CONTROLLED RANDOM WALKS
DAVID BLACKWELL

1. Introduction. Let M = ||m;;|| be an » X s matrix whose elements m,;; are
probability distributions on the Borel sets of a closed bounded convex subset
X of k-space. We associate with M a game between two players, I and II, with
the following infinite sequence of moves, where » = 0,1, 2, .. .:

Move 4n + 1: I selects 1 =1, ..., 7.

Move 4#n + 2: II selects j = 1,...,s not knowing the choice of I at
move 4n + 1.

Move 4n + 3: a point x is selected according to the distribution my;.

Move 4n + 4: x is announced to I and II.

Thus, a mixed strategy for I is a function f, defined for all finite sequences
a=(a,...,a,) with g,eX, n=20,1,2,..., with values in the set P, of

r-vectors p = (py, . .., p,), p: = 0, X p; = 1: the ith coordinate of f(a,, . . .,a,)
specifies the probability of selecting 7 at move 4» + 1 when a,, . . ., a, are the
X-points produced during the first 4z moves. A strategy g for II is similar,
except that its values are in P,. For a given pair f, g of strategies, the X-points
produced are a sequence of random vectors %;, %s, . . . , such that the conditional

distribution of %,,; given %y, . . ., %, i8 X f; (%1, - - -, %) My58;(%1, - - -, %), Where
b,
/i g5 are the ith and jth coordinates éf f. g
The problem to be considered in this paper is the following: To what extent
can a given player control the limiting behavior of the random variables
Xp = (%, + ...+ x,)/n? For a given closed nonempty subset S of X, we shall
denote by H(f,g) the probability that ¥, approaches S as » — oo, i.e., the
distance from the point %, to the set S approaches zero, where %, %,, . . . is the
sequence of random variables determined by f, g. We shall say that S is
approachable by I with f* (11 with g*) if H(f*,g) = 1 (H(f, g*) = 1) for all g(f),
and shall say that S is approachable by I (II) if there is an f(g) such that S is
approachable by I with f (IT with g). We shall say that S is excludable by I with
f if there is a closed T disjoint from S which is approachable by I with f.
Excludability by 11 with g, excludability by 1, and excludability by 11 are defined
in the obvious way.
It is clear that no S can be simultaneously approachable by I and exclu-
dable by II. The main result to be described below is that every convex S is

336



either approachable by I or excludable by II; a fairly simple necessary and
sufficient condition for a convex S to be approachable by I is given, a specific f
which achieves approachability is described, and an application is given.
Finally, an example of a (necessarily nonconvex) S which is neither approacha-
ble by I nor excludable by II is given, and some unsolved problems are men-
tioned.

2. The main result. For any p € P,(q € P,) denote by R(p) (T (q)) the con-
vex hull of the s(r) points Z Py, =1, (2 Mgyt =1,...,7)

where ;; is the mean of the dlstnbutlon m;y. By selectlng 1 with distribution ¢
at a given stage, I forces the mean of the vector x selected at that stage into
R(p), and no further control over the mean of x is possible. It is intuitively
plausible, and true, that R(p) (T'(g)) is approachable by I (II) with f =
(¢ = ¢). Thus, unless S intersects every 7'(g), it is excludable by II and hence
not approachable by I. It turns out that any convex S which intersects every
T(q) is approachable by I; a more complete statement is

Theorem 1. For any closed convex S, the following conditions are equivalent:

(@) S is approachable by 1.

(b) S intersects every T (g).

(¢) For every supporting hyperplane H of S, there is a p such that R(p) and

S are on the same side of H.

If S is approachable by I, it is approachable by I with f defined as follows.
Foranya = (ay, . .., a,) forwhichd = (a, + ... + a,)[n €S, f(a) is arbitrary.
Ifd ¢S, f(a)is any p € P, such that R(p) and S are on the same side of H, where
H is the supporting hyperplane of S through the closest point sy of S to @ and
perpendicular to the line segment joining @ and s,.

Theorem 1 is proved in [1]; equivalence of (b) and (c) is an immediate
consequence of the von Neumann minimax theorem [2], while the proof of the
rest of the theorem is complicated in detail, though the main idea is simple.

3. An application. As an application of Theorem 1, we deduce a result of
Hannan and Gaddum. This result concerns the repeated playing of a zero-sum
two person game with » X s payoff matrix 4 = [|a;||. If the game is to be
played N times (V large), and I knows in advance that the number of times II
will choose 7 is Ng;, =1, ..., s, he can achieve the average amount %(g)
= max X 4;;q;. Hannan and Gaddum show that, without knowing ¢ in advance

i
I can play so that, for any g, I's averge income is almost % (g); in our termino-
logy, this result is the following:

Let M be the v X s matrix with m;; = (0;, a;3), where Oz is the jth unit vector
in s-space. The set S consisting of all (q,y) suchthat’y = h(q) is approachable by I.

This follows immediately from condition (b) of Theorem 1, for 7'(g) is the
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convex hull of the 7 points (g, 2 a;;4,), and one of these is the point (g, 4(g)), so
that T'(¢) intersects S.

4. An example. If k = 1, every closed S is either approachable by I or
excludable by II. For 2 = 2, there are sets which are neither; an example is:

(0, 0) (0, 0)
M= ,

(1,0) 1,1)
S = A B, where 4 is the line segment joining (3, 0), (3, +) and B is the line
segment joining (1, 1) and (1,1). The strategy g with g(a,, ..., a,) =1 for
Ugn =1 < Ug,,q, € =2 otherwise, where {w,} is a sequence of integers be-
coming infinite so fast that (w; + ...+ #,)/4,,y — O forces %, to oscillate
between the lines y = 0 and y = x, so that ¥, cannot converge to S, and S is
not approachable by I. On the other hand, I can force %, to come arbitrarily
near S infinitely often as follows. By choosing 2 successively a number of times
large in comparison with the number of previous trials, I forces an %, near
(1, a) for some a, 0 S a =1.1Ifa = %, Xy, isnear S;if a < %, by choosing 1 »

1 a
times in succession, I forces %,, to be approximately (—2—, —2—), which isin S.

Thus S is neither approachable by I nor excludable by II.

5. Some unsolved problems.

A. Find a necessary and sufficient condition for approachability. This
problem has not been solved even for the example of section 4.

B. Call a closed S weakly approachable by I if there is a sequence of strate-
gies fn such that for every ¢ > 0,

sup Prob {o(%,(f.,g),S) >¢& —0
g

as n— oo, where g(#, S) is the distance from % to S.

Define weak approachability by II similarly, and call S weakly excludable
by II if there is a closed T disjoint from S which is weakly approachable by II.
Is every S either weakly approachable by I or weakly excludable by II? For
the example of section 4, the answer is yes.

C. Does the class of (weakly) approachable sets for a given M depend only
on the matrix of mean values of M?
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