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ON PSEUDO-GAMES' 

BY ALFREDO BAROS2 

San Fernando Valley State College 
1. Introduction and summary. In the definition of a two-person zero-sum game 

given by Von Neumann and MViorgenstern it is assumed that both players know 
the rules of the game (e.g., the game tree, the information sets as well as the 
distributions of the ensuing payoffs for given strategy choices, etc.). We use the 
term pseudo-gane to denote the case where at least one player does not have 
complete information.3 

In this paper we restrict our attention to those pseudo-games in which player 
I, say, is only aware of his set of pure strategy choices (assumed to contain m 
elements: 2 < m < oo ) and not of player II's strategy choices (assumed to have 
uniformly bounded second moments). Player II is assumed to have complete 
information. More precisely, we shall study pseudo-games G that have the format 
given below: 

Let A = {al, a , am}j denote the pure strategy choices of player I. Denote 
by A* the set of probability distributions p over A (player I's mixed strategy 
choices). We sometimes write p in the form (p (1), * * , p (m) ), '=i p (j) = 1, 
and p (j) > 0, with the interpretation that when player I uses p he will play aj 
with probability p (j). Any element of A* that assigns mass 1 to some a ? A will 
be simply denoted by a. 

Let B denote the set (not necessarily finite) of pure strategies for player II. 
Let 63 be a fixed a-field of subsets of B and denote by B* the set of all probability 
distributions q over 63 (player II's mixed strategies). We assume that 6( contains 
all single point sets of B, so that B* contains all finite probability distributions 
over B. We postulate that we are given for each pair (a, b) in the product space 
A x B a distribution P(a,b) on the real line which represents the distribution of 
the loss incurred by player I (or gain by player II) if a e A is the strategy choice 
of I and b 8 B is the strategy choice of II. 

Contrary to the usual practice, the payoff for given pure strategy choices is 
thus allowed to be random. We do this in order that our main results may be 
proved in greater generality. An example of a pseudo-game with random pavoffs 
is given in Section 2. 
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from "perfect information," the latter requiring that each branch point of the game tree 
be an information set, or equivalently that at each stage, both players have complete 
knowledge of all past moves of the game. See Von Neumann and Morgenstern [8]. 
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The distributions P(a,b) are assumed to have uniformly bounded second 
moments. For each a 8 A, and fixed Borel set C, P(a,.) (C) is assumed to be 63-meas- 
urable. For each pair (a, b) 8 A x B, let X(a,b) be a random variable having 
P(a,b) as its distribution. Suppose that players I and II are using strategies p and q, 
respectively. They can determine the payoff of the pseudo-game by first selecting 
an a 8 A and a b 8 B according to the distributions p and q, respectively, and then 
treating an observed value of X(a,b) as the payoff. 

For every pair of strategies (p, q) that players I and II may use we define the 
expected value of the payoff R (p, q) by means of the equation4: 

(1.1) R (p, q) = ZL=1 p (j) f [f x dP(aj,b) (X)] dq(b). 
We are assuming that player I is only aware of the set A, while player II has 

complete information. However, by assuming instead that player I is also aware 
of the set B as well as the distributions P(a,b) , (a, b) 8 A x B, we can associate 
with every such pseudo-game G a game with complete information G'. Such con- 
cepts as "value" and "minimax strategy" do not carry over to pseudo-games. 
However by the minimax theorem, since A is assumed finite, every such game G' 
wvill have a value VG and player I will have a minimax strategy p': 

(1.2) VG = SUPqeB* R(p', q) = infp,A* SUpqeB* R(p, q) = SupqeB* infpCA* R(p, q). 
Suppose now that players I and II are playing a sequence of identical pseudo- 

games of the type we have been describing; i.e., they play one game, observe 
their losses and play the same game again (with possibly different strategy 
choices), continuing in this manner ad-infinitum. We shall refer to the individual 
games that make up the sequence as the subgames of the sequence. When playing 
such a sequence of pseudo-games a strategy for player I would be a rule P that 
would tell him for every j, as a function of his past plays (mixed strategy choices) 
and losses what mixed strategy to play during the jth subgame; a strategy for 
player II would be a rule Q that would tell him for every j, as a function of his 
own, and his opponent's past plays and losses, what mixed strategy q to play 
during the jth subgame of the sequence. We are thus allowing player II to know 
what plays player I has made, but we are not granting I the same favor. 

Among the rules P available to player I we define a special class of rules to be 
called rules constant on intervals. If x is any real number let [x] denote the largest 
integer that is less than or equal to x. For every a > 1, let 11(a) = 
(Ii (a), I2(a), - , I,(a), .-.) denote the partition on the set I of positive 
integers defined by the equations: 

(1.3) In(a) = {(Zkll[kfl) + 1, (Z7, [kf]) + 2, ,E [k] 

n = 1,2,y3 

Forexample,I1(2) = {1},I2(2) = {2,3,4,5},13(2) = {6,7, , 14}; etc. We 
4Note that the functions f x kdP(a'. )(x) k = 1, 2 and j = 1, - , in, call be expressed 

as the limits of finite sums of 63-measurable functions and are therefore also 63-measurable. 
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shall refer to I,(a) as the nth interval of the partition 11 (a). Note that the cardi- 
nality of I, (a) is [ni]. Let us suppose that player I is using some rule P that 
assigns, with probability 1, the same mixed strategy to the ith subgame as it 
does to the jth subgame whenever i and j belong to the same interval I. (a), 
n = 1, 2, 3, * . . In this case we say that P is constant on intervals. Thus if we say 
that player I is to play a certain strategy p during the nth interval of a partition 
11(a), we mean that he is to play p during every subgame whose index belongs to 
IL(a). The particular strategy that player I uses in the nth interval (a random 
variable depending on plays and losses occurring prior to the nth interval) will be 
denoted by pn . 

Forj = 1, 2, 3, ... , N, * let Xj represent the loss incurred by player I during 
the jth subgame. Note that the sequence {Xn} is a discrete stochastic process 
whose index set is the set I of positive integers and whose law of evolution is 
determined by the distributions P(a,b) and by the rules P and Q that the players 
use. The first objective of this paper is to prove: 

THEOREM. Suppose players I and II are playing a sequence of identical pseudo- 
games G satisfying (i) and (ii): 

(i) Player I has m ? 2 pure strategy choices. 
(ii) The distributions P(a,b) have uniformly bounded second moments and for 

each a e A and every Borel set C, P(a,.) (C) is 6(-measurable. Then there exists a class 
of rules { P}m for player I such that for all riules Q that player II may use we have: 

P ? {P}m == Pr (lim supNOO N` = XI < VG F, Q) = 1= 

We will show, that is, that the player with incomplete information can do as well 
asymptotically as he could if he had complete information. 

The members of {P}m will all be constant on intervals. Our second objective 
will be to seek a strong convergence rate for N-1 ?N=1 Xj . In the course of 
achieving this goal we will show that a good partition is obtained by setting ae 
equal to (m + 2)/m. 

2. Examples. A good poker player gains information about an opponent's 
strategies by observing his eccentricities: his hesitations, his apparent nervous- 
ness or calm, the way he holds his cards, etc. Because a player may not be aware 
of his eccentricities poker is, from this viewpoint, an example of a pseudo-game. 

The following is a more concrete example: Consider first a game of matching 
pennies: players I and II's possible plays being H or T (head or tail). Suppose 
player I pays player II one unit if the sides of the coins match, and incurs no 
loss otherwise. A strategy for player I would be a number 7r (O < x < 1), with the 
interpretation that when he uses 7r he will play H with probability 7r. A minimax 
strategy for player I would be wr = 2 and the value of the game is '. Suppose 
now that player II is a very perceptive opponent and is gaining information from 
player I's eccentricities. More precisely, let us suppose that player I initiates 
the game by playing either H or T. After I's play, Nature (a third player who 
operates as player II's spy) will play either 01 or 02 . We assume that P(01 I H) 
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P(021 H) = 2 aid that P(01 I T) = 1 = 1 - P(02 I T); but this iinformation as 
well as Nature's actual play in any particular instance will be known only by 
player II. Player II observes Nature's play and proceeds to play either H or T. 
As before, we let ir denote a mixed strategy choice for player I. A strategy for 
player II would now be a pair of numbers (p, q) (O < p < 1 and O < q < 1), with 
the interpretation that when he uses (p, q) he will play H with probability p (q) 
if he observes 61(02). (p, q) is known as a test in statistical parlance. Some of the 
payoffs for given pure strategy choices are random. Thus if player II uses (0, 1) 
and player I plays H, the payoff will be 1 with probability - and 0 with prob- 
ability -. For this example the risk function R(r, (p, q)) for player I (his ex- 
pected loss) can be computed as follows: 

R(r, (p, q)) = Pr ( (H, H) l (r, (p, q))) + Pr ((T, T) [(r, (p, q))) 

(2.1) = 7r[P(01 I H)p + P(02 1 H)q] 

+ (1- 7r) [P(0 I T) (1 -p) + P(02 [ T)(1 - q)] 

-7r(p + q) + (1-w)(1-p). 

Suppose, only for the moment, that player I is also aware of Nature's sample 
space and of the probabilities P(6i I H) and P(6i I T) for i = 1, 2. Under this 
added condition, our example becomes a game in the Von Neumann-Morgenstern 
sense. The value of the game is v = 3 and 7r = 3is a minimax strategy for player I. 

Player I, by observing his losses over such a sequence of pseudo-games might 
begin to suspect that he is divulging information to his opponent in one way or 
another. He knows that r- = is a minimax strategy in the ordinary game of 
matching pennies, and this fact might lead him to believe that w = would 
still be a reasonable strategy in the more general case that we have been examin- 
ing. However, if in this example, player I uses 7r - , then player II can use the 
pure strategy (0, 1) and we will have: 

(2.2) R (2, (0, 1)) = -1 - - 1 + 2 1 = 3 > 3. 

Player 1 wvill begin to suspect that he is playing a pseudo-game when it appears 
to him that although he is playing what he thinks is his minimax strategy, 7 = 
he is losing more than half the time. The question is what can he do about it? It 
is clear (to player II) that player I's average loss can be kept to at least 2. The 
results of this paper show that player I has a strategy that keeps the limiting 
average loss to at most 3. 

3. The class of rules {P}mv. We begin by giving some prelimiinary definitions. 
Let Sk(k = 1, 2, 3, *.. ) be the set of distributions on A that satisfy for every 
j(j = 1, m,n) the condition that p(j) = i/(2kn) for some i E { 0, 1, , 2m}l. 
The number of such distributions is: 

(2knrn +rn 1) 
(3.1) ~bk = n 
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Now let a and A be two fixed constants. Define the sequence no, ni, n2, 
nk, ... by means of the equations: 
(3.2) no = O, nk = nk-l + [4'k"] for k = 1, 2, 3, *** 

The members of { P} m are determined by two parameters: a and S. An arbitrary 
member of { P } will be denoted as P (a, 3). We impose two conditions on the 
parameters: 

(3.3) (i) ae > 1, (ii) O < A < 1. 

Restriction (ii) insures that nk - nk-1 is never smaller than 1k . Condition (i) is 
necessary for the proof that is presented of Lemmas 5.2 and 5.3. 

A rule P(a, A) will be constant on the intervals of the partition 11(a). For 
each interval, player I records the mixed strategy he uses for that interval as 
well as the average loss incurred by him in that interval. For every interval ny pn 

(the strategy used in the nth interval) is determined by P (a, 3) in the following 
manner: 

Begin by ordering the elements of Sk (k = 1, 2, 3, ***) in any manner and call 
the jth member of the sequence pj(k). The members of Sk are called the available 
probabilities for the kth stage (the intervals numbered nk-1 + 1 through nk). 
Begin play as follows: During interval j (j = 1, 2, ... *, di) play pf('). During 
those intervals numbered (P + 1 through ni play any of the available probabilities 
for the first stage whose greatest recorded average loss incurred in any interval 
is a minimum. In general, during interval i (i = nk-1 + 1, * * * , nk-1 + bk) play 
A&-)nk-_lk*During those intervals numbered nk-1 + (bk + 1 through nk , play any of 
the available probabilities for the kth stage whose greatest recorded average loss 
incurred in any interval after interval nk-1 is a minimum. 

An example may clarify the ideas. Suppose m = 2, a = 2, and = 3. Then 
(P= 5 andni = 125.S = {(1, O), (0, 1), (4 41), (34, ), (-, 

I Let pi() (i = 1, 
*., 5) be the ith member of the ordered sequence given above. During the 
interval i (i = 1, * , 5) player I is to play pi('). Suppose that the average 
losses incurred by him in each of those intervals were 71, 4.8, 2, 3, and 5/2, 
respectively. 

According to our rule during the 6th interval he would play p3(1) = (1, 3). 
Suppose that he does this and that the average loss incurred in that interval is 
-8. For the 7th interval the indicated choice is again (4, 4). Suppose he plays 
p3(1) in the 7th interval and that the average loss incurred in that interval is 
5/2. For the 8th interval he can choose either p3(1) or p5(1), but suppose that he 
plays p3(1) again and that the average loss incurred in that interval is 10100. 
For the 9th interval the indicated choice is now p5(M) or (, 2) And so on, until 
the 125th interval. Then the whole process begins again; this time using IP2 
and n2. He repeats this procedure again and again, ad-infinitum. 

4. The method of proof. Define the distance d of any two distributions pi 
and P2 in A* to be: 
(4.1) d(pi , P2) = rZ?=1 (pl(j) - p2(j))2]2 
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Note that under this relation A * is a metric space. For p E A*, define F (p) by 
means of the equation: 

(4.2) F (p) = SUpqeB* R (p, q). 

The proof of the theorem presented in the introduction depends on the following 
results: 

LEMMA 4.1. For all pi and P2 in A* we have |F(p1) - F(p2)j _ cd(pi, P2) 

where c = m2max1jmsupqEB*IR(a1, q)j. 
PROOF. Since the distributions P(a,b) are assumed to have uniformly bounded 

second moments m' maxl<j<m supqeB* IR(aj, q)I is finite and we are able to 
prove that the function F is Lipschitzian. Assume without loss of generality that 
F(pi) > F(p2) . According to (4.2) for every e > 0 there exists a q(e) E B* 
such that F(pi) < R(pi, q(e)) + e. Therefore: 

IF(pi) - F(p2)1 = F(pi) - F(p2) < JR(pi, q(E)) -R(p2, q(e)) + e 

(4.3) = I Z= R(a1, q(E) )(pi (j) p2(j))j + e 

? maxl <j?m supqLB* JR (aj, q) ZI'=1 |pi(i) -p2(i) I + E 

? maxl <j<m supqeB* JR (aj, q) |ml d(pi, P2) + E. 

Since this relation is valid for all e > 0 the theorem is proved. 
LEMMA 4.2 For every p E A * and every k ? 1 there exists a distribution gq(k) - Sk 

such that d (p, g( )) < 2. 
PROOF. The proof is straightforward but tedious and will therefore be omitted. 

As no uniqueness is implied by the lemma, for fixed p eA* we will let gp(k) 

simply denote an arbitrary element of Sk satisfying d(p, gp(k)) < 2 
Although the proof of the main results that is to follow depends on many con- 

cepts and is necessarily laborious, the basic idea, which we now outline, is quite 
simple and intuitive. Consider play within the kth stage only. From (1.2) and 
(4.2) there exists a p' 8 A* satisfying VG = F (p') = infp,A* F(p). Combining 
Lemmas 4.1 and 4.2 player I knows that for some available probability gp?, 
the average loss incurred in any interval in which g(k*) is used will not exceed VG 
by more than c2 k + Ek (where Ek iS the kth member of a sequence of random 
variables satisfying P(lim SUpk,o Ek > 0) = 0, as will be shown by Lemma 5.2). 
Now player II can trick him into using an inferior strategy by allowing him some 
early wins and then reap the profits temporarily. But the key point is that 
player I may use a strategy p other than gp) only so long as the average loss 
incurred in any interval in which p" is used is less than or equal to VG + c2-k + Ek . 

Since the number of available probabilities for the kth stage is bk, it is clear 
that player I will not incur an average loss exceeding VG by more than c2k + Ek 

on more than 4k - 1 intervals. To convince oneself of the plausibility 
of the theorem presented in the introduction, one has only to note that 
bk = o(nk - nk-l), the number of intervals comprising the kth stage. 

5. The proof. Throughout this section we assume that players I and II are 
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playing a sequence of idenitical pseudo-games G having the format described in 
the introduction and that the value of the corresponding game G with complete 
information is VG . We assume that player I is using a rule P(ca, /) e {P}m , 
for some fixed in > 2, as described in Section 3. Except for the discussion of 
Theorem 5.2, a and A are assumed fixed. 

Define the constant Ill as follows: 

(5.1) M = sUP(P,q)eA*XB*E l P(j) f [f x2 dP(ai,b)(X)] dq(b). 

For p E A*, define G((p) as follows: 

(5.2) G(p) = infqesB R (p, q). 

For n = 1, 2, 3, ... , anid] = 1, ... , [n"], let Yn,j denote the loss incurred by 
player I during the jth subgame of the nth interval, so that Z ' Yn,i, denotes the 
total loss incurred by player I in the nth interval. For arbitrary n, the random 
variables Yn j are not in general independent, since even if player I is using a 
rule that is constant on intervals, there is no guarantee that player II is behaving 
in a similar manner. However, because of the way M, F(p), and G(p) were 
defined, the following important inequalities are immediately forthcoming for 
all n and j= 1, X [n]: 

(5.3) E((Yf) njlX*XXXYl a.s., 

(5.4) G(pn) _ E(Yn,j I Yn,j-1; .. * Ynj , pn) _ F(pn) a.s. 

If j = 1, (5.3) and (5.4) are simply to be read as E(( Yn,1)2) _ M and G(pn-) < 
E(Ynl,I pn) < F(pn), respectively. 

LEMMA 5.1. For n = 1, 2, 3, * 1 < i _ [n'], and all 7 > 0, there is a positive 
constant AI* satisfying: 

(i) P(Zn1 Ynti > ([n'] -i + 1)F(p3) + Y Yn_ i * Ynj X pn) 
< ]J*([na] -i + 1)/,y2 a.s. 

(ii) P(Z '=' Yn,j < ([na] - i + l)G(pn) - 7 IYni Ynl , pn) 
< M*([na]- i + )/'y2 a.s. 

PROOF. By symmetry it is sufficient to prove (i). Note that if M1 and M2 are 
constants satisfying (i) and (ii) respectively, then M* = max [M1, M2] will 
satisfy both assertions. Assume without loss of generality that F(pn) = 0, SO 
that (5.4) and (i) are to be read as G(pn) ? E(Yn,j| Ynj X * Yn,l X pn) ? 0 

p(E~al y'j >Y Iyn'i1 ) 
.. , p/) -2 a.s. and P(Z - Yn,i > y pn) < M*([na i + l)/y a.s., 

respectively. If in addition i = 1, then (i) is simply to be read as 
pw al ] J n < M *[naj /,Y2 

M, as defined in (5.1), will play the role of M* in assertion (i). 
If X is a random variable, we define the random variable X+ as follows: 

(5.5) X+ = x, if X _ 0, X+ = 0, otherwise. 
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Note that if X and Y are random variables, then we have: 

(5.6) (X + Y)+ < JX+ + YL. 

We have only to prove: 

(.)P(( E >_ Yn,j > I Ynl,i-1 Yn,1 iPn) < Ml([n'] - i + 1)/7' a.s. 
From a trivial extension of Chebyshev's inequality, it is sufficient to prove: 

(5.8) E(((ZE nal 
Yn,j)+)2 I Yn,i- Ynj, Pn) < M([na] - i + 1) a.s. 

Now: 

(5.9) E((Yn,i)2 | Yn,i_1, 7. Ynj 1pn) ? M a.s. by (5.3) 
Thus (5.8) is automatic if i = [n']. If i < [n'], then for all k (i ? k < [n']) we 
have: 

E((( E3 Yn+l .)+)21 yn,_ . y Yn11P) 

< E((( 7 j=z Yn,j)+ + Yn,k+l)2 Yn,i-l . Yn,1I Pn) a.s. by (5.6) 
(5.10) = E(E(((Z j=i yn,j)+)2 + 2(Z57 Y ,y)+(Yn ) 

+ (Yn,k+l )2) Yn,k , . , Yn,i,17 Ynj , pn) a.s. 
< E(((E =j= Yn,j) )2 |yn,i_1) .. yn'l I pn)+A 

by (5.3) and (5.4). 
Hence, by recursion, we have: 

(5.11) E((( -Z Yn,j) )2| Yni_,.. Ynj,i pn) < (k - i + 2) M a.s. 

(5.8) follows by setting k = [n] - 1. 
LEMMA 5.2. If 0 < E < (a - 1)/2, then 

Pr ( EZ Yn, > [na]F(pn) + na-e i.o.) = 0. 

PROOF. Set i = 1, and -y = n' e in Lemma 5.1. Since a > 1, according to (3.3). 
En=l [na]/,y2 < oo. The lemma follows directly from the Borel-Cantelli lemma 
[3]. 

LEMMA 5.3. There exists a constant C satisfying: 
Pr (maxk<[na] 2:=l Yn,j > Cna i.o.) = 0. 

PROOF. Let M' = SUp(p,q)eA*XB* JR (p, q) 1. Let n and -y > 0 be fixed. Let n* de- 
note the first i (1 ? i < [n']) for which p Y=1 , > 2(nMf + '), if such exists. 
Then: 

P(ZEuj-l Ynj > ([n ]M' + -y)) 

(5.12) _ .' P(n* - )P(Z,i+{ Y _ -([n lM + P')I n = i) 
? ( 1 - (M[n] ) /^y2)p (maxk<[nua] Zj=1 Yn,j > 2(naMM + y)) 

for some positive constant M* by Lemma 5.1. 
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Let0 < E < (a - 1)/2,andset-y =no-. Then: 

P(maXk < [nal] = Yn,j > 2(nflaM + na-)) 

(5.13) - O(P(Z1= Yn,1 > [nl]M' + na-e)) by (5.12) 

0(n2E-a) by Lemma 5. 1. 

By the Borel-Cantelli lemma, since a > 1, we have for all E satisfying 
0 < E < (a - 1)/2: 

(5.14) P(rmaXk<[nal Z =1 Yn,j > 2(nallI + na) i.o.) = 0 

Lemma 5.3 is an immediate corollary of (5.14). 
Define Nk and Lk as follows: 

(5.15) Nk = Zn=nkfl+l [no], 

(5.16) Lk = max k l?l?flkmaxl<i<[la] (Z5Lnnk?1+1 Z?in Yn,j + ZS=1 Y,j) 

Note that Nk denotes the total number of subgames comprising the kth stage, and 
that Lk denotes the maximum loss incurred by player I during the kth stage. 

Recall that a, f, and m are assumed fixed. For all y > 0 define 4,(y) as follows: 

(5.17) 4,&(y) = max [1 -/((a + 1)(m - 1)), 

(a + 3 + 2-y)/(2a + 2), (a + f)/(a + 1)] 

LEMMA 5.4. Assume VG = 0. Then there exists a constant H such that for all 
-y > 0 we have: 

P(Lk > HNk"') i.o.) = 0. 

PROOF. One cani show that Lemma 5.2 implies for all -y > 0: 

(5.18) P(Z-l' Yn,j/[=n'] > F(pn) + n(-a)'2+y i.o.) - 

Since VG = 0 by assumption, (1.2) and (4.2) imply the existence of a p' c A* 
satisfying F(p') = 0. By Lemma 4.2 there exists for every k a strategy g(k) ISk 

(the available probabilities for the kth stage) satisfying d(p', g(k)) < 2-* By 
Lemma 4.1, we have for all k: F(g(k)) < c2- where 

I 

c = M2 max, _j <m supqEB* R(aj, q)1. 

(5.18) implies the existence of a random variable k*, such that if k > k*, then 
for all y > 0 we have: 

(5.19) nk1l+l l < n nk and 

Pn = I 
n 

Yn ,j/[n'] c2k + n(la)i2+ 

i.e., if k > k*, then for all y > 0, player I will not incur an average loss greater 
-k (1 2) 12+ky than c2 + n -' on any interval within the kth stage in which gqk is used. 

For all y > 0, define the set T(k, -y) as follows: 
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(5.20) T(k, -y) = {n I nk-1 + 1-n < nk n f -Z ' Yn,i/[nk] > c2- + n(l-oO/2+}y 

(5.15), (5.16), (5.20), and Lemma 5.3 imply the existence of constants c and C 
such that for all y > 0, we have: 

(5.21) P(Lk > Nk(c2 + nk(- /2n) + ZET(k,y) n y + Cnka a o) = 0. 

Let k be fixed, and assume k > k* so that (5.19) is satisfied. Each of the 
members of Sk is played in one and only one of the intervals numbered nk-1 + 1 
through nk-1 + 4k . (5.19) implies for all y > 0, that in the intervals numbered 
nk-1 + '4lk + 1 through nk a strategy p E Sk other than gp I may be used only if 
the greatest average loss incurred in any interval in which p" is used is not 
greater than c2-k + n(l-a) /2+y. Since Sk contains cJik elements, for all -y > 0, 
T(k, -y) will not contain more than I4k - 1 elements. (5.21), Lemma 5.3, and the 
contents of this paragraph imply that for some constants c and C, and all y > 0, 
we have: 

(5.22) P(Lk > Nk (c2 -k + nkl ?- /2+y) + 4kCnka i.o.) = 0. 

In order that (5.22) may imply Lemma 5.4, a careful study of several interest- 
ing inequalities is required. (3.1) and (3.2) yield: 

(5.23) nk E Z -BIk '] < E =l (m(2j + 1))(m1)/ - (2k(m1- 1) 

and 

(5.24) nk' => -4-k (2km)ml/(M - 1)! 

Hence: 
a+1 a 

nk = nknk 

(5.25) = O[(2k(m-1)I )(2ak(m-1)/)] by (5.23) 

- O(k ][n!-1]) by (5.24) 

= O(Nk) by (3.2) and (5.15). 

(5.15) also implies: 

(5.26) Nk = 0(nk+l). 

(5.23) and (5.26) yield: 

(5.27) 2-k = 0(nk #/(m1)) - O(Nk -1 ((m-1)(a+1))) 

(5.24) and (5.25) yield: 

(5.28) nk = ?(Nk11(a+l) 

and 

(5.29) c?k _< (nk#) = - (Nk ) 

Lemma 5.4 follows directly from (5.17), (5.22), (5.27), (5.28) and (5.29). 
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THEOREM 5.1. Suppose players I and II are playing a sequence of identical 
pseudo-games G satisfying (i) and (ii): 

(i) Player I has m > 2 purely strategy choices. 
(ii) The distributions P(a,b) have uniformly bounded second moments and for each 

a e A and every Borel set C, P(a,.) (C) is 63-measurable. Then there exists a class of 
rules {P}m for player I such that for all rules Q that player II may use we have: 

P c {P}m =X Pr (lim supNjvO N' ZF= Xj _ v G I, P = 1. 

PROOF. Since a and 3 satisfy (3.3) and m is > 2, (5.17) implies that for suffi- 
ciently small y > 0 we will have AV(zy) < 1. Thus it is sufficient to prove that there 
exists a constant K such that for all y > 0 we have: 

(5.30) P(Z1=FXj > NVG + KN(") i.o.) = 0. 

We lose no generality by assuming that VG = 0 and proving instead that for 
some constant K and all y > 0 we have: 

(5.31) P(ZN=1Xj > KNO7) i.o.) = 0. 

Lemma 5.4 implies the existence of a constant H and a random variable k* 
such that for all y > 0 we have: 

(5.32) k > k* = Lk < HNk'(7). 

By (5.32), for all k > k* and y > 0 we have: 

(5.33) Ek Lj < Ezk:, Lj + Z H=k*+1 HNi 
But: 

(5.34) P Lj < oo) = 1. 

For all y > 0, (5.33) and (5.34) yield: 

(5.35) Pp(Zk=, Lj > 2H Z1Nj() i.o.) = 0. 

Now: 

(5.36) ZL1- Nj < N < EZ=_ Nj =X E= Xj _ 71=, Lj. 

Let inf, {f(y) = ro > 0. By (5.35) and (5.36), in order to prove (5.31) we need 
only prove that there exists a constant C such that for all N and r (ro < r < 2ro) 
we will have: 

(5.37) S-1 Nj < N < Z> Nj = Z= N3 < CNN. 

To prove (5.37) it is in turn sufficient to prove the existence of a constant C such 
that for all k and r (ro ? r < 2ro) we will have: 

(5.38) ZS=1 Nj < CNr1. 

But ro determines constants C1 , C2 , and C3 that satisfy for all k and rO ? r < 2rO: 
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Ek 1 Nj? < C1 Zk_= 2r (m1)(a+1)/ by (5.23) and (5.26) 

(5.39) <~~~~~~~~ C2 (2 (k-1) (M-1) (a+l) /9)7. 

< C3Nk_ by (5.24) and (5.25). 
(5.39) completes the proof. 

It is interesting to find the optimal choice of a and d within the approximation 
given by (5.30). We therefore choose a and : to minimize max [1 - /((a + 1) 
(m - 1)), (a + 3)/(2a + 2), (a + 3)/(a + 1)] and prove: 

THEOREM 5.2. For all rules Q that player II may use and alle > 0 we have: 
Pr ( XENX> NVG + N(2m+l)/(2m+2)+E i.o. I P((m + 2)/m, (m - 1)/n), Q) = 0 

PROOF. Throughout this proof we restrict our attention to values of m > 2 
a > 1, and 0 < 3 < 1, so that (3.3) is satisfied. To prove Theorem 5.2 it is 
sufficient to prove: 

(5.40) infa,s (max [1-f/((a + 1)(m 1)), 

(ax + 3)/(2a + 2), (a + #)/(a + 1)]) = (2m + 1)/(2m + 2) 

and that the minimum value is obtained for a (m + 2)/n > 1 and 
d(m - 1)l/n < 1. We have: 

infa,,[max[1 - 3/((a + 1)(m - 1)), (a + 3)/(2a + 2), 

(5.41) (a + 3)/(a + 1)]] = infa [max ((a + 3)/(2a + 2), 

inf# [max (1 - A/( (a + 1) (m - 1)), (a + /d)/(a + 1))])]. 

Now niote the following: For fixed A, both 1 - /(a 1) (m - 1) and 
(a + 3)/(a + 1) are strictly increasing functions of a. For fixed a, 
1 - A/( (a + 1) (m - 1)) is a strictly decreasing function of A, while 
(a + ? )/ (a + 1) is a strictly increasing function of A. Therefore 

inf# [max (1 - /((oa + 1)(m - 1)), (a + /)/(a + 1))] 

is a strictly increasing function of a. Also (a + 3)/(2a + 2) is a strictly de- 
creasing function of a. This implies that the minimum occurs when the functions 
are equal, if such occurs. 

The reader can verify that for ao = (m + 2) /m and 3o = (m - 1)/nt we have: 

(5.42) 1 - 3o/((ao + 1)(m - 1)) = (ao + 3)/(2ao + 2) 

= (ao + 3o)/(oao + 1) = (2m + 1)/(2m + 2). 
The contents of the previous paragraph imply that this solution is unique and 
that (5.40) follows from (5.41) and (5.42). 

6. Remarks. 
1. Recall that 4Ik = 0(2k(m1)). The author experimented with rules in which 

1?k satisfied: (a) 4k= O(km-l) or (b) d1k = 0(eabk), a > 1 and b > 1. In both 
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cases the main result was obtainable. However the method of proof presented in 
this paper was not sufficient to produce results as good as those obtained in (5.30) 
and Theorem 5.2. 

2. The method of proof presented required a to be greater than 1. Suppose we 
remove this restriction and suppose that the distributions P(a,b) are allowed to 
have m + 2 + E uniformly bounded moments for some e > 0. The author believes 
that it is possible to prove the following stronger versions of (5.30) and Theorem 
5.2: 

(a) There exists a constant H such that for every -y > 0 we have: 

Pr (Z.=l Xj > NVG + HNmax [l-/ (a+l) (m-r) (ax+2+y) 12(a?+l) (a+?) /(a+1)J i.o. O. 

(b) For all rules Q that player II may use and all e > 0 we have: 

Pr (Z=L Xi > NvG + N(m+l)I(m+2)+E i.o. P(2/m, (m - 1)/m), Q) = 0. 

He will endeavor to prove these results in a later paper. 
3. Suppose player II is using a fixed strategy qo E B* throughout the sequence 

of games and player I is using a strategy P { PIm , as described in Section 3. 
Then 

Pr (lim sup N1 Z=1 X < infpeA* R(p, qo)) = 1. 

Thus every P e { PIm is asymptotically Bayes with respect to qo . If player I 
uses P( (m + 2)/m, (m - 1)/m), then the convergence rate given in Theorem 
5.2 is attained. 

4. The argument presented in (5.12) can be extended to prove the following 
generalization of Skorohod's inequality [5]: 

THEOREM. Let Zi, Z2 , Z3, X * * be a sequence of random variables. Let Sk = def 

E jkl Z3 . Let n be a fixed positive integer, X > 0 a fixed constant, and let n * be the 
first integer k such that ISkl > 2X. Suppose that for some c ? 1 and all k ? n we 
have P(IS. - Sk| > X In* = k) < c. Then (1 - c)P(maXk?flISkl > 2X) < 
P(ISnI > X). 

PROOF. 

P(ISnI > X) k Z , P(n* = k, ISn - Sk ?< X) 
= Zk-lP(n* = k)P(ISn - Skl ? XAn* = k) 

> (1 - c)P(maXk<?niSkl > 2X). 

COROLLARY (Skorohod's Inequality). Let Z1, Z2, Z3, v be a sequence of 
independent random variables and let Sk -def :j=l Zj. Let n be a fixed positive 
integer and suppose that for some pair (X, C) of positive constants and all k ? n we 
have P(ISn - Skl > X) < C < 1. Then P(maxk?n |Ski > 2X) < P(ISn1 > 
W)/ (1 - C). 
5. Convergence problems similar to the one presented here have been studied 

by Feldman [1], Samuel [4], and Van Ryzin [6], [7]. However in all cases at least 
a partial knowledge of the payoff function is assumed. Harsanyi [2] has studied 
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the problem of reducing the analysis of a game with incomplete information G to 
that of a game with complete information G* equivalent to G. 
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