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ABSTRACT 

We consider a class of matrix games in which successful strategies are rewarded by 
high reproductive rates, so become more likely to participate in subsequent playings of the 
game. Thus, over time, the strategy mix should evolve to some type of optimal or stable 
state. Maynard Smith and Price (1973) have introduced the concept of ESS (evolutionarily 
stable strategy) to describe a stable state of the game. We attempt to model the dynamics 
of the game both in the continuous case, with a system of non-linear first-order differen- 
tial equations, and in the discrete case, with a system of non-linear difference equations. 
Using this model, we look at the notions of stability and asymptotic behavior. Our notion 
of stable equilibrium for the continuous dynamic includes, but is somewhat more general 
than, the notion of ESS. 

1. INTRODUCTION 

Over the past 5 years there has been much work in applying concepts of 
game theory to model various kinds of animal conflict. In particular the 
definition of ESS (evolutionarily stable strategy) of Maynard Smith and 
Price [4] seems to have provided a good notion of stable equilibrium, and 
most models that have appeared have contained one or more ESSs. Fre- 
quently, statements have been made about the behavior of a game-theoretic 
model away from an ESS, and sometimes simulation studies have been 
done to track this behavior. But, to our knowledge, there has been no 
systematic attempt to produce a notion of dynamic which might apply to 
the type of games being studied, and to relate the notion of stable 
equilibrium for this dynamic to the notion of ESS. 

In Sec. 2 we consider a general class of games (which includes the linear 
games usually studied), and provide a general definition of ESS. In Sec. 3 
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we introduce a notion of dynamic for both the continuous (overlapping 
generations) and the discrete case. Our main theorem is that under a 
non-degeneracy condition, an ESS is always stable for the continuous 
dynamic. This is not however true for the discrete dynamic, essentially 
because of an overshoot phenomenon. Finally we give an example of a 
dynamically stable equilibrium point which is not an ESS. 

2. EVOLUTIONARILY STABLE STATES 

Suppose we have a population of individuals who are playing a game in 
competition with one another. There are n possible pure strategies available, 
numbered 1 to n, and at each instant, every individual is using one of these 
strategies. For each strategy i lets, be the proportion of individuals who are, 
at that moment, using strategy i. The probability vector s=(s~,s~,...,s,) is 
called the state vector of the population. We assume that the payoff per unit 
time to an individual using strategy i is a function F(ils) of the state s of the 
population. We refer to F(ils) as the fitness of i in state s. 

The basic idea is this: the more fit a strategy is at any moment, the more 
likely it is to be employed in the future. The mechanism behind this is either 
that individuals tend to switch to strategies that are doing well, or that 
individuals bear offspring who tend to use the same strategies as their 
parents, and the fitter the individual, the more numerous his offspring. In 
any case, as time goes on, the strategy mix s may change. A dynamic game 
theory will look at how the state vector s moves with time, and will look for 
equilibrium states and examine their stability. 

Indeed, let K= {p : Zpi = 1, pj 2 0) be the state space of the population. 
That is, each element p E K represents a possible strategy mix. A state p in 
K is called an equilibrium state if the fitnesses F(ilp) are equal for all pure 
strategies i actually used by individuals in a population in state p. We let 
supp(p), the support of p, denote this set of pure strategies. That is, 
supp(p) = {i :p,#O}. An equilibrium state, if undisturbed, should persist, 
since all existing strategies are equally fit. However, in real life, an 
equilibrium state will almost surely be disturbed, so that we are only 
interested in it if the system, once disturbed, returns to the equilibrium 
state. If this is the case, the equilibrium is said to be stable. 

If q is in K, let us define F(qlp)=CqiF(ilp). We can think of F(qlp) as 
the average fitness of a group of individuals playing the game against 
members of a population in state p, when a proportion qi of the group uses 
strategy i. If we let e, denote the state of a population using strategy i only, 
then F(e,lp)=F(ilp). Observe that if p is an equilibrium state, then 
F(qjp)= F(plp) whenever supp(q) is contained in supp(p). 

When should an equilibrium statep be stable? Maynard-Smith and Price 
[4] have provided a way of answering this question. Their idea is very simple 
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in that it uses no more machinery than we have already developed, and 
requires no further assumptions. It is probably for this reason that it has 
appeared so much in the literature recently. They propose that p should be 
stable if whenever a small subpopulation switches to state q, its average 
fitness in the perturbed state will be less than the average fitness of the 
remaining population. This idea motivates the following definition. 

DEFINITION [4] 

A state p is called an ESS (evolutionarily stable state) if for every state 
qzp, if we letj=(l-e)p+eq (the perturbed state), then F(qlj)<F(p(jT) 

for sufficiently small E > 0. 

We remark that E in this definition measures the proportion of players in 
the q-group. Observe that an ESS is certainly an equilibrium state. Indeed, 
letting q be the pure state e, (concentrated at i) and letting E approach zero, 
we have P(ilp) < F(plp). If I IS in supp(p), this implies that F(ilp)= 

F(pJp), since thep-average of the numbers F(ilp) equals F(pjp). 

Suppose p is an equilibrium point. Define the matrix A by the formula 

ati= $F(ijp). 
/ 

Take qfp, and setp=(l -~)p+~q. Expanding F(qJp? and F(plp3 aboutp 
and subtracting yields 

F(qlp)-F(Plp)=F(qlP)-F(PlP)+&[(q-P)A(q-P)]+o(&). (1) 

Thus the lst-order advantage of the q-group over the p-group is given by 
the formula 

If p is an ESS, then for every q in K this should be non-positive if E is 
sufficiently small. Therefore, we must have F(qlp)- F(p(p) < 0 for every q 

in K. 
We will now introduce a non-degeneracy condition, which ensures that 

the lst-order advantage of the q-group over thep-group is strictly negative 
for sufficiently small E. First of all, if i is not in supp(p), we will require that 
F(ilp) < F(plp). Strategies that do not occur in an ESS are, if they emerge, 
strictly less fit than the strategies that do occur. Secondly, if i is in supp(p), 
then, as we have seen, F(ilp)=F(plp), and so F(qlp)= F(p(p) whenever 
supp(q) c supp(p). That is, if the members of the q-group restrict themselves 
to strategies already used by thep-group, the average fitness of the q-group 
in encounters with the p-group is precisely equal to the average fitness of 
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the p-group in encounters with itself. Thus, to get a strictly negative 
lst-order advantage of the q-group over the p-group we must have (q- 

p)A (q -p) < 0 whenever supp(q) c supp(p) and q fp. Equivalently, putting 
x = q-p, so that x#O, Cx, =O, and supp(x) csupp(p), then we must have 
X,4X < 0. 

DEFINITION 

An equilibrium point p is a regular ESS if F(ilp)< F(pJp) whenever 
i 4 supp(p), and xAx < 0 whenever supp( x) c supp(p), x # 0, and Z xi = 0. 

It is easy to check, using (1) and the discussion following it, that a 
regular ESS is an ESS. Generically, every ESS is regular. That is, in a 
mathematically precise sense, nearly every fitness function F(qJp) is such 
that every ESS is regular. In particular, if F is a fitness function for which 
ESSs are not all regular, then there is a fitness function F as close to F as 
may be required, for which they are. Therefore, since in any model of a 
conflict the fitness function provides only an approximation to the real 
fitness, we may always assume it to be such that all ESSs are regular. 

There are at least two reasons for working with regular ESSs. The 
definition of regular ESS provides what is in effect a simple computational 
scheme for checking whether an equilibrium point is a regular ESS. Details 
can be found in [2]. Secondly, certain theorems which we expect to be true 
about ESSs may fail in the absence of regularity. Our main dynamic-stabil- 
ity theorem in Sec. 3 is such a theorem. 

An important class of games are the linear games, so called because for 
every i, F(i(p) is linear inp. For such games there is a matrix A, called the 
payoff matrix, for which F(i]p) = a,p and F(qlp) = qAp, where a, is the ith 
row of A. For a linear game, Eq. (1) holds with o(s)=0 (A being the payoff 
matrix), and so if p is an ESS, it follows that XAX < 0 whenever supp(x) c 

supp(p), x#O, and Xx, = 0. This result was first published by Haigh [2]. 
Thus, for linear games, an ESS is regular if ag <pAp whenever i 4 supp(p). 
In particular, for a linear game, an ESS with full support is always regular. 

3. GAME DYNAMICS 

In order to discuss stability, we must now define a dynamic for the game. 
There are undoubtedly many ways to do this, each related to certain 
hypotheses about the population. We will assume a population of haploid 
individuals, each using the same pure strategy throughout its lifetime, and 
producing offspring using the parent’s strategy. Then the change in the 
population’s strategy mix is determined by the rate at which the users of 
each strategy reproduce. The simplest hypothesis is that of exponential 
growth or decay. So let us denote by ni the number of i-strategists in the 
population and by N=Cni the total number of individuals. Then the state 



ESS GAME DYNAMICS 149 

of the population is s=(s,, . . . . s,), where si = n,/N is the proportion of 

i-strategists, and rii = rini, where r, is the current growth rate of ni. It follows 
that fi= FN, where ?=Zsiri is the average growth rate. If we differentiate 
s, = ni/ N, we get s, = si(ri - r?. This should tell us how s moves in the state 
space K. 

To put this into our game framework, let us suppose that the fitness 
F(iJs) of a strategy is an estimate of the growth rate r,. In terms of our 
reproductive model, this means we must choose our fitnesses so that in time 
At each individual gives rise to F(ils) At additional individuals. Then our 
dynamic equation becomes 

ii=si[ F(ils)- F(sls)]. (2) 

Now suppose we have discrete generations. We interpret r, as the number 
of new individuals each individual produces in unit time. Thus if an 
individual simply dies without offspring, this corresponds to r, = - 1. Other- 
wise r, > - 1. Letting ri, denote the new value of n,, we have the difference 
equation ri, = nj(ri + 1). We calculate $ = s,(r, + I)/(?+ 1). Setting r, = F(iJs) 
we have 

As~=s,w)-w~) 
I I F(sjs)+ 1 . (4) 

The difference equation (3) is the one most convenient to work with, but the 
equation (4) for the increment As, = $ - si allows us to compare the continu- 
ous (2) and the discrete dynamics. We observe that if we plot a trajectory of 
s using (4), we approximate an integral curve of the continuous dynamic (2). 
The approximation improves with increasing F(sls)+ 1. We will return to 
this point. Let us also remark that the state space K is, as expected, 
invariant under both (2) and (3). 

In Sec. 2 we defined the notion of equilibrium point for the game. We 
also have a notion of equilibrium point for (2) (@=O) and for (3) (p^=p). 
All three notions are easily seen to coincide. We will now look at how the 
three notions of stability relate. 

If p is an equilibrium point, we call it stable if every trajectory that 
begins near p converges towards p. To examine the stability of p for the 
continuous dynamic we linearize the system (2) about p. That is, for s E K 
we let x=s-p. Then ii=&, and so (2) becomes &=(xi+pi)[F(ilx+p)- 
F(x +p(x +p)]. Collecting only those terms on the right-hand side that are 
linear in x gives a system of the form z? = Bx. This is the linearization of (2) 
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about p. We say that p is strictly stable (against perturbations in X.s, = 1) if 
the eigenvalues of the matrix B belonging to the invariant subspace Zxi = 0 
have strictly negative real part. A standard theorem in differential equations 
asserts thatp is stable for the system (2) if it is strictly stable. We can do the 
same thing for the discrete dynamic (3) to get the linearization ,?= Cx. In 
this case we say p is strictly stable (against perturbations in Es; = 1) if the 

eigenvalues of C belonging to Xxi =0 have modulus strictly less than one. 
As before, strict stability implies stability. 

THEOREM 

If p is a regular ESS, then p is a strictly stable equilibrium point of the 

continuous dynamical system (2), restricted to K. 

The proof of this theorem will be given in Sec. 4. It follows from this 
theorem that, for the continuous dynamic, a regular ESS is always a stable 
state. In fact, it will be shown in a remark following the proof that a regular 
ESS is globally stable in a continuous linear game. This means that even 
after a large perturbation the population will return to p, provided the 
perturbation does not eliminate entirely any strategy that was used before 
the perturbation. 

For the discrete dynamic the corresponding result is false. That is, for a 
discrete dynamic, an ESS need not be a stable equilibrium. To see why we 
might expect this, consider the linear game with three pure strategies and 
payoff matrix 

A= 1; 

i 

I -1 
1 

1 1; _e ! 

It is not hard to show that p =(f, f, f) is a regular ESS if E >O. The 
continuous dynamic for this linear game is 

Since uip =pAp, the linearization about p is given by Xi=pi(uix-xAp - 
PAX). Since Xxi =0 this simplifies further to give the equations li=piUiX. 
This system has matrix A /3. The eigenvalues corresponding to the subspace 
xxi = 0 are - .s/3 ? i/ fi . As E gets close to zero from above we get close 
to a situation where both eigenvalues are imaginary. This implies that the 
trajectories of the continuous dynamic (2) are almost closed orbits, rather 
like the picture in Fig. 2 for the case (Y -3 (however, these figures refer to a 

different example). Now the discrete dynamic (3) is equivalent to a numeri- 
cal approximation of the continuous dynamic. We would expect a numeri- 
cal approximation to diverge outward from a (nearly) closed orbit. This 
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error would accumulate, and for sufficiently small E > 0 we would expect, 
after a single cycle about p, to be outside rather than inside our starting 
point. Actually it is not hard to show by direct calculation that for all E > 0, 
p fails to be strictly stable for the discrete dynamic. 

The converse of the theorem is also not true. That is, a strictly stable 
equilibrium point of the continuous dynamic need not be an ESS. To see 
this, consider the linear game with three pure strategies and payoff matrix 

2 1 5 
A= 5 OL 0 

I I 1 4 3 

with parameter LY. The game has an equilibrium point in the interior of the 
state space K (a triangle) if - 8 < (Y < 8.5. As (Y moves from - 8 to 8.5, these 
equilibrium points trace out a straight line from (3,1,0)/4 on one edge to 
(0,2,3)/5 on another (see Fig. 1). It can be shown that this equilibrium 
point is an ESS if and only if (Y < 0. However, it is strictly stable for (2) if 
and only if (Y < 3. If (Y = 3 the equilibrium point is neutrally stable, and can 
be shown to be in fact stable by looking at higher-order terms. From this 
fact, one can use a standard argument (which only works in the plane) to 
show that for sufficiently small E > 0, the case (Y = 3 + E must have a stable 
limit cycle surrounding the unstable equilibrium point. In Fig. 2 we have 
plotted sample trajectories for the dynamical system (2) for various values 
of (Y. 

0.=8 

FIG. 1. The line of equilibrium points corresponding to various values of a. The point 

p is the equilibrium point for the case a = 1. It is dynamically stable, but it is not an ESS. 
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ci=3 
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‘-\, \ a=-, 

P 
\ 

b 

ci=4 k 
FIG. 2. 



ESS GAME DYNAMICS 153 

Let us try to explain, using this example, why the notions of ESS and 
strict stability do not coincide. It is important to seek such an explanation, 
because the result is at first counterintuitive. In doing so, we hope to clarify 
the biological significance of the notion of ESS. 

Before we embark on this explanation, let us point out that there are two 
different ways of regarding games of this type. Suppose there are three pure 
strategies. Then we can imagine that there are three types of players in the 
population, types 1, 2, and 3, and a player of type i always uses strategy i. A 
population in state p is simply one in which the proportion of players of 
type i is pi. On the other hand we can imagine that mixed strategies are 
available to each player. A player might decide to play strategy 1 with a 
certain probability, strategy 2 with another probability, and strategy 3 the 
rest of the time. In this case, to get the statep of the population we letp, be 
Ihe overall proportion of times that i is played at that time. Which 
interpretation is most suitable will depend on the nature of the game and 
the strategies being considered. In our mathematical treatment we do not 
distinguish between the two interpretations. But for the purpose of the 
following heuristic discussion let us use the first interpretation. Every player 
is one of three possible types, and the proportions pi may change because of 
differential fitness. 

Take the case a = 1. Then p = (15,11,9)/35 is the equilibrium point. Let 
us demonstrate that this is not an ESS. Take q=(18,17,0)/35 as the 
perturbing state and set j= (I- E)P + cq. Let us write down the fitness of 
each type of player. Note that Ap = (86,86,86)/35 and Aq = (53,107,86)/35. 
Then 

Takingp and q averages, 

F(plj)=86/35-0.22e, 

F(qjj)=86/35-0.19&. 

-bus F(plfi < F(qlA f or any E > 0. That is, in the perturbed population j, 
the q-group has higher average fitness than the p-group, and this implies 
that p is not an ESS. 

But notice that the q-group is composed of two types of players, type 1 
and type 2, and these types do not have equal fitness. Indeed F(2)p2 is 
much greater than F(llp?. The effect of this fitness difference will be to 
move the population, not towards q, but sideways towards ez (the pure state 
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with only type-2 players). As the state changes from j, the direction in 
which the population moves changes. The result of this continual change is 
to make the state rotate around p (see Fig. 1) and encounter the line pq 
again at a point closer top than j is. As this behavior continues the state 
converges top. Thus p is stable. 

Could the q-group have taken advantage of their greater than average 
fitness? Only if they shared this fitness in such a way as to preserve the 
“q-ness” of the group. In this case, this would require a transfer of fitness 
from type-2 individuals to type-l individuals, so that the ratio of type 1 to 
type 2 would remain at 18 : 17. This measure of concerted action on their 
part would certainly alter the dynamics and would presumably move the 
overall state away from j in the direction of q. Just what would ultimately 
happen would depend upon what assumptions we wanted to make about 
the possibility of other forms of concerted action. Indeed we would really 
need a new kind of game theory to handle these problems. [The experience 
of the social scientists is that it is very difficult to build a satisfactory theory 
of games which allows for cooperative behavior between players.] 

What then is the significance of the notion of ESS? Let us use heuristic 
language at this point. If in the future it appears to be biologically 
important to make the following ideas precise, then more work can be done 
in this direction. If p is an ESS, then p is stable not only in the every-man- 
for-himself game, but also in the game where fitness exchange between 
different types is allowed. If p is not an ESS, then either it is unstable in the 
every-man-for-himself game (e.g. (Y =4) or it is stable in this game (o = 1). In 
the latter case it will always be vulnerable to some concerted action on the 
part of a deviant subgroup. 

It would appear that if we are not going to permit fitness exchanges 
between different strategies, then the correct notion of stable equilibrium is 
not ESS, but our notion of strict stability. However, we can see at least four 
reasons why the notion of ESS will be the one that continues to be used in 
practice. First, it is easy to use and work with, and can be readily 
generalized to the case of infinitely many strategies (for example, the 
continuum of strategies in [5]). Secondly, our notion of dynamic stability 
required us to make an assumption about the way in which fitness is 
translated into growth, and hence relative growth of the different p. We 
chose the simplest exponential model, but others may lead to different 
notions of stability. The definition of ESS does not require these assump- 
tions. Thirdly, the games that have arisen in the biological literature seem to 
have enough ESSs to account for our observations. Only if we were to find 
a real game which seemed to persist in a state which was not an ESS, would 
we be inclined to look for stable equilibrium points of a suitable system of 
differential equations. Fourthly, many of the games which have arisen in 
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the literature have only 2 pure strategies. In this case, as is easily seen, strict 
stability and ESS are equivalent. 

4. PROOF OF THE THEOREM 

We may suppose that supp(p) = { 1,2,. . . , k}. Let A be the matrix defined 

by 

and let ai denote its ith row. Since F(Q)- F(p(p)=O when I< i & k, and 
since pi -0 when i> k, the linearization of (2) about p is given by the 
equations 

& =pi a,x -pAx - 2 x,F(j(p) 
( 

ii=x,[P(iip)-F(p/,p)], 

1 
, l<i<k, (5) 

i > k. (6) 

Now the F(ilp) are all equal to F(p(p) for 1 Q i Q k, so that (5) can be 
written 

%=A ( a,x-pAx-,=~+,5[F(jlp)-F(plp)] , 1 
using the fact that Cxj = 0. Thus the entire system can be written 

G H x=3x= o R x, 
[ 1 

(7) 

where G is the k X k matrix with entries gU==pi[uti-(pA)j], and R is 
diagonal with entries rii=F(ilp)-F(plp). The numbers rii are all <0 by 
our regularity assumption. 

Now, for any matrix D, let D(j) be the matrix obtained from D by 
subtracting column j from every column and omitting the jth row and 
column. If the subspace XX, = 0 is invariant under D, then the eigenvalues 
of D which belong to this subspace are just the eigenvalues of D ci) for any j. 
This is because Do gives the same transformation as D on the subspace 
ZXi = 0 provided, when using D 0, we omit the jth entry of all our vectors. 

Returning to our proof, it is enough to show that the eigenvalues of Bck) 
have negative real part. Now we can write 
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so that we will be finished if ‘we can show that the eigenvalues of Gck) have 
negative real part. The simplest way to do this is to think of the dynamical 
system i= Gx on Rk. Let V(x)=Z~x,~/Z p,. We will show that in the sub- 
space X:x, = 0, V(x) decreases along trajectories of this dynamical system. 
Indeed 

using the regularity of p and the fact that 2x,=0. We call V(x) a 
Lyapounov function for G in the subspace Cx, =O. It follows that the 
eigenvalues of GCk) have negative real part [3, (6.5)]. 

The proof appears awkward, but it seems to be unavoidably so. The 
problem is that the block-triangular form of B does not fit nicely with the 
subspace 2:x, = 0. However, if p has full support, then B = G and we need 
only work with the Lyapounov function. 

This completes the proof of the theorem. A slightly different argument, 
using the Lyapounov function 

F(x)= (l+~M+2) 

( 
n+X’+.. 

PI 
.+2 

1 

n 

shows that a regular ESS in a linear game is globally stable. 

We would like to acknowledge the he4 of the referees in making the paper 
more accessible to a biological audience. 
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