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When a given strategic situation arises repeatedly, the possibility arises that
equilibrium predictions can be justified by a dynamic adjustment process. We
examine myopic adjustment dynamics, a class that includes replicator dynamics
from evolutionary game theory, simple models of imitation, models of experimen-
tation and adjustment, and some simple learning dynamics. We present a series
of theorems showing conditions under which behavior that is asymptotically stable
under some such dynamic is strategically stable in the sense of Kohlberg and
Mertens. This behavior is thus as if the agents in the economy satisfied the
extremely stringent assumptions that game theory traditionally makes about ratio-
nality and beliefs. Journal of Economic Literature Ciassification Number: C72.
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1. INTRODUCTION

There is growing skepticism as to whether sophisticated strategic behav-
ior—satisfying, for example, sequential equilibrium or forward induc-
tion—is the natural end product of introspection by economic agents.
Why, and under what circumstances, should we then believe in equilibrium
and equilibrium refinements?

Many strategic situations of interest arise repeatedly. In some cases,
fixed players repeatedly find themselves in the same situation, as for
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example competing firms. In other cases, a given strategic situation arises
repeatedly among sets of anonymous players drawn at random from a
large population. The interaction of drivers on the road seems a good
example. Other cases fall between. While a lawyer preparing for a trial
may never have faced quite the same legal situation before, an extensive
record of similar past trials is available. Individuals preparing to negotiate
the purchase of a new car have friends, various consumer publications,
and their experience in other bargaining situations to guide their behavior.
In all these situations, one might think of a process in which behavior
adjusts over time based on the experience of participants.

In this paper, we try to understand when these processes have implica-
tions for as-if-rational play. We find conditions under which asymptotic
stability under this sort of dynamic implies behavior that is as if the
agents in the economy satisfied the stringent assumptions that game theory
normally makes about rationality and congruence of beliefs.

1.1. The Literature

Models of adjusting play have been extensively studied in both the
learning and the evolutionary game theory literatures. Some of these
models are explicitly dynamic. Others, while at least partly based on
intuitions about dynamic adjustment, are formulated in a static way.

The literature on static formulations had its genesis in the application
of evolutionary ideas to game theory by Maynard Smith (1974, 1982) and
Maynard Smith and Price (1973). They argued that many interactions in
the natural world could be interpreted as strategic situations, and that
mutation and natural selection would tend to push organisms toward opti-
mal play. For some economic questions—in explaining altruistic behavior
or tastes, for example—a literal interpretation of these ideas from evolu-
tionary biology may make sense. However, much more generally, both
“mutation” and “natural selection™ have close analogues in economic
environments. In many situations there will be a general movement over
time to strategies that perform well in their environment, whether by
imitation, by the growth or bankruptcy of firms following superior or
inferior strategies, or by a learning process.

An evolutionarily stable strategy profile is one such that members of
any small group of entrants to a population who are playing a strategy
different from the status quo fare worse against the post entry population
than do individuals using the original strategy. It attempts to capture in
a static way the notion of stability of behavior in a population when a
small mutation is followed by natural selection.’

! Aside from connections to stability under any particular dynamic process, evolutionary
stability (and its offspring) can also be interpreted as strong forms of the familiar “no
profitable entry” condition. This may help explain the considerable appeal of evolutionary
stability to economists despite its unsatisfactory dynamic foundations.
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The static approach implies a remarkable amount of as-if-rationality.
In particular, van Damme (1991) shows that an evolutionarily stable strat-
egy is proper (Myerson, 1978). Van Damme (1984) also shows that a
proper equilibrium is sequential (Kreps and Wilson, 1982) in associated
extensive forms. Thus, an evolutionarily stable strategy profile corre-
sponds to a sequential equilibrium in associated extensive forms.

Swinkels (1992a, b) extends this result, working with a much weaker
static notion and deriving stronger implications. In that work, the entrants
against which the status quo is tested are restricted to those that are best
responses to the post entry environment. Solutions are allowed to be set-
valued. Such a set is called equilibrium evolutionarily stable (EES). EES
sets are robust to the iterative removal of weakly dominated strategies,
satisfy the never-a-weak-best-response property (Kohlberg and Mertens,
1986), and depend only on the reduced normal form. Under some addi-
tional conditions (which are always satisfied for EES sets with a single
element, and are generically true for EES sets for two-person extensive
form games) an EES set contains a stable component in the sense of both
Kohlberg and Mertens (1986) and Hillas (1990).? For generic extensive
form games, EES sets correspond to a single outcome, with different
elements reflecting different out-of-equilibrium behaviors. Because Hillas
stable sets contain a proper element, this outcome is sequential.’

Of course, our intuitions about evolution and learning are largely about
dynamics. And, indeed, these ideas have been intensively explored in
explicitly dynamic frameworks (see, for example, Taylor and Jonker
(1978), Foster and Young (1990), Friedman (1991), Kandori et al. (1992),
and Noldeke and Samuelson (1992)). In these models, there is typically
a large population {(or populations) from which sets of players, one for
each player position, are randomly and repeatedly drawn to play the game.
Players change their behavior over time based on their experiences. The
state variable is typically the proportion of the population playing each
pure strategy, i.e., the population strategy profile. This evolves in either
a deterministic or a stochastic fashion.

An important example is the replicator dynamic. For this dynamic, the
proportionate rate of growth of the proportion of the population playing
each pure strategy is linear in the difference between the payoffs to that
pure strategy and the current average payoff within the population. The
replicator dynamic arises naturally in biological games, where one inter-

! To avoid terminological confusion, stability in the sense of Kohlberg and Mertens (1986)
will henceforth be referred to as KM stability.

3 For symmetric games in which players for the various player positions are modeled as
being drawn from a single population, the appropriate version of strategic stability itself has
a symmetry condition. In either case, the set will contain a proper element. See Swinkels
(1992b) for details.



458 JEROEN M. SWINKELS

prets payoffs as the number of offspring. It also has some intuitive appeal
as a model of imitation in an economic environment. Friedman (1991)
introduces weak compatible dynamics, which can be thought of as general-
ized replicator dynamics. For these dynamics, if all strategies currently
in use by a given population are performing equally well, then the play
of that population is at rest. Otherwise, play adjusts among those stratzgies
currently in use in a direction that would be payoff-increasing were the
play of the opponents fixed.

Given the intuition on which evolutionary stability is based, one might
hope that evolutionarily stable strategies would correspond to asymptoti-
cally stable points under replicator dynamics or its generalizations. Evolu-
tionary stability would then capture the idea that small (one-time) muta-
tions are driven from the population. However, as Taylor and Jonker
(1978) show, evolutionary stability is sufficient, but not necessary, for
asymptotic stability under replicator dynamics. Friedman (1991) shows
that evolutionary stability is neither necessary nor sufficient for asympiotic
stability under weak compatible dynamics. While Matsui (1992) finds some
connection between EES sets and a variant of best response dynamics,
the overall relationship between the set-valued notions discussed above
and asymptotic stability under adjustment dynamics is little understood.

This casts doubt on the import of the as-if-rationality results mentioned
above, and brings us to our major question: s as-if-rational behavior truly
an implication of stability under this sort of adjustment process, or is it
an artifact of the (perhaps overstrong) static conditions?

A paper with goals similar to this one is Noldeke and Samuelson (1992).
They examine a model in which a finite number of agents are distinguished
by a behavior strategy and a conjecture about other’s play in an extensive
form game. With small probability in each period, each agent learns the
current play of her opponents and adjusts her play accordingly. Finally,
there is a small probability of “mutation.” Néldeke and Samuelson exam-
ine the limiting support of the process as the probability of mutation goes
to 0. They find in a class of simple games that the subgame perfect outcome
is contained in the limiting set, but that for “interesting” extensive forms
other outcomes are also included. They find somewhat more support for
a notion of forward induction.

1.2. Description of Results

In this paper, we examine myopic adjustment dynamics. In common
with weak compatible dynamics, these are deterministic dynamics with
state space the set of population strategy profiles, such that at each instent
the direction of movement in each population’s strategy is (at least weakly)
payoff increasing given the current behavior of the opposing populations.



ADJUSTMENT DYNAMICS AND RATIONAL PLAY 459

They generalize weak compatible dynamics in several ways. First, the
population is only required to be at rest at Nash equilibria, rather than
whenever all strategies currently in the population are performing equally
well. Nor do we restrict the adjustment to those strategies currently pres-
ent in positive measure. Thus the analysis includes dynamics in which
players can occasionally switch to profitable strategies not currently used
by the population. Such dynamics have a much greater chance to perform
well in extensive form games. It also seems quite restrictive in economic
environments to rule out this sort of innovation a priori.

In ecological environments, the growth of a trait is limited by the existing
population possessing that trait. In an economic environment, this need
not always be so. We weaken the regularity conditions imposed by Fried-
man to allow for dynamics exhibiting more general behavior at boundaries
of the system, including dynamics in which a particular strategy has a
zero growth rate when it is not present, but spreads quickly once intro-
duced. This also allows dynamics in which strategies can disappear in
finite time.

We begin by noting that if a strategy profile is asymptotically stable
under a myopic adjustment dynamic, then it is hyperstable (Kohlberg and
Mertens, 1986). Thus, the as-if-rationality implications of the static notion
of evolutionary stability are also implications of asymptotic stability under
a myopic adjustment dynamic.

Consider an extensive form game, and any Nash equilibrium that does
not reach every information set. Generically, there will be a range of
behavior at out-of-equilibrium information sets that is consistent with the
optimality of the equilibrium path. The Nash equilibrium will thus belong
to a nontrivial component of Nash equilibria. The dynamics we have
discussed so far all have the property that they are at rest on each Nash
equilibrium. Since an asymptotically stable strategy profile must be iso-
lated in the space of rest points, this implies that this equilibrium could
not be asymptotically stable. The static notion of evolutionary stability
similarly requires isolation in the set of Nash equilibria. Even for dynamics
that need not stop on every Nash equilibrium (some of which we discuss
later), it will often be the case that the dynamic system does not select
among various out-of-equilibrium behaviors. Thus, strategy profiles satis-
fying one or the other of these conditions will fail to exist precisely when
concepts such as sequential equilibrium have power.

Motivated by this, we consider asymptotic stability for sets of strategy
profiles.* Set-valued notions are hard to interpret in standard rationality
based game theory—what does it mean to say that rational players play

4 This was also the motivation for the set-valued notions introduced in Swinkels (1992a).
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a set? In dynamic environments, a set-valued solution makes perfect
sense: we predict that play, once in such a set, will remain in the set,
without making any particular prediction about which element of the set
will be used at any instant in time.

As for sets satisfying rationality-based solution concepts, asymptotically
stable sets are most attractive when they correspond to a single outcome
in an extensive form. We show that if a given outcome in a two-person
extensive form game is asymptotically stable under such a dynamic (so
that different limiting behaviors differ only at out-of-equilibrium informa-
tion sets) then that outcome is hyperstable.

More generally, for games with any finite number of players, if a set
of strategies is asymptotically stable under some such dynamic, then it
contains a hyperstable subset if an additional topological condition is
satisfied.

Hyperstable sets satisfy many (but not all) of the commonly accepted
rationality-based desiderata for a solution concept (see Kohlberg and Mer-
tens, 1986, on these desiderata). They are invariant to “irrelevant™ changes
in the game, and satisfy a form of forward induction (the never-a-weak-
best-response property). Hyperstable sets also contain proper equilibria
and so satisfy a strong form of backward induction. In particular, when
a hyperstable set corresponds to a single outcome in an extensive form,
then that outcome must be a sequential equilibrium.

Hyperstable sets can contain strategy profiles using weakly dominated
strategies. In general, this violates a major rationality notion. We view
the results as most relevant when an asymptotically stable set corresponds
to a single outcome in the extensive form. Under those circumstances,
the weak dominance issue becomes less important, because play will
be observationally equivalent to play not involving weakly dominated
strategies. We conclude that behavior that is asymptotically stable under
this type of dynamic satisfies a very strong notion of as-if-rational play.

We view the assumption that every Nash equilibrium is a rest point of the
system as very strong, and so examine the importance of this assumption to
the results. When Nash equilibria need not be rest points, the results
continue to hold for KM stability (but not for hyperstability) if the deriva-
tive field of the dynamic is Lipschitz continuous. KM stable sets need
not contain proper elements, and so need not imply backward induction
(on the other hand, they do not involve weakly dominated strategies).
Thus, rather surprisingly, the assumption that Nash equilibria are rest
points is key for both the backward induction implication and the ability
to extend the results to non-Lipschitz dynamics. If the dynamic fails to
stop on some Nash equilibria solely because it eliminates particular weakly
dominated strategies, then the results hold for KM stability without the
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extra continuity condition, but once again we are unable to get hyperstabil-
ity and so backward induction.’

We next turn to some generalizations. We begin with dynamics in which
the direction of movement can depend on more than just the current
population strategy profile. The analysis generalizes almost immediately
when the state space is the cross product of the space of population
strategy profiles with a compact convex subset of a Banach space. A key
restriction to this analysis is that the added dimensions are allowed to
affect which myopically improving direction is chosen, but not myopic
improvement itself.

The condition of compactness in the last paragraph rules out time as a
dimension of the state space. If a time-varying dynamic has the property
that time affects the speed of movement, but not its direction, or if the
system admits a Lyapunov function, then the results go through.

An important instance of a time-varying dynamic is provided by ficti-
tious play models, and more generally by models in which players respond
not to actual play by their opponents, but rather to some perception of
play that is formed from past play by the opponents. In some instances,
our analysis can be made to apply to perceived play even though actual
play meets few of the conditions of our analysis.

Finally, we consider the extent to which the results can be recast in a
discrete time framework. If next period’s population strategy profile is
continuous in this period’s, then we can proceed without too much diffi-
culty. The topological condition does need to be considerably strength-
ened, and the continuity condition is especially strong for a discrete time
model.

1.3. Intuition

That strategic stability, which is motivated by deep considerations in-
volving idealized rational individuals, should have any relation to asymp-
totic stability under these simplistic adjustment rules is surprising. There
are two main links to the connection. First, while the desiderata put
forward by Kohlberg and Mertens (1986) are based on notions of rational-
ity, the actual definition of strategic stability involves robustness of sets
of equilibria to perturbations in the underlying game. A set of Nash equilib-
ria is strategically stable if it is *“‘structurally stable,” in the sense that
close-by games have Nash equilibria close to this set. Second, asymptotic
stability is itself a structurally stable property: the key implications of
asymptotic stability survive small changes in the dynamic. The analysis
hinges on relating these changes in the dynamic to the perturbations used

3 It remains possible that one may be able to show backward induction in one or the other
of these cases by some method not involving hyperstability.
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in Kohlberg and Mertens’ analysis. Starting from a myopic adjustment
dynamic and an asymptotically stable set O, and given a small perturbation
to the game, we create a new dynamic that retains enough of the structure
of the original dynamic to guarantee rest points near O, but that has as
rest points only Nash equilibria of the perturbed game. Thus O has the
stability required by Kohlberg and Mertens.

1.4. Interpretation of Results

If a set satisfying certain conditions is asymptotically stable under a
myopic adjustment dynamic, then it contains a strategically stable subset.
To what extent does this support a conclusion of as-if-rational play in
games?

We begin with the words “if” and “contains.” The results are clearly
of more interest for games in which asymptotically stable sets satisfying
the conditions of the analysis exist and are in some sense ‘“‘small”’ than
for games in which they either do not exist or also contain a wide range
of behavior other than that in the strategically stable subset. Since this
paper has little to say about either the size or the convergence question,
it provides only one step along the way to a full understanding of when
as-if-rational play can be expected to arise.

In combination with results of the sort proved in this paper, results
about when “small” sets of strategy profiles are asymptotically stable
could form the basis for predictions that are much richer (and perhaps
empirically more successful) than those of rationality-based game thzory.
We may find that for signaling games of certain structure, and for a wide
variety of adjustment processes, convergence of the sort required by this
paper occurs, while for signaling games with another structure, it does
not. We would then have a basis for predicting that forward induction
will be satisfied by one type of signaling game, but not necessarily by
another. Similarly, we may find that adjustment dynamics for games in-
volving chains of backward induction show very poor convergence proper-
ties, or convergence to very large sets of behavior (recall the results of
Noldeke and Samuelson, 1992). We might then be less compelled than
formerly by backward induction.

Since the relevant dynamic may depend not only on the game itself,
but also on the setting of the game, the results of this paper provide a
first step toward a richer theory of the type of game, and the type of
setting, in which various equilibrium notions should or should not apply.
This stands in marked contrast to standard game theory, where if in a
particular game, the predictions of a particular rationality-based concept
are paradoxical, or in strong opposition to observed play, then the entire
concept is called into question.
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We do consider the results of this paper to be most attractive when the
asymptotically stable set corresopnds to a single outcome in an underlying
extensive form..In that case, issues of size disappear since all limiting
behaviors are observationally equivalent.

A second point involves the condition of asymptotic stability. Marimon
and McGrattan (1992, Example 13) provide an example of a game and
dynamic in which play converges toward a strategy profile that is not
strategically stable. Thus, in considering points (or sets) that are asymptoti-
cally stable, rather than those that are merely the limit points of some
convergent adjustment path, we are making a substantive restriction.
Some intuition for why the extra force of asymptotic stability matters
comes from realizing that while asymptotic stability is a structurally stable
property, convergence to a particular point is not. In Marimon and
McGrattan’s example, there are arbitrarily close by KM perturbations to
the game for which the original strategy profile is not the limit point (or
near the limit point) of any myopic adjustment path.

Taken together, the results imply a certain fragility of the backward
induction implication to the specification of rest points. Consider dynamics
that are at rest whenever every strategy present in positive measure for
each player position is performing equally well (as under weak compatibil-
ity). Then, if any Nash strategy profile o for an extensive form game is
a part of an asymptotically stable set, so is every strategy profile generating
the same outcome as o, including, in general, non-Nash profiles. For most
plausible dynamics, this implies that the asymptotically stable set must
also include strategy profiles generating other outcomes.® So, for dynamics
with this sort of rest point, the backward induction implication fails be-
cause, while asymptotically stable sets do contain hyperstable subsets,

% Consider a non-Nash point in the asymptotically stable set, and small perturbations from
this point. For the outcome to be asymptotically stable, it must be that as these perturbations
become vanishingly small, the adjustment paths beginning from these perturbations involve
only vanishingly small changes in behavior along the original equilibrium path of play in
the game. But, as behavior along the equilibrium path gets arbitrarily close to the original,
the incentive to make changes in behavior that only involve information sets off the original
path is also vanishingly small. In contrast, as long as play remains anywhere near the original
non-Nash point, there is a positive incentive to change behavior along the equilibrium path.
So, for the outcome to be asymptotically stable, it must be that along the adjustment path
behavior is changing a discrete amount in directions for which the rewards are vanishingly
small, but a vanishingly small amount in directions for which the rewards are large. While
there are myopic adjustment dynamics with this property (see Fig. 3), such dynamics do
not seem very plausible in most environments. The poor behavior of this sort of dynamic
is closely related to Noldeke and Samuelson’s finding that in their setting, limit sets are
very large in games where backward induction is important. Behavior in their system can
freely “drift” among various strategy profiles corresponding to a particular outcome until it
is well outside the set of Nash equilibria. At that point, a perturbation initiates a path that
leaves that outcome.
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the asymptotically stable sets are typically too large in any situation where
the backward induction implication of hyperstability would be interesting.

When we look at dynamics that can pass through some Nash equilibria,
we have the possibility of a single outcome being asymptotically stable,
but all we are able to prove is KM stability, and so we again have no
backward induction implication.

Only when we look at dynamics which stop on Nash equilibria, but are
in motion otherwise, do we have both the possibility that an asymptotically
stable set can correspond to a single outcome, and the implication of
hyperstability, and so a strong backward induction implication.

Thus, these results do not provide a justification for the uncritical appli-
cation of rationality based game theoretic concepts. Rather, they suggest
that there are conditions under which some of these concepts are appro-
priate, and provide one key step in understanding these conditions.

Section II covers basic definitions and strategic stability. Section 111
discusses dynamics. Section IV establishes the basic relationship between
asymptotic stability under myopic adjustment dynamics and strategic sta-
bility. Section V discusses alternative specifications of when the dyanamic
is at rest. Section V1 discusses extensions. Section V1I concludes. Proofs
are in the appendix unless noted otherwise.

II. PRELIMINARIES

Basic Definitions

A game (S, m) consists of players iEN ={1, ... , n}, finite pure strategy
sets §; with § = Il;c5S,, and payoff functions = = (s, ..., w,). The
space of mixed strategies is @ = II,-yA(S;). The vector of weights given
by the mixed strategy profile ¢ = (o, ... ,0,) EDPtos = (5,,...,5,) €
Sis a(s) = (o(sy), ... , 7,(s,)). The strategy profile obtained from o by
replacing o; with v, is denoted o\y,. We occasionally use s; where we
properly mean the mixed strategy for i that puts probability 1 on s5,. We
extend 7 to ® by the expected utility calculation. The set of Nash equilibria
of (S, m) is N(S, n). The set of player i's best responses to c€® is
BR(a) C ®,.

D(u, v) is the Euclidean distance between u, v€R™. For XCR” and
HLER™, D(u, X) = inf, .y D(u, v). For XCR™ and e > 0, define B,(X) =
{y | D(y, X) = &}. Note that B,(X) is closed. Y is a neighborhood of X if
there is an open set containing X but contained in Y. Thus, B.(X) is a
(closed) neighborhood of X. Int(X) is the interior of X. CI(X) is its closure.
For x and y functions on §;, define x - y as ES‘E s, X(s)y(s). If x, y are
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functions on S, x - y is similarly defined as 2,y 2, &5 X(s)¥(s). R,
denotes the nonnegative real numbers.

Strategic Stability

The idea of stability (Kohlberg and Mertens, 1986) is to examine the
robustness of a set of equilibria to perturbations in the underlying game.
A class p of perturbed games and a metric m is established. A set © C N(S,
) is (m, p)-stable if it is a minimal closed set such that every game in p
that is close to (S, m) under m has a Nash equilibrium close to O (in
Euclidean distance).

For KM stability, a perturbed game is generated by a completely mixed
strategy profile y&€®, and a vector §€[0, 1}". The payoff to each pure
strategy profile s in the perturbed game is the payoff in the original game
when each player plays (1 — §,)s; + 8;¥.. The distance from the perturbed
game to the original game is max,c y9;.

For hyperstability, a perturbed game is obtained from the original game
by first adding a finite number of redundant pure strategies, and then
perturbing the payoffs to the pure strategies in the new game by a small
amount. Every hyperstable set contains a KM stable subset.

III. Dyn~NaAMiICS

We begin our exposition with deterministic dynamics that have state
space ®. The standard interpretation of o €® will be that according to
whatever matching technology is being used, and given the behavior of
individuals, the total probability of drawing an n-tuple who (after any
individual randomizations) play s €5 is o(s) (see Section V1.3 for another
interpretation). We refer to o as the population strategy profile.

For our purposes, it is convenient to summarize such a dynamic by a
map F: & x R, — &, where for &P, and tER_, if the population
strategy profile is o at time ¢’ = 0, then it will be F(o, t) at time ¢’ + 1.
For ieN, and s,€S,, F(o, 1)(s;) is the weight given to s; by F(o, 1). A
dynamic F is admissible if it is continuous and right differentiable with
respect to time; that is, if for all c€®,

foy=tim£e0 -0
140 4

is a well-defined real vector.
In many cases, the right derivative fwill be the primitive. If fis Lipschitz
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continuous, then it will have a unique and continuous solution F. Note
that right differentiability implies that F (-, 0) is the identity map.

For c€®, i€EN, and 5,€S,, f(o)(s;) is the time rate of change of the
proportion of s; in the population strategy for player position i. By f;(g)
(resp., F;(co, 1)), we mean the restriction of f(o) (resp., F(o, 1)) to S,.

We formally analyze only the case in which the populations associated
with each position of the game evolve independently. The analysis can
be extended, along the lines of Swinkels {(1992a, b), to cases in which
several positions are symmetric and filled by players from a single popula-
tion. This corresponds to restricting the state space to a subspace of &
in which equality restrictions hold for some dimensions. Our results hold
in these cases if the definition of strategic stability is correspondingly
weakened to consider only perturbations satisfying the same equality
restrictions.

Replicator Dynamics and Myopic Adjustment Dynamics

The replicator dynamic for a game (S, #) is given by
S = vils) Imdy\s) — mi(y)]

for iEN, s,€S;, and yE®.’

Thus, among the nonextinct strategies, strategies that are currently
doing well are growing relative to those that are not. Only the broad
qualitative features of the replicator dynamic are needed for our results.
We say that an admissible dynamic F is a myopic adjustment dynamic
if Voed,

fi(o) - m(o\.) =0, forall iEN; (1.1)
if o is Nash, then f(o) = 0. (1.2)

By f(0) - m;(c\.) we mean Esiesif(o-)(si)w,-(o-\si). Thus, condition (1.1)
states that at any moment, the direction of movement for each player
population is such that holding the strategies of the other player positions
constant, payoffs are (at least weakly) increasing.? If the inequality in

7 An alternative specification has the right-hand side of the previous expression divided
through by ;(y) (where one imposes the condition that ;(y) > 0 for all y). For symmetric
games in which players are drawn from a single population, this changes the speed but not
the direction of the dynamic at each point. The solution curves are thus invariant. When
populations corresponding to different player positions evolve independently, the difference
between the two specifications clearly matters. Our analysis covers either case.

§ Note that f(a) - m(a\.) = %(w,—(o-\F,—(a', Moot
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(1.1) is strict whenever o,& BR (o), then F is a strict myopic adjustment
dynamic. It is easily verified that the replicator dynamic (and in fact any
weak compatible dynamic) is a myopic adjustment dynamic.

While these dynamics have their foundation in evolutionary biology,
our resuits are relevant in any social or economic situation in which play
adjusts in directions that are myopically improving, and in which play is
stationary when all play is optimal. There is also some reason to hope that
the type of analysis introduced by this paper will be useful in understanding
social or economic dynamics not included in the current analysis.

IV. Myoric ADJUSTMENT DYNAMICS AND STRATEGIC STABILITY

Taylor and Jonker (1978) show that for a strategy profile o to be evolu-
tionarily stable is sufficient but not necessary for asymptotic stability of
o under replicator dynamics.® Friedman (1991) shows that asymptotic
stability under a weak compatible dynamic need be neither necessary nor
sufficient for evolutionary stability. Myopic adjustment dynamics general-
ize weak compatible dynamics. Thus, despite the strong results relating
the static notion of evolutionary stability to as-if-rationality, we cannot
conclude that there is any systematic relationship between asymptotic
stability under myopic adjustment dynamics and as-if-rational play.

It is a special case of Theorem | (below) that if a strategy profile o is
asymptotically stable under a myopic adjustment dynamic, then {o} is
hyperstable. Thus the implications for rational play derived as implications
of evolutionary stability and its point valued generalizations hold in the
dynamic case as well. Unfortunately, the weakness of those results reap-
pears as well: as explained in the Introduction, asymptotically stable
strategy profiles fail to exist precisely where the result would be most
interesting.

We thus consider a set-valued notion of asymptotic stability. A set
YC® is asymptotically stable under the dynamic F if it is closed and
there is a neighborhood Z of Y such that:

for every neighborhood Wof Y with WC Z, 2.1
there is a neighborhood V of Y with F(V, 1) C Wforall t = 0;

foreachyeZ,lim,_, .D(F(y,1),Y) = 0. 2.2)

9 They also show that in the “regular™ case, the converse holds. While regularity is
generically satisfied for normal form games, it generically fails in the extensive form when
there are out-of-equilibrium information sets.
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If Y has a single element, then this corresponds to the standard notion
of asymptotic stability. Note that lim, _, .. F(y, t) is not required to exist.
This allows for convergence to, for example, limit cycles or a region on
which behavior is chaotic. Minimality is not imposed: the only effect of
doing so would be to reduce the generality of the results.

Introducing the set-valued notion helps matters considerably. Say that
an outcome (distribution over terminal nodes) in an extensive form game
is asymptotically stable under a dynamic F if there is a set of strategy
profiles generating this outcome that is asymptotically stable. Then, it is
again a corollary to Theorem 1 that, for two-person extensive form games,
if an outcome is asymptotically stable under a strict myopic adjustment
dynamic then it is hyperstable.

The proof of this hinges on three facts. First, if a set of strategy profiles
corresponding to a particular outcome is asymptotically stable under a
strict myopic adjustment dynamic, then that set must exactly correspond
to the set of Nash equilibria supporting that outcome. Second, for two-
person games, the set of Nash equilibria supporting any particular outcome
is convex (Swinkels, 1992a, Lemma 8). Third, for convex asymptotically
stable sets, the topological condition in Theorem 1 is trivially satisfied.

To see the first claim, consider any o that is not Nash. Then, as Fis
strict, there is some player i who is moving in a strictly payoff increasing
direction from o. This must involve a change in the outcome. Thus, the
asymptotically stable set cannot contain non-Nash elements. But then by
(1.2), the asymptotically stable set must be precisely the component of
Nash equilibria supporting the outcome.

The second fact fails for games with more than two players. An im-
portant open question is whether there is an interesting characterization
of extensive form games for which sets of Nash equilibria supporting a
particular outcome are sufficiently regular to guarantee the necessary
topological condition of Theorem 1.

To see why some strengthening of (1.1) was needed for this resuit,
consider the two-person extensive form game and associated normal form
illustrated in Fig. 1. Figure 2 illustrates a copy of ® for this game, and
displays the gradient field for a particular dynamic. This is a myopic
adjustment dynamic under which the set 7 x &, is asymptotically stable.
It is not strict because it includes elements of T x {g, | o(R) < 1/2} as
rest points.

The Main Theorem
We turn to our main result.

THEOREM 1. Let (S, w) be a game, let © CP be asymptotically stable
under a myopic adjustment dynamic F, and assume there is a neighbor-
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I, G

F1G. 1. An extensive form game I} and its normal form G,.

hood U of © contained in the basin of attraction of © which is homeomor-
phic to ®. Then © contains a hyperstable subset.

Proof. We outline a proof here. An asterisk in the proof (*) indicates
that additional details for that step are contained in the appendix. We
begin by defining, for any game of the form (S, p), where p may or may
not equal 7, a dynamic that has as its rest points precisely N(S, p). The
canonical dynamic for (S, p) has gradient field given by

c,(@)ts) = max[p(a\s;) = pi(a), 0] = ay(s) ¥, max[p(a\t;) — p;(c), 0]

LES;

for 5;€8,, (EN, and o €. Note that ¢, is Lipschitz and so has a unique
and continuous solution C,. Also Ese s, cp(o)(s;) = 0, and whenever
as) = 0, ¢,(o)(s) = 0. Thus C, maps <I>to(b

The first term of ¢, increases weight on strategies for each population
that would perform better than the current average in that population.
The second term reduces weight on all strategies proportionately to keep

Nash equilibria

T
rest points/

B

F1G. 2. A myopic adjustment dynamic for G; under which T x &, is asymptotically stable.
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Fi1G. 3. The regions used in constructing the composite map. U is the entire set. V is
AUBUCUD.

the system within ®. Thus, c (o) - p(a\.) = 0, with equality if and only
if o€ N(S, p).

We show that as p — m, (S, p) has Nash equilibria converging to ©.
We do this by showing that for p close enough to 7 we can splice C, with
F in such a way that (1) the spliced map inherits enough of the structure
of F to guarantee a fixed point on U, and (2) any such fixed point is near
O and also a fixed point of C,. In the appendix, we show how to extend
this argument to cover the addition of redundant strategies to §.

Begin by choosing V, a closed neighborhood of © with VCInt(U) and
such that F(V, nC U for all t = 0 (*). Choose T = 0 such that F(U, )C U
for all 1 = T (*). Choose & > 0 such that B, (0)CInt(V). We will be
interested in the following five subsets of U:

A B.(©)

B {y|e=D@®,v) =<2}
C {y|2e=D@®, )} =<3
D CI(V\B3,(0))

E CIW\V).

The various regions are displayed in Fig. 3.

A and C are disjoint closed sets. Thus by Urysohn’s Lemma, there is
o U— [0, 1] with «(C) = 1, a(A) = 0, and a continuous. Similarly, C
and E are disjoint and closed, so there is 8: U — [0, 1] with 8(F) = 1,
B(C) = 0, and B continuous.
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We now define the spliced map.'® For given p, consider G,: U x
R, — @& given by

Co,0) onA
a(@)F(o, ) + [1 — a(O')]Cp(o, ) onB
G,o,n= F(o,1) onC
F(o, B(a)T + [1 — B(a)]?) onD
Flo,T) onk

\

Note that the splice on B takes place in the range, while the splice on D
takes place in the domain.

For small ¢ > 0, G,(., t) is a continuous map from U to U (*). Since U
is homeomorphic to @, G,(., 1) has a fixed point o’ for each such 7 by
Brouwer’s fixed point theorem.! If yECUDUE is a fixed point of
G,(., 1), then there is t' > 0 such that F(y, t') = y. This is impossible as
CUDUECU\O and U is in the basin of attraction of © under F. Thus
o' €AUB.

Let o, be an accumulation point of {0’} ;. Then, o, is a rest point of
G, ie., G(o,, t') = o, V' 2 0 (*). Let o be a cluster point of
{o*},_. .. Then, o is a rest point of G, (*). Also, if a(o) = I, then cEB,
and G, {c,.) = F(o,.). Since F has no rest points on B, a(g) < 1. So
consider

g.(o) =hm
o

= a(g)f(o) + [1 — a(a)lc (o).

G, o,1) — 0O
t

Since o is a rest point of G, g,.(o) = 0, and thus g.(o) - w(o\.) = 0. By
(1.1), f(o) - w(o\.) = 0. Thus, since a(o) < 1, it must be that c_(o) -
m(o\.) = 0. But, then c€N(S, 7). By (1.2), N(S, m) N(AUB)CO and
thus, c€06. So, as p = 7, 0 — 6. Since G = C, on A, c?EN(S, p)
for p close to 7, and so we are done. =

If © is convex, then for ¢ sufficiently small U = B,(0) satisfies the

' The technique used here, of cutting out part of a dynamic system and replacing it by
another, is sometimes referred to as surgery.

" The homeomorphism assumption on U and the assumption that F is a continuous
function are for the sake of Brouwer’s fixed point theorem. By virtue of the Eilenberg—Mont-
gomery fixed point theorem this could be weakened to U being an acyclic absolute normal
retract and F an upper hemicontinuous acyclic correspondence (see Border, 1985, p. 73).
It seems unlikely that the relaxation of the condition on U is of practical significance.
Extending the results to set valued dynamics would be valuable. However, as we discuss
in the working paper, acyclicity is very strong in this context.
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Nash equilibria

rest point

B

F1G. 4. A dynamic for G; under which (7, R) is asymptotically stable.

conditions of Theorem 1.'2 This establishes that asymptotically stable sets
and asymptotically stable outcomes for strict myopic adjustment dynamics
on two-person games are hyperstable. A better understanding of which
games have asymptotically stable sets admitting an appropriate U would
be very desirable.

Note that (1.1) was only needed on a set playing the role of B. This
observation could be a first step toward results about dynamics that are
only approximately myopic in the sense that players whose play is very
close to optimal may move in nonimproving directions. Since B is a ciosed
set containing no Nash equilibria, there is a strictly positive lower bound
on B for the amount by which some player is short of an optimum. If (1.1)
holds when o; is suboptimal by at least this amount, then the analysis
goes through. Note also that the continuity of ' was only necessary on
U. In some interesting examples a given dynamic will be discontinuous
only on the boundaries of the basin of attraction. See the working paper
{Swinkels, 1992¢) for an example and discussion.

V. ALTERNATIVE SPECIFICATIONS OF REST POINTS

In general, a set O that is asymptotically stable under an admissible
dynamic satisfying (1.1) but not (1.2) need not contain a hyperstable sub-
set. Consider G, (Fig. 1) along with the dynamic of Fig. 4. While (7, R)
is asymptotically stable under this dynamic, and the dynamic satisfies
(1.1), G, has as its unique hyperstable set {o | o, (T) = 1, o(L) = §}. It
is easy to see where the proof of Theorem 1 fails: For small perturbations
in which p,(7, L) > p,(7, R) the canonical dynamic must travel from right
to left on T x ®,, while the dynamic of Fig. 4 travels from left to right.

12 B.(0) is a full dimensional, closed convex subset of @, and so homeomorphic to ®.
For ¢ small, B,(0) is a subset of the basin of attraction of ©.
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Nash equilibria
rest point

>
>

FiG. 5. A dynamic for G, illustrating the need for continuity of fin Theorem 2. Condition
(1.1) is satisfied, but { is an asymptotically stable point that is not KM stable. Note that f
is discontinuous as o(T) — 1.

These cancel each other somewhere on T x &, near (T, R), while the
only Nash equilibria of the perturbed game has o,(L) = 3.

The strategy profile (T, R) is KM stable. This holds in general if f is
Lipschitz continuous.

THEOREM 2. Let (S, w) be a game, let O C D be asymptotically stable
under an admissible dynamic F satisfying Eq. (1.1) and such that the
associated fis Lipschitz continuous, and assume there is a neighborhood
U of O contained in the basin of attraction of © which is homeomorphic
to ®. Then, © contains a KM stable subset.

Assume that a particular outcome { in a two-person game is asymptoti-
cally stable under a dynamic that satisfies (1.1) strictly whenever
o, & BR,(a). If the basin of attraction is large enough to include a neighbor-
hood of the set of Nash equilibria supporting £, then { is KM stable. As
before, the idea in proving this is to appeal to the convexity of sets
of Nash equilibria corresponding to a particular outcome in two-person
extensive form games. Since the dynamic is strict, the asymptotically
stable set must be a subset of the Nash equilibria supporting that outcome.
Thus, if the basin of attraction includes a neighborhood of the set A of
Nash equilibria supporting the outcome, then, for £ > 0 sufficiently small,
B.(A) will be the necessary U.

The dynamic for G, illustrated in Fig. 5 illustrates the need for the
continuity of f. F is continuous in initial conditions and time and satisfies
(1.1). Since { involves a weakly dominated strategy, it is not KM stable.
The construction used in proving Theorem 2 fails for this example: For
any perturbed dynamic of the sort used in that proof, (7, R) becomes the
unique asymptotically stable set.

The dynamic of Fig. 4 violated (1.2) only in that it eliminated a weakly
dominated strategy. For dynamics of this sort, we can reclaim the KM
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stability implication without the extra condition of Lipschitz continuity

on f.

THEOREM 3. Let (S, m) be a game. For each iEN, let R,E S, be a set
of weakly dominated strategies, and assume F is such that f(a)(r,) < 0
Jor all o €, r,ER,. Assume that f satisfies (1.1), and satisfies (1.2) for
any Nash equilibrium not involving U,c yR,. If © is asymptotically stable
under F, and there is U, a neighborhood of © contained in the basin of
attraction of © and homeomorphic to ®, then © contains a subset that
is KM stable.

VI. EXTENSIONS

VI.l Richer State Spaces

The analysis generalizes almost immediately to a state space of the form
¢ x ¥, where ¥ is a compact convex subset of a Banach space. Note
that compactness of ¥ rules out time as a dimension of the state space.
We discuss time-varying dynamics in the next section.

A generalized state space dynamicisamap F: @ x ¥ x R, - ® x
¥, Define Py: @ x ¥ — & as the projection map onto ®. A generalized
state space dynamic F is admissible if F is continuous, and P4 (F) is right
differentiable with respect to time. That is,

Py(F(o,y, 1)) — o
t

flo,¢)=lim
10

is well defined for all (o, ¥) € X ¥,

An admissible generalized state space dynamic F is a myopic adjustment
dynamic if for all (o, ¢) €P x ¥, fo, Y) satisfies (1.1} and (1.2). Thus,
we allow the other dimensions of the state space to determine which
myopically improving direction is chosen at each point, but not to affect
myopic improvement.

Theorem 1 goes through with little change in this framework.

THEOREM 4. Let (S, m) be a game, and let ¥ be a compact convex
subset of a Banach space. Let ©C® X V¥ be asymptrotically stable under
a generalized state space myopic adjustment dynamic F, and assume
there is a neighborhood U of © contained in the basin of attraction of ©
which is homeomorphic to © X V. Then, Py(0) contains a hyperstable
subset.
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The proof is much like that of Theorem 1, except that the appropriate
fixed point theorem is Schauder’s rather than Brouwer’s. As for Theorem
1, Theorem 4 has a much simpler form for asymptotically stable points.
In particular, if & X Y€ ® x V¥ is asymptotically stable under a generalized
state space myopic adjustment dynamic, then {o} is hyperstable.

Similarly, consider dynamics such that f(o, ) satisfies (1.1) strictly
whenever o; &€ BR,(0), and such that whenever o is Nash, (o, ¢) is a rest
point (this is stronger than applying (1.2) to fi(o, ¢), since ¢ could be in
motion even though o is not). Then, for two-person extensive form games,
asymptotically stable outcomes are hyperstable. Under these assump-
tions, P4 (0) exactly equals the set of Nash equilibria supporting the out-
come, and O has the form P4(0) x ¥, and so is convex.

As an example of an application of this analysis, consider a game in
which each population is made up of several factions who follow different
myopic adjustment rules. In addition, there is a deterministic and continu-
ous process by which some players switch from one faction to another,
based (for example) on the average performance of the various factions
over the last T units of time. The state space of this process is & x ¥,
where ¥ is made up of a copy of ®; and a compact interval of the real
line (representing the range of possible average payoffs) for each faction
of population i, and so meets the conditions of our analysis.

V1.2. Time Varying Dynamics

Consider dynamics of the form F: & x R, x R, — &, with the
interpretation that if the system is at o €& at time ¢, then at time ¢ + ¢,
it is at F(o, ¢, t"). For such a dynamic, it is quite consistent that F(o, 0,
t') = o for some ¢’ > 0 and o € U\O, but that nonetheless lim,_, .D(F(o,
0, 1), ©) = 0. This prevents us from applying the analysis of Theorem 1:
If we define G in the natural way as

Clo, 0 onA
a(0)F(0,0,0) + [1 —~ a(0)]C, (o, 1) onB
G(o,t) = F(o,0,1) onC |
F(o,0,B8()T + [1 — B(o)]2) onD
F(o,0,7) onkE

then G(., 1) could have fixed points on CUDUE and so need not have
fixed points on AUB.

To recapture Theorem 1, we must somehow rule out F(o, 0, t') = o
for ¢' > 0 and o € U\O. For one special case, this is easily done. Given
a dynamic F, assume one can find F, a time invariant dynamic, and
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k: R, — R., a strictly increasing bijection, such that F(o, ¢, t') =
E(a, k(t') — k(1)). Thus, if ever F(a, 0, t) = a for t > (¢ and ¢ €&, then
for every T > 0 there is ' > T such that F(o, 0, t') = o. For c € UN\O,
this contradicts asymptotic stability, and so cannot happen.

Another situation in which one can conclude that such cycles cannot
occur is when the system admits a Lyapunov function.'> Whether there
are more general conditions implying acyclicity of F(.) on U\O is an open
question.

V1.3. A Continuous Time Version of Fictitious Play

Consider a model in which players react not to actual play, but rather
to a prediction of play. Those players who are called upon to play &t any
instant choose a best response to this prediction (assume that players use
some rule that is a function only of their current prediction to select among
multiple best responses). Finally, the equation of motion of the prediction
held about population i is of the form

20— (1) % (ot0) = o (1),

where a”(t) is predicted play at time ¢, o(t) is actual play at time ¢. and
v(t) is a positive scalar for all 7. Setting v(t) = 1/7 generates a continuous
time version of a fictitious play model (take tE€(1, =) to avoid definitional
difficulties).

Actual play is almost certainly discontinous, in both time and initial
conditions, and in general is not myopically improving relative to current
actual play. Perceived play is considerably better behaved. Population i
plays best responses to the perception of population -i’s play. Population
-i’s perception of population i’s play moves in the direction of i’s actual
play. Thus, -i’s perception of i's play moves in a direction that is myopi-
cally improving relative to i’s perception of -i’s play, i.e., perceived play
satisfies (1.1). These perceptions are continuous in time, and may well in
particular examples be continuous in initial conditions, at least on a region
of some asymptotically stable set. Finally, if »(¢) does not go to zero too
quickly then the analysis of time-varying dynamics in the last section will
apply. In such examples, we can thus conclude that if perceived play is
asymptotically stable (and satisfies the other conditions of Theorem [ or

B Say that A is a Lyapunov function for the set © € ® relative to the dynamic system
F if the set of minimizers of A is precisely ©, and A(g) = dA(F (o, ', 1)/3t],., < 0 fcr all
{o, 1’} € U\NO x R, where the derivative is interpreted as a right-hand derivative if needed.
If such a A exists, then O is asymptotically stable under F and F has no recurrent points
in U\O.
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2), then the asymptotically stable set of perceived plays will contain a
strategically stable subset. If actual play converges to some convex region,
then perceived play will as well.'

V1.4. Discrete Time Dynamics

We will consider simple discrete time dynamics with state space &.
Such a dynamic can be represented by a map F: ®— &, with the interpreta-
tion that o €® is carried to F'(o} in f periods. We assume F is continuous.
Paralleling the continuous time case, a discrete time dynamic Fis a myopic
adjustment dynamic if for all c € P,

m(o\F(a)) =z w (o) foralliEN; 3.1
ifceN(S, m)then F(o) = 0. 3.2)

Say that X is forward invariant under F if F'(X) C X V¢t = 0. We then
have:

THEOREM 5. Let (S, w) be a game, let © CD be asymptotically stable
under a discrete time myopic adjustment dynamic F, and assume there
is U a compact convex neighborhood of © such that U is in the basin of
attraction of © under F, and U is forward invariant under F. Then ©
contains a hyperstable subset.

The proof is similar in structure to that of Theorem 1. The major task
is in constructing an analog to the canonical dynamic for the discrete time
environment. By strengthening the restriction on U we are able to ignore
any sort of splice from F' to F, and so only need regions corresponding
to regions A, B, and C in the proof of Theorem 1. To see why we had to
do this, consider attempting to mimic the construction of Theorem 1
without the condition that U be forward invariant. It is easily shown that
there is 7 such that FI(U)C U Vt = T. Could one then splice F” and F
together in some manner to create an aggregate map that is onto U? Since
F'is only defined for positive integers, splicing continuously in the domain
is impossible. The obvious alternative is to splice in the range. That is,
one might consider a splice of the form

B@)F (o) + [1 — B(o)F(0),
replacing F(o, B(o)T + [1 — B(o)]) in the definition of G in Theorem

!4 We phrase this in terms of convergence of actual play because it is possible for perceived
play to converge even though actual play does not. We find the results much less relevant
in that case.
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1. The difficulty is that there does not seem to be any natural condition
ruling out ¢ = B(c)F (o) + [1 — B(a)]F(o). Unlike when we convexified
in the range, we can no longer conclude that such a fixed point of the
map would correspond to a cycle of F.

The assumption that F is continuous is particularly strong in this context.
Consider a model in which in each period one of a finite set of players
switches pure strategies based on the current population strategy profile.
The associated dynamic will be discontinuous on any boundary between
regions where different strategies are chosen.

VII. CoNcCLUSION

We have shown that there are conditions under which asymptotic stabil-
ity of behavior under a dynamic adjustment process can imply behavior
that is as if the members of the economy satisfied the rationality and
commonality of beliefs assumptions that underlie traditional game theory.
The results in this paper, while hardly complete, do cover a wide class
of situations.

It seems likely that the analysis could be adapted to dynamics that have
other state spaces or do not satisfy the myopic improvement condition
(1.1). Given a dynamic F on some state space, the key is the construction
of another dynamic for nearby games that (a) stops only on states that
correspond in some way to Nash equilibria, and (b) does not cancel ¥ on
some region playing the role of B in the proof of Theorem 1. The combina-
tion of the canonical dynamic and the myopic adjustment condition is one
way of doing this. It seems likely that there are others.

The existing treatment of discrete dynamics is unsatisfactory. It seems
possible that a different framework might prove productive. Finallv, a
treatment of stochastic dynamics would be valuable.

APPENDIX

Details of the proof of theorem \. Existence of V: By (2.1), there is some neighborhood
V' of 8 with F(V’, nC U V1 = 0. Since O is closed and thus compact, we can choose & >
0 such that B,(6)C V’. Since B.(0) is a closed neighborhood of 6, it is the necessary V.

Existence of T: For each yE U, define T(y) = inf{t = 0 | F(y, t)&€ V}. If T(.) is bounded
on U we are finished since F(V, t)C U V:. Assume 7(.) is not bounded on U. Since U is
compact, there is {y*}en—>7, with ¥*, y&€ U and such that lim,_,. T(y*) = «. Since Visa
neighborhood of O, there is 7’ such that F(y, T') € Int(V). But by the continuity of F,
F(yk, T') € V for k sufficiently large, contradicting lim,_,. T(y*) = o.

Properties of G,: From the continuity of C,, &, F, and 8, and from the agreement of the
appropriate functions on A N B, BN C, C N D, and D N E, G, is continuous. Also,



ADJUSTMENT DYNAMICS AND RATIONAL PLAY 479

M

ERE(0)))

& . F{o)
L E(oc) FE(c))R

F1G. 6. The derivation of F’. ®' is the full simplex. & is the simplex with pure ¢lements
L and R. In this case, M is equivalent to 2/3L + 1/3R. Dashed lines are E-equivalence
classes of &',

B.(A U B) C U, and G,(., 0) is the identity map. Thus, G,(A U B, ) ¢ U for ¢ sufficiently
small. Since C U D C V, G,(CU D, n C U for all ¢. Finally, G,(E, NC U by choice of T.

Rest point property of o, Fix t' > Q. For any ¢+ € R, define r(t) = min{r* | r* =
0, r* = 1" ~ ki for k € N}. By definition of o', G,(c', t') = G,lo', r(1). Since
lim, | 4r(f) = 0, and since G, is continuous, we have

Gyla,, t') = [ilmGP(O",t’) = lifnG,,(o", rt)) = G,(0,,0) = o,.
110 [

Since t' > 0 was arbitrary, we are done.

Rest point property of o: Asp— 7, || ¢, — ¢, || = 0. Thus, as ¢, is Lipschitz continuous,
C,— C, pointwise (cf. Coddington and Levinson, 1955, p. 8, Theorem 2.1, or Eq. (1) below).
But, then G, — G,, and so ¢ is a rest point of G,.

Hyperstability: Consider adding a redundant strategy to (S, #). That is for some i, augment
S, with a pure strategy r;, where r; is equivalent to some mixture yv,€®,. Let §' = §_; x
S; U r, let 7’ be the appropriately augmented payoff function, and let &' be the space of
mixed strategy profiles for §'. For c€®’, let E(g) be the strategy profile in & which is
equivalent to o. That is, define E: &' — ® by E(o) = o\¢; where

bi(s) = ois) + olr)vis) for 5;ES;.

Let © € ® be asymptotically stable under a myopic adjustment dynamic F for (S, #). To
extend the result to hyperstability, we will show that E~! (©) satisfies the conditions of the
preceding analysis, and so is strategically stable relative to payoff perturbations in (S', 7).
Since the argument can be repeated a finite number of times, this implies that 6 is hyperstable
in (S, ).

So, for ¢ €d’, define

F'(o,t) = argmin D(7,a).
n€E™ " FiE@, 0

That is, for any o in @', first project back into &, then translate the projection by F, and
finally return to @' by taking the point in &' that is closest to o subject to being equivalent
to the translated projection. Figure 6 may help.
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Then, E(F'(o, t)) = F(E(o), 1), so that F' operates on E-equivalence classes of @' in
the same way as F operates on ®. From this, we conclude that E~'(0) is asymptoticaily
stable under F’. Continuity of F' is obvious as E~'(F(E{a), 1) is a continuous correspondence
in o and ¢, while D(., .) is strictly concave. Seeing that f' is well defined is a little involved.
However, note that

lim

[F’(O',t) -
0

; ] s (o)

is well defined and equal to fiE(g)) - m(E(o)\.) = 0 even if £ is not well defined. As the
only use of right differentiability and (1.1) in the previous analysis was to ensure that this
product is well defined and nonnegative, we can avoid the direct proof. Also note that if o
is a Nash quilibrium of (S, '), then E(o) is a Nash equilibrium of (§, 77). Because F satisfies
(1.2), F(E(o), 1) = E{og) for all r = 0, from which we conclude that F'{o, 1) = o for all ¢
= 0, so that (1.2) is satisfied by F'. Finally, E~'(U) is homeomorphic to &' (this is rather
intuitive, but tedious to prove: see the appendix in Swinkels, 1992¢). Taken together, this
implies that the previous analysis carries through for £7'(0) and F".

Proof of Theorem 2. Let p by an arbitrary KM perturbed payoff function. Then, there
8 =(8,,....8,). with§e(, HViENandy = (y,...,vy,) with y,€EInt(A) ViEN,
such that for each o€ ®,

plo) = 7((1 — 8)o + 8y),
where (1 — 8)a + &y is a convenient shorthand for
(1 = 8oy + &y, ... =8, + 8,v,).
For g €®, define f, (o) by

Silol = fitl = 8)o + 8y\o;), IEN. *)

Then, £, inherits Lipschitz continuity from f. If o;(s;) = 0, then (1 — 3)o + dy\a))ils;) =
0, and so

Lala)s,) = fild — 8o + dy\a)(s;) =0

since F is onto ®. Further, 2\‘&5‘];,‘»(0')(3,‘) = 0. Thus £, has a unique and continuous solution
F:d xR, -,
Finally,

Lila) - pio) = £l — 8)o + 8y\g;) - (] — 8o + 8y\.)
= fill = &)a + 8y\g;) - m(({(1 = §)a + dy\o)\.)
=0

since f satisfies (1.1). So, f, satisfies (1.1) relative to p.
Let p ~ 7. From (*) and continuity of f, f, — f pointwise. Since & is compact, and each
£, and fis continuous, | f, — f[ — 0.
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Choose V a neighborhood of © such that F(V, 1) C U ¥Vt = 0. Choose any A > 0 such
that B,(0) C Int(V). We will show that sufficiently close by KM perturbed games (S, p)
have Nash equilibria in B;, (0). Now, for each p, F, is an approximate solution to F. Thus,
(see, for example, Coddington and Levinson, 1955, page 8, Theorem 2.1) for all r = 0, and
forall c €,

|[Fla,t) — Fy (o, )] = "f;f I [eb — 1], )

where & is the Lipschitz coefficient for f. Choose T > 0 such that F(U, t) C B,,(0) Vi =
T. Then in particular, if f, is sufficiently close to f, then V¢ =< 2T, and Vy € U,

(F(y, 1) — Fo(y, 1) = A2

Choose any such p. Consider any 1 = Tand y € U. Now, F(y, T) € B,,(0) and ||[F(y, T)
— F,(y, T)||= \/2 by construction. Thus, F,(y, T) € B,(0). Since B,(6) C V, we can apply
the same argument repeatedly to conclude F,(y, &T) € B,(0), where & is the integer such
that 2T > +kT = T. Now, since t-kt = T, F[F,(y, kT), t-kT] € B,,(0), and since
t-kT < 27T,

IF,(F,(y, kT), -kT] — FIF,(y, kT), t-kT]| < A/2.

Finally, note that F,[F,(y, KT}, +-kT] = F,(y, t). Thus, F(U, 1) C V V1 = T. Also, F, has
no rest points on INB,(O).

Choose any such p. Subdivide U and define G, as in the proof of Theorem 1, with B, (6)
playing the role of © and F, the role of F, and with T taken from the above construction.
By choosing £ small enough in this construction, this can be done such that A U B C B,,(0).
By the same analysis as in Theorem 1, there is ¢ € A U B, o a rest point of G,. Then
g,(d) = O and so

(A - aloc,(a) - plor) + a(a)f, (o) p(ar.) = g,(0) - p(a)\.) = 0.

The second term of the LHS is nonnegative since f, satisfies (1.1) relative to p. Thus, the
first term of the LHS must be 0. As in Theorem 1, a(o) < | must hold, since a(o) = 0
would imply a rest point of F, on B C U\B,(8). Thus c, () - plo’\.) = 0 and so o € N(S,
p). Since A U B C By, (0), we are done. B

Proofof Theorem 3. Let (S, 7,) be obtained from (S, 7) by subtracting a positive constant
zfrom m(o\r;)) fori EN, o € ®,and r; € R;. In (S, 7,), elements of R; are strictly dominated,
and so there are no Nash equilibria of this game that put positive weight on U;eyR,. Thus,
F satisfies (1.2) for (S, w,). As f(o)(r;) = O for r; € R;, F also satisfies (1.1). Thus by Theorem
1, © contains a hyperstable subset for (S, 7,). Consider any small KM perturbation of the
original game. Note that weakly dominated strategy remains weakly dominated in KM
perturbations. Subtract z as before to create a small perturbation of (S, =) that thus has a
Nash equilibrium y near ©. y does not use elements of U,cyR;. Add back z. Since the
elements of R, remain weakly dominated, ¥ remains a Nash equilibrium. ®

Proof of Theorem 4. Define Q,: ¢ X ¥ x R, —» ® x ¥ by Q,(a, ¢, 1) = (C,(7, 1),
). Choose X > 0. We will show that for p sufficiently close to =, N(S, p) N B, (Py(0)) #
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&. Choose V C @ x ¥, subdivide U, and choose o and B8 as before. By compactness of
¥, we can choose ¢ such that B, (0) C Int(V) N B,(6). Define G, as before, substituting
Q, for C,. As before, for small ¢, G(., t) is a continuous map from U to U and so has a
fixed point o' for each t sufficiently small. Since there is no assumption that ¥ is finite
dimensional, the relevant fixed point theorem is Schauder’s (see for example Deimling,
1985, p. 60) rather than Brouwer's." As before, a fixed point of G(., f)on CUD U Eis a
positive length cycle of F, contradicting asymptotic stability, and so there is a fixed point
o' of G(., t) in A U B for ¢ sufficiently small and so (again using compactness of ¥) a rest
point o of G.
It remains to show o & B. So, for any y € B consider

Pe(Gly. ) — ¥)
t
=aly)fly) + [1 — a(Plc,(y).

g(y) =lim
tho

This expression is identical to the corresponding expression in Theorem 1. Thus, o € A.
But then, by definition of Q,, Py(0) € N(S, p). Finally, since o € A C B\(0), Py(7) €
B,(P4(©)). =

Proof of Theorem 5. For o € ® define A(o) by AMo) = max]A |0 = A =1, 0 +
Ac, (o) € ®}. For A = 0, the discrete canonical dynamic with scaling factor A for (S, p) is
given by

Jo)=0 + ['\XT)] (o).

The role of A will be clear shortly. By construction, J,(¢} maps ® to ®. Continuity of J,
follows from the continuity of A and c,. Since ¢, defines a continuous dynamic remaining
within the simplex, A(o) > 0 Vo. Thus

pila\J, () — pilo) = [55\1)-] o) plor) =0

with equality if and only if o € N(S, p). As before, consider an arbitrary neighborhood M
of . Let € > 0 be such that B,,(0) C M N U. Subdivide U as follows:

A B,(0)
B {y | e=D(O,y) =26
C UN{y | 2= DO, y)}.

Choose «: U — [0, 1] with a(C) = 1, a(A) = 0, and « continuous. Then, for any given
A, consider the following spliced map:

15 Schauder’s theorem only requires ¥ to be a closed and bounded subset of a Banach
space. We use the (stronger) compactness condition elsewhere in the proof. Schauder’s
theorem also requires a compact (rather than merely continuous) map. Since ¥ is a compact
space, continuous maps on ® x W are compact maps.
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J (o) onA
G(a) = { () F(a) + [l — a()]J,(e) onB
F(o) onC

Continuity of G is again clear from the continuity of J,, a, F, and B8, and from the
agreement of the appropriate functionson A NB, BN C,CND,and DN E.
Now, ¢, is bounded, and therefore

D(o.J,()) = DO, AMa)c,(o)/A)

is also bounded for any fixed A. Choosing A large enough, we can conclude that J,(A U B)
C U. From the convexity of U, we can conclude G(A U B) C Uand so G(U) C U.

We can now argue as before that G(.) has a rest point in A U B, and that for p close
enough to m, this rest point must actually be in A, and so a Nash equilibrium of (5, p). B
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