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Abstract. An example put forward by Dawkins to describe the evolution of strategies in the conflict 
of  the sexes over parental investment is discussed by means of  a simple dynamic system. It is shown 
that the equilibrium of the strategies is not evolutionarily stable, but equal to the time average of  
the endlessly oscillating strategies. 

The theory of games and the notion of evolution- 
arily stable strategies, as introduced by Maynard 
Smith & Price (1973), has proved to be very 
helpful for the understanding of the evolution 
of  animal conflicts. Recently, Zeeman (1979), 
Taylor & Jonker (1978) and Hofbauer et al. 
(1979) have used a class of  ordinary differential 
equations which makes the underlying dynamics 
of this approach more explicit. In this paper we 
show how to use this method to investigate situ- 
ations leading to oscillations of genetically influ- 
enced social behaviour. Within the context of  
Trivers's (1972) theory of  parental investment, 
we shall discuss an example introduced by 
Dawkins (1976) and also described by Wickler 
& Seibt (1977). 

Suppose that the pure strategies for contests 
within one species are labelled 1 , . . . ,  n and that 
aij is the payoff for the player using the pure 
strategy i when his adversary uses the pure 
strategy j. Then ~ a~jq~ is the payoff for the pure 

J 
strategy i against the mixed strategy given by the 
probability vector q = (q~ . . . . .  qn), and 

algpiq~ is the payoff for the strategy p = 
t , j  
(P 1 . . . . .  pn) played against q. Let A denote the 
payoff matrix (aig) and let 

S ,  = (x = (Xl . . . . .  x , )  ~ rR n : Zxj = 1, 
J 

x~ > 0 for all i} 

be the simplex of all possible strategies. 
A strategy p~S~ is called an evolutionarily 

stable strategy if, whenever a population using 
this strategy is perturbed by a mutation intro- 
ducing a small population with strategy q #p ,  
thenp fares better (in the new, mixed population) 
than does q. Equivalently, in the definition of  
Maynard Smith (1978), p is an evolutionarily 
stable strategy if for all q # p one has p.Ap >_ 
q.Ap, with p.Aq > q.Aq in the case of equality. 

In the words of Selten (1980), p is a best reply 
against itself, and fares better against any alter- 
native best reply q, than does q against itself. 

If  the strategies are genetically determined, 
then the success of strategy i will be reflected in 
its success in reproduction, i.e. its rate of in- 
crease. In a population with strategy x = 
(x 1, �9 �9 �9 �9 ,xn) the payoff for strategy i is 

Ymjxj 
i 

while the average payoff is 

ak~xkxj 
k, j  

It is natural to assume that the rate of increase 
5c~/x~ is equal to the difference between these two 
payoffs. Thus we obtain the system of ordinary 
differential equations 

:e~ = x~(Ya~jxj -- Y x~a~jxj) i =  1 . . . . . .  n (1) 
j k , j  

on the state space S•. (It is easy to check that the 
simplex S~ and its faces are invariant for (1).) It  
can be shown quite simply (see Hofbauer  et al. 
1979 or Zeeman 1979) that if p~Sn is an 
evolutionarily stable strategy, then p is an 
equilibrium state of  (1) which is asymptotically 
stable (all orbits in the neighbourhood o f p  con- 
verge to p). The converse is not true, however. 

Let us now consider an aspect of  the 'battle of  
sexes', as described by Dawkins (1976). At the 
moment of conception, the female invests more 
in the offspring than the male since her gametes 
are larger. The father is faced with the tempta- 
tion to leave her 'holding the baby' and to look 
for a new mate. The female should prevent this 
by choosing a faithful husband, and the simplest 
way to do this would be to insist on a long en- 
gagement period in order to test the fidelity and 
the perseverance of her mate. Thus it would pay 
for her to be coy. A deserting male, among a 
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population of coy females, will have to face 
another long and arduous courtship. This puts 
a selective pressure on males to be faithful. 
Among faithful males, however, a fast female 
would fare better than a coy one, since she skips 
the courtship. Her genes will therefore spread. 
I f  there are too many fast females around, 
however, then philandering males will find rich 
pickings and spread in their turn. But in a popu- 
lation where faithful husbands are rare, a female 
would do well to be prudent and coy. So we are 
back at the beginning. As Maynard Smith & 
Price (1973) have shown in their well-known 
model of  'hawks' and 'mice', a superficially 
similar situation does not lead to oscillations but 
to convergence towards an evolutionarily stable 
equilibrium. In the example of  Dawkins, 
however, we shall indeed obtain endless oscil- 
lations. 

For our model, we shall use the same numeri- 
cal values as did Dawkins (1976) and Wickler & 
Seibt (1977): the benefit for raising a child suc- 
cessfully is + 15 for each parent; the total costs 
for looking after the child are -- 20; and the 
cost of a prolonged courtship is . - -  3. The gist 
of the model is largely independent of the actual 
choice of  numerical values. Males have the two 
strategies X1 (faithful) and ~ir2 (philanderer); 
females have the two strategies Y1 (coy) and Yz 
(fast). 

I f  a faithful male meets a coy female, then the 
payoff for both of them is + 2 (namely + 15 
(the child) -- 10 (they share the costs of looking 
after it) -- 3 (the courtship)). If  a faithful male 
encounters a fast female, the courtship is omitted 
and both earn + 5. But a philandering male 
meeting a fast female makes off with + 15 (no 
costs for him), while the female gets -- 5 (she 
has to bear all the costs of raising a child). If  a 
philanderer meets a coy female, nothing happens, 
so the payoff for both is 0. 

More generally, suppose that aij is the payoff 
for a male using strategy Xi against a female 
playing strategy Yj, and b,~ the payoff for a 
female using strategy Yi against a male playing 
strategy Xj (i, j =  1, 2). Thus the game is 
described by the two matrices A and B. Let xi be 
the proportion of  males playing strategy Zt, and 
y, be that of females playing strategy Y,, for 
i =  1, 2. Obviously x l  + x 2 = y l  + Y 2 =  1, 
and x~ > 0, y~ > 0 for i ~- 1, 2. The payoff for a 
male using strategy X, against a female popu- 
lation described by (Yl, Y2) is 

a i l y l  + ai2Y2 (2) 

and the average payoff for a male population 
(xl,  x2) against a female population (Yl, Y2) is 

a l l x l y l  + a12xlY2 + a21x2y1 + a22x2Y2. (3) 

The expressions for the payoff expected by 
females are similar. In Dawkins's example, the 
two matrices are 

The payoff for faithful males is 2yl + 5y2, the 
payoff for philanderers is 15y2, and these payoffs 
are equal if and only if (Yl, Y2) = (-~, ~)- It 
follows that the payoff for any male strategy 
(Xl, x2) against the female strategy (-~, ~) is the 
same, namely 2.5. A similar computation shows 
that the payoff for any female strategy (Yl, Y2) 
against the male strategy (xl,  x 2 ) =  (~, ~) is 
always 1.25. Thus indeed it pays for neither 
male nor female population to deviate from the 
equilibrium state given by the male population 

(~, ~). (~, ~) and the female population "~ 1 
On the other hand, however, there is no 

penalty for deviating either. Our players are not 
rational. There is no conspiracy to stick to the 
equilibrium. If  a fluctuation changes, say, the 
male population from (~, 3) to (Xl, x2), then its 
payoff against the female population (~, ~) 
remains 2.5. The payoff for the female popula- 
tion (-~, ~), however, will change to -~ (3x I -- 
x2), and will therefore decrease if the pro- 
portion X l of faithful males has been de- 
creased by the fluctuation. There is no selection 
pressure on the males to change strategy, 
but there is on the females, rewarding an increase 
of the proportion Y2 of fast females. If, for 
example, the new male population is (~, ~), then 
the 'old' female strategy has as payoff ~. The 
female strategy 11 ( ~ ,  ~ ) ,  for example, has a 
higher payoff, namely 11 

Another way to see why the equilibrium pair 
(~, ~) and (~, ~) is not stable is as follows. The 
state of the 'total' population (males and females) 
is obviously described by Xl and Yl, and thus 
by a point q = (x, y) of the unit square 

Q2 = {(x, y ) e r a 2 : 0  _< x _< 1 ,0  _< y < 1} 

where x = x l and y = Y l. The equilibrium 
population, as found by Dawkins, is described 
by the point p = (~, ~). Let us define the payoff 
for a total population as the sum of  the payoff 
for the males and the payoff for the females. 
Then a simple computation shows that the payoff 
for population q = (x, y) against the equilibrium 
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population p = (~, ~) is independent of q, 
namely 

E(q,p) = 3.75 

But the payoff for population p against popu- 
lation q is given by 

Efp,q) = ~ (95 + 40x - -  90y) 

while the payoff for q against itself is 

E(q,q)----- 10 --  10y --  4xy 

Hence 

E(p,q) - -  E(q,q) = 4(x - -  {) (~ --  y) 

I t  follows that if either x > ~ and y > {, or 
x < { and y < {, one has 

E(q,q) > E(p,q) 

In this case, q is an alternative best reply to p, 
but q fares better against itself than does p 
against q. Hence the population p = (~, -~) is not 
evolutionarily stable. 

We shall presently see that the equilibrium 
p = ({, ~) is still highly relevant, and stable in 
another sense. It  turns out, indeed, that  the 
populations will oscillate, but have p as a mean. 
We shall need slightly more complex arguments 
to prove this. 

Let us first set up, in general context, the 
differential equations corresponding to the game 
given by the two matrices A and B. We do this 
by simply mimicking the way of obtaining (1). 
The rate of  increase .~l/xl of the population 
using strategy X1, for example, will be just the 
difference between the payoff for strategy X1 
(given by (2)) and the average payoff  for the 
males (given by (3)). Hence 

X1 ~- x l ( a l l Y l  + a12Y2 --  ( a l l x l Y l  + 
al2xlY2 + a21x2Yl + a22x2Y2)) 

Similarly 

X2 z x 2 ( a 2 1 Y  1 + a22Y 2 - -  
(a l lX lY l  + al2xlY2 + a21x2Yl +~ a22x2Y2)) 
351 = Y l  (bl lXl  + b12x2- -  
( b l l X l y l  + b l zy l x2  + bzlyZXl + b22y2x2)) 
352 = Y2 ( b 2 1 X l  + b 2 2 x 2  - -  (5)  
( b l l x l y l  + b12YlX2 + bz lx lY2  + b22Y2X2)) 

This system of equations can be greatly simplified. 

First of  all, one has (Xl + x 2 ) ' =  0 if  
X l + X 2 =  1, a n d ( y l  + Y 2 ) ' = 0 i f y l  + y 2 =  
1. Thus, reasonably enough, the set which in- 
terests us (satisfying the conditions Xl + x2 = 

1, Yl + Y2 = 1, x, > 0, y~ > 0 for i = 1, 2) is 
invariant. We may henceforth consider the re- 
striction of (5) to this set. 

Next, one can easily check that by adding a 
constant to each of the columns of A and B, one 
does not change the restriction of  (5). Thus we 
can, without restricting generality, assume 

For Dawkins's example (4), for instance, we 
obtain, by adding the constants - -  2 and --  15 
to the first and second column of A, and by 
adding the constants - -  2 and + 5 to the first 
and second column of  B, the matrices 

Finally, remember that we are only interested 
in two variables, say x l  and Yl, which we again 
denote by x and y. Then, after a short com- 
putation, (5) becomes 

k = x(1 -- x) (a -- (a + b)y) (7) 

35 = y(1 -- y) (c -- (c + d)x) 

which we consider on the unit square Q 2. 
This square and its edges (corresponding to 

pure strategies) are invariant. There exists a 
unique equilibrium 

(c c 
P ~ -  , 

+ d  a 

in the interior of  Q2 if and only if ab > 0 and 
cd > 0. I f  this is not the case, then (7) is trivial, 
since 2 or 35 will never change sign. In this case 
x or y will be either constant, or else monotonic. 

Thus from now on we shall only consider the 
the case with unique equilibrium. The Jacobian 
of (7), evaluated at P, is 

J =  

cd [ -] 0 -- (a + b) (c + d)2 

ab 
- -  (c + d ) ~  0 

(a + b) 2 

I f  ac > 0, the eigenvalues of  J are real num- 
bers zk ~, where 

, 
X -- abed 

l-+L,f 
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x 

In this case P is a saddle. The theory of Poincar~ 
& Bendixson implies that there is no closed orbit 
in Q2. Depending on the sign of a, either (0, 13) 
and (1, 1), or (I ,  0) and (0, 1) are sinks, and 
almost all orbits in the interior of  Q2 will have 
these sinks as ~-limits (see Fig. 1 for a typical 
phase portrait). 

I f  ac < 0, we see that the eigenvalues of  J 
are 4- iL, and hence on the imaginary axis. We 
may assume, up to time reversal, that a is nega- 
tive. Then b is a lso  negative, while c and d are 
positive. The numerical values chosen by 
Dawkins correspond to this situation. Equation 
(7) is then 

2 = x ( 1 - - x ) ( - -  10 + 12y) (8) 
= y ( 1 - -  y) (5 --  8x) 

and P is the equilibrium (~, 3). 

The function 

V(x, y) = x c (1 - -  x)ay - - a  (1 --  y) -b 

vanishes on the boundary of Q2, is strictly posi- 
tive in the interior and has P as unique maxi- 
mum. It  is easy to check that 1? = 0. (This 
means that if x( t )  and y( t )  are solutions of  (7), 
then the time-derivative of  the function t - +  
V(x(t), y(t)),  given by (c~ V/3x) 2 + (~ V/3y) fi, is 
equal to 0.) It  follows that  V is constant along 
every orbit. The orbits are closed and correspond 
to the constant value levels of  V (see Fig. 2 for 

1 

_-• 

Fig.  I .  P h a s e  p o r t r a i t  o f  the  e q u a t i o n  2 = x (1 - -  x )  
(10 - -  12y), j~ = y (1 - -  y)  (5 - -  8x).  

S C H U S T E R  & S I G M U N D :  S T A B L E  S T R A T E G I E S  

Fig.  2. P h a s e  p o r t r a i t  o f  the  e q u a t i o n  2 --  x (1 - -  x )  
( - -  1 0 + 1 2 y ) , 5 , = y ( 1  --  y)  (5 - -  8x).  

the phase portrait  corresponding to Dawkins's 
example). 

The equilibrium P is stable (every neighbour- 
hood U of P contains a neighbourhood U' such 
that no orbit issued in U' leaves U), but it is not 
asymptotically stable, and a fortiori not evo- 
lutionarily stable. 

Thus the model of  Dawkins leads to endless 
oscillations. Even if the system had started at 
equilibrium, small mutations would be bound 
to occur and would soon have sent it into an 
oscillatory state. 

The equilibrium P is nevertheless most  im- 
portant, because it corresponds to the time- 
average along every orbit. Indeed, the first 
equation of (7) can be written 

2 
= a --  (a + b)y 

x O  - x)  

The left-hand side is just the time derivative of  
log (x/(1 - -  x)). I f  we integrate along an orbit of  
period T, and note that x (0) = x(T), we obtain 

x( t )  ] T r 
0 = log = a T - - ( a + b )  f. y( t )dt  

1 - x ( t ) ] '  = o o 

and hence, dividing by T, 

1 r a 
- -  I y( t )dt - 
T o a + b  
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and similarly and the payoff for the females by 

I T C 

- -  I y( t )dt  = 
T o c + d  

This time-average, then, is independent of  the 
initial conditions. It  is not affected by mutations. 
Moreover, it corresponds to actual measure- 
ments. If, for example, one studies a population 
of grey geese for a very long time and finds that 
60 ~o of the males are faithful (see, e.g. Wickler 
& Seibt 1977), then one is dealing with a time 
average rather than with an evohitionarily stable 
state. 

Other authors, for example Maynard Smith 
& Parker (1976), Maynard Smith (1977), 
Grafen & Sibly (1978) and Taylor (1979), have 
also studied animal conflicts between two popu- 
lations by using the game-theoretic approach. 
Our differential equations apply to some of their 
models. Here, we only consider a contest between 
male and female of  one insect species, as des- 
cribed by Parker (1979). In a given encounter, 
males are often under selection to mate, and 
simultaneously females are under selection to 
refuse mating. A sex-limited gene gives a com- 
petitive mating advantage M to males, but the 
male behaviour associated with the gene inflicts 
some cost - - R  upon the female (e.g. direct 
damage) which may be felt by the progeny. 
Parker assumes that the females have two 
strategies, namely to reject, Y1, or to remain 
passive, ]12; the males have also two strategies, 
namely to persist, X1, or not, X2. Let -- S be 
the cost for the female if the male persists, and 
-- U the cost of persistence for the male. We 
shall assume that the probability of a mating in 
an encounter between a passive female and a 
non-persisting male is �89 and the probability of  a 
mating in an encounter between a rejecting 
female and a persistent male is r. 

The payoff matrix for the males is given by 

X I rM- U M 

x 2 o M_ 
2 

X I )(2 

YI - $ - r R  0 

R 

Thus we use the two matrices 

A =  B =  

U - -  r M  R(I -- r) + S 

The condition for mixed equilibrium, ab > 0 and 
cd > 0, is now 

U S 
r < - - a n d r >  1 - -  

M R 

The fixed point, then, is a saddle (ac < 0) and 
we have the situation depicted in Fig. 1. In this 
case, the o u t c o m e -  which sex will w i n -  de- 
pends on the initial condition. 

Parker (1979) also describes in this context an 
'opponent-independent costs' game which, 
although not directly describable in terms of  
equation (7), possesses some similar features. 
Each population has six different strategies, 
corresponding to different levels of escalation 
(and thus of cost). Here, numerical simulations 
lead to what Parker calls 'unresolvable evolution- 
ary chases', i.e. there is no evolutionarily stable 
strategy, but the frequencies of the various 
strategies fluctuate. Thus Parker seems to have 
been the first to consider the possibility of end- 
lessly oscillating behaviour. He cautions that 
'it is extremely difficult to know whether such 
cyclical chases exist in nature'. 

We close with a few remarks. 
Von Neumann & Morgenstern (1953) have 

already stressed that their theory of games is 
thoroughly static. In a study of evolution, a 
more dynamic theory seems to be preferable, and 
this is not only from a mathematical point of  
view. The simple biological example in this 
paper shows how ordinary differential equations 
can easily handle situations which cannot be 
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Fig. 3. A trajectory of the same dynamical system as in Fig. 2, with 
random fluctuations superimposed. 

fully discussed in static terms alone. It seems 
that, at least for asymmetric contests, the notion 
of evolutionarily stable strategy has to be sup- 
plemented by a more dynamic approach. 

Equations (1) and (7) are not very different 
from familiar equations in theoretical ecology. 
In particular, up to the factors ( 1 -  x) and 
(1 -- y), equation (8) looks just like an equation 
of  Lotka-Volterra type describing the evolution 
of two populations of predator and prey (see for 
example, Hirsch & Smale 1974). Here again, the 
unique equilibrium is surrounded by periodic 
orbits and is equal to the time-average along 
these orbits. 

Equation (8), of  course, reflects only part of 
the dynamics underlying the model of Dawkins. 
Superimposed on the deterministic dynamical 
system (8) is a stochastic process corresponding 
to mutations. The evolution of the system will 
then be described by paths consisting of pieces 
of  orbits of (8) and small random perturbations. 
In Fig. 3 we have simulated such an evolution 
by computer. The picture is reminiscent of  
Brownian motion and shows that (8) is in some 
ways quite unpredictable. The time average, 

however, is not affected by the perturbations. 
Briefly, then, we can draw two conclusions: 
(a) that the battle of sexes has much in 

common with predation; and 
(b) that the behaviour of lovers is oscillating 

like the moon, and unpredictable as the weather. 
Of course, people didn't need differential equa- 
tions to notice this before. 
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