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SUMMARY

Can we forecast the probability of an arbitrary sequence of events happening so that
the stated probability of an event happening is close to its empirical probability? We can
view this prediction problem as a game played against Nature, where at the beginning of
the game Nature picks a data sequence and the forecaster picks a forecasting algorithm.
If the forecaster is not allowed to randomise, then Nature wins; there will always be data
for which the forecaster does poorly. This paper shows that, if the forecaster can randomise,
the forecaster wins in the sense that the forecasted probabilities and the empirical prob-
abilities can be made arbitrarily close to each other.

Some key words: Brier score; Calibration; Competitive ratio; Regret; Universal prediction of sequences;
Worst case.

1. INTRODUCTION

Probability forecasting is the act of assigning probabilities to an uncertain event. It is
an activity widely practised in meteorological circles. For example, since 1965, the U.S.
National Weather Service has been in the habit of making and announcing 'probability
of precipitation' forecasts. Such a forecast is interpreted to be the probability that precipi-
tation, defined to be at least 001 inches, will occur in a specified time period and area.
These forecasts are now popularly accepted by the American public as meaningful and
informative.

There are many criteria for judging the effectiveness of the probability forecast (Murphy
& Epstein, 1967). In this paper we limit ourselves to the consideration of calibration,
sometimes termed reliability. Dawid (1982) offers the following intuitive definition of
calibration:

'Suppose that, in a long (conceptually infinite) sequence of weather forecasts, we look at all
those days for which the forecast probability of precipitation was, say, close to some given
value co and (assuming these form an infinite sequence) determine the long run proportion p
of such days on which the forecast event (rain) in fact occurred. The plot of p against co is
termed the forecaster's empirical calibration curve. If the curve is the diagonal p = co, the
forecaster may be termed (empirically) well calibrated'.
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380 DEAN P. FOSTER AND RAKESH V. VOHRA

We give a rigorous definition later.
Calibration by itself is not a sufficient condition for a forecast to be deemed good. To

see this, suppose there are two weather forecasters facing the following weather sequence:
dry, wet, dry, wet, . . . . One always forecasts a probability of { of rain each day and the
other alternates 0,1, 0 ,1 , . . . . Both forecasters are well calibrated, but the forecasts of the
first are clearly less useful than those of the second. Now consider two uncalibrated
forecasts, the first of which always forecasts a probability of ^ and the second of which
alternates 1, 0,1, 0 , . . . , always generating an incorrect forecast. Which of these two is
better is a matter of debate; the first has a lower quadratic error but the second gets the
'pattern' of rain correct. Both seem dominated by the two forecasts discussed previously.
Thus, calibration does seem to be an appealing minimal property that any probability
forecast should satisfy.

The notion of calibration only makes sense if one can construct forecasts that are
calibrated. Regrettably, Oakes (1985) has proved that no deterministic forecasting
sequence can be calibrated for all possible sequences; see Dawid (1985) for a different
proof. Specifically, Oakes shows that it is impossible to construct a joint distribution for
an infinite sequence of events whose posterior mean is guaranteed to be calibrated for
every possible sequence of outcomes.

A way around this impossibility result is to relax the requirement that a forecast be
calibrated against all possible sequences. Perhaps it is sufficient that the forecaster be
calibrated for some restricted family of distributions. Dawid (1985) argues that this can
result in forecasting schemes that are computationally burdensome and in some cases not
computable at all. Alternatively, one can reject the notion that calibration is at all a
desirable or useful notion. Schervish (1985), for example, offers two arguments for this
view. The first is that calibration is a long run criterion: in the short run, when we are
alive, a forecaster may do quite well. The second is that, while a malevolent Nature may
be able to make one forecaster look bad according to the calibration criterion, it is harder
for her to make many forecasters look bad at the same time.

Our goal in this paper is to rescue the notion of calibration. We get around the impossi-
bility result of Oakes by broadening the definition of calibration to include randomised
forecasts. By carefully choosing our definition of calibration for randomised forecasts, we
show how to construct a forecast which is in fact approximately calibrated. Finally, we
generalise our results to the case when what is being forecast is a distribution, not just
a point.

2. NOTATION AND DEFINITIONS

For ease of exposition assume our forecasting method, F, is assigned the task of fore-
casting the probabilities of two states of nature, wet or dry. The main result holds for
more than two states. The proof is the same, just involving more notation. Denote by X,
the outcome in period t: Xt = 1 if it is wet and Xt = 0 if it is dry. Denote by XT the
sequence of wet and dry days up to and including period T. Since we can interpret XT

to be the first T terms of an infinite sequence Xm that has been revealed to us, we will,
when there is no ambiguity, write X for XT.

In our context a forecasting method is simply a function that associates with any binary
sequence, from the space of all binary sequences, a unique number in the interval [0,1].
A randomised forecasting method would associate with each binary sequence a probability
distribution over [0,1] which governs the selection of a number in [0,1]. The forecast
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Asymptotic calibration 381

that F makes in period t will be denoted by / , = F p f " 1 ) . Let nT(p; F, X) be the number
of times F forecasts p up to time T. Let pT(P', X, F) be the fraction of those times that it
actually rained. That is,

where / is the indicator function. In the original definition of calibration it was assumed
that F was restricted to selecting forecasts from a finite set, A, fixed a priori. One definition
of calibration is the following: F is well calibrated with respect to X if and only if, for
each pe A,

timp,{p;X,F) = p.
r->oo

Another definition is based on the calibration component of the Brier score (Brier, 1950;
Murphy, 1972, 1973); see Blattenberger & Lad (1985) for an exposition. To introduce this
definition, let the calibration score of F with respect to X after n periods be denoted by
Ct(F, X), where

peA l

Thus, F is well calibrated with respect to X if and only if C,(F, X) goes to zero as t goes
to infinity.

The requirement that F select from a fixed set A is not a severe restriction for practical
purposes. Many weather forecasters forecast probabilities to only one decimal place.

3. RULES OF THE GAME

So that the assumptions underlying our analysis are clear, we frame the analysis in
terms of a repeated game between two players. One is the statistician (he) making the
probability forecasts and the other is Nature (she) who chooses the outcomes. Nature
picks the data X and the statistician picks the forecast function F. The payment from the
statistician to Nature after t rounds of play is Ct(F, X). The statistician would like to play
so that Ct(F, X) is vanishingly small in the limit. In the case when the statistician employs
a randomised forecasting rule, the goal is to make Ct(F, X) vanishingly small in some
probabilistic sense, which we will specify later. For the moment, if the statistician succeeds
in making Ct(F, X) vanishingly small in an appropriate sense, we will say that he wins
the game.

Whether or not the statistician can win the game depends on his forecasting scheme as
well as the power of his adversary, Nature. We describe a number of different assumptions
about the power of the adversary.

Prescient adversary. In this scenario Nature knows the forecast that the statistician will
make on each round before she chooses the next element of the sequence, 'rain' or 'shine'.
It is impossible for the statistician to win the game under these conditions (Oakes, 1985).
To see why, suppose the statistician uses some deterministic forecasting scheme F. Consider
the following procedure for generating a sequence X (Dawid, 1985):

J l if in period i the forecaster predicts a probability ^ 0-5,

' 10 otherwise.
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382 DEAN P. FOSTER AND RAKESH V. VOHRA

A straightforward calculation establishes that Ct{F, X)^-\ for all deterministic forecasting
methods F. The case of equality occurs when F is the forecast that generates /, = \ for all i.

It makes no difference if the statistician employs a randomised forecasting scheme. Since
Nature knows the forecast before she moves, this is essentially equivalent to the determin-
istic set-up once we have conditioned on the randomisation.

If the statistician's pay-off or loss function is changed, for example if the Brier score is
used instead of the calibration score, then the statistician can win at this game against a
prescient adversary (Foster, 1991; Littlestone & Warmuth, 1994; Vovk, 1990; Feder,
Mehrav & Gutman, 1992; Cover, 1991).

Oblivious adversary. In this scenario Nature knows only the forecasting scheme that
will be used by the statistician. Nature then picks the entire sequence at the start of the
game. In the case when the statistician uses a deterministic forecasting scheme, there is
no difference between the oblivious and prescient adversary. Nature need only run the
statistician's forecasting algorithm to work out what he will predict on each round. When
the statistician uses a randomised forecast, however, picking the sequence at the start of
the game means that Nature will not know the results of the randomisation on each
round, although she knows the distribution over the different forecasts that the statistician
will use. It will follow as an immediate corollary of the main result that the statistician can
win against an oblivious adversary. Results for other kinds of loss functions can be found
in Hanan (1957) and Foster & Vohra (1993).

Adaptive adversary. In this scenario Nature will know the forecasting rule used by the
statistician. If the statistician uses a deterministic forecast, Nature will be able to work
out the forecast that will be generated before she moves. If the forecast used is a randomised
one, Nature will know the distribution over the possible forecasts before she moves but
not the actual realisation. Unlike the oblivious adversary, Nature is not restricted to
choosing the entire sequence at the start of the game. She can condition on the previous
plays that the statistician has made. Thus, as time goes on, Nature can learn more about
what the statistician's behaviour is, but the statistician can still randomise on the next
move so that Nature does not know exactly what he will do.

There are two equivalent ways of viewing the strategies used by the statistician against
an adaptive adversary. The first is to allow the statistician to randomise only before the
first move. In other words, he picks a single forecasting scheme at random. Alternatively,
he is allowed to randomise on each successive round. Assuming that Nature can only
observe the actions taken by the statistician and not the actual randomisation, these two
variations are equivalent. It is the second view we adopt in this paper.

The adaptive adversary appears to be less powerful than the prescient one, and this is
a weakness on which the statistician can capitalise. Consider the randomised forecasting
strategy defined as follows:

§ with probability f if A"r_! = 1,
^ with probability ^if Xt-1 = l,
§ with probability ^ if X,_t = 0,

with probability § if X, _ x = 0.

For this particular strategy one can establish after tedious calculations that
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where op(l) tends to zero in probability as n tends to infinity. Hence, minFmaxx C,(F,X)<\,
with probability tending to 1. By randomising in this way we are implicitly operating two
forecasting strategies instead of one. Thus, Nature finds it harder to miscalibrate F. The
rest of this paper will show how to improve this \ + op(l) down to op{\).

In this paper we assume that Nature is an adaptive adversary: Freund & Schapire
(1995) discussed the relationship between the adaptive and oblivious adversary. Here is
a precise statement of the rules we will follow.

Rule 1. The statistician begins by choosing a randomised forecasting method or func-
tion F and reveals only the distribution of this forecast to Nature.

Rule 2. In period f > 1, the statistician generates /, (= F(Xt~1)), and, simultaneously,
Nature selects the value of Xt. Nature knows the distribution of strategies that the statis-
tician will use, but not the actual value of the randomisation.

Rule 3. The penalty the statistician incurs after t rounds is Ct(F, X).

Alternatively, we can state our goal without recourse to using a game-theoretic model.
The object is to find an F that is e-calibrated, according to the following definition.

DEFINITION (s-calibratiori). A randomised forecast rule F is e-calibrated if, for all X,

Urn pr {Ct(F, X) < e} > 1 - e.
r-»oo

Note that X is allowed to be a stochastic process that may depend on the previous realisations
of the F sand X\

Within the context of a game, the existence of an F that is e-calibrated is implied by
showing that minFmaxxE{C,(F,X)} is less than e2 for all t sufficiently large, where the
expectations are over the distributions chosen by Nature and by the statistician. The proof
is via Jensen's inequality:

min max P{Ct(F, X) > e} < min max E{Ct(F, X)}/e = e.
F X F X

Likewise, if an F exists which is e-calibrated then our security level is less than 2e. Since
both of these can be shown to go to zero, they are equivalent statements.

4. A N ARGUMENT OF SERGIU HART

Some readers of earlier versions of this paper have derived alternative proofs of the
main result. Among these is the following elegant but non-constructive argument of Sergiu
Hart for the existence of a winning strategy for the statistician.

The proof constructs a zero-sum game played between the statistician and Nature. Each
will have a finite number of strategies and so the minimax theorem will hold. Fix at n the
number of times to be forecast. In order that the statistician's strategy space is finite, we
restrict him to picking one of the following as a forecast: 0, l/k, 2/k,..., 1. Here k is some
sufficiently large integer that will be chosen later. A pure strategy for the statistician
consists of an n-vector of such forecasts. Thus his strategy space consists of (k+ I)2""1

pure strategies. Nature's strategy space is then the set of all 2" binary strings. In fact,
technically, Nature has 2" strategies only if we assume that she is an oblivious adversary.
If Nature is an adaptive adversary, her strategy space is much larger since her strategy in
each round can depend on what she saw in the previous rounds. In this case she has
2«*+i)"-i}/* strategies. Nevertheless, the argument is the same.
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384 DEAN P. FOSTER AND RAKESH V. VOHRA

Now suppose that Nature has to pick her strategy first. To achieve her minimax value
she will randomise among her choice of pure strategies. We can now assume that the
statistician knows the randomisation policy that Nature will follow. To use the minimax
theorem we now need to specify a strategy for the statistician which will keep his loss
below e. If we can do this for all possible strategies of Nature then there must exist a
strategy for the statistician which will guarantee him a loss below e.

How should the statistician behave if he knows what random policy Nature will follow?
At each point in time he can compute the conditional probability of the next item in the
sequence. He can then round this probability to the nearest i/k value, which he then
forecasts. If we assume that k is much less than n1/3, his calibration score will be less than
1/fc with high probability. Here is an outline of why this must be so. The forecaster's
calibration score is

Ct(F,X)= t {Pt(j/k;X,F)-j/k}^{J/k'F'X)

Now consider all the times on which the statistician forecasts j/k. He did so because the
probability that Nature would pick a 1 on that round was some number q such that
\q —j/k\ ^ l/(2fc). By a law of large numbers type of argument we would expect then that
\pt(j/k; X, F)-j/k\ < l/(2fc). Hence

Thus there exists a strategy which will guarantee him a win. The drawback is that determi-
nation of the strategy is impractical in that it requires the solution of an enormous linear
programme. In the next section we describe a different and more efficient way of con-
structing an ^-calibrated forecast.

5. CONSTRUCTING AN E-CALIBRATED FORECAST

In round t the algorithm randomly selects one element from the set

according to the distribution ft,. We shall find a distribution /i, over the set A such that
the random forecast F which forecasts /, = i/k with probability /4 will be e-calibrated.
These /4 may be history dependent.

First define the expected Brier score for a randomised forecast to be

1=0 1=0 t

This score is averaged over the randomisation of the forecast, that is fit, but not over the
data X, making it a 'prequential expectation' (Dawid, 1984, 1993). Define a new random
forecast Fi"J to be exactly the same as F except that, whenever F makes a forecast of i/k,
Fl"J makes a forecast of j/k. It might happen that F'~J has a lower expected Brier score
than F and hence it is a better forecast than F. When this happens, the difference in then-
Brier scores is called the regret of changing i/k to j/k.

DEFINITION (Regret). Define the regret of changing i/k to j/k to be

R^J = £{EBS,(F, X) - E B S , ^ , X)} \
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Asymptotic calibration 385

where (x) + is the positive part ofx. In other words, if we define S't
J to be the signed difference

in the Brier score, namely,

then the regret from changing i/k to j/k is

M ifs>j>o,
\0 otherwise.

In Theorem 3 we show that the calibration score of F is closely related to the maximal
regret: in particular,

Ri->j

Ct(F, X) = £ max -*— + O(l/fc2).
i J t

We pick our distribution /i, so that it satisfies the following conservation condition for
alii:

£ = A4EK;-{. (2)

THEOREM 1. A randomised forecast using the ^ defined by equation (2) with k—l/e2 is
an e-calibrated forecast.

We prove this theorem in the next section. The remainder of this section is devoted to
showing that the algorithm is well defined. For convenience we suppress the dependence
on t. Let A be a matrix with elements

atJ = RHi, (3)

for all i #= j , and

a«=-EK'w- (4)
;+'

Note that the row sums of A are all zero. Equation (2) is equivalent to Ax = 0. We need
to show that system Ax = 0 admits a nontrivial and nonnegative solution, which can be
normalised to turn it into a probability vector.

Let A' be the matrix with elements a'ij = aij/B, where B = maX(j|ay|. Note that
|a,';| ^ 1 and £ ( a'ti = 0. Let P = A' +1. Then P will be a nonnegative row-stochastic matrix.
Hence there is a nonnegative probability vector x such that Px = x: since we do not
require that x be unique, we do not need any restrictions on the matrix P. Since
P = A' +1 we deduce that

A'x + Ix = x => A'x = 0 => Ax = 0.

The vector x gives the required distribution, and it can easily be found by Gaussian
elimination.

6. PROOF THAT THE ALGORITHM WORKS

As F is essentially fixed, we can for convenience suppress the dependence on F in our
notation. We write nt{p), pt(p) and C, for nt(p; F, X), pt(p; F, X) and Ct(F, X) respectively.
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386 DEAN P. FOSTER AND RAKESH V. VOHRA

Table 1. Modified versions of n, p and C

Base definitions Modified definitions

n,(i/k) = t '(/. = «/*) ».(*/*) = t A
• - 1 1 = 1

i Ax.

1-0 * J-0

The proof divides into two steps. In the first step we show that C, can be closely approxi-
mated by something akin to its average value. To this end define modified versions of n,
p and C as given in Table 1. Note that n,(i/fc) — h\(i/k) and pt{i/k)nt(i/k) — pt(i/k)Ht{i/k) are
both martingales. This allows us to approximate C, by C,, as follows.

THEOREM 2. In probability, Ct — C,-*0 as t->co:

Proof. The function #(.), defined by

, a1,...,ak,bo,bl,...,bk)= £ a, ( - - - ) ,
j=o \aj KJ

is a continuous function over the compact set 0 ̂  bt ̂  at ̂  1; it is uniformly continuous.
We can rewrite C, and Ct as

nt(O) nt(l/k) nt(l)

l
) •

It is sufficient to show that the differences in the arguments converge to zero in order to
establish that C, — C, converges to zero.

Since nt(i/k) — flt{i/k) and p,(i/fc)n,(j/fc) — pt(i/k)h\(i/k) are both counting processes, their
jumps are bounded by 1, and hence the variances of the jumps are trivially bounded by
1. In other words,

which leads to

var
[nm~nMcj\ {pt(i/k)nt(i/k)-p-t(i/k)nt(i/k)\ ^ u{ ]<!/£, varj 1 < l/t.

Since L2 convergence imphes convergence in probability, we see that Ct — Ct -* 0 in prob-
ability. If almost sure convergence is desired, it will follow from a similar argument using
4th moments. •

In the second step we show that this 'average' calibration score goes to zero with t.
This is done by using the regret to bound the average calibration score and then proving
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Asymptotic calibration 387

that the regret is asymptotically small. There is a technical difficulty to be overcome.
Regret as we have defined it is a function of the form max {x, 0}, giving it a 'kink' at zero.
To smooth away this kink we introduce a function gs that is differentiable at 0 and
approximates max{x, 0}.

Define

where

Note that gs(R
irJ) = gi(S

i
t
J), where Sl

t
J is defined by equation (1).

THEOREM 3. The calibration score is related to the regret by

Proof. First note that

Thus,

nt{i/k){pt{i/k) - i/k}2 = S? + W/kHM/k) - j/k}2 > S{> ^ max S\> = max R\-K
i J

Now summing over both sides provides the first inequality.
For the second inequality observe that the maximum regret occurs at the point where

h\(i/k){pt(i/k)-j/k}2 is smallest. Thus

n\(i/k)
h\(i/k){pt(i/k) - i/k}2 = max(S^) + min nt{i/k){pt(i/k)-j/k}2 ^ max(S\J) + ~ T .

1 1 l 4k

Summing over i provides the second inequality.
Since 1/(2(5) + gt(x) ^ x we see that

. . 1 . . 1 _ . .
maxR'" J^ hma.\gi(R'~'J)^ — + >,gs{R'^ )»

j 25 j 23 j

and summing over i leads to the last inequality. •

THEOREM 4. For the /*, defined in equation (2), Ft' ^ tkd.
Proof. Note that gs{x + a) -gt(x) ^ da(x)+ +Sa2. Define L{ = (X, -j/kf, so that

S\J = S'tL i + nl(L{ - L\). Since
gsiS^-gsiS1/-,)-.
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388 DEAN P. FOSTER AND RAKESH V. VOHRA

we obtain

i.j i.J

From equation (2) we see that

iJ.t+J

where the equality follows by interchanging the dummy arguments i and j .
Thus,

which gives R ' — RQ^ tkS. However, we know that R^ = 0, so that R? ̂  tkd. D

Combining Theorems 1-4 yields the following obvious but technical corollary.

COROLLARY. For all e>0, ifk>e~i and to>8fe2/e> then, for all t~^t0, we have that
Ct ^ e. Further, there exists a t t > t0 such that, for all t^tlt pr(C, < e) ̂  1 — e.

With care, e can be chosen to be O(£^1/3). Theorem 1 now follows directly from this
corollary.

Theorem 1 can be strengthened to almost sure convergence. We sketch the argu-
ment here. First run a 2"'-calibrated algorithm for a 'long time' and then switch to a
2 ~(i +^-calibrated algorithm. Repeat indefinitely. The hard part is defining what a 'long
time' means. It must be sufficiently long such that each stage has a probability of at most
2~' of ever being above 2~(i~1). It also must be sufficiently long that we can amortise the
'phase in' period of the 2 "<i +^-calibrated algorithm. Combining this with the almost sure
version of Theorem 2 yields a non-constructive proof of the existence of an algorithm
such that C, -> 0 almost surely.

7. FORECASTING WITH DISTRIBUTIONS

Suppose that, instead of making a point forecast /, of the probability that Xt=l, we
forecast a distribution /*,(.). For example, suppose some sort of hierarchical model is
considered such that there is a parameter p, for each time t. Then we could think of a
posterior for p(, that is a distributional forecast of a binary event. Clearly, the definition
of calibration must be generalised if it is to be applied to a distributional forecast. A
reasonable definition of p,(.) is

pt{p;X) = ^

Hence, if u is a distributional forecast, its calibration with respect to X after n periods is

1 T n
I = — > {p,(p) — i

1 r= l Jo

Note that, if the distributional forecast is a degenerate one, i.e. a point forecast, the
definition of calibration reduces to the one given earlier in the paper. Given what we
know about deterministic point forecasts, we can assert that some distributional forecasts
are not calibrated.
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Any randomised point forecast can be viewed as a distributional forecast. If this is done,
the calibration score is exactly £,, as defined in § 6. Simply treat the randomisation at
each period as the distribution being forecast. In this case the calibration of the distri-
butional forecast is a number, in contrast to the calibration of the associated randomised
point forecast, which is a random variable. This observation yields the following corollary
to Theorems 1-3.

COROLLARY. There is a distributional forecast /i(.) such that, for all X and e>0,
C,(/i, X) t^efor all t sufficiently large.

If we think of /it(.) as a posterior distribution for pr(Xt = 1), then we can combine
Oakes' (1985) result with the corollary to conclude that a posterior mean might not be
calibrated for all X but that there are some posterior distributions that are always cali-
brated. Thus, in terms of calibration, the posterior distribution is a better statistic than
the posterior mean.

8. DISCUSSION

Our goal in this paper has been to rescue the notion of calibration. We have done this
by generalising the original definition of calibration offered by Dawid to allow for random-
ised forecasts. Further, we have shown that this weakened definition is not vacuous, by
exhibiting a forecasting scheme that satisfies it.

The scheme we propose, while e-calibrated, achieves this at the cost of a higher Brier
score. To see why, consider the forecast that at each round forecasts EJ = 1 M/. By the
convexity of the Brier score, this forecast will have a Brier score that is smaller than the
expected Brier score of the randomised forecast that uses the distribution /x,.

While this paper was under review a number of other researchers have been moved to
find alternative proofs of our main result. One of these approaches, due to Sergiu Hart,
we have already described. A constructive version of Hart's proof has been derived inde-
pendently by Drew Fudenberg and David Levine. They view each step to be forecast as
a game and then use the minimax theorem to compute the value of that step. Sergiu Hart
and Andreu Mas-Colell have recently shown that our Theorem 4 is a corollary of David
Blackwell's (1956) approachability theorem and so provide an alternative proof that our
algorithm will in fact be e-calibrated.
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