gih satisfy the more stringent axiom

(AM) ui ( yi , x&i)>ui (zi , x&i) � yi } gi (x)>zi } gi (x).

Moreover, they show that the growth-rate functions associated with any
aggregate monotonic selection dynamics can be written in the form

gih(x)=*i (x)(ui (eh
i , x&i)&ui (x)), (5)

for some positive functions *i : X � R. The standard replicator dynamics
(Taylor [24]) corresponds to the special case *i (x)#1 for all players i.
The payoff-adjusted replicator dynamics (Maynard Smith [18], see also
Hofbauer and Sigmund [17]), corresponds to the special case *i (x)#

1�ui (x) for all players i (presuming all payoffs are positive).
Akin [2] shows that all strictly dominated pure strategies vanish along

any interior solution trajectory to the (single-population) replicator
dynamics in any (finite) symmetric two-player game. Samuelson and Zhang
[21] establish that this conclusion is indeed valid for all iteratively strictly
dominated pure strategies in any aggregate monotonic (two-population)
selection dynamics in any ( finite) two-player game. They also show that
all pure strategies that are iteratively strictly dominated by other pure
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3 This property is called relative monotonicity in Nachbar [19] and order compatibility in
Friedman [8].
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strategies vanish in any monotone selection dynamics in such games (see
also Nachbar [19]). Bjo� rnerstedt [3] shows by way of a counter-example
that this is not generally true for pure strategies that are strictly dominated
only by mixed strategies.

3. CONVEX MONOTONIC SELECTION DYNAMICS

The following axiom is a weakening of aggregate monotonicity (the
mixed strategy zi in (AM) is replaced by a pure strategy, and the equiv-
alence is replaced by an implication):

(CM) ui ( yi , x&i)>ui (eh
i , x&i) O yi } gi (x)>gih(x).

This property, which we call convex monotonicity, is below shown to be
sufficient for the elimination of iteratively strictly dominated pure
strategies. By inserting the current state for population i, we obtain the
implication that strategies receiving worse-than-average payoffs must have
negative growth rates: an application of (CM) to yi=xi gives ui (x)>
ui (eh

i , x&i) O 0=xi } gi (x)>gih(x).4

The following special case motivates the name given to axiom (CM).
Consider the class of regular selection dynamics in which all growth-rate
functions gih are of the form

gih(x)=*i (x) f[ui (eh
i , x&i)]++i (x) (6)

for some functions f : R � R, *i : X � R++ and +i : X � R. By a payoff func-
tional (PF) selection dynamics we mean a function f : R � R, and for each
game G=(I, S, u) a pair of functions *i : X � R++ and +i : X � R, such
that (3, 6) defines a regular selection dynamics for game G (note that the
+i are determined by (4)).

As a special case, call such a dynamics linear if f is linear with positive
slope. Both the standard and the payoff adjusted replicator dynamics are
linear in this sense. Set f (v)#v, *i (x)#1 and +i (x)#&ui (x) to obtain the
standard replicator dynamics, and set f (v)#v, *i (x)#1�ui (x) and
+i (x)#&1 to obtain the payoff-adjusted replicator dynamics (in the latter
case presuming ui (x)>0). Moreover, since all aggregate monotonic
dynamics can be written in the form (5) these are linear PF dynamics (let
f (v)#v and +i (x)#&*i (x) ui (x)).

562 HOFBAUER AND WEIBULL

4 Thus a face of 3 spanned by a product subset of pure strategies that is ``closed under the
better-reply correspondence'' is asymptotically stable in any dynamics satisfying (CM), see
Ritzberger and Weibull [20].
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More generally, we call a payoff functional dynamics convex if f in (6)
is convex and strictly increasing. Heuristically, nonlinear convex PF
dynamics have individuals react over-proportionally to higher payoffs.

Convex payoff functional selection dynamics may also be interpreted in
terms of risk aversion with respect to ''fitness.'' For suppose replication of
pure strategies occurs as in equation (3) with growth rate functions as in
(6). The numbers .ih(x)= f[ui (eh

i , x&i)] can then be interpreted as the
relative fitness of pure strategy h in player population i when the overall
population states is x: this is the relative rate at which pure strategy h is
reproduced in population i. Let the functions .ih be given data. For a con-
vex PF dynamics (3, 6) we may recover the associated utility function by
simply inverting the strictly increasing function f : At any given population
state x, ui (eh

i , x&i)= f &1[.ih(x)]. Hence, utility is a strictly increasing and
concave function of fitness. In this sense, it is as if individuals were
(weakly) risk averse with respect to fitness. For instance, if f is exponential
(as in (7) below), then utility is logarithmic in relative fitness, and the
Arrow�Pratt measure of absolute risk aversion, here with respect to
relative fitness, meets the usual (DARA) condition of decreasing absolute
risk aversion.

We noted above that all aggregate monotonic selection dynamics are
linear PF dynamics. Hence they are convex PF dynamics. The following
proposition establishes that all convex PF dynamics, and no other PF
dynamics, meet axiom (CM):

Proposition. A payoff functional selection dynamics satisfies axiom
(CM ) if and only if it is convex.

Proof. For the first claim, suppose g is of the form (6), where f is
convex and strictly increasing. Suppose ui ( yi , x&i)>ui (eh

i , x&i). Using
Jensen's inequality:

yi } gi (x)&eh
i } gi (x)=*i (x) \ :

k # Si

yik f[ui (ek
i , x&i)]& f[ui (eh

i , x&i)]+
�*i (x) \ f _ :

k # Si

yikui (ek
i , x&i)&& f[ui (eh

i , x&i)]+
=*i (x)( f[ui ( yi , x&i)]& f[u(eh

i , x&i)]).

The last expression is positive since *i is positive and f strictly increasing,
so (CM) is met.

For the second claim, consider any PF dynamics (3, 6) that meets (CM).
It follows from (CM) that f is necessarily strictly increasing. Suppose f is
not convex. Then there are b, c # R such that f ((b+c)�2)> 1

2 [ f (b)+ f (c)].

563SELECTION AGAINST DOMINATED STRATEGIES
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By continuity of f there are a<((b+c)�2) such that f (a)> 1
2 [ f (b)+ f (c)].

Let G be a game where player i has three pure strategies, h=1, 2, 3, that
earn payoffs a, b, c, respectively, against some strategy profile x # 3. Let
yi # 2i be the mixed strategy that assigns probability 1

2 to pure strategies 2
and 3. Then

ui ( yi , x&i)= 1
2 (b+c)>a=ui (e1

i , x&i).

However,

yi } gi (x)=*i (x)
f (b)+ f (c)

2
<*i (x) f (a)=e1

i } gi (x),

in violation of (CM). End of Proof.

Remark. It is easily verified that axiom (CM) is satisfied by any
selection dynamics (3) with growth rate functions in the more general
functional form gih(x)=Fi[ui (eh

i , x&i), x] for Fi : R_X � R convex and
strictly increasing in its first argument.

A number of researchers have recently worked with models of social
evolution by way of imitation, see, e.g., Cabrales [6], Weibull [25],
Bjo� rnerstedt and Weibull [5], Weibull [25], Schlag [22], Gale et al. [11],
and Weibull [27]. Bjo� rnerstedt and Weibull [5] consider a few classes of
payoff functional selection dynamics derived from models of adaptation by
way of imitation. They imagine that each individual in the interacting pop-
ulations every now and then reviews her pure strategy choice in the light
of noisy empirical information about current payoffs to alternative pure
strategies.

First, suppose that the review rate is constantly equal to one for all
individuals, but each individual imitates an individual in her own player
population, randomly drawn with a higher probability for currently more
successful individuals. Then one obtains a payoff functional selection
dynamics with f (v)#s(v), where s(v) is the probability ``weight'' factor
given to an individual who earns payoff v.5 A convex PF dynamics arises
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5 Let the review rate of all individuals be identically equal to one, and let the probability
that a reviewing individual in population i will select pure strategy h be proportional to
xih s[ui (eh

i , x&i)] for some strictly increasing and positive function s. In terms of expected
values, this results in

gih(x)=
s[ui (eh

i , x&i)]
�k xiks[ui (ek

i , x&i)]
&1,

see Eq. (7) in Bjo� rnerstedt and Weibull [5], Eqs. (4.37) and (5.32) in Weibull [27].
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if s is strictly increasing and convex. For example, by setting s(v)=exp(_v)
for some _>0, one obtains:6

x* ih=xih \ exp[_ui (eh
i , x&i)]

�k # Si
xik exp[_ui (ek

i , x&i)]
&1+ . (7)

For small _ this dynamics approaches the standard replicator dynamics
slowed down by the factor _.7 For large _, the dynamics approaches, at
interior population states, the best-reply dynamics which assigns (equal)
negative growth rates (&1) to all non-best replies.8

Secondly, suppose instead that the review rates are decreasing in the
individual's current payoff, and assume now that each reviewing individual
imitates ``the first man in the street,'' i.e., an individual in her own player
population who is randomly drawn according to a uniform probability dis-
tribution over this population. (This corresponds to s(v)#1 above.) Then
one obtains a payoff functional selection dynamics with f (v)#&r(v),
where r(v) is the relative review rate of an individual earning payoff v.9

A concave PF dynamics arises if r is strictly decreasing and convex.
For instance, if r(v)=exp(&_v) for some _>0, then

x* ih=xih \1&
exp[&_ui (eh

i , x&i)]
�k # Si

xik exp[&_ui (ek
i , x&i)]+ . (8)

This dynamics constitutes a ``concave dual'' to the dynamics (7). For
small _, (8) performs approximately like (7); it approaches the standard

565SELECTION AGAINST DOMINATED STRATEGIES

6 See Eq. (9) in Bjo� rnerstedt and Weibull [5], Eq. (4) in Weibull [26], and Example 4.5 in
Weibull [27].

7 The orbits approach those of the standard replicator dynamics as _ � 0, but the speed of
adjustment goes down toward zero. In the limit all population states are stationary.

8 The limit of the right-hand side in (7) is a discontinuous vector field that does not admit
solutions in general. On the other hand, limits of solutions of (7), as _ � +�, are solutions
of the multi-valued and upper hemi-continuous best reply dynamics x* =BR(x)&x, where
BR(x) denotes the set of (mixed) best replies to x. This is a differential inclusion, and its solu-
tions are in general not uniquely determined by the initial state. See Hofbauer [15] for a
rigorous treatment of this dynamics, and see Gaundersdorfer and Hofbauer [13] for a com-
parison of its asymptotic behavior with that of the replicator and other selection dynamics.
It is easily seen that this best-reply dynamics eliminates all (iteratively) strictly dominated
strategies.

9 Let r[ui (eh
i , x&i)]��k xik r[ui (ek

i , x&i)] be the review rate of a h-strategist in player pop-
ulation i, for r positive and decreasing, and let xik be the probability that a reviewing
individual will select pure strategy k. In terms of expected values, this results in

gih(x)=1&r[ui(eh
i , x&i)]<:

k

xik r[ui (ek
i , x&i)],

see Eq. (4) in Bjo� rnerstedt and Weibull [5], and Eqs. (4.28) and (5.24) in Weibull [27].
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replicator dynamics slowed down by the factor _. For large _, however, (8)
approaches, at interior population states, the worst-reply dynamics which
assigns (equal) positive growth rates (+1) to all non-worst replies.10

4. ELIMINATION OF DOMINATED STRATEGIES

Suppose player i has a pure strategy h # Si that is strictly dominated by
some mixed strategy yi # 2i , and consider the function P : int(3) � R++

defined by P(x)=xih >k # Si x&yik
ik . Evaluated along any interior solution

trajectory x( } ) : R � 3 to a regular selection dynamics (3):

P4 (x)= :
k # Si

�P(x)
�xik

x* ik=P(x)(eh
i & yi) } gi (x). (9)

In particular, under (CM) we have P4 (x)<0 for all x # int(3). Then P(x)
decreases strictly along any interior solution. In fact, since 3 is compact
and gi continuous, there is, by (CM), some $>0 such that
(eh

i & yi) } gi (x)<&$ for all x # 3. Thus, P4 (x)<&$P(x) and hence xih(t)
decreases exponentially to zero from any interior initial state

xih(t)=P(x(t)) `
k # Si

xik(t) yik�P(x(t))<% exp(&$t) (10)

for some %>0. Strictly dominated pure strategies are indeed eliminated in
this class of dynamics !

A repetition of this argument leads to the conclusion that all iteratively
strictly dominated pure strategies vanish along all interior solutions. Since
axiom (CM) is much weaker than axiom (AM), this considerably
generalizes the result in Samuelson and Zhang ([21], Theorem 2) that all
iteratively strictly dominated pure strategies get wiped out in all aggregate
monotonic selection dynamics.

Theorem 1. If a pure strategy h # Si is iteratively strictly dominated and
x(0) # int(3), then xih(t)t � +� � 0 under any regular selection dynamics (3)
satisfying (CM ).

Proof. Fix x(0) # int(3). It has already been established that for each
player position i # I and strictly dominated pure strategy h # Si there exists
some $ih , %ih>0 such that xih(t)<%ih exp(&$ih t) for all t>0. Let S$/S be
the subset of pure strategy profiles that are not strictly dominated in the
game. Let $=min[$ih : i # I, h # Si"S i$] and %=max[%ih : i # I, h # Si"Si$].

566 HOFBAUER AND WEIBULL

10 The worst-reply dynamics was introduced in (a 1993 version of ) Bjo� rnerstedt [3], see
Section 7 below for a discussion.
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The sets I and S being finite, $, %>0, and xih(t)<% exp(&$t) for all i # I,
h � S i$ and t>0.

For any =>0 there is a finite time T after which x(t) stays within dis-
tance = from the face 3(S$). In the reduced game G$ defined by the
pure-strategy subsets Si$, let S i"/Si$ be the subset of pure strategies ( for
each i # I ) that are not strictly dominated in G$. For each i # I and
h # S i$"S i" let yh

i # 2i strictly dominate h in G$. By continuity of g, compact-
ness of 3(S$)/3 and finiteness of Si there exists some =$, $$>0 such that
( yh

i &eh
i ) gi (x)>$$ for all i # I, h � Si$ and x # 3 within distance =$ of 3(S$).

After some finite time T $, x(t) stays within this distance =$ from 3(S$), and
by the above argument for exponential decay, xih(t)<%$ exp(&$$t) for all
i # I, h # Si$"S i" and all t>T $. Consequently, all pure strategies in the subset
(Si "Si$) _ (Si$"S i") decay at least at the exponential rate $"=
min[$, $$]>0.

A finite repetition of this argument, by way of iterated elimination of
strictly dominated pure strategies, leads to the conclusion that there exists
some finite time T" and $">0 such that xih(t)<%" exp(&$"t) for all
player positions i # I, iteratively strictly dominated strategies h # Si , and
times t>T". End of proof.

5. SINGLE-POPULATION DYNAMICS

In this section we focus on the standard set-up for evolutionary game
theory: a single population of individuals randomly matched to play a
symmetric and finite two-player game. For this purpose, let the common
set of pure strategies available to each of the two players be denoted
S=S1=[1, ..., m], write 2 for the associated unit simplex of mixed
strategies, and let u~ (x, y) be the payoff to mixed strategy x # 2 when used
against mixed strategy y # 2.

A population state is now a vector x # 2, where xh , for each pure
strategy h # S, is the population share of individuals using pure strategy h.
Accordingly, a regular selection dynamics is a system of ordinary differen-
tial equations

x* h=xh g~ h(x) [\h # S] (11)

where g~ : X � Rm has open domain X#2, is locally Lipschitz continuous,
and satisfies the orthogonality condition x } g~ (x)=0 for all x # 2.

Axiom (CM) becomes

(CM$) u~ ( y, x)>u~ (eh, x) O y } g~ (x)>g~ h(x).

567SELECTION AGAINST DOMINATED STRATEGIES
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Payoff functional (PF) selection dynamics are defined as in the multi-
population setting: these are single-population dynamics (11) with growth
rate functions of the form

g~ h(x)=*(x) f [u~ (eh, x)]++(x), (12)

for some functions *, + and f, where f is the same for all games but * and
+ may depend on the game in question. Convex PF dynamics constitute
the subclass where f is convex and strictly increasing. The single-population
replicator dynamics is the special case *(x)#1, +(x)=&u(x, x) and
f (v)#v.

The same argument as that for Theorem 1 establishes

Corollary. If a pure strategy h # S is iteratively strictly dominated in a
symmetric two-player game, and x(0) # int(2), then xh(t)t � +� � 0 under
any single-population dynamics (11) satisfying (CM$). A payoff functional
dynamics (11) satisfies (CM$) if and only if it is convex.

In contrast to the multi-population setting, all aggregate monotonic
single-population dynamics have the same orbits as the single-population
replicator dynamics. They only differ in the velocity with which the solu-
tions move along the replicator orbits (reflected by the positive factor
*(x)). In contrast, convex monotonic single-population dynamics may have
orbits which are quite distinct from those of the replicator dynamics.
Examples for which this applies are given by the single-population
dynamics version of (7) (see Fig. 4.9 in Weibull [27]).

6. SURVIVAL OF DOMINATED STRATEGIES

We now turn to converse results. For this purpose it is sufficient to con-
sider single-population dynamics (see remark at the end of this section).
More specifically, we will show that Theorem 1 is sharp for single-popula-
tion payoff functional selection dynamics. If f is not throughout convex,
then there are symmetric two-player games with strictly dominated
strategies surviving along interior solutions to the associated single-popula-
tion dynamics. We establish this by a slight modification of a game given
in Dekel and Scotchmer [7].

This is a ROCK�SCISSORS�PAPER game, augmented by a fourth
strategy, called DUMB, which is strictly dominated. The payoff matrix is
given by
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A=_
a
b
c

a+;

c
a
b

a+;

b
c
a

a+;

#
#
#
0& , (13)

where c<a<b, 0<;<b&a, and #>0. The pure strategies h # H=[1, 2, 3]
form a cycle of best replies. For a single-population selection dynamics (11)
this implies that the (relative) boundary 11 of the face 8=2(H ) forms a
heteroclinic cycle: 11 is an invariant set that consists of three rest points eh,
for h # H, which are saddle points in any monotonic selection dynamics,
and three connecting orbits. (Clearly 11 is unstable in the e4 direction since
;>0.) In particular, DUMB can invade a monomorphic population
consisting of only h-strategists, for each of the pure strategies h=1, 2, 3.
Hence, on the boundary of 2 there are three more rest points (corresponding
to symmetric Nash equilibria of each of the associated 2_2 ``subgames'')
for any monotonic selection dynamics (11): z1=(#�(;+#), 0, 0, ;�(;+#)),
z2=(0, #�(;+#), 0, ;�(;+#)) and z3=(0, 0, #�(;+#), ;�(;+#)).

Note that zh # 2 attracts all orbits on the (relative) interior of the bound-
ary face of 2 where xh+1=0, for any monotonic selection dynamics.
Hence, there is another heteroclinic cycle 12 connecting these three rest
points. The connecting orbits are now curves in these two-dimensional sub-
faces, invariant under the flow of (11), namely the unstable manifolds of
the saddles zh (see Fig. 1).

Let p=( 1
3 , 1

3 , 1
3 , 0) be the Nash equilibrium point of the RSP subgame.

The strategy p is in Nash equilibrium with itself in the full game, iff
(a+b+c)�3�a+;. Moreover, p strictly dominates pure strategy 4
(=DUMB) iff

a+b+c
3

>a+;. (14)

For the replicator dynamics, and, more generally all those meeting axiom
(CM$), this implies that x4(t) � 0 along all interior solutions.

The inequality (14) holds only if a<(b+c)�2. The latter inequality
implies that the Nash equilibrium strategy p is globally stable in the
replicator dynamics: Every solution that has all pure strategies h # H
initially present, will converge to p. For other (regular) monotonic selec-
tion dynamics this need not be true. In particular, it may happen that p is
not globally stable within the face 8, since the boundary cycle 11 may be
attracting on that face. Then orbits close to 11 will spiral away from p.
Near 11 , x4 will increase most of the time and the orbits will converge to
the heteroclinic cycle 12 formed by the zh. The dominated pure strategy 4
will not be eliminated along such orbits.
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Fig. 1. The rest points zh (h=1, 2, 3) and the connecting orbits together form the
heteroclinic cycle 12 . This invariant set is an attractor under the assumptions of Theorem 2,
leading to the survival of the strictly dominated fourth pure strategy.

Formally:

Theorem 2. Consider a regular single-population dynamics (11) where g~
is of the form (12). If f is not convex, then there exists a symmetric
two-player game with payoff matrix as in (13) such that the dominated pure
strategy 4 survives along an open set of interior solutions of (11).

Proof. As shown in the proof of the lemma: If f is not convex, there
exist a, b, c # R such that 2a<b+c and 2f (a)> f (b)+ f (c). Consider
now the RSPD game (13) with these a, b, c. As is easily seen, and was
shown in Gaunersdorfer and Hofbauer ([13], Section 4), the eigen-
values of the vector field (11) at a vertex eh (for h # H) are given by
\=*(eh)[ f (b)& f (a)]>0 and &{=*(eh)[ f (c)& f (a)]<0. Now 2f (a)>
f (b)+ f (c) implies {>\, i.e., the ``incoming speed'' is larger than the
``outgoing speed,'' which means that 11 is attracting within the face 8,
according to the stability criterion for heteroclinic cycles in Hofbauer [14],
Hofbauer and Sigmund ([17], Sect. 22.1, in particular Exercise 6), and
Gaunersdorfer [12].

Now choose ;>0 small enough to satisfy (14), and such that the zh, the
rest points of 12 , are close to the eh, the rest points of 11 . Since the
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inequality guaranteeing stability for 11 within the face 8 is strict it holds
also for 12 : The ``outgoing speed'' is smaller than the ``ingoing speed'' at
the rest points zi. Since 12 (unlike 11) is asymptotically stable within the
boundary of 2 this establishes the (local) asymptotic stability of 12 in the
full space 2, for small ;>0.11 The dominated pure strategy 4 thus survives
for an open set U#12 of interior initial states. End of proof.

Remark. Theorem 2 also shows that two-population payoff functional
dynamics (3, 6), with a non-convex function f, do not eliminate all strictly
dominated strategies in all games. Just consider (13) as the payoff matrix
of a symmetric bi-matrix game. The restriction of the associated
two-population dynamics to the invariant diagonal of the state space
3=22 coincides with the one-population dynamics studied above, and
hence we obtain interior two-population solutions along which strategy
DUMB survives.

7. CONCLUDING REMARKS

Theorem 1 identifies a class of evolutionary selection dynamics that
select against all iteratively strictly dominated pure strategies in all (finite
n-player) games. Our proof is an extension of Akin's [2] proof that strictly
dominated strategies are eliminated in the single-population replicator
dynamics for symmetric two-player games.

Theorem 2 provides a complementary class of evolutionary selection
dynamics under which strictly dominated strategies do survive for some
games. Bjo� rnerstedt [3], see also Bjo� rnerstedt et al. [4], presents a
different, but related, class of evolutionary selection dynamics with the
same property. He imagines that individuals every now and then review
their strategy choice by way of a ( possibly noisy) payoff comparison with
all other strategies. Such a reviewing individual changes strategy if and
only if her current strategy is observed to yield the worst payoff of all pure
strategies. In this case, she imitates a (uniformly) randomly drawn
individual. Bjo� rnerstedt gives a nice geometric proof that the strictly
dominated pure strategy in a version of the Dekel�Scotchmer [7] game
studied above survives the resulting ''abandon the worst reply'' dynamics
for a large set of initial states. His argument is robust against small pertur-
bations of the dynamics, so the result applies also to the monotonic
concave dynamics (8) for large _. In contrast, our proof of Theorem 2 is
based on the stability criterion in Hofbauer [14] for heteroclinic cycles,
and is not directly applicable to the worst-reply dynamics. On the other
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hand, the technique behind Theorem 2 is more powerful since it allows to
obtain general and, in conjunction with Theorem 1 (and its corollary),
sharp results.

In a parallel study, Hofbauer [16] shows (among other things) that
strictly dominated strategies can survive under a class of selection dynamics
based on models of social evolution by way of imitation introduced in
Weibull [25, 27]. In these imitation processes individuals every now and
then make a binary and noisy comparison with the strategy used by
another, randomly selected, individual. The reviewing individual switches
to the sampled strategy iff its observed payoff is higher than her current
observed payoff. The replicator dynamics, which corresponds to an affine
cumulative probability distribution function for the observational errors
(over the range of payoffs in the game), is essentially the only imitation
dynamics in that class that eliminates strictly dominated strategies in all
games.

In sum, all evolutionary dynamics in the class of convex monotonic
(CM) selection dynamics that we have introduced here lend support to the
rationalistic principle of elimination of iteratively strictly dominated
strategies, and it appears that this is the only class of evolutionary
dynamics for which this is true.
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