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Abstract

We consider the ability of economic agents to learn in a decentralized envi-
ronment in which agents do not know the (stochastic) payoff matrix and can not
observe their opponents’ actions; they merely know, at each stage of the game,
their own action and the resulting payoff. We discuss the requirements for learning
in such an environment, and show that a simple probabilistic learning algorithm
satisfies two important optimizing properties:

i) When placed in an unknown but eventually stationary random environment,
they converge in bounded time, in a sense we make precise, to strategies that
maximize average payofl.

ii) They satisfy a monotonicity property (related to the “law of the effect”) in
which increasing the payoffs for a given strategy increases the probability of that
strategy being played in the future.

We then study how groups of such learners interact in a general game. We show
that synchronous groups of these learners converge to the serially undominated
set. In contrast, asynchronous groups do not necessarily converge to the serially
undominated set, highlighting the importance of timing in decentralized learning.
However, these asynchronous learners do converge to the serially unoverwhelmed
set, which we define. Thus, the serially unoverwhelmed set can be viewed as an
appropriate solution concept in decentralized settings.



1 Introduction

We consider learning in a repeated-game environment in which agents have extremely
limited information. At each stage of the repeated game, each agent takes an action
and then observes her resulting payoff. Agents do not know the payoff matrix, which
may be stochastic and changing over time, nor can they directly observe the number of
other agents or their actions. Because the agents have no a priori information about the
game structure, they must learn the appropriate strategies by trial and error.! To gain
insight into the general nature of learning in such environments, we study the behavior
of a simple probabilistic learning algorithm: the responsive learning automaton.? This
setting, with its extreme lack of a priori and observable information, is representative of
many decentralized systems involving shared resources where there is typically little or
no knowledge of the game structure, and the actions of other agents are not observable.

Computer networks are one example of such a decentralized system, and learning
there inherently involves experimentation. One can consider bandwidth usage from a
game-theoretic perspective (see, e.g. Shenker (1990,1995)) where the actions are trans-
mission rates and the resulting payoffs are network delays; these delays depend on the
transmission rates of all other agents and on the details of the network infrastructure.
Network users typically do not know much, if anything, about the actions and preferences
of other agents, or about the nature of the underlying network infrastructure. Thus, the

agents in a computer network are completely unaware of the payoff structure and must

!The degree of uncertainty about the environment is too complex for any kind of Bayesian or “hyper-
rational” learning to be practical. This idea is also contained in Roth and Erev (1995) and Sarin and
Vahid (1996) who require that in their models of learning, players base their decisions only on what
they observe, and do not construct detailed descriptions of beliefs. We do not model such complexity
issues formally; There have been many such proposals in the literature (see, e.g. Rubinstein (1986),
Friedman and Oren (1995), Knoblauch (1995)) but no consensus on a reasonable measure of complexity.

20ur model is based on ordinary Learning Automata which were developed in biology (Tsetlin
(1973)) and psychology as models of learning (Norman (1972)) and have been studied extensively in
engineering (Lakshmivarahan (1981), Narendra and Thatcher (1989)). Recently, they have also been
used by Arthur (1991) as a model of human learning in experimental economics. Also, Borgers and
Sarin (1995) have recently compared their behavior with an evolutionary model of learning.



rely on experimentation to determine the appropriate transmission rate. There is a large
literature on such experimentation algorithms, called congestion control algorithms; see
Jacobson (1988) or Lefelhocz et al. (1996) for a description of the algorithms used in
practice and Shenker (1990) for a more a more theoretical description.

Note that learning in this context differs significantly from the standard game the-
oretic discussion of learning in repeated games, in which agents play best response to
either the previous play (Cournot (1838)), some average of historical play (Carter and
Maddock (1984)), or some complex Bayesian updating over priors of either the oppo-
nents’ strategic behavior (Fudenberg and Kreps (1988), Kalai and Lehrer (1993)) or the
structure of the game (Jordan (1991)). Note that the first three types learning require
the observability of the opponents actions and the knowledge of the payoff matrix, while
the fourth will typically be impractical in the situations in which we are interested. Also,
none of these allow for the possibility that the payoff matrix may change over time.?

In our context, where agents do not even know their own payoff function, trial and
error learning is necessary even if the play of other agents is static.* Since such ‘exper-
imentation’ plays a central role, our discussion naturally combines the incentive issues
normally addressed by game theoretic discussions of learning with the stochastic sam-
pling theory pivotal to the theory of decentralized control. This combination of issues
is of great practical importance in the sharing of decentralized resources (e.g., computer
networks, water and power systems), vet is has received rather little attention in the
game-theoretic learning literature.

To better understand learning in such contexts, we address two basic questions: (1)
what properties should a reasonable learning algorithm have in this context, and (2) how

can one describe the set of asymptotic plays when all agents use a reasonable learning

3In theory, the set of priors could be enlarged to include the possible changes to the payoff matrix;
however, this would enlarge the (already large) set of priors substantially. Such computations would
clearly be beyond the ability of any real person, or computer.

4Kalai and Lehrer (1995) study learning in a similar setting in the context of Bayesian learning.



algorithm? We address these two questions in turn.?

What properties should a reasonable learning algorithm have in this con-
text? One natural requirement is that, when playing in a stationary random environ-
ment (i.e., the payoff for a given action is in any period is drawn from a fixed probability
distribution®), the algorithm eventually learns to play the strategy (or strategies) with
the highest average payoff. This clearly is an absolutely minimal requirement and was
studied by Hannan (1957) and more recently by Fudenberg and Levine (1995).7 Tt is
also focal in the decentralized control literature. In fact, we posit a stronger condition,
which says that even in a nonstationary environment an action which is always optimal
(in the sense of expected payoff) should be learned.

There is also a second natural requirement for learning algorithms. Recall that, in our
context, players do not directly observe the payoff function, so if the game has changed
it can only be detected through their experimentation. Such changes in environment are
quite common in many distributed control situations; in computer networks, every time
a new user enters or the link topology changes (often due to crashes) — both common
occurrences — the underlying payoff function changes. The agents are not explicitly
notified that the payoff structure has changed, and thus the learning algorithm should
automatically adapt to changes in the environment.

While many standard models of standard models of learning (such as the one intro-
duced by Kalai and Lehrer (1993) and almost all decentralized control algorithms) can
optimize against a stationary environment, they are typically not suitable for changing

environments. For example, most Bayesian learning procedures (e.g. Kalai and Lehrer

>Qur approach has much in common with the experimental psychology literature and its recent
application by Roth and Erev (1995) to model experiments on extensive form games.

5Tn the simple model we consider, a stationary environment corresponds to i.i.d. actions by other
agents and nature. Clearly in other cases stationarity can be interpreted more generally. For example
in computer networks there is often cyclical variations, such as day vs. night, in this case stationarity
could be defined with respect to the natural cycles. Similarly, simple Markovian effects could also be
incorporated into the definition.

"Note that in the Bayesian optimality setting (e.g. Kalai and Lehrer, 1995) such convergence may
not occur (with high probability) if the agent’s priors are sufficiently skewed.



(1993)) and all ‘absolutely expedient’ (Narendra and Thatcher (1974)) learning algo-
rithms have the property that after a finite time they may discard strategies forever; at
any time there is a nonzero probability that they will never play a particular strategy
again. Typically, with high probability, these discarded strategies are not currently the
optimal strategy; however, if the environment changes and the payoffs for some of these
discarded strategies increases, the learner will not be able to detect and react to this
change. Thus we conclude that such algorithms are ill-suited to changing environments
and we consider only those that are responsive, in the sense just defined.

We are not aware of any algorithms in the economics literature that satisfy both of
the aforementioned requirements. We introduce a class of responsive learning automata
(RLA) that guarantee responsiveness by requiring that the probability of playing any
action (even suboptimal ones) never drop below a fixed constant. This is analogous to
the use of mutations in evolutionary learning theory to escape local minima. (In fact,
many evolutionary learning models are similarly responsive.) These responsive learning
automata satisfy the most important requirements for learning in the environments we
consider, and we can thus entertain the second question.

How can one describe the set of asymptotic plays when all agents use a
reasonable learning algorithm? Will such learners converge to a Nash equilibrium,
or to a “rationalizable” set, or to something else? Will the set of asymptotic play be ad-
equately characterized by traditional game-theoretic concepts? This question is critical
for applying the mechanism design paradigm (see, e.g., Palfrey (1995)) to decentralized
systems, because the set of asymptotic play — the solution concept — will determine
which social choice correspondences can be implemented in such settings.

We follow the reasoning developed in Milgrom and Roberts (1991) to describe the
collective asymptotic behavior. We show that for RLAs the answer depends critically

on the timing of the game. In synchronous settings the automata converge to the seri-



ally undominated set, echoing Milgrom and Roberts’ result about “adaptive learning”.
However, in asynchronous settings, the RLAs do not necessarily converge to the serially
undominated set; in fact they only converge to the serially unoverwhelmed set, which is
a much weaker conclusion.

We believe that this result demonstrates that some commonly accepted conclusions
about the collective behavior of reasonable learners, such as the convergence to the
serially undominated set, do not apply if the play is asynchronous (and if responsiveness
is part of the reasonability requirement). Because decentralized systems are typically
asynchronous in nature, and responsiveness is crucial in these settings, this implies that
the serially undominated set is not an appropriate solution concept for these systems.
Thus, lack of synchrony has important implications for learning as it does for other game
theoretic analyses (See e.g. Lagunoff and Matsui (1995).) It also has ramifications for
decentralized control.

The paper is organized as follows. In Section 2 we define responsive learning au-
tomata and then analyze their behavior in the presence of an eventually stationary ran-
dom payoff function. We describe the collective behavior of multiple automata playing a
general game in Section 3; Section 3.1 examines the behavior of synchronous automata,
while Section 3.2 examines asynchronous automata. Finally, in Section 4 we briefly

consider the case of games which change over time.

2 Learning Automata

In this section we describe the probabilistic learner used in our analysis. We believe
that learner is representative of the type of learner’s that are sensible in a decentralized
setting. The precise assumptions and functional forms that we assume are meant to

simplify the exposition and analysis; however, many reasonable probabilistic learners



lead to the same conclusions that we obtain for this example.® Our definition of a
probabilistic learner is a slight variation on standard Learning Automata (LA) ; these
modifications improve the convergence properties in a changing environment.

Consider a discrete-time environment with m possible strategies. Let r! denote the
payoff for playing strategy ¢ at time ¢; this payoff, in general, can be random and depend
on the entire history of play up to time ¢. We assume that 0 < r! <1 for all ¢,¢. The
state of an automaton consists of the vector of probabilities p' = (pi, pb,...,p! ) where
at time ¢ the automaton picks strategy ¢ with probability p! at random. The learning
behavior of such automata is embedded in the rule for updating these probabilities.

A standard updating rule, parameterized by a constant « > 0, is given by Narendra

and Thatcher (1989). If strategy ¢ is picked at time ¢, then:
pitt =i+ ari(l = pi)

Vi#i: ptt=pi(l—arg)
Assume the r! are chosen from some stationary probability distribution, so that the

probability that r! < z is given by F;(x) which is independent of ¢ and the history of the

plays. These LAs are e-optimal in that, for any € > 0, there exists some « such that:

lim E(ipfrf) > max(F[r]]) — €

e 4 Z
Note that F[r?] is independent of s so the maximum is taken over all ¢, and see Narendra
and Thatcher (1974) for a review of these results.

Because the ec-optimality means that these LAs can achieve an asymptotic expected
payoff arbitrarily close to the optimal payoff, this property is often cited as evidence
that LAs are appropriate learning algorithms. However, the e-optimality property does
not mean that for a given sequence of play the average payoff asymptotes to near-

optimality. In fact, for these LLAs, with probability one the play eventually converges to

8This point is formalized in Friedman and Shenker (1996).



a single repeated strategy, so for the sequence of plays from a given LA, lim;_.. p! = 8, «
for some strategy k (i.e., the limit is zero unless i = k and then the limit is 1).? As a
goes to zero the probability of this strategy k& being optimal approaches one, but for any
« there is the possibility that the sequence of plays converges to a nonoptimal payoff.

It is not clear that this eventual collapse to a single strategy, with a nonzero chance
of it not being optimal, is adequate for stationary environments. However, such behavior
is clearly inappropriate for situations where the environment is not stationary. These
LAs, once having converged to a single strategy, are unable to detect any change in
the associated payoffs and thus will produce significantly suboptimal performance if the
environment (or the other agents’ strategies) changed so that the discarded strategies
now yielded the maximal payoffs.!? If one fixes o and then chooses an eventually sta-
tionary environment, one can make the probability of the result being suboptimal be
substantial.

To rectify this problem of not being able to effectively respond to changing envi-
ronments, we define a slight variation of the standard LA, which we call a responsive
learning automaton (RLA). Essentially, we require that no strategy ever have probabil-
ity less than a/2 of being played!!, thus each strategy will be played infinitely often.
The update rule for this RLA, denoted by RLA,, is:

pitt = pi+ar; Y aip)
i

Vi#i pith = pl — ariajp

where
ph—af2

]
ozp? rt

a’ = min[l,

9Also, during the tail of this “collapse”, there is a high probability that only strategy k is played.

10These issues are also briefly discussed in Narendra and Thatcher (1974).

Note that this is analogous to the need for mutations in evolutionary models, where mutations are
necessary to keep the replicator dynamics from converging to ‘bad’ equilibrium .



where o« < 1. Note that if all p; > « then the update rule for RLA, is the same as
that for the standard learning automaton'?. We say a vector p' is valid if 7 p! =1
and p! > «/2 for all i. Note that the updating rules transform valid vectors into valid
vectors.

We now describe, and verify, two relevant properties of these RLAs: convergence to

optimality, and monotonicity.

2.1 Convergence to optimality

A basic requirement for any learning algorithm should be that it in some sense converges
to optimality. However, if we wish to consider changing environments, then it is clearly
too difficult to be able to optimize in any nonstationary environment. Thus, since we
can’t require optimality in all environments, we impose the condition that in certain
‘simple’ environments the learner can optimize. One reasonable condition is that in any
environment which is i.i.d. ( i.e., stationary) after some finite time, the learner converges
to optimality.

We will show that in such an environment RLAs do indeed optimize. First, we note
that while LAs achieve e-optimality in stationary environments by eventually discarding
all nonoptimal strategies with high probability, the RLAs converge to optimality in a
quite different way. RLAs spend most of their time playing optimal strategies, but
occasionally wander off and explore other strategies. The manner in which they do this

is embodied in the following definition, which we will use to characterize convergence.'®

Definition 1 A discrete time random process x' parameterized'* by o a-converges to 0

if there exist positive constants ag, (3, by, by, bs, and q such that, for any 0 < a < ag:

12Nonlinear update rules have also been studied (Narendra and Thatcher (1989)), but would not
significantly alter our results.

13We note that this definition is perhaps not as sharp as possible for our responsive learning automata.
This is because we wish to emphasize that our results for multiple automata are not overly dependent
on our specific model of learning.

MFormally, for each a > 0, ¢, is a random process defined for t € 7, .



e limp_ . (% JEdtPlat > \/a]) <a
o [f7; is the first time that a' < Ba, then E[rs] < by/at.
o If 1. is the first time that «* > /o, given that 2° < Ba, then E[r,] > bye®/V7 /a.

a-Convergence is defined by a rapid (polynomial) collapse to near zero and a very
long (exponential) period of remaining near zero before random variations take z' away
from zero. In any average of z', the exponential period during which z' remains near
zero will dominate the polynomial period which is how long it takes x to approach zero
from any initial condition. For example, lim,_ o+ %ZtT:l(xt)p = 0 for any power p > 0.

With this definition, we can state the following result, which is a stronger than the
optimizing requirement given above and demonstrates the versatility of RLAs.

We consider some automaton in an environment where the random payoffs r! have
distributions that in general may depend on the entire history of play.'® We assume that
there is a time T after which there is a particular strategy whose payoffs are maximal
(for all histories of the previous play). This obviously includes both stationary and
eventually stationary environments with a single optimal strategy, but is much broader.
For example, consider a situation in which the environment never converges but there
is a particular strategy which is eventually always optimal. Then even in this changing

environment the RLA will learn the best strategy.

Theorem 1 Consider some set of strategies A and define ply = 3 ;c 4 pt. Assume there
exists some > 1 and T > 0 such that E[ri|h'] < (1 — %)E[rﬂht] for allt > T, for all
i € A, and for all j & A, where h' = (r',r* ... r'=Y). Then, py a-converges to 0 from

any valid initial condition.

Thus, when we say that an RLA converges to optimality against a stationary en-

vironment, we mean that the probability of playing nonoptimal strategies a-converges

15Note that we make no assumptions about the convergence or stationarity of the stochastic process.
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to zero. The mixed strategy it plays in each period typically concentrates most of its
probability mass on the optimal strategy, but occasionally this mixed strategy vector
wanders off to sample nonoptimal strategies. In fact, since the RLA is irreducible, it
will eventually come arbitrarily close to every valid mixed strategy. The definition of
a-convergence shows that mixed strategy vectors which produce significantly subopti-
mal outcomes are extremely rare. It follows as a trivial corollary that RLLAs are then
also c-optimal. Moreover, against a stationary environment where r! is described by the
distributions F;(x), the result of a single run also converges to within ¢ of the optimal
payoff: for any € > 0, there exists some « such that:

1Tm

lim = > > pirl > max(E[r?]) — ¢

T—oo T {5

almost surely.

Thus, in any eventually stationary environment every single play sequence of an
RLA, the long-run payoft approaches the eventually optimal payoff. This is something
that the standard LAs fail to do, since while they are close to optimal when averaged
over all play sequences, individual play sequences can be significantly suboptimal. The

proof of Theorem 1 is in the appendix.

2.2 Monotonicity: The Law of the Effect

An important behavioral property is known as the “Law of the effect” (Thorndike (1898))
which says that strategies that have led to good outcomes in the past are played more
often in the future.'® This can be understood to be a monotonicity requirement on the
learning algorithm, in which increasing the payoffs for certain strategies increases the
probability that they will be played in the future. We now show that RLAs obey a

stochastic formalization of the “law of the effect”.

15Roth and Erev (1995) consider the law of the effect to be a fundamental principal in understanding
players’ behaviors in experimental game theory.
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Theorem 2 Consider an automaton RLA, playing against an environment with a set
of payoffs rt, and the same automaton playing against a different environment with a
set of payoffs rt; let pi and pt denote the probabilities in the two cases. Let A be any
set of strategies. Then, if 7l is stochastically greater than or equal to r! for all t and all
i € A and if 7! is stochastically less than or equal to vt for all t and for all i & A, then

PY = iea Pl stochastically dominates p'y = Y ;c4 pt for all t.

Proof: Define p', = >,c4 p!. Notice that the update rules for p’, are, when strategy 1 is

chosen at step t,

1€ A ptA""l:ptA—Fozera;p;

JEA
(g A = -y )
JjEA
where
Py —a/2

]

a’ = min[l, —
apr;
Thus, p4t" is monotonically increasing in p’;, monotonically increasing in rf with

i € A, and monotonically decreasing in r! with ¢ &€ A. It is easy to see that over any

sample path py > py. O
3 Convergence in Repeated Games with RLAs

These two properties, convergence to optimality (as represented by Theorem 1) and
the Law of the Effect (as represented by Theorem 2) can be seen as two simple ‘axioms’
of decentralized learning. We now turn to an analysis of the behavior of decentralized
learners in a noncooperative game. Our key insight is that the asymptotic behavior
depends crucially on whether or not the automata are synchronous or asynchronous.
We will describe this distinction using the concepts of dominated and overwhelmed
strategies.

In this section we first introduce our general model, and then consider the cases of

synchronous and asynchronous automata.

12



3.1 General Model

Consider a game with n players. Assume that player a has m, possible strategies 3, =
{1,2,...,m,}, and let ¥ = ¥; x -+ x ¥,,. For convenience, we will sometimes use the
notation ¥ = ¥, x ¥_,. Let s’ be player a’s strategy at time ¢, s be the strategies
of all the other players, and s = (s%,s" ). At time ¢, player a receives 7,(s"), where
7 1Y — R is the payoff function of the game. We will call a game 7 normalized if
7(s) € [0,1]" for all s € ¥. Note that any game 7 (s) can be easily transformed into
a normalized game.'” We are interested in the eventual outcome of a game if players
initially have no information about the payoff function, and are allowed to vary their
strategies over time. The collective asymptotic behavior depends on whether or not the

automata update their strategies at the same time. We discuss the synchronous and

asynchronous cases separately.

3.2 Synchronous Automata

First, we consider the standard model of repeated games, in which there are well defined
periods and players update their strategies every period.

A synchronous automaton is one which updates its strategy at every play of the game:;
the probabilities p are updated and a new strategy is chosen randomly based on these
probabilities every time step. We first consider the situation where one of the players is
a synchronous RLA, and nothing is known about the nature of the other players. What
can be said about the eventual play of the RLA?

To answer this, we apply the concept of dominated strategies. We say that strategy

1 dominates strategy j for player a, with respect to some set S_, C ¥_,, if

Vs_o € S_ay Ta(t,8-0) > 74(7,5-0)

1TEquivalently, we could require that each automaton divides her payoff by the largest payoff that she
has observed to date. This would not effect any of our results, subject to some boundedness restrictions
on the payoffs.

13



That is, strategy ¢ dominates strategy j for player « if, against any specific play by other
players, the payoff for playing 7 is more than that for playing j. Define U, : 2% — 2%-a

for any S_, C X_,, as the set of undominated strategies:
Un(S_y) = {54 € Xa| Asl €3, st.Vs_y € Sy Tu(s),8-0) > Ti(Sa,5-a)}

Let U = (Uy,...,U,). Note that the definition of dominated strategies involved the
entire payoff function 7,, and that in the context we are considering the players do
not know their payoff matrix. Dominated strategies are, in some sense, inferior to
undominated ones, and one might expect that a self-optimizing player who knows the
entire game matrix and who is playing against opponents with strategies in the set S_,
would always play in U,(S_,). We will show that RLAs, despite not knowing the payoff

matrix, can also eliminate dominated strategies.

Theorem 3 Consider some normalized game 7 and a player a whose strategies are
chosen by a synchronous RLA. Now assume that the other players choose strategies
from S_, with probability greater than 1 — & in each period. Then, for § sufficiently

small,

i1

ptDE Z b,
iU (S—a)

a-converges to 0 for any valid initial condition p°.

Proof: Note that when player « is using a synchronous automaton, the plays s’ , cannot

£
a’

depend directly on the plays s’ except through the vector p'. We now show that any

dominated strategy a-converges to 0.

Let strategy ¢ dominate strategy j, and define M to be the set of remaining strategies.
7“; =7.(j,8 ) if s", €5,

= Tl if 5L S

14



ri=7,0i,8" ) if ', €S,

rf = min ?a(i75—a) Zf St—a € S_a
S_aez—a

rh, = gngl?a(sa,sia) if st, €S,

T}fw = mln min ?a(3a7 S—a) Zf St_a(Si) € S_a
SaFl S—a€X_gq

Consider the game where, at each time ¢ if strategy ¢ is played we assign the payoff rf, if
strategy j is played we assign the payoff r}, and if any other strategy is played we assign
ris- In this new game, pi stochastically dominates p? by Theorem 2. Furthermore, if we
look at the set A =¢U M, then we can apply Theorem 1 to p’; to see that is a-converges
to 0. Thus p% must a-converge to zero.O

We now consider the case where all the players are synchronous RLAs, so they each
update their strategies at every time step according to the RLA updating rules. Can
we say more than that they all eliminate dominated strategies? We will show that
the collective asymptotic play is restricted to the set U*(X) where U™ represents the
infinite iteration of the set mapping U; the set U°°(X) is called the serially undominated
set. Our result is very similar to that of Milgrom and Roberts (1991) (albeit in a very
different context) who showed that collections of ‘adaptive’ learners (that is, learners
that eventually eliminate dominated strategies) converge to the serially undominated
set.

In studying the collective limit, we must apply the concept of a-convergence to
a situation where there are n different a’s. We restrict ourselves to the case where
these a’s satisfy the mild restriction that, as the o’s approach zero, we always have

ab < Qmin, fOr some power p where .y 18 the largest o and o, the smallest.

Theorem 4 For any group of n (n > 1) synchronous responsive learning automata

RLA, playing a normalized game, and for any p > 1, for any automaton

=D, b

U (X)

15



a-converges to 0, where a-convergence is defined as all a,’s converge to zero while sat-

isfying af . < Omin.

Intuitively, the proof of this theorem follows from repeatedly applying Theorem 3,
showing that play collapses to U*(¥) and then inductively from U*(X) to U'*1(2) until
U>(X) is reached as in Milgrom and Roberts (1991). However due to the stochasticity
of the automata, play can occasionally occur outside of U*(X). Thus we need to show
that this does not destroy the convergence process. We postpone the technical details
of the proof until the next section where we prove a similar result in a more intricate
setting; see the proof of Theorem 6.

The set U™ (X), the result of the iterated elimination of strictly dominated strategies,
has been well studied (see, e.g. Milgrom and Roberts (1991)). Many important learning
models have been shown to converge there. In fact for a very large class of games, in
particular those which are supermodular or have strategic complementarities, this set
is very simple. For example, both the ‘General Equilibrium Model with gross substi-
tutes” and the Bertrand oligopoly model with differentiated products have a singleton
U>(X) as shown in Milgrom and Roberts (1991). In these (and other) important models

synchronous learning automata converge to the unique equilibrium.

3.3 Asynchronous Automata

In many games there is no natural time period, and thus we consider a game that is
being played continuously in time.'® Each player can at any time change her strategy or
evaluate the success (payoff) of her current strategy. For example, consider several users
sharing a network link. At each instant each user has a certain link utilization which
she can change any time and then compute the success of the current utilization level

as some average over a certain amount of time. This lack of synchrony is quite common

18Milgrom and Roberts (1991) show that their analysis also applies to learning in continuous time.
However, they still assume the elimination of dominated strategies. As we shall demonstrate; this
assumption is difficult to justify in this setting.
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in distributed control systems, where time is continuous and the various elements of the
system update their behavior independently. For instance, in computer networks, the
updating frequency is typically on the order of the round trip time of packets, and this
can vary by several orders of magnitude.'® Thus, there is no synchronization of behavior
as we discussed in the previous section.?’

We model this asynchrony as having the RLA’s average their payoffs over some
period of time while keeping their strategy fixed. This averaging process must scale
inversely with « so that the averaging process occurs on time scales large enough to
produce macroscopic changes in the strategy vectors. Thus, as a approaches zero, the
asynchronous RLAs average over an asymptotically infinite period to determine their
payoff before updating their p’s. In this case it is not clear what is the single ‘correct’
averaging method for determining the payoff of a particular strategy, so we allow for a
wide variety of possibilities.

Let RLAI'Y be a responsive learning automaton which updates its strategy every
T'/c units of time. The payoff that it uses for its update is some weighted average of its

payoffs in the previous time period; if player a has been playing strategy i for the past

time period then the reward is

rt = L/t ?a(st/)dG( v )
T Je-1/a T/a
where G(t) is a cumulative distribution function and st =i for all ¢’ € [t — T'/a, 1].
What happens when one player is an RLAL% and we know nothing about the other
players? In contrast to the results in synchronous automata behavior, the play of the
asynchronous RLA is no longer confined to the undominated set. This is because when

the RLA holds its strategy fixed over a period T'/«a, the other players can respond to

19The delay in delivering packets on the same ethernet can be several orders of magnitude less than
the delivery delay for packets traversing the transatlantic link.

20There are few examples of asynchronous games in the literature, and the importance of asynchrony
in the play of the game has mostly gone unnoticed, with the exception of recent work by Lagunoff and

Matsui (1995).
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this strategy.

To characterize the asymptotic behavior of this asynchronous RLA, we introduce the
notion of overwhelmed strategies. We say a strategy ¢ for player a overwhelms another
strategy 7, with respect to S_, if all the possible payoffs associated with ¢ exceed all
those payoffs for j:

. o
,min o(1,8-4) > ,max o(JsS-a)

Define O,(S5_,) to be the set of unoverwhelmed strategies for player «, if all the other
players are playing from the set S_, C ¥_,. Unoverwhelmed strategies are a superset
of ordinary undominated strategies, U,(S_,) C O,(5_,), since the elimination criteria is
strictly stronger (i.e., an overwhelmed strategy must also be a dominated strategy, but
the converse need not hold).

Overwhelmed strategies, as opposed to dominated strategies, is the appropriate con-
cept when considering asynchronous automata. Even if we assume that strategy ¢ dom-
inates strategy j, but another player always reacts to strategy ¢ in a different way than
they react to j, then it might turn out that it is in the player’s best interest to play j.
This would never be the case if 1 overwhelms j, because the ordering of the payoffs is
independent of how the other players react.

We now show that in asynchronous settings, while RLAs may play dominated strate-

gies, they will not play overwhelmed strategies.

Theorem 5 Consider some normalized game 7 and a player a whose strategies are
chosen by an asynchronous RLA RLALS. Now assume that the other players choose
strategies from S_, with probability greater than 1 — & in each period. Then, for §
sufficiently small,

¢

Ph= D P
i¢0(5-0)

a-converges to 0 for any valid initial condition p°.
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Proof: Note that in the asynchronous case the plays s’ are not necessarily independent,
of the plays s’. Thus, we will write s’ (s!) to denote this dependence. Let D be the set
of overwhelmed strategies, U the set of overwhelming strategies, and M the remaining

strategies. Consider the following payoffs. Define

t . t t
rp = max max 7a(se,s-a) if $.(s,) € S-a

L= ? : t &
rp =max max ! (Sass_a)if st (st) & S_,

¢ . . . t t
rp = min min 7o(se,5-0) 0 s_u(s,) € S-

n _ . . 2 . t t
TU ;’al'lelg S_l(;rélgl;l_a . a(8a7 S—a) Zf S—a(sa) € S_a

_ . . 2 . ¢ +
ry = min min 7o(se;s-a) if s_o(5,) € -0

riy = gﬁigs_%%l_a?a(sa,s_a) if st (s') & S,

Note that whenever s (s!) € S_, we have r}, > i, > rf,. Furthermore, r! > rf; for all
ie U, rt <rlforalli e D, and r! > r}, for all i € M. Consider the game where, at
each time ¢ if strategy i is played we assign the payoff rf, ifi € U, ri, if 1 € M, and r%, if
i € D. In this new game, p}, stochastically dominates p}, by Theorem 2. Furthermore,
if we look at the set A = D U M, then we can apply Theorem 2 to p’, to see that is
a-converges to 0.0

As in the synchronous case, we can use this result to characterize the asymptotic

collective behavior of a set of asynchronous RLAs repeatedly playing a general game.

Theorem 6 For any group of n (n > 1) asynchronous responsive learning automata

RLA, playing a normalized game, and for any p > 1, for any automaton

Pp= Y, P

205 (%)

a-converges to 0, where a-convergence is defined as all a,’s converge to zero while sat-

isfying af . < Omin.
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Proof: Theorem 6 follows from the repeated application of Theorem 5. For example
initially Theorem 5 requires that all players collapse down to the undominated set S* =
O(X). Then as all players are in S, Theorem 5 now implies that they will collapse down
to S? = O*(X). This process continues until they are all in S = O>(X). The same
proof applies to Theorem 4 where we replace O by U, Theorem 5 by Theorem 3, and
note that all time intervals are the same.

First note that there exists an N such that OV (X) = O®(X) as ? is a finite game.
Choose 7 such that

(1= >1/2

Now consider S* = O'(X) and let &, be the smallest § in Theorem 5 for any RLA, a,
playing against S* . Similarly define ¢; to be the largest of the quantities b,7'/c, &5 to

be the smallest byT/a?, and ¢3 the largest bs.

Claim 1

Priry < N qb;

]>1/2

Proof: Choose oy < &g such that for all o < g satisfying the restriction a? . < omin

the following holds,
1

2
7 Cmin

qb2€¢53/\/ amax/amax > N

Now, the above construction guarantees that dominated strategies will never get
large during the N repeated actions of the domination operator. Thus an iteration of
the domination operator will occur properly.

Therefore by our definition of v the collapse to O*(X) with probability greater 1/2

will occur in the specified time. o

Claim 2
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Proof: 74 is bounded above by a random variable with a geometric distribution, and the
expected number of periods of length

ThNCl

geed)

is 2. o.

Thus we have shown that the collapse will occur. Then the probabilities will remain
small for an exponential (in «) amount of time by the a-convergence of the individual
automata. O

The result may not provide very much information about the asymptotic play since
for many important games O®(X) is not a singleton, and then our theorem does not
uniquely define the outcome. However, this is necessary, as the specific outcome is
dependent on the timing and averaging of the different automata. This, we believe, is
an unavoidable difficulty of learning in asynchronous decentralized settings.

For example, one possible outcome is a Stackelberg equilibrium. Note that Stackel-
berg equilibria are not possible outcomes of most standard models of learning as shown
in Milgrom and Roberts (1991), but it does arise in our model of asynchronous au-
tomata. Consider a two automata game when the first automaton (Al) is updating
much more often than the second (A2). Then since Al rapidly converges to the best
reply to A2’s strategy, we see that A2 is the Stackelberg leader, and they will converge

to the Stackelberg equilibrium. More precisely:

Theorem 7 In the two player normalized game there exist RLAgll’Gl VETSUS RLA%’G2

such that player 1 converges to Stackelberg leader and player 2 to follower.**

Proof: Choose Ty = Ty = 1 and ay = of. Set Gy(¢) be 0 for t < 1 and 1 for ¢ = 1, while
Gi5(t) = t. Thus player 1 evaluates his payoff at the end of his waiting period while

player 2 averages hers over the entire period.

21'This can be easily generalized to the multi-player Stackelberg equilibria.
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Consider their behavior as «; — 0. Player 2 updates her strategy 1/c; times while
player 1 s strategy is constant. Thus if player 1 is playing s; € ¥, then player 2 will
converge to BR(s1), the Stackelberg follower. Therefore for small enough a4, player 1 is
effectively playing the game 7(s;, BR(s1)), and converges to the Stackelberg leader. O

This is interesting since typically players would prefer to be the leader than a fol-
lower. Thus Al does worse by updating more often than by updating very rarely. This
seems counter-intuitive, as one would expect that a rapid response would be a desirable
attribute. Thus, using a long averaging interval can be seen as a manipulation of other
players.

However, there are certain games where the asynchronous outcome is unambiguous,
in that O (X)) is a singleton. Any set of asynchronous automata will converge to a unique
strategy and so no Stackelberg manipulation of the sort described above can occur. One
example is the serial cost-sharing game (Moulin and Shenker (1992)). Another class
of games which are solvable in terms of unoverwhelmed strategies are those arising in
queueing games with many players (Stidham (1992), Friedman and Landsberg (1993)).
It is shown in Friedman (1995) that the game is solvable in unoverwhelmed strategies if
there is sufficient capacity in the queue. This result extends to many nonatomic games

with negative externalities.

4 Time Varying Games

Lastly, we note that our results hold even when the game matrix is not fixed. For
example, if the payoffs in each period are random variables with well defined means,
then all of our results hold when we define dominated strategies (resp. overwhelmed
strategies) in terms of the matrix of expected values. In general the standard models of
learning are not so accommodating of stochastic payoffs.

A second interesting extension is when the payoff matrix varies in some systematic
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manner over time. From our analysis, it seems clear that subject to some regularity
assumptions, responsive learning automata will play most of the time in the (current)
serially undominated set in the synchronous setting. We now give a simple example of
this.

Consider an environment which has a finite number of payoff matrices which are all
solvable in terms of dominated strategies, but may have different Nash equilibria. Every
T periods it switches payoff matrices, either randomly or according to a fixed order.

Assume that this game is played synchronously by a group of responsive learning
automata. Let P,(7) be the portion of time that the automata are at the (current)

Nash equilibrium.

Theorem 8 Given the above assumptions, lim,—olim; oo Po(7) = 1 where the outer
limit is taken as all the a’s go to zero subject to the restriction that there exists a p > 0

such that of | < Qmin.

Proof: This follows immediately from Theorem 4 and the definition of a-convergence. O
Thus in an environment that changes sufficiently slowly, we still get convergence.
Note that for small enough «, we can explicitly compute lower bounds on the percentage

of time that play is at Nash. Also, the analogous result holds for asynchronous play.

5 Discussion

In this section we compare and contrast our approach with the literature on learning.
This literature began with Cournot’s (1838) dynamic interpretation of equilibria. The
concept of Nash equilibria did not exist at that time, and so this approach started with
a dynamic intended to model reality. It was noticed that this dynamic produced an
unambiguous prediction of equilibrium in certain classes of games (those that are best-

reply solvable). is this true, that they noticed? However, as equilibrium analysis
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gained prominence, the focus changed from modeling actual dynamics to understanding
what dynamic procedures converged to Nash (and other) equilibria.

For instance, in general equilibrium theory, beginning with Walras (1874), much ef-
fort went into the study of dynamical mechanisms that converged to the competitive
equilibrium. In game theory, a large stream of research was motivated by Robinson’s
(1951) analysis of fictitious play; many of the subsequent research was devoted to find-

22 Subsequently, Kalai

ing dynamic justifications of Nash or other solution concepts.
and Lehrer (1993) showed that Bayesian learning leads to Nash equilibria, subject to a
“common priors” assumption. More recently, Foster and Vohra (1996) showed that any
“calibrated learner” converges to a correlated equilibrium, where calibration is a nat-
ural property of Bayesian learning. Thus correlated equilibria are a ‘natural’ outcome
of Bayesian learning. A number of papers have recently proposed learning algorithms
which are guaranteed to be calibrated. (See Foster and Vohra for a review of these
calibrated methods, and Fudenberg and Levine (1996) for an overview of fictitious play.)

While Bayesian learning algorithms, and other calibrated algorithms, may be appli-
cable in some settings and are unquestionably important to understanding the founda-
tions of Nash (and correlated) equilibria, we do not believe that these “highly rational”
learning algorithms are necessarily applicable in other settings. In particular, in many
distributed settings, there is little information about the state of the world (not just
the exact nature of the payoff function, but even the number of other players, is un-
known). In such “low information” settings, Bayesian learning seems of little practical

23

relevance.”” More particularly, in computer systems (such as network adaptation al-

22 Although, to be accurate, Robinson proposed fictitious play as an algorithm for finding Nash equi-
libria, and the dynamic interpretation came later.(ck this???)

23 Although one could imagine constructing a set of priors over, the number of players, the stochastic
environment, the other players’ payoffs, etc.; this set would obviously be gigantic. However, in order
to guarantee convergence using the analysis of Kalai and Lehrer (1993), the prior beliefs over this set
would have to include “a grain of truth” — the true state of the world would have to have a nonzero
prior. This implies that the priors would have to be nonzero over all potential states of the world, and
this computations would require Bayesian updating over this entire support, which would most likely
require more computation than is possible using any real computation device.
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gorithms) much simpler learning algorithms are used in practice. Similar results are
suggested by laboratory experiments.

Our goal in this paper is not to understand the foundations of equilibrium concepts,
but to begin a study of learning in a certain nonstandard but important setting. Studying
the convergence of a typical learning algorithm leads us to new solution concepts; while
these solution concepts may not be terribly appealing from a theoretical viewpoint, they
are likely to more accurately represent reality in these “low information/rationality”
settings.?? If one is interested in using mechanism design, or implementation theory,
in such settings, one must pay close attention to the nature of equilibrium that results
from the learning algorithms used in practice.

Thus, in this paper, we assume that learners make a reasonable, but not necessarily
optimal, decisions in the sense described in Theorems 1 and 2. Our work is very close
in spirit to that of Roth and Erev (1995) and Arthur (1991). The one crucial difference
is that our algorithms embody the notion of “responsiveness” — adapting to changes in
the environment within a bounded time (on average) — and this is not built into their
models. This responsiveness requirement has significant implications for the convergence
behavior of the learning algorithms.

Our results show that these reasonable but relatively naive learners, when compared
to more ‘rational’ learners, have much more difficulty converging to equilibrium in asyn-
chronous environments. In particular, in such settings the correct solution concept is
certainly larger than the serially undominated set. We have shown (Theorem 7) that
even in games which are dominance solvable (where the convergence of Bayesian algo-
rithms, or even best reply algorithms, are not in doubt), the players may not converge

to the Nash equilibrium.

2In Friedman and Shenker (1996) ?7this forces us to finish that paper!!!?? we show that essentially
any group of learners which satisfy Theorems 1,2, and 8, converge to serially unoverwhelmed set, and
can remain outside of the serially undominated set by a construction similar to that in Theorem 7.
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A  Proof of Theorem 1

We prove this theorem with the following sequence of claims. Our approach is to first
establish that sufficiently far away from the boundaries p’ is decreasing on average
and then show that this implies that p’ rapidly collapses to near zero as required by
the definition of a-convergence. We then bound the escape time from this region near
zero. Finally, we show that these results imply the first condition in the definition of
a-convergence is obeyed.

Before starting with the claims, note that convergence is independent of the initial
valid vector p°, and thus we can set 7' = 1 with no loss in generality. Choose some
k > 28. Define 7y = max;cs E[r!] and 7* 4, = minjgq E[r!]. First we show that away

from the boundary p’; is decreasing on average.

Claim 3 There exists some constant ¢; such that for o > 0 sufficiently small, if p'y > Ba

then

[ 75+1|PA] < pA - 01042

Proof: Define A = E[p*|p!y] — p!y. Computing directly from the updating equations

— a2 pt—a/2
ay Y {pz [P tmin|1,” el — pi Elrymin[p;, 775/ H}
jdAicA O‘py i ar;

Noting that man|[l, p;—r/] <1 and min|p!, pi= /2] > min[p! pf_a—a/Z] yields

ar
7t J

A< aZZ{pzp] — piE[r ]min[pfaw]}-

jgAi€A
Since E[ri] > 7 4 > 7, (1 —m/B) for j € A and Elrj] <7 for i € A,
f—af2
A<a {ptApt—AFtA(l —m/B) = pLaTy D min[p;, ]%]} :
1€EA

Noting that Y ;e 4 min[pl, pi= a/2] > p'y — ma/2 shows that

O

A < appl 7Yy {(1 —m/B)— (1 - ;n—a)}
pA
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Since p'; > fBa by assumption, A < —a?F';m, where we again used the fact that p}; > Sa
and p* , = 1 — p, proving the lemma.o

Now we show that p’, collapses rapidly to near zero.

Claim 4 Let 74 be the first time that p'y < Ba. Then

1

clo?

E[Tf] <

Proof: This proof follows that in Goodman et al. (1990). Define

¢ = pzﬁn(w) + ¢10? min(t, 7y)

This is a submartingale since
Elg™*q] < q'
SO
Elg'] < v}
and thus
clazE[min(t,Tf)] < pOA

Taking the limit at ¢ — co we find that
7511}1&(1 cro” Elmin(t, 7)) < p%

and

7511}1&(1 c1o” Elmin(t, 7)) = E[tli}m cro min(t, 74)] = ¢’ B[]

by the monotone convergence theorem. Therefore,

completing the proof. ¢
The next two claims show that once p!, < 28« then it is much more likely go

below [Fa before it goes above ka. We apply a standard technique from the analysis
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of submartingales (see e.g. Ross (1983)). We let pf, denote the process which is the

stopped version of pY; where stopping occurs as soon as p% < fSa or pYy > ka.
Claim 5 There exists some ¢5 > 0 such that e®P4/® is q submartingale.

Proof: Let

Zt — ecﬁi‘/a
for some constant ¢ > 0. The submartingale condition
E[Zt+1|zt] S Zt

requires that

t+1] .1
pleti -/ - EETIEL

St
Clearly, when p!y < Ba or py > ka then
B[] = 2

t+1

Let, f(c) = E[e®a =P4)/*] and note that for fa < py < ka, f(0) = 1 and f/(0) =
E[pit — pYy] < —cia®. Therefore there must exist some constant ez > 0 such that

f(e3) < 1. For this constant, z' is a submartingale.o

Claim 6 If p% < 283« then there exists some constant cq such that

P[tligloﬁtA > ka] < cqe”F

Proof: Let P be the probability that p!y > ko, P} be the probability that pY < Ba, and

2t = %P4/ For all + > 0 we have
B[] = E[£'|2' < eﬁcS]PJf + B[22 > ech]P,f + E[Zt|eﬁc3 <2< ech](l — PJ’f — P,f)

Note that pY is ergodic while in p; the states z! < e?#m and z! > ¢ are absorbing
states. Thus Py = limye Py and Py, = limy—o Pr both exist (since the sequences are

monotone) and sum to 1.
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Thus, upon taking the limit t — oo,

E[2Y] — B[]zt < )
2zt > ebes] — Flzt|zt < efee]

P =

Since z! is a submartingale we know that 1 < E[2!] < 2% < €27, Also, 1 < E[2!]z! <
efes] < efee ehs < B[22t > efe] < elftbes and efe < Flpt]efe < ot < ko] < ekes,
Thus,

e2bes

—k03
Pkge —1_6—(k—1)03<>

We can use the two preceding claims to show that the ‘escape’ time is large. This is

done in the next two claims.

Claim 7 Assume that p% < 2Ba. Let 7, be the first time for which p7y > ka. Then

€C3k

E[Tk] >

2cq00

Proof: Since
E[pit — pllply < 2Ba] < 280°

the expected time to go from pf, < fa to ply > 28a is at least 1/2a. Thus the expected
time until py > ko is

€C3k
>

E[ry] > Enumber of times to a before ka]/2a =
2a P, 2cqc

Claim 8 Assume that p% < 2Ba. Let 1, be the first time that p'y > \/a. Then,

€C3/\/a

2cq00

E[Tr] >

Proof: This follows immediately from choosing k = 1//a in the preceding claim.o
Since collapse is polynomially fast and escape exponentially slow, it is easy to see
that the limiting probability density is concentrated near 0. Thus, we can show that the

first condition in the definition of a-convergence is obeyed.
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Claim 9 There exists some ag such that for all o < ag

LT ;
Tll_f)l(r)lof/o dtP[p"y > Va] < «

Proof: Consider the process with three states: A:pl, < Ba, B:pY, > fa and pfy < pa
has occurred more recently than pfy > \/a, and C:pf, > Ba and p!, > \/a has occurred
more recently than p', < Ba. The system goes from state A to state B to state C and
then back to state A. The expected time to make a transition from A to B is bounded
below by 1. The expected time to make a transition from B to C is bounded below by
Er.]. The expected time to make a transition from C to A is bounded above by F[r/].
Thus, the fraction of the time spent in state C (which is an upper bound on the averaged

probability that p’, > y/a) is bounded above by

FE
] _Elrl _ —epveZa
Elr¢] + El7/] Elr] cla

For small enough ay, e‘cf’/\/afl% < aforall o < ap. ¢

Setting ag and [ as above, and setting by = 1/¢q, by = 1/2¢4, and by = c3, we see
that we have established the a-convergence.O

Note that we have also established the rate of convergence for small but finite a.
(For example, if 0 < o < ag then ps will become smaller than /o in time proportional

to 1/a* where the exact time is given in the above lemmas.)
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