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RATIONALIZABILITY, LEARNING, AND EQUILIBRIUM IN 
GAMES WITH STRATEGIC COMPLEMENTARITIES 

BY PAUL MILGROM AND JOHN ROBERTS1 

We study a rich class of noncooperative games that includes models of oligopoly 
competition, macroeconomic coordination failures, arms races, bank runs, technology 
adoption and diffusion, R&D competition, pretrial bargaining, coordination in teams, 
and many others. For all these games, the sets of pure strategy Nash equilibria, correlated 
equilibria, and rationalizable strategies have identical bounds. Also, for a class of models 
of dynamic adaptive choice behavior that encompasses both best-response dynamics and 
Bayesian learning, the players' choices lie eventually within the same bounds. These 
bounds are shown to vary monotonically with certain exogenous parameters. 

KEYWORDS: Game theory, supermodular games, iterated dominance, learning, strate- 
gic complements. 

WE STUDY THE CLASS of (noncooperative) supermodular games introduced by 
Topkis (1979) and further analyzed by Vives (1985, 1989), who also pointed out 
the importance of these games in industrial economics. Supermodular games 
are games in which each player's strategy set is partially ordered, the marginal 
returns to increasing one's strategy rise with increases in the competitors' 
strategies (so that the game exhibits "strategic complementarity"2) and, if a 
player's strategies are multidimensional, the marginal returns to any one com- 
ponent of the player's strategy rise with increases in the other components. This 
class turns out to encompass many of the most important economic applications 
of noncooperative game theory. 

In macroeconomics, Diamond's (1982) search model and Bryant's (1983, 
1984) rational expectations models can be represented as supermodular games. 
In each of these models, more activity by some members of the economy raises 
the returns to increased levels of activity by others. In oligopoly theory, some 
models of Bertrand oligopoly with differentiated products qualify as supermodu- 
lar games. In these games, when a firm's competitors raise their prices, the 
marginal profitability of the firm's own price increase rises. A similar structure is 
present in games of new technology adoption such as those of Dybvig and Spatt 
(1983), Farrell and Saloner (1986), and Katz and Shapiro (1986). When more 
users hook into a communication system or more manufacturers adopt an 
interface standard, the marginal return to others of doing the same often rises. 
Similarly, in some specifications of the bank runs model introduced by Diamond 
and Dybvig (1983), when more depositors withdraw their funds from a bank, it is 
more worthwhile for other depositors to do the same. In the warrant exercise 

1We thank Michihiro Kandori, Andrew Postlewaite, Tim Bresnahan, Chris Shannon, and 
especially Don Brown for helpful conversations, the anonymous referees and an editor for helpful 
criticisms, and the NSF for financial support. 

2 This term "strategic complements" was introduced by Bulow, Geanakoplos, and Klemperer 
(1985) to refer to games in which the best-response functions of the players are upward sloping. See 
also Fudenberg and Tirole (1986). 
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model of Spatt and Sterbenz (1988), where the firm uses the proceeds of any 
exercised warrant to issue a special dividend to shareholders, the marginal 
return to exercising a warrant increases as other warrant holders choose to 
exercise. In the arm's race game modeled in Section 4, the marginal return to 
additional arms in any period is an increasing function of the foe's armament 
level in the same period and, moreover (given a convex cost of building new 
armaments), higher levels of armaments for one country in one period are 
complementary to higher levels for it in adjacent periods.3 

Bayesian games provide another area of application. An example is Shavell's 
(1989) model of pretrial negotiations, in which the plaintiff decides whether to 
reveal its expected damages (its "type") before the trial begins and the defen- 
dant decides how much to offer as a settlement to silent plaintiffs. In that game, 
a strategy for the plaintiff is characterized by a single number-the highest level 
of expected damages for which the plaintiff remains silent-and a strategy for 
the defendant is the settlement offer to make to a silent plaintiff. It is more 
profitable for the plaintiff to adopt a "high" strategy when the settlement 
offered to silent plaintiffs is high, and it is more profitable for the defendant to 
make a high settlement offer when plaintiffs adopt a high strategy (because a 
higher offer is then more likely to deter a lawsuit). So, this too is a supermodu- 
lar game. 

The Shavell example is a Bayesian game in which supermodularity relies on 
the particular structure of the specification of uncertainty. Vives (1989) has 
shown that any Bayesian game derived from a parameterized family of super- 
modular games by adding uncertainty and private information about the payoff 
parameters is itself a supermodular game. As examples, the Diamond search 
model is still supermodular when there is uncertainty and private information 
about search costs and the arms race is still a supermodular game when there is 
uncertainty and private information about the cost or effectiveness of weapons. 

The ordering of the strategy space is an important element in the formulation 
of supermodular games, just as it is in the formulation of supermodular 
optimization models (Granot and Veinott (1985), Milgrom and Roberts (1989)). 
For example, the multiperiod arms race game is supermodular when the 
strategic choices are ordered by the stock of arms held in each period (with the 
componentwise order), but not when it is ordered by the periodic level of 
investment in new armaments. As a second example, Vives (1989) has shown 
that Cournot duopoly games with a wide range of demand functions4 and 
arbitrary continuous cost functions are supermodular games if one of the two 
players' strategy sets is given the reverse of its usual order, but not with the 
standard order. As we show, a similar trick applies to the Hendricks-Kovenock 

3Although we know of no game models in development economics, it would be reasonable to 
model Scitovsky's (1954) tale of the railroad and the steel companies, in which the value of an 
additional steel plant in a developing country depends (positively) on the investment in railroads 
and the value of additional investment in railroads increases with the level of investment in steel 
plants, as a supermodular game. 

4Specifically, these are the demand functions for which an increase in one player's quantity 
reduces the other's marginal revenue. 
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(1989) oil exploration externality game-a Bayesian game in which the in- 
creased likelihood of early exploratory drilling activity by one firm makes it 
more profitable for the other to postpone drilling to await the first firm's results 
before deciding on its own drilling program. Only if the strategies are ordered 
so that more frequent drilling is a "higher" strategy for one player and less 
frequent drilling is a higher strategy for the other is the game supermodular. 

Additional applications of the theory are possible once we recognize that, 
although supermodularity itself is a cardinal concept, our analysis of supermod- 
ular games is entirely ordinal in character, that is, it uses only inequalities 
among payoffs to pure strategy profiles. For example, Reinganum's (1981) R & D 
competition game, in which firms race to be the first to patent an innovation, is 
not a supermodular game, but the corresponding game in which the payoffs are 
replaced by their logarithms is supermodular. Consequently, all of our conclu- 
sions about supermodular games will apply to Reinganum's game. In Section 4, 
we use a similar trick to show Bertrand oligopoly games are log-supermodular if 
each firm's elasticity of demand is a decreasing function of its competitors' 
prices. The class of demand functions satisfying this restriction includes linear, 
logit, CES, and translog demand specifications, and others. Additional examples 
of supermodular games are reported by Cooper and John (1988), Lippman, 
Mamer, and McCardle (1987), Sobel (1989), Topkis (1979), and Vives (1989). 

The centerpiece of our analysis is Theorem 5. It establishes that the set of 
serially undominated strategy profiles, that is, those that remain after an iterative 
procedure of crossing out strongly dominated strategies, has a maximum and 
minimum element, and that these elements are Nash equilibria. It is well known 
that all the major approaches to noncooperative equilibrium predict outcomes 
in the serially undominated set; the set includes all the pure and mixed strategy 
Nash equilibria, all the correlated equilibria (both subjective and objective; see 
Aumann (1987)), and all the rationalizable strategies (Bernheim (1985), Pearce 
(1985)). Since pure strategy Nash equilibria are also solutions under these 
various concepts, it follows that all of these approaches predict the same upper 
and lower bounds on the joint behavior of players in supermodular games. If the 
game is symmetric, then the bounds on the set of serially undominated strate- 
gies are symmetric pure strategy Nash equilibria, so the bounds on joint 
behavior predicted by this symmetric equilibrium concept coincide with those 
predicted by all the other (possibly asymmetric) solution concepts. 

An alternative approach to solution concepts is to treat the set of strategies 
that are played infinitely often in some dynamic adjustment process as a 
solution. For a very wide class of such processes-a class we call adaptive 
dynamics and that includes best-response dynamics, fictitious play, Bayesian 
learning, and many others-we show that the bounds on the solution set in 
supermodular games are always the same Nash equilibria that bound the serially 
undominated set. Then, the predicted bounds on eventual behavior under 
adaptive dynamic theories coincide with the predicted bounds of all the other 
noncooperative solution concepts. 
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The usefulness of Theorem 5 depends partly on how wide the bounds are that 
we obtain. Indeed, for some games, these bounds are so wide that our result is 
of little help: it is even possible that the maximum and minimum elements of 
the strategy space are equilibria. In that case, none of the theories impose any 
tight bounds on joint behavior. However, for other games, the bounds are quite 
narrow. For example, in the applications section, we show that there can be only 
one symmetric pure strategy Nash equilibrium in the arms race game described 
in Section 4 and only one pure strategy Nash equilibrium in the (possibly 
asymmetric) Bertrand pricing games with linear, logit, or CES demand. It then 
follows that these games possess no other equilibria (whether symmetric or 
asymmetric, mixed or pure, Nash or correlated), that each player has only one 
rationalizable strategy, and that any adaptive dynamic process leads to behavior 
that converges from any starting point to the unique equilibrium. 

In economic modelling, the analyst is usually interested not only in the 
existence, range, and stability of equilibria and the comparisons among different 
solution concepts covered by the cited theorems, but also in comparative statics 
and in the welfare properties of the equilibria. We offer two theorems to aid in 
analyses of this sort. The first (Theorem 6) provides a useful general condition 
under which the bounds of the equilibrium set vary monotonically with an 
exogenous parameter. The second (Theorem 7) is a welfare theorem. One of its 
implications is that there is a Pareto-best and a Pareto-worst equilibrium if each 
player's payoff is a nondecreasing function of the others' strategy choices. For 
example, in the Bertrand pricing game, all firms prefer the equilibrium with the 
highest prices and in the macroeconomic games, all parties prefer the equilib- 
rium with the highest level of economic activity. Another implication is that if 
some players' payoffs are increasing and some are decreasing in the others' 
strategies, then there is a fundamental conflict among the players: the equilib- 
rium with the highest payoff for one group is the equilibrium with the lowest 
payoff for the other. For example, in the Cournot duopoly game the equilibrium 
with the highest payoff for one firm is the one in which its output is highest and 
its competitor's output (and payoff) is lowest. A similar result obtains in the 
Hendricks-Kovenock drilling game. In that game, a firm that drills an early 
exploratory well supplies free information to the other firm, so the equilibrium 
with the highest payoff for firm 2 and the lowest payoff for firm 1 is the 
equilibrium in which firm 1 drills early most often and firm 2 drills early least 
often. Also, in the technology adoption game, the equilibrium with the most 
extensive adoptions of the new technology is the equilibrium most preferred by 
players who were ill-served by the older technology and least preferred by 
players who were well served by it. 

Our analysis of supermodular games also unearths a subsidiary result of 
independent mathematical interest. With Theorems 1 and 2, we establish that a 
bounded, order upper semi-continuous, supermodular function on a complete 
lattice has a maximum and that the set of maximizers is a complete sublattice. 
These theorems are essential ingredients in the proof of Theorem 5. 
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A number of other papers have developed results related to ours. Topkis 
(1979) showed that continuous, supermodular games with finite-dimensional, 
compact intervals for strategy spaces have increasing best-response functions5 
and used this result to establish the existence of pure strategy Nash equilibrium 
points for these games. He showed that the set of such equilibrium points has 
largest and smallest elements and also provided a computational algorithm for 
finding these. Lippman, Mamer, and McCardle (1987) and Sobel (1989) have 
established comparative statics theorems, showing the existence of a monotone 
selection from the equilibrium set as certain parameters are varied.6 Cooper 
and John (1988) proved a version of the welfare theorem for supermodular 
games in an analysis of models of macroeconomic coordination failures. Moulin 
(1984) and Bernheim (1984) studied the relationship between dominance solv- 
ability and best-response stability of equilibrium in a class of smooth games 
including Cournot games. Vives (1989) employs results of Hirsch (1982, 1985) to 
show that a kind of continuous adjustment process converges to an equilibrium 
for "strictly" supermodular games played on convex domains. Independently of 
our work, Gul (1988) has shown for general finite games that there is a large 
class of adaptive learning models for which the long-run behavior of the players 
lies entirely in the class of rationalizable strategies. Besides these theoretical 
contributions, many of the applications papers developed their particular results 
using arguments that have proven to be generalizable. Our analysis adds to 
these predecessors by weakening slightly the definition of supermodular games, 
contributing many new examples, encompassing log-supermodular and other 
ordinally transformed supermodular games within the theory, extending the 
analysis from pure Nash equilibria to include mixed, correlated, and rationaliz- 
able strategies, and introducing a comprehensive theory of adaptive dynamics 
applicable to this class of games. 

The remainder of this paper is organized as follows. Section 1 presents the 
mathematical preliminaries. It begins with the basic definitions of lattice theory 
and then reports some previously known results in the theory and our new 
results. Section 2 presents the basic theory of supermodular games, including 
the main theorem on the existence of equilibrium and the equivalence of 
equilibrium concepts and the theorems on comparative statics and welfare. 
Section 3 introduces the model of adaptive behavior for games in general and 
identifies its implications for supermodular games in particular. Section 4 
provides detailed analyses of five examples of supermodular games that apply 
and develop our various results. Concluding remarks are presented in Section 5. 

5 More precisely, he showed that the best response correspondence has values which are 
nonempty compact sublattices, so that there is always a largest and smallest best response. In 
addition, he showed that these largest and smallest best response functions are nondecreasing. 

6 Lippman, Mamer, and McCardle treat the case of games with monotone best response 
functions while Sobel treats the more general case of monotone best response correspondences, 
appropriately defined. 
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Readers primarily interested in applications using the Nash equilibrium 
concept may skip the mathematical preliminaries and begin with Section 2, 
which includes a characterization of what might be termed the class of "smooth 
supermodular games" (including most of the applications that we have identi- 
fied) and also presents the main theorem. They may then continue with Section 
3, which analyzes adaptive behavior, and Section 4, which illustrates various 
applications. 

1. MATHEMATICAL PRELIMINARIES 

Consider a set S with a partial order > that is transitive, reflexive, and 
antisymmetric.7 Given T c S, b E S is called an upper bound for T if b > x for 
all x e T; it is the supremum of T (denoted sup (T)) if for all upper bounds b of 
T, b > b. Lower bounds and infimums are defined analogously. A point x is a 
maximal element of S if there is no y E S such that y > x (that is, no y such 
that y > x but not x > y); it is the largest element of S if x > y for all y E S. 
Minimal and smallest elements are defined similarly. A set may have many 
maximal and minimal elements, but it can have at most one largest element and 
one smallest element. 

The set S is a lattice if for each two point set {x, y} c S, there is a supremum 
for {x, y} (denoted x v y and called the join of x and y) and an infimum 
(denoted x A y and called the meet of x and y) in S. The lattice is complete if 
for all nonempty subsets T c S, inf(T) E S and sup (T) E S. An interual is a set 
of the form [x, y] {zly >z >x}. 

The real line (with the usual order) is a lattice and any compact subset of it is, 
in fact, a complete lattice, as is any set in 91 n formed as the product of n 
compact sets (with the product order). The interval (0, 1) is a lattice which is not 
complete, while {(x1, x2) E 9121x1 +x2 < 1) is a simple example of a set which is 
not a lattice. 

A sublattice T of a lattice S is a subset of S that is closed under A and V. A 
complete sublattice T is a sublattice such that the infimum and supremum of 
every subset of T is in T. A subset that is a lattice or complete lattice in its own 
right may not be a sublattice or complete sublattice of a larger lattice, because 
the relevant sup's and inf's are defined relative to the original, larger lattice. 
Thus, the set T = [0, 1) U {2} is a complete lattice under the usual ordering; the 
least upper bound in T for the set [0, 1) is 2 E T. However, T is not a complete 
sublattice of [0,2] because then sup [0, 1) = 1 ? T. Similarly, under the usual 
ordering on 912, the set T = {(0, 0), (1,0), (0, 1), (2,2)) is a lattice but not a 
sublattice of 912 because (1, 0) v (0, 1) = (1, 1) ? T. 

A chain C c S is a totally ordered subset of S, that is, for any x E C and 
y E C, x > y or y > x. Given a complete lattice S, a function f: S -> 9 is order 
continuous if it converges along every chain C (in both the increasing and 

7Recall that transitive means that x > y and y > z imply x > z; reflexive means that x > x; and 
antisymmetric means that x > y and y > x implies x = y. 
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decreasing directions),8 that is, if limxE , x inf(C) f(x) = f(inf (C)) and 
limxe C, x T sup(C) f(x) = f(sup (C)). It is order upper semi-continuous if 
lrm supx E c, x inf(C) f(x) < f(inf (C)) and lim sup,Ec, x T sup(c) f(x) < f(sup (C)). 

A function f: S -- 91 is supermodular if for all x, y E S, 

(1) f(x) +f(y) <f(x Ay) +f(x vy). 
Supermodularity represents the economic notion of complementary inputs. The 
theory of supermodular optimization has been developed by Topkis (1978) and 
Granot and Veinott (1985). The following result characterizes supermodularity 
in differential terms for the case of smooth functions with Euclidean domains. 
The standard order on such domains is the "product order" according to which 
x >y iff xi >yi for all i. 

ToPKIS'S CHARACTERIZATION THEOREM: Let I = [x, x] be an interval in 91 n. 
Suppose that f: 9 n -, 9 is twice continuously differentiable on some open set 
containing I. Then f is supermodular on I if and only if for all x E I and all i 1j, 
d2f/xi &x j > 0. (There are no restrictions on d2fl(dXi)2.) 

In general, supermodularity, like all the concepts in this theory, uses only the 
order structure of the lattice. It entails no assumptions of convexity or even 
connectedness of the domain, nor does it require any convexity, concavity, or 
differentiability of the function itself. However, in view of the theorem, it is 
particularly easy to check whether smooth functions on Euclidean intervals are 
supermodular.9 

Given two lattices S, and S2, a function f: Sl XS2 i 9 has increasing 
differences in its two arguments x and y if for all x > x', the difference 
f(x, y) -f(x', y) is nondecreasing in y.10 In the game model that follows, if x is 
interpreted as one player's strategy, y as the other's, and f as the first player's 
payoff, then the assumption of increasing differences is essentially the assump- 
tion of strategic complementarity: When the second player increases his choice 
variable(s), it becomes more profitable for the first to increase his as well. 

Some basic results for functions on lattices that we shall need are as follows, 

TARSKI'S FIXED POINT THEOREM: If T is a complete lattice and f: T -* T is a 
nondecreasing function, then f has a fixed point. Moreover, the set of fixed points 

8 The definition of order continuity is traditionally given in the stricter form that f must converge 
along all convergent nets, rather than just along chains (cf. Birkhoff (1967)). Our "weaker" 
requirement is actually equivalent to convergence along nets when the domain of the function is a 
complete lattice. Similarly, it can be shown that a lattice is complete if every chain (rather than 
every nonempty set) has a supremum and an infimum in the lattice. 

9 In Milgrom and Roberts (1989), we have weakened the hypotheses of Topkis's Characterization 
Theorem as follows. The assumption that the domain of f is an interval is replaced by the 
assumption that it is a path-connected sublattice of 9 ' and the assumption that f is twice 
continuously differentiable is replaced by the assumption that, for each two arguments xi and xj, f 
can be expressed as the indefinite integral of over these arguments of some nonnegative function 
fij. These small extensions have proved to be important for certain applications. 

10 Note that this is equivalent to the condition that f(x, y) -f(x, y') is nondecreasing in x for all 
y > y'. 
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off has sup{x E Tlf(x) >x} as its largest element and inf{x E Tlf(x) Ax} as its 
smallest element. 

ToPKIS'S MONOTONICITY THEOREM: Let S1 be a lattice and S2 a partially 
ordered set. Suppose f(x, y): S, x S2 -_ 9i is supermodular in x for given y and has 
increasing differences in x and y. Suppose that y > y' and that x E M 
argmaxf(x,y) andx' eM' argmaxf(x,y'). Then x Ax' eM' andx Vx' EM. 

In particular (when y = y'), the set of maximizers of f is a sublattice. 

Some new results in the theory of optimization on lattices will be needed in 
the analysis below: 

THEOREM 1: If f is an order upper semi-continuous, supermodular function 
from a complete lattice S to 91 u { - oo), then f has a maximum on S. 

PROOF: Shannon (1989) has shown that the hypotheses of Theorem 1 imply 
that f has a finite least upper bound, which we may take to be zero. We show 
here that there exists y E S such that f(y) = 0. 

Let {xj} be a sequence with the property that f(x,) > - 2 -. Define 

(2) Ynm =Xn A * A * n+m' 

Since Ynm is decreasing in m and S is complete, the sequence has a limit 

Yn E= S. By order upper semi-continuity, lim supm f(ynm) f(yn). 

We claim that f(ynm)> -(2 -n+ ... +2 (n?m)). Indeed, it is evident that 
f(Yn0) = f(xn) > -2n, and we proceed inductively: 

(3) f(Ynm) f( Yn,m-l AXn+m) 

>f(Yn,m-l) +f(Xn+m) f(Yn,m-i VXn+m) 

> - (2 -n +- * * +2 -(n+m-1)) 2-(n+m) - 
0, 

where we have used the definition of Ynm, supermodularity, and the fact that f 
is bounded above by zero. By order upper semi-continuity, f(yn) > 

lim supm f(Ynm) > -21. 
Observe that Yn = infm > n XmI so it is increasing in n. Hence, because S is 

complete, {Yn) has a sup in S, namely " = lim Yn, and 0 = sup f > f(y) > 
lim sup f(Yn) > 0, So y attains the maximum. Q.E.D. 

The following example, suggested by Michihiro Kandori, shows that it is not 
in general true that a bounded, order upper semi-continuous function from a 
complete lattice to 91 has a maximum. Let S = {(0,0),(1, 1)} U {xIx1 +X2 = 

1, x1, x2 > 0}. Using the component-wise ordering, it is easy to check that S is a 
complete lattice: For any set T containing two points on the diagonal portion, 
sup (T) = (1, 1) and inf(T) = (0,0). Order-continuity is no help: no chain on S 
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has more than three elements, so every function f: S -*> 9 is order-continuous. 
Nevertheless, if f is bounded and supermodular, then it has a maximum.1" 

THEOREM 2: If f is an order upper semi-continuous, supermodular function 
from a complete lattice S to 1 u {- oo}, then the set of maximizers of f is a 
complete sublattice of S. 

PROOF: Let T be the set of maximizers of f, which by Theorem 1 is 
nonempty. It follows from Topkis's Monotonicity Theorem that T is a sublattice 
of S. 

Let V be an arbitrary subset of T. It follows by order-continuity that every 
chain C c T = T n {x Jx < sup (V)} has sup (C) E= T. Hence, by Zorn's Lemma,12 
T has a maximal element x. Since T is a sublattice, this x must actually be the 
largest element in T (for if y E T and x?y, then xvVyET and EVy>x, 
contradicting the maximality of x). By construction, sup (T) - sup (V) E T c T. 
Similarly, inf(V) E7 T and hence T is complete. Q.E.D. 

COROLLARY: Let S be a complete lattice and suppose f: S - u { - om} is order 
upper semi-continuous and supermodular. Then there are largest and smallest 
elements of the set of maximizers of f. 

An especially useful application of these results arises in Lp-space. Let 
Lp([O, 1], gJk) be the set of functions f: [0, 1] -S 9jjk such that lf II = 
(f lf(x) 1P dx)l/P < oo where lf(x) I refers to the Euclidean norm. We identify any 
two functions f and g such that If - g I1 = 0. Let us say that f > g if {x Ig(x) > 
f(x)} is a null set. Then the following results are well known (cf. Aliprantis and 
Burkinshaw (1985)): 

THEOREM 3: Suppose 1 < p < oo. Then, the Lp norm is order-continuous. 
Moreover, any interval [x, y] in Lp is a complete lattice. 

COROLLARY: Suppose that f: Lp -* 9f u { - oo} is an Lp-upper semi-continuous, 
supermodular function on an interval [x, yj]. Then f has a maximum and the set of 
maximizers is a nonempty, complete sublattice of [x, y]. 

PROOF: Apply Theorems 1-3. Q.E.D. 

2. SOLUTIONS OF SUPERMODULAR GAMES 

The objects of our study are games in what we shall call "ordered normal 
form." These are described as follows. Let N o 0 be the set of players; N may 

"lFor example, the linear function g(x1, x2) = Xl- x2 is not supermodular with the specified 
order, and it has no maximum on S. The linear function g(x1, x2) = x1 + x2 is supermodular, and it 
does have a maximum on S. 

12 Zorn's Lemma is as follows: If S is a partially ordered set with the property that every chain in 
S has an upper bound, then S has a maximal element. 
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be finite or infinite. Each player n e N has a strategy set Sn with typical 
element xn; the competitors' strategies are denoted by x-n and a full strategy 
profile is denoted by x = (xW, x-d) E S. Elements of S are called strategy 
profiles. Each strategy set Sn comes with a partial order > n, which we will later 
denote more simply by >, and the strategy profiles are endowed with the 
product order, that is, x > x' means xn > x I for all n E N. Player n's payoff 
function is fn(x, X-d). The object F = {N, (Sn, fn, n E N), > } is a game in 
ordered normal form. The game F is a supermodular game if, for each n E N: 

(Al) S,, is a complete lattice; 
(A2) fn: S -- Ju { - oo} is order upper semi-continuous in xn (for fixed x-n) 

and order continuous in x-n (for fixed xn) and has a finite upper bound; 
(A3) fn is supermodular in xn (for fixed xd); 
(A4) fn has increasing differences in xn and x-n. 

For many games of interest, the conditions of supermodularity can be easily, 
checked using Theorem 4 below. Thus, suppose that a typical strategy for player 
n is (xnj; k = l,..., kn) E Mkn and that > is the usual componentwise ordering. 

THEOREM 4: Suppose there are finitely many players and the strategies and 
orders are as described in the preceding paragraph. Then F is supermodular if 
(Al')-(A4') below are satisfied: 

(Al') Sn is an interval in 9Jjkn, that is, 

Sn [Yn Yn] = {xlyn Ax 1J; 

(A2) fn is twice continuously differentiable on S 
(A3') fn/dx~nni dxnj > 0 for all n and all 1 < i <i < kn; 
(A4') d2fn/dXnidXmj>O for alln m, 1 < i < k and 1 < j < km. 

PROOF: Immediate from Topkis's Characterization Theorem. Q.E.D. 

Games satisfying (Al')-(A4') will be called smooth supernodular games. 
A pure Nash equilibrium is a strategy tuple x = (xn; n E N) such that each xn 

maximizes ff1w x_n) over Sn. Any pure Nash equilibrium is (by definition) also 
a mixed Nash equilibrium and a correlated equilibrium, although there may 
exist mixed equilibria that are not pure and correlated equilibria that are not 
mixed. The sets of strategies Sm C Sm, m = 1,... , N, are rationalizable if for 
each n and xcSE , x maximizes E[f(, xA)] for some probability distribu- 
tion on x-n with support in S_n. A strategy is rationalizable if it belongs to 
some rationalizable set. The component strategies of a pure Nash equilibrium 
are all rationalizable; the rationalizable sets of strategies consist of the single- 
tons defined by the equilibrium point. The pure Nash equilibria are included as 
possible solutions under any of the solution concepts mentioned above. 

A pure strategy xn for player n is said to be strongly dominated by another 
pure strategy X if it is the case that for all xn, f(xn, x-) <f(^n, x-). A 
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rational player would always prefer playing the dominating strategy xn to the 
dominated strategy xn. Given a product set S of strategy profiles, we define the 
set of n's undominated responses to SI by LXCS) = {x' c SnI(Vlx e S=) 

( E S)n( ) >f,(x,, Let U(s) = (L?(S); n c N) be the list of 
undominated responses for each player, and let US) denote the interval 
[inf(U(A)), sup(U(A))]. 

We may use U to represented the process of iterated elimination of strongly 
dominated strategies, as follows. Define So = S, the full set of strategy profiles. 
For r > 1, define St = U(S- 1). A strategy xn is serially undominated if xn E 

UW(S) for all r; these are just the strategies that survive the iterative process of 
crossing out strongly dominated strategies. Observe that U is a monotone 
nondecreasing function, that is, if S c 5', then U(S) c U(S'). It is well known 
that only serially undominated strategies can be rationalizable and only serially 
undominated strategies can be played with positive probability at a pure Nash 
equilibrium, mixed Nash equilibrium, or correlated equilibrium. 

In most treatments, a strategy xn for player n is considered to be strongly 
dominated if it is dominated by a pure or mixed strategy, that is, if there exists a 
probability distribution over pure strategies for n such that for all 
x_n, E[fn(in, x-A)] >fn(xn, x-n), where the expectation is taken with respect to 
the probability distribution. The dominance solution of the game is the set of 
strategies remaining after iterative application of this process and the game is 
called dominance solvable if the dominance solution consists of a single point. 
The dominance solution, like all the others we have considered, contains the 
Nash equilibrium strategies and is contained in the set of serially undominated 
strategies. 

The following Theorem is the key to the rest of our analysis. 

THEOREM 5: Let F be a supermodular game. For each player n, there exist 
largest and smallest serially undominated strategies, Xn and xn. Moreover, the 
strategy profiles (xn; n E N) and (Xn; n E N) are pure Nash equilibrium profiles. 

According to the Theorem, all serially undominated strategies (and thus all 
rationalizable and equilibrium strategies) lie in an interval [x, x] whose maxi- 
mum and minimum points are the largest and smallest Nash equilibria. We state 
the first step of the proof as a lemma, since it will prove to be useful for later 
developments. (Recall that [x, y] designates the interval of points > x and < y.) 

LEMMA 1: Let z, 2 E S be profiles such that z < 2, let Bn(x) and Bn(x) denote 
the smallest and largest best responses for n to any x E S, and let B(x) and B(x) 
denote the collections Bn(x) and Bn(x), n c N. Then sup U([z, 2]) = B(z-) and 
inf U([z, z]) = B(z), and U([z, z]) = [ B(z), B(z-)]. 

PROOF OF LEMMA: In view of Theorems 1 and 2, the largest and smallest best 
responses are well defined. By definition, B(z) and B(z) are in U([z, 2]), and 
thus [B(z), B(z)] A U([z, 2]). Suppose z e [B(z), B(z-)] and, in particular, sup- 
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pose zn Z BZ) We claim that zn 4 U[z, Z] because Zn A Zn strongly 
dominates zn. Indeed, for any x E [z, z], 

(4) fn(zn,Zn) fn(n nAZnIX-n) -fn( Zn -n) fn(nA Zn, -n) 

by (A4) 

< n( Zn V Znl X-n ) _fn( Zn ' Z-n ) 

by (A3) 
< 0 by definition of Zn 1 

where the last inequality uses the fact that Zn V Zn > Zn Similarly, if Zn W Bn(Z) 
then Zn is strongly dominated by znvBn(z). Then sup U([z, ])=B(z) and 
inf U([z, z]) = B(z), and consequently U([z, z]) = [ B(z, B(z))]. Q.E.D. 

PROOF OF THEOREM 5: Let y? = sup(S) and y0 = inf(S) and, for k > 1, 
define yk = B(jk-1) and yk = B(yk-1). We first show that U k(S) c [y, y k ] 
Indeed, this is true for k =0; suppose it is true for k <j. Then, 

Ui+'(S)cu([ yi -W)Ca yj+lji?+1 

where the first containment follows from our earlier observation that U is 
monotone nondecreasing in the set containment order, and the second follows 
from the lemma. These inclusions also establish that {yk} is nonincreasing and 
{yk} is nondecreasing. Then, since the strategy lattice is complete, these 
sequences have order limits y = inf yk and y = sup yk So, the serially undomi- 
nated strategies all lie in the interval [y, 9]. 

We now show that y (and similarly y) is itself serially undominated by 
showing that it is a Nash equilibrium profile. For if it is not, then there exists 
some n and xn such that 

fn(xn, Y-n) fn(Yn, Y-n) > 0. 

But then, by (A2), 

x k ~ k?1 k> 
fn(Xn,Y-n) fn(Yn I Y-n) >0 

for some finite k, contradicting the best response property. Q.E.D. 

Theorem 5 has several important corollaries. 

COROLLARY: Assume (A1)-(A4). Then there exists a pure Nash equilibrium. 
Moreover, there exist largest and smallest pure Nash equilibria in the given order. 

COROLLARY: Assume (A1)-(A4). If the game F has a unique pure Nash 
equilibrium, then F is dominance solvable. 

COROLLARY: Assume (A1)-(A4) and suppose, in addition, that the game F is 
symmetric (unchanged by permutations of the player indexes). If F has a unique 
pure symmetric equilibrium, then it is dominance solvable. 
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PROOF: Since the game is symmetric, all players have the same largest and 
smallest serially undominated strategies and the profiles of largest and smallest 
strategies are, by Theorem 5, pure symmetric Nash equilibria. If the game has 
but one pure symmetric Nash equilibrium, then the largest and smallest serially 
undominated strategies for any player must coincide. As we have seen the 
dominance solution is contained in the serially undominated set. Q.E.D. 

Lippman, Mamer, and McCardle (1987) have established a comparative 
statics theorem for an equilibrium selection from families of games character- 
ized by increasing best response functions satisfying (A5) below. We obtain a 
related result, but one that identifies particular monotonic selections, namely, 
the maximum and minimum equilibria, and that does so for supermodular 
games, which may have multiple best responses. Sobel (1988) has independently 
provided a version of our result for games with Euclidean strategy spaces. For 
our analysis, let the payoff functions be parameterized by r in some partially 
ordered set T, so that f,, = fn(x, x _, r). Assume: 

(A5) f,, has increasing differences in xn and r (for any fixed x_). 

For smooth supermodular games, (A5) is implied by the following condition: 

(A5') n2faXnid x2 d > O for all n and i. 

THEOREM 6: Suppose that {N,(Sn,fn(xn,x-,r), n eN),>) is a family of 
supermodular games satisfying (A5). Then, the smallest and largest serially un- 
dominated strategies xn(&) and in(r) are nondecreasing functions of r. 

PROOF: Let B(x, r) be the largest best response function as defined in the 
proof of Theorem 4 for the game with parameter r. By Topkis' Monotonicity 
Theorem, Bn(x_n r) is a nondecreasing function, so B(x, r) is nondecreasing. 
Every Nash equilibrium satisfies B(x, r) > x. By Tarski's Theorem, x(r) = 
sup {xIB(x, r) >x} is a fixed point of B(,,r), so it is the largest Nash equilib- 
rium. Since B(x,* ) is nondecreasing, x(*) is nondecreasing. A similar argument 
applies to the smallest equilibrium. Q.E.D. 

COROLLARY: Assume (A1)-(A5). Then the largest and smallest pure Nash 
equilibria are nondecreasing functions of r. 

Finally, we turn to the welfare theorem mentioned in the introduction. 

THEOREM 7: Let xn and Xn denote the smallest and largest elements of Sn and 
suppose y and z are two equilibria with y > z. (1) If fn(xn, x_n) is increasing in 
X - n, then fn(y) > fn(z). (2) If fn( xn, x _ n) is decreasing in x - n, then fn(y) < fn(z). 
If the condition in (1) holds for some subset of players N1 and the condition in (2) 
holds for the remainder N\N1, then the largest equilibrium is the most preferred 
equilibrium for the players in N1 and the least preferred for the remaining players, 
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while smallest equilibrium is least preferred by the players in N1 and most preferred 
by the remaining players. 

Although the proof is obvious and the Theorem involves additional conditions 
not implied by the definition of supermodular games, the Theorem is useful 
because its conditions are satisfied in nearly all of the cited applications. In 
several of the games, fn(xn, x-n) is increasing in x__ for all the players, and 
then the largest equilibrium x- is Pareto-best and the smallest is Pareto-worst. 
If, in addition, the game is a smooth supermodular game and xn is strictly less 
than the upper bound of the n's strategy set, then even the Pareto-best 
equilibrium is not a Pareto optimum. There are then positive externalities and 
there is a Pareto-preferred (but not equilibrium) strategy profile in which each 
player adopts a higher strategy. These observations are important for applied 
work, but they are also elementary to prove, so we do not pause to develop 
them here. 

3. ADAPTIVE DYNAMICS 

The problem of developing a convincing learning theory to test the "dynamic 
stability" of equilibrium in games has attracted considerable attention. Cournot 
(1838) and Edgeworth (1925), in their classic studies of oligopoly, employed the 
model that we now call "best response dynamics" (according to which each 
player in each round expects that his competitors will do the same thing they 
did at the last round, and optimizes accordingly). This model, however, is 
unsatisfying, partly because it is so arbitrary in its specificity about what people 
expect, and partly because it attributes extreme foolishness to the players. 
Indeed, the players' forecasts in this model can be regularly and predictably 
wrong, and can even lead to cyclic behavior that the players somehow fail to 
notice. 

An alternative to the best response model, called "fictitious play," was 
introduced by Brown (1951). Under fictitious play, the players attribute to their 
competitors mixed strategies with probability weights that coincide with the 
empirical distribution of the past play. Initial results were promising: Robinson 
(1951) had proved that the method always converges to an equilibrium for two 
player, zero-sum, finite strategy games. However, this line of research atrophied 
after Shapley (1964) established that fictitious play can lead to an infinite 
pattern of cycling behavior for two player, finite strategy, general sum games. 

Research in adaptive learning in games continues. Recently, Fudenberg and 
Kreps (1988) have investigated limiting behavior in a class of learning models 
for general extensive form games. The behavior they consider is broad enough 
to encompass Bayesian learning (regarded by some as the paradigm of rational 
learning). They conclude that learning may, even in the long-run, yield a larger 
set of strategies than is identified by Nash equilibrium. 

Shapley and Fudenberg-Kreps establish the rather negative conclusion that 
Nash equilibrium play is not the only possible outcome of learning in general 
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games. For supermodular games, however, sharper and more positive results are 
possible. To study this matter, let {x(t)}, x(t) E S, t E T, denote a "learning 
process." We are deliberately vague about whether the time index t is discrete 
or continuous; our theory applies to both cases. 

We require one bit of notation. Given a process {x(t)}, let P(T, t) denote the 
strategies played between times T and t: P(T, t) = {x(s)I T < s < t}. 

(A6) A process {x(t)} is one of adaptive dynamics if (VT)(3 T'XVt> T') 
x(t) E U([inf(P(T, t)), sup (P(T, t))]). 

Condition (A6) defines a very broad class because it imposes such a weak 
restriction on the players' choices. It requires only that, for any date T, there is 
a later date after which each player selects either a strategy that is "justifiable" 
in terms of the competitors' play since T or, failing that, at least is in the 
interval defined by the set of such justifiable choices. Thus, for example, in 
continuous time with isolated serially undominated points, the player's choices 
might traverse a path between two of these, and still be justified. Here, "justify" 
is used in a very weak sense. A strategy choice is justified if there is no other 
strategy that would have done better against every combination of strategies in 
the smallest interval containing the competitors' recent past play. For example, 
in a three firm Bertrand game, if firms two and three have set price combina- 
tions (P2, p3) of (2,5) and (3,4) in the past, then firm one can justify any choice 
which is a best response to some probability distribution over the interval of 
price pairs [2,3] x [4,5] = [(2,4), (3,5)]. Nevertheless, we have the following 
theorem. 

THEOREM 8: Let {x(t)} be an adaptive dynamic process and let x = inf(S) and 
x = sup (S). Then for every supermodular game F, 

(Vk) (3Tk) (Vt > Tk)x(t) E B() kx) 

where Bk(x) = B(Bk -(x)), and similarly for Bk(x).13 

PROOF: The conclusion holds trivially for k = 0. Suppose it holds also for 
k = j - 1. Note that S is exactly the set of points in S between x- and x, so 

13 Theorem 8 is stated for time paths {x(t)} and may often be usefully applied to stochastic 
learning models by considering the paths they generate and subsequences of the path. For example, 
Fudenberg and Kreps (1988) study a class of models in which the players conduct an infinite number 
of experiments over time so that their behavior does not satisfy the requirements of (A6). 
Nevertheless, the stochastic behavior generated by their model does satisfy (A6) (with probability 
one) when t is restricted to the subsequence of dates at which no experiments are conducted. The 
conclusion of Theorem 8 and its Corollaries then applies along that subsequence. In particular, the 
second corollary then implies that for finite strategy supermodular games with Fudenberg-Kreps 
learning, the play x(t) almost surely lies eventually in the interval bounded by the smallest and 
largest Nash equilibria, except at those isolated dates when players are conducting experiments. 

Applying a model like the Fudenberg and Kreps model to normal form games, we find that the 
resulting behavior satisfies (A6) along subsequences even in models in which the players do not 
know their competitors' payoffs or strategy sets or even how many other players there may be, but 
simply experiment by choosing strategies and pick the one that does best on average. For a fuller 
development of these ideas, including extensions to general games, see Milgrom and Roberts (1989). 



1270 PAULMILGROM AND JOHN ROBERTS 

S = [x, x]. By the inductive hypothesis, for t > T1, x(t) E [B- 1(x), Bi- 1(x)I. 
Applying (A6) with T = T7 -1 and letting T1 = T', we find that for all t > Tj 

x(t) E- U([inf(P(T,t)), sup(P(T,t))]) c U[i1x,ilx] 

= [:gj(!), Rimx], 

where the last step follows from Lemma 1. Q.E.D. 

COROLLARY: Let {x(t)} be an adaptive dynamic process for a supermodular 
game F and let y and y be the smallest and largest Nash equilibrium strategy 
profiles of F. Then, lim inf x(t) > y and lim sup x(t) < y. 

COROLLARY: For any adaptive process {x(t)} and any finite strategy supermod- 
ular game, there exists a date after which x(t) is bounded above and below by the 
largest and smallest Nash equilibrium strategy profiles. 

4. EXAMPLES OF SUPERMODULAR GAMES 

We offer five examples to illustrate various issues in applying the theory of 
supermodular games. The first, a Diamond-type search model, demonstrates the 
standard procedure for checking supermodularity in smooth, finite player games 
with real-valued strategies. The second, a Bertrand model, shows how ordinal 
transforms of the payoff function can be used to extend the range of application 
of the theorems. Example 3 illustrates the application of the theory to an 
infinite dimensional strategy space arising in the context of an arm's race. The 
fourth example uses the Hendricks-Kovenock model of oil drilling to illustrate 
the handling of uncertainty and private information. Our final example is based 
on the Milgrom-Roberts theory of modern manufacturing. It illustrates the use 
of supermodular games to study coordination failures among a group of people 
who share a common goal (a "team"). 

(1) A Diamond-type Search Model. There are a finite number of players N 
who exert effort searching for trading partners. Any trader's probability of 
finding another particular trader is proportional to his own effort and the total 
effort of the others. Let x(n) E [0, X] denote the effort of player n. Then, the 
payoff to player n is defined by: 

fn( x) = arx( n) E x( m) -C( x(n)) . 
m 9n 

Since d2f"/dx(n)dx(m) = a > 0 (for m # n), this is a supermodular game. 
Suppose that C( ) is increasing. Then x(n) 0 is an equilibrium. If C( ) is also 
smooth and convex, then for each E satisfying a(N - 1)E = C'(E), there is also a 
symmetric equilibrium in which each searcher selects effort level e. These 
equilibria are Pareto ranked, as our welfare theorem indicates. As our compara- 
tive statics theorem indicates, the upper bound on the equilibrium search effort 
rises with a. 
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(2) Bertrand Oligopoly with Differentiated Products. Some Bertrand oligopoly 
games can be analyzed as supermodular games. For example, Topkis (1979) has 
shown that if the goods are substitutes with linear demand and costs and if the 
players' strategies are prices constrained to lie in an interval [0, p], then the 
game is supermodular.14 

The domain of the theory can be considerably expanded, however, by consid- 
ering monotone transformations of the payoff function. An important example 
is the case in which each firm n produces with constant unit costs cn and faces a 
demand function Dn(p) with the properties that the goods are substitutes and 
that the elasticity of demand is a nonincreasing function of the other firms' 
prices. Mathematically, this second condition is equivalent to requiring that 
d2 log(Dn)/dpn dpm > 0 for n # m. This form of demand encompasses the logit 
(Dn = kn/EjEN kj exp [A(p ps)], A < 0), CES (Dn = YP/- l E NE Pj where 
r < O),15 and transcendental logarithmic"6 (log (Dn) = an + Eje N 137log (p1) + 
Eje EjeNy j/j] log(pi)log(pj) where f3n<O, n < 0, Bn > 0, and ynnj > for 
i O n), as well as all the demand functions that Topkis studied.17 The firm's 
log-profits are: 

(5) log [(pn - cn)Dn(p)J = log(pn - C) + log [Dn(p)]. 

For all demand functions in this class, if we take the strategies to be xn =Pn pE 
[cn p], then (A1')-(A4') are satisfied and the (log-transformed) game is super- 
modular. 

In fact, for the cases of linear demand, CES, logit, and translog with the 
additional parameter restrictions that EjEN N < 0 and EjE Nynnj < 0, we can do 
even better, establishing the uniqueness of the pure strategy Nash equilibrium. 
We illustrate for the cases of logit and CES. Let player n's strategy be xn =Pn 
for the case of logit demand and xn = log(pn) for CES demand, where we 
restrict Pn E= [Cn P] (An order-preserving transformation of the strategy spaces 
does not affect supermodularity, but in this case it simplifies the analysis of 
uniqueness.) With these assumptions, it is routine to verify that (A1')-(A4') are 
satisfied, so the game is supermodular. Letting fn(X) = log [(pn - Cn)Dn(p)], one 
can verify for logit and CES demand that for all x: 

( 6) -a2fn/(ax )2> E d2f/axn dxj1. 

This is a "dominant diagonal" condition and it implies that the transformed 
game has a unique pure strategy equilibrium. Indeed, if there are multiple 
equilibria, then since the game is supermodular there are two, x and x, with 
x >x (since there are largest and smallest equilibria). Let n be the player for 

14 Vives (1989) extends this analysis to the case of convex costs. Also, Topkis had shown that the 
result extends to the case where the demand function satisfies the "increasing differences" 
condition; however the linear demand function is the only commonly studied one with that property. 

15 See Varian (1978). 
16 See Christensen, Jorgensen, and Lau (1973). 
17 For additional examples and a fine treatment of Bertrand equilibrium in spatial models, see 

Caplin and Nalebuff (1989). 
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whom x; - x; is largest. Then, 

(7f 0 (X) d d +(1-t)x]_dt. dxn 9xn jE0 axndxj 

The assumption that x and x are equilibria with xn > xn requires that dfn/dXn 
be nonnegative at x and nonpositive at x, so the left-hand side of (7) must be 
positive. However, according to (6), the integrand in (7) must be strictly 
negative, a contradiction. So, the equilibrium is unique. 

Since the transformed game is supermodular and has a unique equilibrium, it 
follows from Theorem 5 that each player has only one serially undominated 
strategy. Since the set of serially undominated strategies is determined only by 
ordinal comparisons, the corresponding prices are the unique serially undomi- 
nated strategies in the original game, as well. Hence, the original Bertrand game 
has a unique equilibrium and is actually dominance solvable, and the equilib- 
rium is globally stable under any adaptive learning rule, that is, any adaptive 
rule satisfying (A6). Comparative statics are also transferrable between the two 
games. For example, an increase in any one cost cn results in an increase in all 
the firms' prices (by Theorem 6) in both the transformed and original games. 

(3) Arms Races. The players are two countries engaged in an arms race. In 
the static version of the game, each player chooses a level of arms xn E [0, XMax] 
and receives as its payoff fn(Xn, xn) = - C(xn)+ B(xn - xn), where B is a 
smooth concave function and C is a smooth function of any shape. The game is 
assumed to be symmetric, so the same payoff function applies to players 1 and 2. 
Since d2f/ldxl dx2 =-B"(x1- x2) > 0, this is a supermodular game. 

One can extend this one-shot game to a dynamic game in which stocks of 
armaments accumulate and depreciate over time. We use "open loop" strate- 
gies xn,, where xn(t)-the level of arms at time t-proceeds according to the 
dynamic equation xn(t) = (1 - 5)xn(t - 1) + In(t). Here 8 is the rate of depreci- 
ation, In(t) is the rate of investment in armaments at time t (implied by the 
strategy xn), and the initial condition is xn(- 1) = 0. Suppose that the payoffs in 
the game are the present value of the advantages of superior armaments minus 
the cost of investment in armaments C(In(t)), as follows: 

00 

(8) E pt[B(Xn(t) - X n(t)) -C(Xn(t)-(-) Xn(t -1M) 
t=0 

We now assume that B is increasing as well as concave, that C is increasing and 
convex, that p and 8 lie strictly between zero and one, and that there is some I 
such that xn is feasible if and only if In(t) lies in [0, I] for all t. Let xn > kXn 
mean that xn(t) xn(t) for all t. Each term in the sum (8) satisfies the 
supermodularity, increasing differences, and continuity conditions (A2)-(A4). 
Veinott (1989) has shown that the properties of supermodularity and increasing 
differences are preserved under summation and that the pointwise limit of a 
sequence of such functions also satisfies these conditions. 
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We verify (Al) as follows. First, we may regard the strategy sets as subsets of 
the lattice {x 10 A x(t) < tI}. The constraints on the strategy choices are xn(O) = 0 

and I > xn(t) - (1 - O)xn(t - 1) > 0, for t = 1, 2 .... One can directly verify that 
each of these constraints individually describes a complete sublattice. Further- 
more, it follows immediately from the definitions that any intersection of 
complete sublattices is a complete sublattice (and hence a complete lattice in its 
own right). So, all the conditions are satisfied and the game is supermodular. 

The first order conditions for optimal investment at a symmetric equilibrium 
require C'(In*(t)) = B'(O)/[1 - p(l - )] for all t, from which the symmetric 
equilibrium strategy x * can be uniquely inferred. Consequently, the pure 
symmetric equilibrium is unique and the game, despite its infinite dimensional 
strategy space, is dominance solvable. At each stage s in the dominance 
elimination process, there is an interval [XS, xS] containing x* such that all 
remaining strategies x must satisfy xS(t) < x(t) < xS(t) or be strongly domi- 
nated at that stage by the strategy (x V xs) A xs which is obtained from x by 
truncating it to lie within the prescribed interval. As s increases, the strategies 
xS converge monotonically down to x* while the strategies xS converge mono- 
tonically up to x*, as the proof of Theorem 5 demonstrates. 

The corresponding continuous time arms race game can also be shown to be 
supermodular and dominance solvable.18 

(4) Drilling for Oil. This game is based on a model of Hendricks and 
Kovenock (1989). The players are two oil firms who own similar tracts of land 
which may or may not bear oil. Each firm observes a signal sn (a geological 
report) at date 0 that provides information about the unknown, common value v 
of the tracts; the signal is modeled as a real-valued random variable. Drilling 
costs are c and the discount factor is 8. If a firm drills at date t (t = 0, 1), its 
payoff is 8t(v - c). If one firm drills at date zero, then the other firm can 
condition its drilling decision on the outcome. In that case, if it delays drilling, 
its date 1 payoff will be max(0, v - c). 

We consider a simplified version of the Hendricks-Kovenock game in which 
the game ends immediately with payoffs of zero if neither firm drills at date 0. 
Let Xn denote the indicator function of the set of signals that trigger drilling by 
firm n at date 0. These indicator functions describe the pure strategies available 
to each firm. We order the two players' strategy sets oppositely. Thus, we say 
that Xn < n if (-nl) Xn(t) < (-1)%n,(t) for almost all t. 

Suppose that the underlying value v has finite expectation and that the joint 
density of the value and signals (V, s1, S2) is g(V, sI , S2). Payoffs for firm 1 are 
then as follows: 

Jf( v - c)xl(s) g( v, s, t) dvdsdt 

+ affmax(0, v - C)X2( t)[1 - X1(s)I g( v, s, t) dvdsdt. 

18 The one extra difficulty in the continuous time game is to establish that the payoff function is 
order upper semi-continuous, but this can be done with no extra assumptions. 
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The first term is the firm's payoff from immediate drilling; the second is its 
payoff from not drilling in period zero when the second firm drills. 

Notice that for each fixed value of (v, t, s), the integrand is a supermodular 
function of -X1(s) and X2(t). As Vives (1989) first observed about Bayesian 
games of this sort, it follows that the payoff function is supermodular in the 
strategies with the given partial ordering. Since the payoff function is plainly 
L1-continuous, Theorem 3 implies that the payoff functions are order-continu- 
ous and that the strategy sets are complete lattices. By our assumption that 
E[v] is finite, the payoffs are bounded. So this is a supermodular game. As 
Hendricks and Kovenock have shown, such games can have multiple Nash 
equilibria. Since firm l's payoff increases in X2 and 2's payoff declines in Xi 
(given our ordering), Theorem 7 implies that the best equilibrium for firm 1 and 
the worst for firm 2 is the one at which firm 2 drills most often. 

(5) Modem Manufacturing. Our interest in supermodular games began with 
our research into modern manufacturing (Milgrom and Roberts (1990)), for 
which we constructed a model of the firm's technological, organizational, 
product design, and pricing decisions. In that model, we showed that the firm's 
payoff function is supermodular. 

We now extend our previous analysis to study the coordination problem of a 
"team" of managers who run the firm and adapt to changing technological 
opportunities. That the managers form a team means that they all share the 
same payoff function f, which is also the payoff function of the firm. Thus, let 

. .. ok , T) be a supermodular function representing both the profits of the 
firm and the payoff of each manager when manager j selects Oi from a compact 
interval I C 91 m and when the exogenous parameter value is T. It is routine to 
check that the game played among the managers is a supermodular game. 
Consequently, the Corollary of Theorem 9 (about adaptive dynamics) applies to 
it. Clearly, the firm's optimum is a Nash equilibrium of the team game. If the 
game has a unique Nash equilibrium, then any behavior by the managers 
consistent with adaptive dynamics will lead the managers' behavior to converge 
to the optimum without any explicit coordination among them. If there are 
multiple equilibria, however, then there can be a coordination failure in which 
the managers' adaptive behavior fails to converge toward the firm's optimum. 

One can further enrich the model by incorporating competition from other 
firms producing substitute goods. For example, suppose that the firm faces a 
linear demand function Qn = D(pn, pn), that x w =(ps,w ...Q9D, and that 
fn(x, ) =PnQn-C(Qn, ,n r), where marginal cost is nondecreasing and 

C(- Qn, on,r) is supermodular. Suppose that each firm is a team of k + 1 
managers, of whom one sets the price and the other k choose the Q1's. If there 
are N firms, then this N(k + 1)-player game is supermodular, and our compara- 
tive statics and adaptive learning results (Theorems 6 and 9) apply directly. In 
our earlier paper, we argued that the firm's optimum (p*(r), 0*(X)) was nonde- 
creasing in r if f has increasing differences in (p, 0) and r. We now see that 
the same conclusion applies to the bounds on equilibrium behavior for an 
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extended model with competing oligopolistic firms, each run by a team of 
managers using adaptive learning rules. 

5. CONCLUDING REMARKS 

Most attempts to analyze noncooperative games have focused on developing 
general solution concepts that could be applied to all such games. This ap- 
proach seems not always to be attractive; there is no single story that applies 
equally to all game situations. Some games are played without precedent and 
among strangers; players then must reason about how their competitors will 
play and so how they themselves should play from whatever they know about 
the rules of the game and from their general knowledge about human behavior 
and the backgrounds of the other players. Under these circumstances, there is 
little reason to suppose that the players will have correct expectations about 
how their competitors will play, and then rationalizable strategies and corre- 
lated equilibrium provide attractive alternatives to the Nash equilibrium solu- 
tion concept. In other situations, the institution being modeled is a stable one 
that has attracted new participants regularly in the past so that the behavior of 
past participants may be a good guide to that of the new ones. If the environ- 
ment were truly stationary, it would be natural to use adaptive learning models 
to predict the kinds of behavior that might emerge. Most often, however, games 
do have some precedents, but not perfect ones, so that some combination of 
reasoning and observation will be what actually guides the players' choices. The 
class of supermodular games is remarkable and useful because it is a class that 
includes so many games that have been of greatest interest in applied theory 
and for which all these alternative "solutions" imply identical bounds on the 
joint behavior of the players. 

Department of Economics and Graduate School of Business, Stanford Univer- 
sity, Stanford, CA 94305, U.S.A. 
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