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1 IntroductionWe consider learning in a repeated-game environment in which agents have extremelylimited information. At each stage of the repeated game, each agent takes an actionand then observes her resulting payo�. Agents do not know the payo� matrix, whichmay be stochastic and changing over time, nor can they directly observe the number ofother agents or their actions. Because the agents have no a priori information about thegame structure, they must learn the appropriate strategies by trial and error.1 To gaininsight into the general nature of learning in such environments, we study the behaviorof a simple probabilistic learning algorithm: the responsive learning automaton.2 Thissetting, with its extreme lack of a priori and observable information, is representative ofmany decentralized systems involving shared resources where there is typically little orno knowledge of the game structure, and the actions of other agents are not observable.Computer networks are one example of such a decentralized system, and learningthere inherently involves experimentation. One can consider bandwidth usage from agame-theoretic perspective (see, e.g. Shenker (1990,1995)) where the actions are trans-mission rates and the resulting payo�s are network delays; these delays depend on thetransmission rates of all other agents and on the details of the network infrastructure.Network users typically do not know much, if anything, about the actions and preferencesof other agents, or about the nature of the underlying network infrastructure. Thus, theagents in a computer network are completely unaware of the payo� structure and must1The degree of uncertainty about the environment is too complex for any kind of Bayesian or \hyper-rational" learning to be practical. This idea is also contained in Roth and Erev (1995) and Sarin andVahid (1996) who require that in their models of learning, players base their decisions only on whatthey observe, and do not construct detailed descriptions of beliefs. We do not model such complexityissues formally; There have been many such proposals in the literature (see, e.g. Rubinstein (1986),Friedman and Oren (1995), Knoblauch (1995)) but no consensus on a reasonable measure of complexity.2Our model is based on ordinary Learning Automata which were developed in biology (Tsetlin(1973)) and psychology as models of learning (Norman (1972)) and have been studied extensively inengineering (Lakshmivarahan (1981), Narendra and Thatcher (1989)). Recently, they have also beenused by Arthur (1991) as a model of human learning in experimental economics. Also, Borgers andSarin (1995) have recently compared their behavior with an evolutionary model of learning.2



rely on experimentation to determine the appropriate transmission rate. There is a largeliterature on such experimentation algorithms, called congestion control algorithms; seeJacobson (1988) or Lefelhocz et al. (1996) for a description of the algorithms used inpractice and Shenker (1990) for a more a more theoretical description.Note that learning in this context di�ers signi�cantly from the standard game the-oretic discussion of learning in repeated games, in which agents play best response toeither the previous play (Cournot (1838)), some average of historical play (Carter andMaddock (1984)), or some complex Bayesian updating over priors of either the oppo-nents' strategic behavior (Fudenberg and Kreps (1988), Kalai and Lehrer (1993)) or thestructure of the game (Jordan (1991)). Note that the �rst three types learning requirethe observability of the opponents actions and the knowledge of the payo� matrix, whilethe fourth will typically be impractical in the situations in which we are interested. Also,none of these allow for the possibility that the payo� matrix may change over time.3In our context, where agents do not even know their own payo� function, trial anderror learning is necessary even if the play of other agents is static.4 Since such `exper-imentation' plays a central role, our discussion naturally combines the incentive issuesnormally addressed by game theoretic discussions of learning with the stochastic sam-pling theory pivotal to the theory of decentralized control. This combination of issuesis of great practical importance in the sharing of decentralized resources (e.g., computernetworks, water and power systems), yet is has received rather little attention in thegame-theoretic learning literature.To better understand learning in such contexts, we address two basic questions: (1)what properties should a reasonable learning algorithm have in this context, and (2) howcan one describe the set of asymptotic plays when all agents use a reasonable learning3In theory, the set of priors could be enlarged to include the possible changes to the payo� matrix;however, this would enlarge the (already large) set of priors substantially. Such computations wouldclearly be beyond the ability of any real person, or computer.4Kalai and Lehrer (1995) study learning in a similar setting in the context of Bayesian learning.3



algorithm? We address these two questions in turn.5What properties should a reasonable learning algorithm have in this con-text? One natural requirement is that, when playing in a stationary random environ-ment (i.e., the payo� for a given action is in any period is drawn from a �xed probabilitydistribution6), the algorithm eventually learns to play the strategy (or strategies) withthe highest average payo�. This clearly is an absolutely minimal requirement and wasstudied by Hannan (1957) and more recently by Fudenberg and Levine (1995).7 It isalso focal in the decentralized control literature. In fact, we posit a stronger condition,which says that even in a nonstationary environment an action which is always optimal(in the sense of expected payo�) should be learned.There is also a second natural requirement for learning algorithms. Recall that, in ourcontext, players do not directly observe the payo� function, so if the game has changedit can only be detected through their experimentation. Such changes in environment arequite common in many distributed control situations; in computer networks, every timea new user enters or the link topology changes (often due to crashes) { both commonoccurrences { the underlying payo� function changes. The agents are not explicitlynoti�ed that the payo� structure has changed, and thus the learning algorithm shouldautomatically adapt to changes in the environment.While many standard models of standard models of learning (such as the one intro-duced by Kalai and Lehrer (1993) and almost all decentralized control algorithms) canoptimize against a stationary environment, they are typically not suitable for changingenvironments. For example, most Bayesian learning procedures (e.g. Kalai and Lehrer5Our approach has much in common with the experimental psychology literature and its recentapplication by Roth and Erev (1995) to model experiments on extensive form games.6In the simple model we consider, a stationary environment corresponds to i.i.d. actions by otheragents and nature. Clearly in other cases stationarity can be interpreted more generally. For examplein computer networks there is often cyclical variations, such as day vs. night, in this case stationaritycould be de�ned with respect to the natural cycles. Similarly, simple Markovian e�ects could also beincorporated into the de�nition.7Note that in the Bayesian optimality setting (e.g. Kalai and Lehrer, 1995) such convergence maynot occur (with high probability) if the agent's priors are su�ciently skewed.4



(1993)) and all `absolutely expedient' (Narendra and Thatcher (1974)) learning algo-rithms have the property that after a �nite time they may discard strategies forever; atany time there is a nonzero probability that they will never play a particular strategyagain. Typically, with high probability, these discarded strategies are not currently theoptimal strategy; however, if the environment changes and the payo�s for some of thesediscarded strategies increases, the learner will not be able to detect and react to thischange. Thus we conclude that such algorithms are ill-suited to changing environmentsand we consider only those that are responsive, in the sense just de�ned.We are not aware of any algorithms in the economics literature that satisfy both ofthe aforementioned requirements. We introduce a class of responsive learning automata(RLA) that guarantee responsiveness by requiring that the probability of playing anyaction (even suboptimal ones) never drop below a �xed constant. This is analogous tothe use of mutations in evolutionary learning theory to escape local minima. (In fact,many evolutionary learning models are similarly responsive.) These responsive learningautomata satisfy the most important requirements for learning in the environments weconsider, and we can thus entertain the second question.How can one describe the set of asymptotic plays when all agents use areasonable learning algorithm? Will such learners converge to a Nash equilibrium,or to a \rationalizable" set, or to something else? Will the set of asymptotic play be ad-equately characterized by traditional game-theoretic concepts? This question is criticalfor applying the mechanism design paradigm (see, e.g., Palfrey (1995)) to decentralizedsystems, because the set of asymptotic play { the solution concept { will determinewhich social choice correspondences can be implemented in such settings.We follow the reasoning developed in Milgrom and Roberts (1991) to describe thecollective asymptotic behavior. We show that for RLAs the answer depends criticallyon the timing of the game. In synchronous settings the automata converge to the seri-5



ally undominated set, echoing Milgrom and Roberts' result about \adaptive learning".However, in asynchronous settings, the RLAs do not necessarily converge to the seriallyundominated set; in fact they only converge to the serially unoverwhelmed set, which isa much weaker conclusion.We believe that this result demonstrates that some commonly accepted conclusionsabout the collective behavior of reasonable learners, such as the convergence to theserially undominated set, do not apply if the play is asynchronous (and if responsivenessis part of the reasonability requirement). Because decentralized systems are typicallyasynchronous in nature, and responsiveness is crucial in these settings, this implies thatthe serially undominated set is not an appropriate solution concept for these systems.Thus, lack of synchrony has important implications for learning as it does for other gametheoretic analyses (See e.g. Laguno� and Matsui (1995).) It also has rami�cations fordecentralized control.The paper is organized as follows. In Section 2 we de�ne responsive learning au-tomata and then analyze their behavior in the presence of an eventually stationary ran-dom payo� function. We describe the collective behavior of multiple automata playing ageneral game in Section 3; Section 3.1 examines the behavior of synchronous automata,while Section 3.2 examines asynchronous automata. Finally, in Section 4 we brie
yconsider the case of games which change over time.2 Learning AutomataIn this section we describe the probabilistic learner used in our analysis. We believethat learner is representative of the type of learner's that are sensible in a decentralizedsetting. The precise assumptions and functional forms that we assume are meant tosimplify the exposition and analysis; however, many reasonable probabilistic learners6



lead to the same conclusions that we obtain for this example.8 Our de�nition of aprobabilistic learner is a slight variation on standard Learning Automata (LA) ; thesemodi�cations improve the convergence properties in a changing environment.Consider a discrete-time environment with m possible strategies. Let rti denote thepayo� for playing strategy i at time t; this payo�, in general, can be random and dependon the entire history of play up to time t. We assume that 0 � rti � 1 for all i; t. Thestate of an automaton consists of the vector of probabilities pt = (pt1; pt2; : : : ; ptm) whereat time t the automaton picks strategy i with probability pti at random. The learningbehavior of such automata is embedded in the rule for updating these probabilities.A standard updating rule, parameterized by a constant � > 0, is given by Narendraand Thatcher (1989). If strategy i is picked at time t, then:pt+1i = pti + �rti(1 � pti)8j 6= i : pt+1j = ptj(1� �rti)Assume the rti are chosen from some stationary probability distribution, so that theprobability that rti � x is given by Fi(x) which is independent of t and the history of theplays. These LAs are �-optimal in that, for any � > 0, there exists some � such that:limt!1E( mXi=1 ptirti) > max(E[rsi ])� �Note that E[rsi ] is independent of s so the maximum is taken over all i, and see Narendraand Thatcher (1974) for a review of these results.Because the �-optimality means that these LAs can achieve an asymptotic expectedpayo� arbitrarily close to the optimal payo�, this property is often cited as evidencethat LAs are appropriate learning algorithms. However, the �-optimality property doesnot mean that for a given sequence of play the average payo� asymptotes to near-optimality. In fact, for these LAs, with probability one the play eventually converges to8This point is formalized in Friedman and Shenker (1996).7



a single repeated strategy, so for the sequence of plays from a given LA, limt!1 pti = �i;kfor some strategy k (i.e., the limit is zero unless i = k and then the limit is 1).9 As �goes to zero the probability of this strategy k being optimal approaches one, but for any� there is the possibility that the sequence of plays converges to a nonoptimal payo�.It is not clear that this eventual collapse to a single strategy, with a nonzero chanceof it not being optimal, is adequate for stationary environments. However, such behavioris clearly inappropriate for situations where the environment is not stationary. TheseLAs, once having converged to a single strategy, are unable to detect any change inthe associated payo�s and thus will produce signi�cantly suboptimal performance if theenvironment (or the other agents' strategies) changed so that the discarded strategiesnow yielded the maximal payo�s.10 If one �xes � and then chooses an eventually sta-tionary environment, one can make the probability of the result being suboptimal besubstantial.To rectify this problem of not being able to e�ectively respond to changing envi-ronments, we de�ne a slight variation of the standard LA, which we call a responsivelearning automaton (RLA). Essentially, we require that no strategy ever have probabil-ity less than �=2 of being played11, thus each strategy will be played in�nitely often.The update rule for this RLA, denoted by RLA�, is:pt+1i = pti + �rtiXj 6=i atjptj8j 6= i pt+1j = ptj � �rtiatjptjwhere atj = min[1; ptj � �=2�ptjrti ]9Also, during the tail of this \collapse", there is a high probability that only strategy k is played.10These issues are also brie
y discussed in Narendra and Thatcher (1974).11Note that this is analogous to the need for mutations in evolutionary models, where mutations arenecessary to keep the replicator dynamics from converging to `bad' equilibrium .8



where � < 1. Note that if all pj � � then the update rule for RLA� is the same asthat for the standard learning automaton12. We say a vector pt is valid if Pmi=1 pti = 1and pti � �=2 for all i. Note that the updating rules transform valid vectors into validvectors.We now describe, and verify, two relevant properties of these RLAs: convergence tooptimality, and monotonicity.2.1 Convergence to optimalityA basic requirement for any learning algorithm should be that it in some sense convergesto optimality. However, if we wish to consider changing environments, then it is clearlytoo di�cult to be able to optimize in any nonstationary environment. Thus, since wecan't require optimality in all environments, we impose the condition that in certain`simple' environments the learner can optimize. One reasonable condition is that in anyenvironment which is i.i.d. ( i.e., stationary) after some �nite time, the learner convergesto optimality.We will show that in such an environment RLAs do indeed optimize. First, we notethat while LAs achieve �-optimality in stationary environments by eventually discardingall nonoptimal strategies with high probability, the RLAs converge to optimality in aquite di�erent way. RLAs spend most of their time playing optimal strategies, butoccasionally wander o� and explore other strategies. The manner in which they do thisis embodied in the following de�nition, which we will use to characterize convergence.13De�nition 1 A discrete time random process xt parameterized14 by � �-converges to 0if there exist positive constants �0, �, b1, b2; b3, and q such that, for any 0 < � < �0:12Nonlinear update rules have also been studied (Narendra and Thatcher (1989)), but would notsigni�cantly alter our results.13We note that this de�nition is perhaps not as sharp as possible for our responsive learning automata.This is because we wish to emphasize that our results for multiple automata are not overly dependenton our speci�c model of learning.14Formally, for each � > 0, xt� is a random process de�ned for t 2 Z+.9



� limT!1 � 1T R T0 dtP [xt > p�]� < �� If �f is the �rst time that xt � ��, then E[�f ] � b1=�q.� If �r is the �rst time that xt � p�, given that x0� � ��, then E[�r] � b2eb3=p�=�.�-Convergence is de�ned by a rapid (polynomial) collapse to near zero and a verylong (exponential) period of remaining near zero before random variations take xt awayfrom zero. In any average of xt, the exponential period during which xt remains nearzero will dominate the polynomial period which is how long it takes xt to approach zerofrom any initial condition. For example, lim�!0+ 1T PTt=1(xt)p = 0 for any power p > 0.With this de�nition, we can state the following result, which is a stronger than theoptimizing requirement given above and demonstrates the versatility of RLAs.We consider some automaton in an environment where the random payo�s rti havedistributions that in general may depend on the entire history of play.15 We assume thatthere is a time T after which there is a particular strategy whose payo�s are maximal(for all histories of the previous play). This obviously includes both stationary andeventually stationary environments with a single optimal strategy, but is much broader.For example, consider a situation in which the environment never converges but thereis a particular strategy which is eventually always optimal. Then even in this changingenvironment the RLA will learn the best strategy.Theorem 1 Consider some set of strategies A and de�ne ptA = Pi2A pti. Assume thereexists some � > 1 and T > 0 such that E[rtijht] < (1 � m� )E[rtjjht] for all t � T , for alli 2 A, and for all j 62 A, where ht = (r1; r2; : : : ; rt�1). Then, ptA �-converges to 0 fromany valid initial condition.Thus, when we say that an RLA converges to optimality against a stationary en-vironment, we mean that the probability of playing nonoptimal strategies �-converges15Note that we make no assumptions about the convergence or stationarity of the stochastic process.10



to zero. The mixed strategy it plays in each period typically concentrates most of itsprobability mass on the optimal strategy, but occasionally this mixed strategy vectorwanders o� to sample nonoptimal strategies. In fact, since the RLA is irreducible, itwill eventually come arbitrarily close to every valid mixed strategy. The de�nition of�-convergence shows that mixed strategy vectors which produce signi�cantly subopti-mal outcomes are extremely rare. It follows as a trivial corollary that RLAs are thenalso �-optimal. Moreover, against a stationary environment where rti is described by thedistributions Fi(x), the result of a single run also converges to within � of the optimalpayo�: for any � > 0, there exists some � such that:limT!1 1T TXt=1 mXi=1 ptirti > max(E[rsi ])� �almost surely.Thus, in any eventually stationary environment every single play sequence of anRLA, the long-run payo� approaches the eventually optimal payo�. This is somethingthat the standard LAs fail to do, since while they are close to optimal when averagedover all play sequences, individual play sequences can be signi�cantly suboptimal. Theproof of Theorem 1 is in the appendix.2.2 Monotonicity: The Law of the E�ectAn important behavioral property is known as the \Law of the e�ect" (Thorndike (1898))which says that strategies that have led to good outcomes in the past are played moreoften in the future.16 This can be understood to be a monotonicity requirement on thelearning algorithm, in which increasing the payo�s for certain strategies increases theprobability that they will be played in the future. We now show that RLAs obey astochastic formalization of the \law of the e�ect".16Roth and Erev (1995) consider the law of the e�ect to be a fundamental principal in understandingplayers' behaviors in experimental game theory. 11



Theorem 2 Consider an automaton RLA� playing against an environment with a setof payo�s rti, and the same automaton playing against a di�erent environment with aset of payo�s r̂ti ; let pti and p̂ti denote the probabilities in the two cases. Let A be anyset of strategies. Then, if r̂ti is stochastically greater than or equal to rti for all t and alli 2 A and if r̂ti is stochastically less than or equal to rti for all t and for all i 62 A, thenp̂tA = Pi2A p̂ti stochastically dominates ptA = Pi2A pti for all t.Proof: De�ne ptA = Pi2A pti. Notice that the update rules for ptA are, when strategy i ischosen at step t, i 2 A : pt+1A = ptA + �rti Xj 62A atjptji 62 A : pt+1A = ptA � �rti Xj2A atjptjwhere atj = min[1; ptj � �=2�ptjrti ]Thus, pt+1A is monotonically increasing in ptA, monotonically increasing in rti withi 2 A, and monotonically decreasing in rti with i 62 A. It is easy to see that over anysample path p̂A � pA. 23 Convergence in Repeated Games with RLAsThese two properties, convergence to optimality (as represented by Theorem 1) andthe Law of the E�ect (as represented by Theorem 2) can be seen as two simple `axioms'of decentralized learning. We now turn to an analysis of the behavior of decentralizedlearners in a noncooperative game. Our key insight is that the asymptotic behaviordepends crucially on whether or not the automata are synchronous or asynchronous.We will describe this distinction using the concepts of dominated and overwhelmedstrategies.In this section we �rst introduce our general model, and then consider the cases ofsynchronous and asynchronous automata. 12



3.1 General ModelConsider a game with n players. Assume that player a has ma possible strategies �a =f1; 2; : : : ;mag, and let � = �1 � � � � � �n. For convenience, we will sometimes use thenotation � = �a � ��a. Let sta be player a's strategy at time t, st�a be the strategiesof all the other players, and st = (sta; st�a). At time t, player a receives �a(st), where� : � ! <n is the payo� function of the game. We will call a game � normalized if�(s) 2 [0; 1]n for all s 2 �. Note that any game �(s) can be easily transformed intoa normalized game.17 We are interested in the eventual outcome of a game if playersinitially have no information about the payo� function, and are allowed to vary theirstrategies over time. The collective asymptotic behavior depends on whether or not theautomata update their strategies at the same time. We discuss the synchronous andasynchronous cases separately.3.2 Synchronous AutomataFirst, we consider the standard model of repeated games, in which there are well de�nedperiods and players update their strategies every period.A synchronous automaton is one which updates its strategy at every play of the game;the probabilities p are updated and a new strategy is chosen randomly based on theseprobabilities every time step. We �rst consider the situation where one of the players isa synchronous RLA, and nothing is known about the nature of the other players. Whatcan be said about the eventual play of the RLA?To answer this, we apply the concept of dominated strategies. We say that strategyi dominates strategy j for player a, with respect to some set S�a � ��a, if8s�a 2 S�a; �a(i; s�a) > �a(j; s�a)17Equivalently, we could require that each automaton divides her payo� by the largest payo� that shehas observed to date. This would not e�ect any of our results, subject to some boundedness restrictionson the payo�s. 13



That is, strategy i dominates strategy j for player a if, against any speci�c play by otherplayers, the payo� for playing i is more than that for playing j. De�ne Ua : 2��a ! 2��afor any S�a � ��a, as the set of undominated strategies:Ua(S�a) = fsa 2 �aj 6 9s0a 2 �a s.t. 8s�a 2 S�a �a(s0a; s�a) > �i(sa; s�a)gLet U = (U1; : : : ; Un). Note that the de�nition of dominated strategies involved theentire payo� function �a, and that in the context we are considering the players donot know their payo� matrix. Dominated strategies are, in some sense, inferior toundominated ones, and one might expect that a self-optimizing player who knows theentire game matrix and who is playing against opponents with strategies in the set S�awould always play in Ua(S�a). We will show that RLAs, despite not knowing the payo�matrix, can also eliminate dominated strategies.Theorem 3 Consider some normalized game � and a player a whose strategies arechosen by a synchronous RLA. Now assume that the other players choose strategiesfrom S�a with probability greater than 1 � � in each period. Then, for � su�cientlysmall, ptD � Xi62U(S�a) pti�-converges to 0 for any valid initial condition p0.Proof: Note that when player a is using a synchronous automaton, the plays st�a cannotdepend directly on the plays sta, except through the vector pt. We now show that anydominated strategy �-converges to 0.Let strategy i dominate strategy j, and de�neM to be the set of remaining strategies.rtj = �a(j; st�a) if st�a 2 S�artj = maxs�a2��a �a(j; s�a) if st�a 62 S�a14



rti = �a(i; st�a) if st�a 2 S�arti = mins�a2��a �a(i; s�a) if st�a 62 S�artM = minsa 6=i �a(sa; st�a) if st�a 2 S�artM = minsa 6=i mins�a2��a �a(sa; s�a) if st�a(sta) 62 S�aConsider the game where, at each time t if strategy i is played we assign the payo� rti, ifstrategy j is played we assign the payo� rtj, and if any other strategy is played we assignrtM . In this new game, p̂tj stochastically dominates ptj by Theorem 2. Furthermore, if welook at the set A � i[M , then we can apply Theorem 1 to ptA to see that is �-convergesto 0. Thus ptA must �-converge to zero.2We now consider the case where all the players are synchronous RLAs, so they eachupdate their strategies at every time step according to the RLA updating rules. Canwe say more than that they all eliminate dominated strategies? We will show thatthe collective asymptotic play is restricted to the set U1(�) where U1 represents thein�nite iteration of the set mapping U ; the set U1(�) is called the serially undominatedset. Our result is very similar to that of Milgrom and Roberts (1991) (albeit in a verydi�erent context) who showed that collections of `adaptive' learners (that is, learnersthat eventually eliminate dominated strategies) converge to the serially undominatedset.In studying the collective limit, we must apply the concept of �-convergence toa situation where there are n di�erent �'s. We restrict ourselves to the case wherethese �'s satisfy the mild restriction that, as the �'s approach zero, we always have�pmax < �min, for some power p where �max is the largest � and �min the smallest.Theorem 4 For any group of n (n > 1) synchronous responsive learning automataRLA� playing a normalized game, and for any p � 1, for any automatonptD � Xi62U1a (�) pti15



�-converges to 0, where �-convergence is de�ned as all �a's converge to zero while sat-isfying �pmax < �min.Intuitively, the proof of this theorem follows from repeatedly applying Theorem 3,showing that play collapses to U1(�) and then inductively from U i(�) to U i+1(�) untilU1(�) is reached as in Milgrom and Roberts (1991). However due to the stochasticityof the automata, play can occasionally occur outside of U i(�). Thus we need to showthat this does not destroy the convergence process. We postpone the technical detailsof the proof until the next section where we prove a similar result in a more intricatesetting; see the proof of Theorem 6.The set U1(�), the result of the iterated elimination of strictly dominated strategies,has been well studied (see, e.g. Milgrom and Roberts (1991)). Many important learningmodels have been shown to converge there. In fact for a very large class of games, inparticular those which are supermodular or have strategic complementarities, this setis very simple. For example, both the `General Equilibrium Model with gross substi-tutes' and the Bertrand oligopoly model with di�erentiated products have a singletonU1(�) as shown in Milgrom and Roberts (1991). In these (and other) important modelssynchronous learning automata converge to the unique equilibrium.3.3 Asynchronous AutomataIn many games there is no natural time period, and thus we consider a game that isbeing played continuously in time.18 Each player can at any time change her strategy orevaluate the success (payo�) of her current strategy. For example, consider several userssharing a network link. At each instant each user has a certain link utilization whichshe can change any time and then compute the success of the current utilization levelas some average over a certain amount of time. This lack of synchrony is quite common18Milgrom and Roberts (1991) show that their analysis also applies to learning in continuous time.However, they still assume the elimination of dominated strategies. As we shall demonstrate, thisassumption is di�cult to justify in this setting. 16



in distributed control systems, where time is continuous and the various elements of thesystem update their behavior independently. For instance, in computer networks, theupdating frequency is typically on the order of the round trip time of packets, and thiscan vary by several orders of magnitude.19 Thus, there is no synchronization of behavioras we discussed in the previous section.20We model this asynchrony as having the RLA's average their payo�s over someperiod of time while keeping their strategy �xed. This averaging process must scaleinversely with � so that the averaging process occurs on time scales large enough toproduce macroscopic changes in the strategy vectors. Thus, as � approaches zero, theasynchronous RLAs average over an asymptotically in�nite period to determine theirpayo� before updating their p's. In this case it is not clear what is the single `correct'averaging method for determining the payo� of a particular strategy, so we allow for awide variety of possibilities.Let RLAT;G� be a responsive learning automaton which updates its strategy everyT=� units of time. The payo� that it uses for its update is some weighted average of itspayo�s in the previous time period; if player a has been playing strategy i for the pasttime period then the reward isrti = 1T=� Z tt�T=� �a(st0)dG( t0T=� )where G(t) is a cumulative distribution function and st0a = i for all t0 2 [t� T=�; t].What happens when one player is an RLAT;G� , and we know nothing about the otherplayers? In contrast to the results in synchronous automata behavior, the play of theasynchronous RLA is no longer con�ned to the undominated set. This is because whenthe RLA holds its strategy �xed over a period T=�, the other players can respond to19The delay in delivering packets on the same ethernet can be several orders of magnitude less thanthe delivery delay for packets traversing the transatlantic link.20There are few examples of asynchronous games in the literature, and the importance of asynchronyin the play of the game has mostly gone unnoticed, with the exception of recent work by Laguno� andMatsui (1995). 17



this strategy.To characterize the asymptotic behavior of this asynchronous RLA, we introduce thenotion of overwhelmed strategies. We say a strategy i for player a overwhelms anotherstrategy j, with respect to S�a if all the possible payo�s associated with i exceed allthose payo�s for j: mins�a2S�a �a(i; s�a) > maxs�a2S�a �a(j; s�a)De�ne Oa(S�a) to be the set of unoverwhelmed strategies for player a, if all the otherplayers are playing from the set S�a � ��a. Unoverwhelmed strategies are a supersetof ordinary undominated strategies, Ua(S�a) � Oa(S�a), since the elimination criteria isstrictly stronger (i.e., an overwhelmed strategy must also be a dominated strategy, butthe converse need not hold).Overwhelmed strategies, as opposed to dominated strategies, is the appropriate con-cept when considering asynchronous automata. Even if we assume that strategy i dom-inates strategy j, but another player always reacts to strategy i in a di�erent way thanthey react to j, then it might turn out that it is in the player's best interest to play j.This would never be the case if i overwhelms j, because the ordering of the payo�s isindependent of how the other players react.We now show that in asynchronous settings, while RLAs may play dominated strate-gies, they will not play overwhelmed strategies.Theorem 5 Consider some normalized game � and a player a whose strategies arechosen by an asynchronous RLA RLAT;G� . Now assume that the other players choosestrategies from S�a with probability greater than 1 � � in each period. Then, for �su�ciently small, ptD � Xi62O(S�a) pti�-converges to 0 for any valid initial condition p0.18



Proof: Note that in the asynchronous case the plays st�a are not necessarily independentof the plays sta. Thus, we will write st�a(sta) to denote this dependence. Let D be the setof overwhelmed strategies, U the set of overwhelming strategies, and M the remainingstrategies. Consider the following payo�s. De�nertD = maxsa2D maxs�a2S�a �a(sa; s�a) if st�a(sta) 2 S�artD = maxsa2D maxs�a2��a �a(sa; s�a) if st�a(sta) 62 S�artU = minsa2U mins�a2S�a �a(sa; s�a) if st�a(sta) 2 S�artU = minsa2U mins�a2��a �a(sa; s�a) if st�a(sta) 62 S�artM = minsa 62U mins�a2S�a �a(sa; s�a) if st�a(sta) 2 S�artM = minsa 62U mins�a2��a �a(sa; s�a) if st�a(sta) 62 S�aNote that whenever st�a(sta) 2 S�a we have rtU > rtD � rtM . Furthermore, rti � rtU for alli 2 U , rti � rtD for all i 2 D, and rti � rtM for all i 2 M . Consider the game where, ateach time t if strategy i is played we assign the payo� rtU if i 2 U , rtM if i 2M , and rtD ifi 2 D. In this new game, p̂tD stochastically dominates ptD by Theorem 2. Furthermore,if we look at the set A � D [M , then we can apply Theorem 2 to ptA to see that is�-converges to 0.2As in the synchronous case, we can use this result to characterize the asymptoticcollective behavior of a set of asynchronous RLAs repeatedly playing a general game.Theorem 6 For any group of n (n > 1) asynchronous responsive learning automataRLA� playing a normalized game, and for any p � 1, for any automatonptD � Xi62O1a (�) pti�-converges to 0, where �-convergence is de�ned as all �a's converge to zero while sat-isfying �pmax < �min. 19



Proof: Theorem 6 follows from the repeated application of Theorem 5. For exampleinitially Theorem 5 requires that all players collapse down to the undominated set S1 =O(�). Then as all players are in S1, Theorem 5 now implies that they will collapse downto S2 = O2(�). This process continues until they are all in S1 = O1(�). The sameproof applies to Theorem 4 where we replace O by U , Theorem 5 by Theorem 3, andnote that all time intervals are the same.First note that there exists an N such that ON (�) = O1(�) as � is a �nite game.Choose 
 such that (1 � 
)Nn � 1=2Now consider Si = Oi(�) and let �0 be the smallest � in Theorem 5 for any RLA, a,playing against Si�a. Similarly de�ne �1 to be the largest of the quantities b1T=�, �2 tobe the smallest b2T=�2, and �3 the largest b3.Claim 1 Pr[�f � N �1
�2min ] � 1=2Proof: Choose �0 � �0 such that for all � � �0 satisfying the restriction �pmax � �minthe following holds, �2e�3=p�max=�max > N �1
�2minNow, the above construction guarantees that dominated strategies will never getlarge during the N repeated actions of the domination operator. Thus an iteration ofthe domination operator will occur properly.Therefore by our de�nition of 
 the collapse to O1(�) with probability greater 1=2will occur in the speci�ed time. �Claim 2 E[�f ] � N �1
�2min20



Proof: �f is bounded above by a random variable with a geometric distribution, and theexpected number of periods of length ThNc1
�3p0is 2. �.Thus we have shown that the collapse will occur. Then the probabilities will remainsmall for an exponential (in �) amount of time by the �-convergence of the individualautomata. 2The result may not provide very much information about the asymptotic play sincefor many important games O1(�) is not a singleton, and then our theorem does notuniquely de�ne the outcome. However, this is necessary, as the speci�c outcome isdependent on the timing and averaging of the di�erent automata. This, we believe, isan unavoidable di�culty of learning in asynchronous decentralized settings.For example, one possible outcome is a Stackelberg equilibrium. Note that Stackel-berg equilibria are not possible outcomes of most standard models of learning as shownin Milgrom and Roberts (1991), but it does arise in our model of asynchronous au-tomata. Consider a two automata game when the �rst automaton (A1) is updatingmuch more often than the second (A2). Then since A1 rapidly converges to the bestreply to A2's strategy, we see that A2 is the Stackelberg leader, and they will convergeto the Stackelberg equilibrium. More precisely:Theorem 7 In the two player normalized game there exist RLAT1;G1�1 versus RLAT2;G2�2such that player 1 converges to Stackelberg leader and player 2 to follower.21Proof: Choose T1 = T2 = 1 and �2 = �21. Set G1(t) be 0 for t < 1 and 1 for t = 1, whileG2(t) = t. Thus player 1 evaluates his payo� at the end of his waiting period whileplayer 2 averages hers over the entire period.21This can be easily generalized to the multi-player Stackelberg equilibria.21



Consider their behavior as �1 ! 0. Player 2 updates her strategy 1=�1 times whileplayer 1 s strategy is constant. Thus if player 1 is playing s1 2 �1, then player 2 willconverge to BR(s1), the Stackelberg follower. Therefore for small enough �1, player 1 ise�ectively playing the game �1(s1; BR(s1)), and converges to the Stackelberg leader. 2This is interesting since typically players would prefer to be the leader than a fol-lower. Thus A1 does worse by updating more often than by updating very rarely. Thisseems counter-intuitive, as one would expect that a rapid response would be a desirableattribute. Thus, using a long averaging interval can be seen as a manipulation of otherplayers.However, there are certain games where the asynchronous outcome is unambiguous,in thatO1(�) is a singleton. Any set of asynchronous automata will converge to a uniquestrategy and so no Stackelberg manipulation of the sort described above can occur. Oneexample is the serial cost-sharing game (Moulin and Shenker (1992)). Another classof games which are solvable in terms of unoverwhelmed strategies are those arising inqueueing games with many players (Stidham (1992), Friedman and Landsberg (1993)).It is shown in Friedman (1995) that the game is solvable in unoverwhelmed strategies ifthere is su�cient capacity in the queue. This result extends to many nonatomic gameswith negative externalities.4 Time Varying GamesLastly, we note that our results hold even when the game matrix is not �xed. Forexample, if the payo�s in each period are random variables with well de�ned means,then all of our results hold when we de�ne dominated strategies (resp. overwhelmedstrategies) in terms of the matrix of expected values. In general the standard models oflearning are not so accommodating of stochastic payo�s.A second interesting extension is when the payo� matrix varies in some systematic22



manner over time. From our analysis, it seems clear that subject to some regularityassumptions, responsive learning automata will play most of the time in the (current)serially undominated set in the synchronous setting. We now give a simple example ofthis.Consider an environment which has a �nite number of payo� matrices which are allsolvable in terms of dominated strategies, but may have di�erent Nash equilibria. Every� periods it switches payo� matrices, either randomly or according to a �xed order.Assume that this game is played synchronously by a group of responsive learningautomata. Let P�(� ) be the portion of time that the automata are at the (current)Nash equilibrium.Theorem 8 Given the above assumptions, lim�!0 lim�!1 P�(� ) = 1 where the outerlimit is taken as all the �'s go to zero subject to the restriction that there exists a p > 0such that �pmax < �min.Proof: This follows immediately from Theorem 4 and the de�nition of �-convergence. 2Thus in an environment that changes su�ciently slowly, we still get convergence.Note that for small enough �, we can explicitly compute lower bounds on the percentageof time that play is at Nash. Also, the analogous result holds for asynchronous play.5 DiscussionIn this section we compare and contrast our approach with the literature on learning.This literature began with Cournot's (1838) dynamic interpretation of equilibria. Theconcept of Nash equilibria did not exist at that time, and so this approach started witha dynamic intended to model reality. It was noticed that this dynamic produced anunambiguous prediction of equilibrium in certain classes of games (those that are best-reply solvable). is this true, that they noticed? However, as equilibrium analysis23



gained prominence, the focus changed from modeling actual dynamics to understandingwhat dynamic procedures converged to Nash (and other) equilibria.For instance, in general equilibrium theory, beginning with Walras (1874), much ef-fort went into the study of dynamical mechanisms that converged to the competitiveequilibrium. In game theory, a large stream of research was motivated by Robinson's(1951) analysis of �ctitious play; many of the subsequent research was devoted to �nd-ing dynamic justi�cations of Nash or other solution concepts.22 Subsequently, Kalaiand Lehrer (1993) showed that Bayesian learning leads to Nash equilibria, subject to a\common priors" assumption. More recently, Foster and Vohra (1996) showed that any\calibrated learner" converges to a correlated equilibrium, where calibration is a nat-ural property of Bayesian learning. Thus correlated equilibria are a `natural' outcomeof Bayesian learning. A number of papers have recently proposed learning algorithmswhich are guaranteed to be calibrated. (See Foster and Vohra for a review of thesecalibrated methods, and Fudenberg and Levine (1996) for an overview of �ctitious play.)While Bayesian learning algorithms, and other calibrated algorithms, may be appli-cable in some settings and are unquestionably important to understanding the founda-tions of Nash (and correlated) equilibria, we do not believe that these \highly rational"learning algorithms are necessarily applicable in other settings. In particular, in manydistributed settings, there is little information about the state of the world (not justthe exact nature of the payo� function, but even the number of other players, is un-known). In such \low information" settings, Bayesian learning seems of little practicalrelevance.23 More particularly, in computer systems (such as network adaptation al-22Although, to be accurate, Robinson proposed �ctitious play as an algorithm for �nding Nash equi-libria, and the dynamic interpretation came later.(ck this???)23Although one could imagine constructing a set of priors over, the number of players, the stochasticenvironment, the other players' payo�s, etc., this set would obviously be gigantic. However, in orderto guarantee convergence using the analysis of Kalai and Lehrer (1993), the prior beliefs over this setwould have to include \a grain of truth" { the true state of the world would have to have a nonzeroprior. This implies that the priors would have to be nonzero over all potential states of the world, andthis computations would require Bayesian updating over this entire support, which would most likelyrequire more computation than is possible using any real computation device.24



gorithms) much simpler learning algorithms are used in practice. Similar results aresuggested by laboratory experiments.Our goal in this paper is not to understand the foundations of equilibrium concepts,but to begin a study of learning in a certain nonstandard but important setting. Studyingthe convergence of a typical learning algorithm leads us to new solution concepts; whilethese solution concepts may not be terribly appealing from a theoretical viewpoint, theyare likely to more accurately represent reality in these \low information/rationality"settings.24 If one is interested in using mechanism design, or implementation theory,in such settings, one must pay close attention to the nature of equilibrium that resultsfrom the learning algorithms used in practice.Thus, in this paper, we assume that learners make a reasonable, but not necessarilyoptimal, decisions in the sense described in Theorems 1 and 2. Our work is very closein spirit to that of Roth and Erev (1995) and Arthur (1991). The one crucial di�erenceis that our algorithms embody the notion of \responsiveness" { adapting to changes inthe environment within a bounded time (on average) { and this is not built into theirmodels. This responsiveness requirement has signi�cant implications for the convergencebehavior of the learning algorithms.Our results show that these reasonable but relatively naive learners, when comparedto more `rational' learners, have much more di�culty converging to equilibrium in asyn-chronous environments. In particular, in such settings the correct solution concept iscertainly larger than the serially undominated set. We have shown (Theorem 7) thateven in games which are dominance solvable (where the convergence of Bayesian algo-rithms, or even best reply algorithms, are not in doubt), the players may not convergeto the Nash equilibrium.24In Friedman and Shenker (1996) ??this forces us to �nish that paper!!!?? we show that essentiallyany group of learners which satisfy Theorems 1,2, and 8, converge to serially unoverwhelmed set, andcan remain outside of the serially undominated set by a construction similar to that in Theorem 7.25



A Proof of Theorem 1We prove this theorem with the following sequence of claims. Our approach is to �rstestablish that su�ciently far away from the boundaries ptA is decreasing on averageand then show that this implies that ptA rapidly collapses to near zero as required bythe de�nition of �-convergence. We then bound the escape time from this region nearzero. Finally, we show that these results imply the �rst condition in the de�nition of�-convergence is obeyed.Before starting with the claims, note that convergence is independent of the initialvalid vector p0, and thus we can set T = 1 with no loss in generality. Choose somek > 2�. De�ne rtA = maxi2A E[rti] and rt�A = mini62A E[rti]. First we show that awayfrom the boundary ptA is decreasing on average.Claim 3 There exists some constant c1 such that for � > 0 su�ciently small, if ptA > ��then E[pt+1A jptA] � ptA � c1�2:Proof: De�ne � = E[pt+1A jptA]� ptA. Computing directly from the updating equations� = �Xj 62AXi2A(ptiE[ptjrtimin[1; ptj � �=2�ptjrti ]]� ptjE[rtjmin[pti; pti � �=2�rtj ]])Noting that min[1; ptj��=2�ptjrti ] � 1 and min[pti; pti��=2�rtj ] � min[pti; pti��=2� ] yields� � �Xj 62AXi2A(ptiptjE[rti]� ptjE[rtj]min[pti; pti � �=2� ]) :Since E[rtj] � rt�A > rtA(1�m=�) for j 62 A and E[rti] � rtA for i 2 A,� < �(ptApt�ArtA(1�m=�)� pt�ArtAXi2Amin[pti; pti � �=2� ]) :Noting that Pi2Amin[pti; pti��=2� ] � ptA �m�=2 shows that� < �ptApt�ArtA ((1�m=�)� (1 � m�2ptA )) :26



Since ptA > �� by assumption, � < ��2rtAm; where we again used the fact that ptA > ��and pt�A = 1� ptA, proving the lemma.�Now we show that ptA collapses rapidly to near zero.Claim 4 Let �f be the �rst time that ptA � ��. ThenE[�f ] < 1c1�2Proof: This proof follows that in Goodman et al. (1990). De�neqt = pmin(t;�f)A + c1�2min(t; �f )This is a submartingale since E[qt+1jqt] � qtso E[qt] � p0Aand thus c1�2E[min(t; �f)] � p0ATaking the limit at t!1 we �nd thatlimt!1 c1�2E[min(t; �f)] � p0Aand limt!1 c1�2E[min(t; �f)] = E[ limt!1 c1�2min(t; �f)] = c1�2E[�f ]by the monotone convergence theorem. Therefore,E[�f ] � p0Ac1�2 < 1c1�2completing the proof. �The next two claims show that once ptA � 2�� then it is much more likely gobelow �� before it goes above k�. We apply a standard technique from the analysis27



of submartingales (see e.g. Ross (1983)). We let p̂tA denote the process which is thestopped version of ptA where stopping occurs as soon as ptA < �� or ptA > k�.Claim 5 There exists some c3 > 0 such that ec3p̂tA=� is a submartingale.Proof: Let zt = ecp̂tA=�for some constant c > 0. The submartingale conditionE[zt+1jzt] � ztrequires that E[ec(p̂t+1A �p̂tA)=�] = E[zt+1jzt]zt � 1Clearly, when p̂tA < �� or p̂tA > k� thenE[zt+1jzt] = ztLet, f(c) = E[ec(pt+1A �ptA)=�], and note that for �� � p̂tA � k�, f(0) = 1 and f 0(0) =E[pt+1A � ptA] � �c1�2. Therefore there must exist some constant c3 > 0 such thatf(c3) < 1. For this constant, zt is a submartingale.�Claim 6 If p̂0A � 2�� then there exists some constant c4 such thatP [ limt!1 p̂tA > k�] < c4e�c3kProof: Let P tk be the probability that p̂tA > k�, P tf be the probability that p̂tA < ��, andzt = ec3p̂tA=� For all t > 0 we haveE[zt] = E[ztjzt < e�c3]P tf + E[ztjzt > ekc3 ]P tk + E[ztje�c3 � zt � ekc3 ](1� P tf � P tk)Note that ptA is ergodic while in p̂tA the states zt < e�c3m and zt > ekc3 are absorbingstates. Thus Pf = limt!1 Pf and Pk = limt!1 Pk both exist (since the sequences aremonotone) and sum to 1. 28



Thus, upon taking the limit t!1,Pk = E[zt]� E[ztjzt < e�c3]E[ztjzt > ekc3]� E[ztjzt < e�c3]Since zt is a submartingale we know that 1 � E[zt] � z0 < e2�c3. Also, 1 � E[ztjzt <e�c3] � e�c3, ekc3 � E[ztjzt > ekc3] � e(k+1)c3, and e�c3 � E[ztje�c3 � zt � ekc3] � ekc3.Thus, Pk � e�kc3 e2�c3 � 11 � e�(k�1)c3 �We can use the two preceding claims to show that the `escape' time is large. This isdone in the next two claims.Claim 7 Assume that p0A � 2��. Let �k be the �rst time for which p�A � k�. ThenE[�k] > ec3k2c4�Proof: Since E[pt+1A � ptAjptA � 2��] � 2��2the expected time to go from ptA � �� to pt0A � 2�� is at least 1=2�. Thus the expectedtime until p�A � k� isE[�k] � E[number of times to � before k�]=2� = 12�Pk > ec3k2c4� �Claim 8 Assume that p0A � 2��. Let �r be the �rst time that ptA � p�. Then,E[�r] � ec3=p�2c4�Proof: This follows immediately from choosing k = 1=p� in the preceding claim.�Since collapse is polynomially fast and escape exponentially slow, it is easy to seethat the limiting probability density is concentrated near 0. Thus, we can show that the�rst condition in the de�nition of �-convergence is obeyed.29



Claim 9 There exists some �0 such that for all � < �0limT!1 1T Z T0 dtP [ptA > p�] < �Proof: Consider the process with three states: A:ptA < ��, B:ptA � �� and pt0A < ��has occurred more recently than pt0A > p�, and C:ptA � �� and pt0A > p� has occurredmore recently than pt0A < ��. The system goes from state A to state B to state C andthen back to state A. The expected time to make a transition from A to B is boundedbelow by 1. The expected time to make a transition from B to C is bounded below byE[�r]. The expected time to make a transition from C to A is bounded above by E[�f ].Thus, the fraction of the time spent in state C (which is an upper bound on the averagedprobability that ptA > p�) is bounded above byE[�f ]E[�f ] + E[�r] < E[�f ]E[�r] < e�c3=p� 2c4c1�For small enough �0, e�c3=p� 2c4c1� < � for all � < �0. �Setting �0 and � as above, and setting b1 = 1=c1, b2 = 1=2c4, and b3 = c3, we seethat we have established the �-convergence.2Note that we have also established the rate of convergence for small but �nite �.(For example, if 0 < � < �0 then pA will become smaller than p� in time proportionalto 1=�2 where the exact time is given in the above lemmas.)References[1] W. B. Arthur. Designing economic agents that act like human agents: A behav-ioral approach to bounded rationality. Learning and Adaptive Economic Behavior,81(2):353{9, 1991.[2] T. Borgers and R. Sarin. Learning through reinforcement and replicator dynamics.Mimeo, 1996. 30
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