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A product set of pure strategies is said to be closed under best replies if all best
replies against all possible mixtures of these strategies are contained in the set.
Minimal sets with this property are called minimal curb sets. This paper presents
a dynamic learning process that has two main characteristics: Players have a bounded
memory and they play best replies against beliefs, formed on the basis of strategies
used in the recent past. It is shown that this learning process leads the players to
playing strategies from a minimal curb set. Several variations of the process are
considered. Journal of Economic Literature Classification Numbers: C70,
C72. ©1995 Academic Press, Inc.

1. INTRODUCTION

A product set of pure strategies is said to be closed under best replies
if all best replies against all possible mixtures of these strategies are con-
tained in the set. Minimal sets with this property are called minimal curb
sets (Basu and Weibull, 1991). As we will see later, curb sets are closely
related to the better known persistent retracts. Kalai and Samet (1984)
showed that every game has at least one persistent retract and that every
persistent retract contains at least one (proper) Nash equilibrium. This
enabled them to introduce the persistent equilibrium as a refinement of
the Nash equilibrium concept.

Both concepts have been used in the literature. Kalai and Samet (1985)
used persistency to achieve efficiency in unanimity games that are repeated
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as long as no agreement is reached. Blume (1993a) used the persistent
retract as a set-valued solution concept in sender receiver games. Blume
(1993b) shows that, in one-sided cheap talk games, equilibria in minimal
curb sets sometimes select the sender’s preferred outcome. Hurkens (1993)
shows that, in games where several players have the possibility to send
costly messages, minimal curb sets always select the outcome preferred by
all senders. Van Damme and Hurkens (1993) applied the concepts of curb
and persistency in games of endogenous timing and Balkenborg (1993) did
so in finitely repeated games.

In most of these papers it is argued informally that the concepts of curb
and persistency have a dynamic and evolutionary flavor. However, few or
no attempts have been made to support this idea with an evolutionary
foundation of the concepts.

We construct a dynamic learning process to support these concepts.
Roughly speaking, the learning evolves as follows: A particular game is
played at discrete points in time. For each role in this game there is a pool
of players. At the beginning of each period one player is drawn from each
pool. These players will play the game in that period. Players have a
bounded memory. On the basis of strategies played in the recent past, they
form expectations about the strategies the other players will use and best
respond to these expectations. We assume that different players within the
same pool may have different beliefs and therefore they may choose differ-
ent actions. It is shown that, if the memory is long enough, play will settie
down in a minimal curb set.

In some respects our results are stronger than those obtained thus far
in the literature on learning. First, in contrast to Young (1993) we do not
need to restrict attention to a special class of games. Second, the set of
curb strategies is a subset of the set of rationalizable strategies (Bernheim,
1984; Pearce, 1984). Hence, our learning process reduces the number of
“plausible’ strategies. This is in contrast with Milgrom and Roberts (1991),
who show that a sequence that is consistent with adaptive learning will
eventually lie within the set of serially undominated strategies, which is a
superset of the set of rationalizable strategies. In the final section we show
that it is the forgetfullness of the players that accounts for this difference.

From the main and basic theorem we derive several results for learning
processes where players learn in a somewhat different way. Play still settles
down in minimal curb sets when some players do not play best responses
to past play, but are more sophisticated than that or, on the contrary, are
less sophisticated. If we allow players to have beliefs as if the other players in
the game correlate their actions, play settles down in a primitive formation
(Harsanyi and Selten, 1988), a variant of a minimal curb set. When players
are uncertain, the process does not converge to a curb set but to related
solution concepts as curb*, robust, or persistent sets, depending on how
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the uncertainty is modeled. The learning processes presented in this paper
may give the reader some insight in the differences and similarities between
these related concepts. We also characterize two classes of games where
our results go through, even if the players only observe the outcomes of
past play, instead of the strategies.

The rest of the paper is organized as follows. In Section 2 we introduce
some preliminaries concerning Markov chains and curb sets. Section 3
describes the model of learning as a Markov chain. Section 4 contains the
main result: the ergodic sets of the Markov chain correspond one-to-one
to the minimal curb sets of the underlying game. In Section 5 and 6 the
above-mentioned variations of the learning process are considered. In Sec-
tion 7 we consider the possibility that players make mistakes with small
probability. Section 8 compares the present paper to Milgrom and Rob-
erts (1991).

2. PRELIMINARIES

Let G = (81, ..., Sa, Uy, ..., u,) be a finite game with player set N =
{1,...,n} Let § = II; S;and S_; = I1..;S;. For any finite set X let A(X)
denote the set of probability distributions over X. For a distribution u €
A(S) let u; € A(S)) be the marginal on §;, and let u_; € A(S-;) be the
marginal on S_;, i.e.,

pi(s:) = 2 es, (s, 5-) (s €8)

Boi(5-0) = Zges, (s, 52 (s €5.).

Of special interest are the probability distributions whose marginals on
S1, ..., S, are independent. The sets of these probability distributions will
be denoted by =, and 3_;, respectively. Although they are formally not the
same, we will identify = with I, A(S;) and 2_; with I1.; A(S;) and trust
that no confusion will result.

For w € A(S) and i € N we let BR;(-;) denote the set of pure best
replies against p ;. Let BR(u) = II; BRi(u-;). For F C A(S) let
BRi(F) = U,er BR(pt-;) and BR(F) = -1 BR{(F).

DEFINITION 1. A non-empty cartesian product set C = II.,; C; C §
is said to be closed under best replies (or C is a curb set) if BR(IIL,
A(C;)) C C. Such a set is called a minimal curb set if it does not properly
contain a curb set. Strategies contained in minimal curb sets are called curb
strategies.
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It is straightforward to show that BR(II; A(C))) = C for any minimal
curb set C. The notion of curb sets was introduced by Basu and Weibull
(1991). Curb is mnemonic for closed under rational behavior.

A strict Nash equilibrium is a curb set as a singleton. Strict Nash equilibria
have almost all desired properties one can hope for, except existence. Many
of these properties carry over to minimal curb sets. For instance, every
curb set contains the support of a proper equilibrium (Kalai and Samet,
1984; Balkenborg, 1992). Moreover, every game has at least one minimal
curb set since S is curb.

Minimal curb sets can be viewed as a set-valued generalization of strict
equilibria: when an outsider recommends to all players to play strategies
from a minimal curb set C, then all players will follow this recommendation
if they expect the other players to do so. The comparision with strict
equilibria is not completely valid: minimal curb sets may contain weakly
dominated strategies.

Before we go further let us consider some examples where minimal curb
sets have some cutting power.

ExaMmPLE A. Let G be given by the normal form in Fig. 1a. This is a
pure coordination game. Since (7, L) and (B, R) are strict equilibria it is
easy to see that {(7, L)} and {(B, R)} are minimal curb sets and that there
are no other ones. In particular, the support of the mixed equilibrium is
not contained in any minimal curb set.

ExampLE B. Now consider the game in which player 1 has the choice
between playing the game from Fig. 1a and an outside option O, yielding
both players a payoff of 3. The normal form representation of this game
is given in Fig. 1b. This game has a unique minimal curb set, namely {(7T, L)}.

These two examples are nice because the minimal curb sets are single-
tons and hence consist of one strict Nash equilibrium. In the following
example, in contrast to those above, the unique minimal curb set is not
a singleton.

L R L R - LL LR RL RR
Ti44|1,1 0{33]33 miT |44 |44 [ 11| 1,1
Bl1,1(22 T |44 1,1 mlB|1,1|11122]22

Bl1,1]22 m'T |34 )01 (3401
m'B|01]1201 |12
a b c

FIGURE 1
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ExamprLE C. Suppose that player 1 can send one of two messages, m°
or m!, to player 2 before the game from Fig. 1a is played. Suppose that it
costs player 1 i units to send m‘. Let ma denote player 1’s strategy ““I send
message m and choose action @™ and let a%’ denote player 2’s strategy *1
choose action a' if I receive message m'.” Then the (reduced) normal form
of the game with pre-play communication is given in Fig. 1c. Now it can
be checked that {m°T} X {LL, LR} is the unique minimal curb set of this
extended game. The set is not a singleton but consists only of equilibria
that involve sending the cheapest message and then playing the equilibrium
preferred by player 1. In Hurkens (1993) similar results are obtained for
a whole class of games with n players among which k& have the possibility
to send a costly message.

In the next section we will describe the learning process by means of a
Markov chain. Therefore we will need some basic notions from the theory
of Markov chains.

A finite stationary Markov chain is characterized by a pair (X, P), where
X is a finite state space and P: X X X — [0, 1] is a transition matrix. The
interpretation is that P(x, x') is the probability that the process will move
from x to x’ in one period. We will denote x ~> x' if there exist k € N U
{0}, xy, ..., x € X withxg = x, x, = x’ and P(x;, %) >0(=0,..., k —
1). Now ~> defines a weak order on X. Hence, we can define an equivalence
relation on X:

x~y&x~yandy~x.

Let [x] denote the equivalence class that contains x and let Q = {[x]|x €
X} denote the set of equivalence classes. We define a partial order < on Q:

xlzlyley~x

The minimal elements with respect to the order < are called ergodic
sets. The other elements are called transient sets. If the process leaves a
transient set it can never return to that set. And if the process is in an
ergodic set it can never leave this set. The elements of these sets are called
ergodic and transient states, respectively. We have the following theorem.

THEOREM 1. In any finite Markouv chain, no matter where the process
starts, the probability after k steps that the process is in an ergodic state tends
to 1 as k tends to infinity.

Proof. See, e.g., Kemeny and Snell (1976).
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3. THE LEARNING PROCESS

According to the Bayesian approach, a player forms some expectation
about the strategies that will be played by the other players and best
responds to his expectation. How these expectations are formed is not
clear. When the same game has been played before, possibly by different
people, it seems reasonable to suggest that expectations are formed on the
basis of information on past play. One way of using this information is to
assume that a player’s belief corresponds to the empirical frequency of
strategies used in the past. This way of forming beliefs, known as fictitious
play (Brown, 1951; Robinson, 1951), perhaps makes sense in matching
models, but it is certainly not the only possible way of forming beliefs. One
drawback of fictitious play is that it assumes that all people always form
expectations in the same way. This implies that if different people have
the same information, they will form the same beliefs and consequently
they choose the same action. One can create some stochastic variability in
the process by assuming that people only draw an incomplete sample of
the information, as in Young (1993). There it is assumed that players learn
how the game was played in m out of the most recent K periods. The
players use a fictitious play rule to map samples into beliefs, and best
respond to these beliefs. The great technical advantage of Young’s approach
is that the learning process can be described by a fimte Markov chain on
the state space H = SX, consisting of all sequences of length K drawn from
S. In order to determine the ergodic sets of such Markov chains, one needs
only to specify which transitions occur with positive probability and which
occur with zero probability.

We will also describe a learning process by means of a finite Markov
chain, but we allow more variability in the responses of the players. In fact,
we allow the degree of variability that is present in Milgrom and Roberts’
(1991) definition of adaptive play.!

Let G = (S, u) be an n-person normal form game. Fix a positive integer
K. Suppose we have a finite population of individuals that is partitioned
into non-empty classes Vi, ..., V,,. The members of V, are candidates to
play role i in the game, and they all have the same payoff function u;. Let
t=0,1,2,... denote successive time periods. Game G is played once every
period. In period ¢ one individual is drawn from each class V;. These
individuals are going to play the appropriate roles in the game this period.
We will refer to the individual that is drawn from V; to play the game in
the current period as player i, although the identity of this player may
change from time to time. Player i receives some, but not necessarily all,
information about play in the recent K periods. Then he chooses a pure

! See Section 8 for a comparison between the present paper and Milgrom and Roberts (1991).
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strategy according to some rule. We will define below what kind of informa-
tion a player may receive, and how he chooses a strategy as a function of
this information. Then the players are put back in their class. This ends
period ¢t and we move up to period t + 1.

Since we will assume that all the rules are time-independent, this learning
process can be described by a stationary Markov chain on the state space
H = S¥. Call h € H a successor of h € H if h is obtained from k by deleting
the leftmost element and by adding some element s € S to the right. Let
r(h) denote the rightmost element of A € H. Forh = (s X ..., s) € H
let z.(h) = {s;%, ..., 57!} denote the set of strategies played by player i in
the recent past. We will assume that our learning process is described by
a transition matrix P € %, where @ is defined as follows.2

DeriniTiON 2. Let P denote the set of transition matrices P that satisfy
for all histories h, h € H,

h is a successor of A, and

P(hh)>0e { R , _
ri(h) € BR,(u') for some p' € 1L A(m;(h))  (alli).

We will give two interpretations of a learning process that is described
by some P € P. The first interpretation is close to the model of Young
(1993). Fix a positive integer L. Before player { chooses a strategy in
period ¢, he receives information about how the game was played by
player j in the recent past, for all j # i. He receives L draws with
replacement from the set {s;(t — K), ..., s;(t — 1)}. A way of thinking
about this sampling procedure is that player i passively hears about L
precedents concerning the way player j played the game before. But
player i is unaware of the fact that he might hear about the same
precedent several times. Assume that all draws are independent, but more
importantly, assume that each combination of draws occurs with positive
probability. Player i’s belief about the behavior of player j corresponds
to the empirical frequency of strategies in the sample of size L. Hence,
this belief is one of a finite number of possible probability distributions.
Namely, let & = (s(t — K), ..., s(t — 1)) denote the recent history and
let m(h) = {5;(t — K), ..., s5;(t — 1)} denote the set of strategies played
by player j in the recent past. Now player i’s belief about player j's
behavior is contained in the set

Bj(h, L)y = {u; € A(m;(h))|p;(s;) = U/L for some { € {0, 1, ..., L}}.

2 A transition matrix describes a learning process for a fixed game, G, and a fixed length
of the memory, K. We will, however, suppress superscripts G and K.
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We call the set Bi(h, L) = I1,.; Bj(h, L) the L-grid distribution space for
i induced by h. Note that as L increases, the grid becomes finer and
finer, and Bi(h, L) “‘approaches” II.; A(mj(h)). There exists a *‘generic”
class of games for which it suffices, for the purpose of this paper, to
choose L sufficiently large. However, in general we need a little bit more
and therefore we assume that our learning process is described by some
Pe®.

Another interpretation of a learning process that is described by a transi-
tion matrix P € P is the following. Suppose that the individuals in a class
have different personal characteristics: They use the information on past
play to know which strategies will certainly not be used (namely the ones
that have not been played in the recent history). But each individual makes
his own personal assessment of the probabilities with which the remaining
strategies will be played. Some people are very optimistic and expect the
best, while others are very pessimistic and expect the worst. And there will
be a lot who have some intermediate beliefs. Of course, we need sufficient
diversity in the different classes when this learning process is to be described
by some P € P. Note, however, that this does not necessarily mean that
these classes are large. Suppose that for each strategy s; € §,, there is some
individual in V; who plays s; whenever it is a best reply to some belief that
puts positive weight only on strategies that were played recently. (And he
chooses a best reply to the most recent strategy otherwise.) Then we only
need |§| individuals in class V..

In the next section we will state and prove the main theorem of this
paper: Play will settle down in a minimal curb set.

4. ERGoODIC SETS

Fix K € N as the length of the histories. Recall from Section 2 that
h ~> h means that there exist k € N, #°, ..., h* € H = S¥ such that #° = A,
k* = h, and P(K, B*') > 0. Now ~> defines a weak order on H and hence
we can define an equivalence relation on H and an order on the set of
equivalence classes of H. We will be interested in the minimal elements of
this order, the ergodic sets.

Let C be a minimal curb set of G = (8, u). We say that h € His a C-
history if A € CK. We call h a curb history if it is a C-history for some
minimal curb set C.

Now we are ready to state the main theorem.

THEOREM 2. There exists K € N such that for all K = K and every
Markov chain with a transition matrix P € %:
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(i) IfZ C His an ergodic set then Z C CX for some minimal curb set C.

(ii) For every minimal curb set C there exists exactly one subset Z C CX
that is ergodic.

(iii) For each minimal curb set C and each strategy 5 € C there exists
an ergodic state h with r(h) = 5.

This theorem states that, if the history is long enough, any ergodic set
is a set of C-histories for some minimal curb set C and that the set of C-
histories contains one ergodic set. Hence, the ergodic states are curb histor-
ies. Moreover, once the ergodic set contained in CX is entered, every strat-
egy 5 € C is played infinitely often. From Theorem 1 then the following
corollary follows.

CoroLLARY 1. The probability that the players are playing a curb strategy
profile after k steps of the learning process tends to 1 as k tends to infinity
if histories are sufficiently long.

The intuition for the theorem is quite clear. By having a large enough
memory, players may have beliefs with large supports. This means that
best replies against all kinds of mixtures will be played now and then. This
creates so much stochastic variability that players sooner or later will play
curb strategies. When they keep drawing the “‘right” samples, they will
keep best responding against curb strategies and hence will play curb strate-
gies again. It might happen that they will do this K periods in a row. The
probability that this happens at a specific point in time is only small, but
with probability one it will happen eventually. By that time all non-curb
strategies will be forgotten. The strategies that will be played from that
point on will depend on the sample drawn, but it is sure that it will be curb
strategies again.

Before we give a formal proof we make two remarks about Theorem 2.
First, note that assertions (i) and (ii) do not imply that C¥ is an ergodic
set whenever C is a minimal curb set. Still, the reader may think that the
only ergodic set contained in C¥ is CX itself. However, the following example
shows that C¥ need not be ergodic.

Consider the game in Fig. 2. This game has only one curb set, namely

az by ¢
a; 411423
by |14 14123
al3,2]32(00

FIGURE 2
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the set of all pure strategy combinations. But the profile & = (c, c, ..., ¢)
cannot be reached under the learning process from any other history. This
is so because c is only a best reply against some mixtures of 4 and b. Hence,
there exists no 4 with P(h, k) > 0 and % is not contained in the ergodic set.

The second remark concerns the length of the histories. In the proof of
Theorem 2 we will use a lower bound on K, but that bound is not tight.
On the other hand, it is important that histories are not too short, as the
example from Fig. 3 shows.

It is not difficult to see that if K = 2, then the set of histories {(s2,
s s € {T, M, B} X {I, c, r}} contains an ergodic set. Take for example
the history (71, Mr). Agents from pool V; will play a best reply against ol
+ (1 = a)r, for some « € [0, 1]. Hence, they will play T or B. But the
unique minimal curb set is the singleton {(A, a)}. So the history must not
be too short. Note that if K = 3 and the process is in state (71, Mr, Mc),
then there will be some agent in V; who will play A, since A is the best
reply against 4/ + 3c + ir.

Note that the game shown in Fig. 3 has a unique equilibrium, namely
(A, a). This equilibrium is strict. Since every curb set contains the support
of a Nash equilibrium and since a strict equilibrium forms a curb set as a
singleton, it follows that this game has a unique minimal curb set. Hence,
if players behave as described by our learning process then they will eventu-
ally play the equilibrium. This reasoning holds for all games that have a
unique equilibrium that happens to be strict. So we proved

COROLLARY 2. Suppose that s is the unique Nash equilibrium of G and
that s is strict. The probability that players are playing the equilibrium after
k steps of the learning process tends to 1 as k tends to infinity if histories
are sufficiently long.

The remainder of this section contains a formal proof of Theorem 2.
First we introduce some notation and state a lemma.
Let F be a non-empty subset of §. We define the projection of F on S;

a 1 C r
44122122122
221501(0,5]0,0
2,21001]5,01(0,5
2,210,5]10,01(5,0

o B e

FIGURE 3
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as p(F) = {f|f € F} and we define span(F) = II_, p(F). Hence, span(F)
is the smallest Cartesian product set in § that contains F. Similarly, for a
history A = (s°%, ..., s7") we define m,(h) = {s5;%, ..., 5;'} and span(h) =
[T, m(h). We say that B C S spans F if span(B) = span(F).

For a history A let B'"(h) = {u € X|supp(p) C span(h)}. This set con-
tains all independent beliefs a Bayesian player might have when the
process is in state k. Similarly, we define for a set F C S, B"(F) = {u €
S|supp(u) C span(F)}. Let M = max/S)].

Lemma 1. Letst,...,sT € é‘be such that s'*' & span({s', ..., s} for all
t=1,....,T— 1. ThenT=2_|S]| — (n—1).

Proof. Easy and hence omitted. =

Proof of Theorem 2. Take K = P S| — (n — 1) + M and let K =
K. letP e P.

T Let i = (XX, .. x,s', ..., s) bea particular history and assume
that F' = span({s', ..., s}) is not a curb set. Then there exists s'*! €
BR(B™(F)NFL Let '} = (XX, ... x',s', ..., s). Then P(H, h'*") >

0. Starting from an arbitrary history 4' we can apply this argument repeat-
edly. By Lemma 1 we know that there exists T < K — M such that h' ~
AT = (KT, ..., x', s!, ..., sT) and such that F" = span({s!, ..., s"}) is a
curb set. Let C C F7 be a minimal curb set and let {b’, ..., b} span C.
Since every strategy in a minimal curb set is a best reply to some belief
concentrated on this set and since K = M + T, we have kT ~ (..., s!, ...
sT,bY, ..., bM) ~ (b, ..., bM, BM, ..., bM).

The above shows that for every history 4, there exists a minimal curb
set C such that for every set {b!, ..., b¥} that spans C, we have h ~ (b',
., bM BM . bM). Furthermore, the definition of & implies that if 4 is
a C-history and h ~> h, then h is also a C-history.

The second observation implies that the set of C-histories contains an
ergodic set, for any minimal curb set C. The first observation then implies
that the set of C-histories contains exactly one ergodic set and that there
are no other ergodic sets. Assertion (iii) follows from the observation that
the spanning set {b', ..., b™} can be chosen such that b =5. =

’

5. VARIATIONS ON THE SAME THEME

We remarked before that one only needs to know which entries of the
transition matrix are positive and which are zero in order to characterize
the ergodic sets. In the proof of Theorem 2 we used that certain entries
are positive (together with Lemma 1) to show that the process can move
from any history 4 to a curb history h in a finite number of periods.
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Furthermore, we used the fact that certain entries are zero to ensure that
the process cannot leave the set of C-histories for any curb set C.

It is possible to prove Theorem 2 for an even bigger class of transition
matrices. Let P € P and let P be a transition matrix that satisfies, for any
minimal curb set C,

P(h,h)>0= P(h,h)>0 (5.1)
h € CXand P(h,h) > 0= h € CX. (5.2)

Let % denote the set of all such transition matrices. It is obvious that
Theorem 2 holds for all P € $. We will consider two subsets of P, namely
@soPh and P™m, The transition matrices in these sets correspond to learning
processes where some players are more sophisticated (in the case of %s°Ph)
or less sophisticated (in the case of #™™). It turns out that for these two
classes we can prove slightly stronger results.

5.1. More and Less Sophisticated Players

Suppose that not all individuals in the classes are Bayesian players, but
that some individuals are mimickers. Mimickers do not form expectations
but just observe how other agents in the same role have played the game
during (some of) the last K periods. Then they choose one of these strategies
at random. When we retain our assumption about the Bayesian players,
this learning process can be described by a transition matrix P € @™im,
where P™™ js defined as follows.

DerFmitioN 3. Let Q’mfm denote the set of transition matrices P that
satisfy for all histories h, h € H,

h is a successor of i, and

Phh)>0e4 . . .

(. 1) {r,-(h) € BR(B™(h)) or ri(h) € mi(h) (alli).
Obviously, #™” C %, and hence Theorem 2 holds for all P € P™im, We

can prove a slightly stronger result: All curb histories are ergodic states.

THEOREM 3. There exists K € N such that for all K = K and for every
Markouv chain with a transition matrix P € P™™ Z C H is an ergodic set
if and only if Z = CX for some minimal curb set C.

Proof. Using the proof of Theorem 2, it suffices to show that if Cis a
minimal curb set and & and h are C-histories, then kA ~> A.

Let h = (s°X, ..., s7!). We can choose a set B = {b!, ..., bM} that spans
C such that s/ € span({pM/*1, ..., bM}, forj = 1, ..., M. From the proof
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of Theorem 2 we know that & ~> (b, ..., 6™ s7X ... s-™*D)y = Because
of the special way we chose B (and because players sometimes mimic) we
have h ~>h. =

It is possible to prove Theorem 3 with a smaller lower bound on the
length of the memory by making full use of the presence of the mimickers.
We will not pursue that here. We just remark that for weakly acyclic games,
the class of games considered in Young (1993), we could take K = 1.

The learning process we considered implies that Bayesian players play
best responses against past play. If a player knew that other players are
following this process, he could do better by playing a strategy that is a
best reply against a strategy profile, consisting of best responses for the
other players against past play. Of course, we may have players who foresee
that others are going to play best responses to best replies to past play.
We could have even more sophisticated players. When we assume that in
a class many different levels of sophistication are represented, we have
a learning process with sophisticated players. (See also Milgrom and
Roberts, 1991.)

Formally, let h be a particular history and let T7°(h) = span(h). Define
recursively 7/*'(h) = span(T’(h) U BR(®B(T/(h)))). Since T/*1(h) D T/(h)
and S is finite, 7=(h) = span(U](T/(h)) is well defined. Again, we define
a whole set of transition matrices that correspond to learning processes
with sophisticated players. We will denote this class by P*°P" where soph
is defined as follows.

DEerFINITION 4. Let P*°P" denote the set of transition matrices P that satisfy
for all histories h, h € H,

h is a successor of h, and

piy=0e o

It is obvious that ?*°P® C & and hence Theorem 2 is valid also for this
class. We can prove a stronger result: In the presence of sophisticated
players we need only a memory of length one. The intuition for this result
is that sophisticated players can do all the learning in their heads. They
might foresee all the steps that needed to be executed in the case of no
sophisticated players.

THEOREM 4. For all K = 1 and all Markouv chains with a transition
matrix P € PP we have Z C H is an ergodic set if and only if Z = CK
for some minimal curb set C.

Proof. For notational convenience we just give the proof for K = 1.
Now H = § and we can define 7*(s) for all s € §. Note that 7%(s) is a
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curb set and hence there exists a minimal curb set C C T*(s). If 5 € C then
P(s,5) > 0.

Note that if s € C for some minimal curb set C then 7*(s) = C. Hence,
if 5,5 € C, then P(s,5)>0. =

The reader may have noticed that this sophisticated learning process
has some similarities with the notion of rationalizability (Bernheim, 1984;
Pearce, 1984). The difference is that rationalizability corresponds with a
process of iterative elimination of strategies that are never best replies
(starting with the whole space of strategy profiles) whereas our learning
process implies the addition of best replies (starting from a history). The
bounded memory of the players causes play to settle down in a minimal
curb set.

The similarity of rationalizable and curb strategies has already been
pointed out by Basu and Weibull (1991) and Balkenborg (1992): Call a set
C = I, C tght if BR(IT., A(C)) = C. The maximal tight set is the set
of rationalizable strategies, while the minimal tight sets are just the minimal
curb sets. In particular, every curb strategy is rationalizable.

5.2. Uncertain Players

Consider the game shown in Fig. 4. This game has a unique curb set: it
consists of all pure strategy profiles. When players behave as described by
any of the learning processes they will regularly be playing (B, R)! This
might seem a bit strange. It could not happen if the players were careful
and played only undominated best replies. Then they would finally be
playing only (7, L).

This example shows a drawback of the notion of minimal curb sets: They
can contain strategies that are weakly dominated. Therefore let us recall
from Basu and Weibull (1991) the notion of sets that are closed under
undominated best replies. Formally, s; is weakly dominated by s; if u,(s;,
s-;) = uds!, s_;) for all s_; with strict inequality for at least one s_;. Let
UBR(¢) denote the set of pure best replies against o that are not
weakly dominated.

L R
Ti1,11,1
B|1,1]00

FiGURE 4
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DEFINITION 5. A non-empty Cartesian set C = IIl.; C; is closed under
undominated best replies (or C is a curb* set) if UBR(IIL; A(C)) C C.
Such a set is called a minimal curb* set if it does not properly contain a
set that is closed under undominated best replies. Strategies contained in
minimal curb* sets are called curb* strategies.

LEMMA 2. Fuvery curb set contains a curb* set. Every minimal curb*
set contains the support of a Nash equilibrium. Curb* strategies are not
weakly dominated.

Proof. Easy and hence omitted. ®

It is easy to adjust the learning process so that players will end up playing
curb* strategies. Just replace “‘best replies” by “undominated best replies”
and analogies of Theorems 2, 3, and 4 can be proved easily. On the level
of Bayesian players this means that, although they have certain beliefs,
they are not completely sure that these beliefs are “correct.”® Therefore
they should be careful and play only undominated best replies.

The approach taken above is a bit unsatisfactory since the uncertainty
is not modeled. We will do that now. Remember the sampling procedure
described in Section 3. Every time an individual is drawn from class V;, he
hears about L precedents concerning the way player j played this game
before. This sample is transformed (by the fictitious play rule) into a belief
w' from the L-grid distribution space B'(h, L), where h denotes the recent
history of plays.

Now suppose that the final belief of this player is not necessarily u’,
but some g’ “close” to w, reflecting the uncertainty of this player. This
uncertainty may stem from the fact that the player realizes that he only
draws a sample and that u' is only a point estimate of the distribution of
strategies. The final belief 4’ could be a draw from some ‘‘confidence
interval” around u‘. This draw might depend on personal characteristics,
as well as on other external factors. We will just assume f' is drawn from
the uniform distribution over B,(x)) = {0’ € 2_|d\ax(i, o) < €}, where
e > 0 is fixed* and where dia(y', o) = max, cs |u'(s-) — o'(s)|. Note
that, for large L, the union of these intervals over all L-grid distributions
induced by 4 consists of all probability distributions close to I1,.; A(7,(h)).

What consequences does this have for our learning process? Or, in other
words, what strategies will be played with positive probability after each
possible history? Well, let 2 € H and let s5; € §,. Before we had that s; was

3 The uncertainty of the players could stem from the fact that players may realize that other
players have different samples. Anyway, sometimes players “are right” to be uncertain since
it is possible that a history h is followed by the play of s, where s & span (k).

4 We could take £ = 1/L to reflect the intuition that larger samples should result in smaller
confidence intervals.
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played with positive probability whenever there was some u' € I, A(mi(h))
such thats; € BR(u'). Now we have that s;is played with positive probability
only if the stability region of s,

Sti(s;)) ={o.. € z |s; € BR{o-)},

has positive probability under the uniform distribution over B.(4'), for
some L-grid distribution &' induced by h. For sufficiently large L, this is
equivalent to

i € cl(int(Sty(s))) (5:3)

for some p_; € 11, A(m(h)), where cl(-) and int() stand for closure and
interior (in the topological space X_,), respectively.

Note that if u_; € int(St,(s;)), then s, is a best reply against each strategy
in an open neighborhood of n_;. Up to equivalence, s; is then also the
unique (and undominated) best reply against this neighborhood, and s; is
called a robust best reply against p_;. If only (5.3) is satisfied, there is
some non-empty open set close to u-; against which s; is the unique best
reply, and we call s; a semi-robust best reply against u_;, which is denoted
by s; € SRBR(1-;). As opposed to robust best replies, semi-robust best
replies always exist, and there may exist several semi-robust best replies
against some pu_;, even if player i has no equivalent strategies. It is easy to
see that semi-robust best replies are not weakly dominated. Similar to the
case with the (undominated) best reply correspondence we define

DeriNiTION 6 (Balkenborg, 1992). A non-empty cartesian set C =
I/, C; is closed under semi-robust best replies (or C is a robust set) if
SRBR(I, A(C))) C C. Such a set is called a minimal robust set if it does
not properly contain a set that is closed under semi-robust best replies.

It is easy to see that every curb* set contains a robust set, but not every
minimal robust set is (contained in) a minimal curb* set. Moreover, every
robust set contains the support of a Nash equilibrium.

The learning process where players are uncertain can be described by a
Markov chain that is very similar to the ones we had before. Just replace
“best replies” by ‘‘semi-robust best replies” and analogies of Theorems 2,
3, and 4 can be proved easily. Play will settle down in a minimal robust set.

For “generic” normal form games the minimal curb, curb*, and robust
sets coincide with the persistent sets. Persistent sets consist of the extreme
points of persistent retracts (Kalai and Samet, 1984). As a matter of fact,
for games in which no player has equivalent strategies, the minimal robust
sets coincide with the persistent sets (see Balkenborg, 1992). However,
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many normal form games are interesting because they are the normal form
representation of an extensive form game, and these are not ‘‘generic” in
the class of normal form games. This is due to the fact that there may be
strategies in the extensive form game that preclude some information sets
(or subgames) from being reached. This implies that curb sets may differ
from robust sets. To illustrate this difference consider the following example
that is taken from Hurkens (1993).

Consider the game in Fig. 5. Player 3 can decide to burn one unit before
players 1 and 2 play a simultaneous move coordination game. Consider
the strategy profile s"'f = (RR, rr, ““burn 0”"). The singleton set containing
this profile is persistent and robust: Player 3 has a unique best reply against
s namely “burn 0”; players 1 and 2 have a lot of (undominated) best
replies against 5™, but they have a unique semi-robust best reply. In a
small neighborhood outside {5}, players 1 and 2 have a unique best
reply, since they have an interest in choosing the same action: in a small
neighborhood player 1 plays R with a very high probability, whether or
not player 3 burnt something, and hence player 2 has to choose r, whether
or not player 3 burnt something.® Since players 1 and 2 have a lot of
(undominated) best replies against 5T, it is easy to see that {s™} is not
curb or curb*. In fact, the only minimal curb (or curb*) set of this game
consists of all strategy profiles yielding the payoff vector (3, 3, 3). The latter
set is also persistent and robust.

It seems that the learning processes introduced in this paper are a bit
peculiar in the case of extensive form games. In the process that leads to
minimal curb sets, sometimes players are absolutely sure that a particular
information set will not be reached. Therefore they are free to choose any

5 This result depends on the assumption of independent beliefs. See also subsection 5.3.
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action in this information set. On the other hand, if we add a little bit of
uncertainty, players are still quite certain about the strategies that will be
used, but they are also certain that all information sets will be reached with
positive probability. Therefore they have to play a best reply against the
strategy profile that they believe to be played almost certainly, in all infor-
mation sets, although many of these information sets will not be reached
if this strategy profile is indeed played.

These peculiarities are due to our assumption about the information that
players have. In our learning process we assumed that players know the
strategies played in the past. For extensive form games it makes more sense
to assume that players observe only the outcomes of actual play and that
they may hold any beliefs about strategies in unreached information sets.
We deal with this issue in Section 6.

5.3. Dependent Beliefs

Throughout this paper we assumed that a player’s belief about the strate-
gies of the other players is independent, i.e., is an element of 2 _,. This was
a consequence of the sampling procedure we described in Section 3. Players
receive information about the strategies of the players individually. More-
over, if players realize that the players are deciding simultaneously and
independently, then it is natural to have independent beliefs. There are,
however, two problems concerning the independency of beliefs.

First, do players indeed decide independently? After all, the choices of
all players depend (via the samples) indirectly on the same recent history.
History might act as a correlation mechanism. Second, our other interpreta-
tion of the learning process was that personal characteristics are important
to form beliefs. All players expect that strategies that have not been played
recently will not be played, but different players may have different assess-
ments of the probabilities with which the remaining strategies are played.
In view of this interpretation, an individual from class V; might have a
dependent belief, i.e., an element of A(S_,). For instance, he might believe
that the other players can correlate their strategies. It does not really matter
whether or not the other players do correlate; what matters is that some
individuals may believe that they do.

In this section we will examine the consequences of allowing players to
have dependent beliefs. We will assume that the classes are very diverse:
If & denotes the recent history and s; € BR,(u) for some u' € A(span(h)),
then s; will be played with positive probability. Again, we will define a
whole set of transition matrices describing such learning processes. Let
Bér(h) = {u € A(S)|supp(u) C span(h)} denote the set of all dependent
beliefs a player may have.
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DerFmniTioN 7. Let @dﬁp denote the set of transition matrices P that
satisfy for all histories h, h € H,

h is a successor of /4, and

Plrk) >0 {r(i:) € BR(#P(h)).

Remark. Note that our definition of the transition matrices does not
correspond to what one may call “‘correlated learning.” Suppose that in a
three player game player 3 observes that the other players played 7L and
BR in the last two periods. Then, under our assumption of dependent
beliefs, it is possible that player 3 believes that 7R and BL will be played,
both with probability 4. One may feel that only beliefs of the form aTL +
(1 — a)BR should be allowed. We do not know whether such ““correlated
learning” processes converge to some static set-valued solution concept.

We can prove a theorem similar to Theorem 2. Of course, the process
will in general not converge to a minimal curb set, but to a Cartesian set
F = 1., F, that is minimal will respect to the following property: If u €
A(F) and s; € BR,(u-,), then s; € F,. Following Harsanyi and Selten (1988)
we call such a set a primitive formation.®

THEOREM 5. There exists K € N such that for all K = K and for every
Markouv chain with a transition matrix P € Pder;

(i) IfZC Hisanergodic set then Z C FX for some primitive formation F.

(ii) Forevery primitive formation F there exists exactly one ergodic subset
Z C FX

We omit the proof because it is essentially the same as the proof of
Theorem 2. We just have to observe that if F is a primitive formation and
s € F, then s; is a best reply against some (dependent) belief concentrated
on F.

Obviously, analogies of Theorems 3 and 4 to the case of dependent beliefs
also exist. The same is true for the results of Section 5.2 on undominated best
replies and semi-robust best replies. Analogous to curb* and robust sets
we could define primitive* and robust formations. The reader should be
aware, though, that the definition of semi-robustness needs to be adapted.
In the context of dependent beliefs we say that s; is a semi-robust best
reply against u_; € A(S_) if pu-; € cl(int(St(s;))), where cl(-) and int(-)
stand for closure and interior, respectively, in the topological space A(S-)),
and where St,(s;) = {u_, € A(S-)s; € BR(u,)} is the stability region of s;.

Of course, in a two-person game the primitive formations are identical

¢ Harsanyi and Selten (1988) consider this concept in the agent normal form.
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to the minimal curb sets. Moreover, every primitive formation contains a
minimal curb set. Hence, if a game has a unique minimal curb set C which
is also a primitive formation, then C is also the unique primitive formation.’
Similar statements can be made about the other concepts with the help of
the following diagram. In this diagram, X O Y means that every X contains
an Y, but not every Y is contained in an X.

primitive formation O primitive* formation 2 robust formation
U U U
min. curb set 3  min. curb*set D min. robust set

6. LEARNING FROM OUTCOMES

Throughout this paper we assumed that players know the strategies that
were used in the past. This assumption is reasonable when the players in the
underlying game choose their actions simultaneously. But if the underlying
game is in fact an extensive form game, it makes more sense to assume
that players observe only the outcomes, i.e., the paths in the tree generated
by the strategies. Consider for example the “‘burning money’’ game in Fig.
5. Suppose player 3 chose to “‘burn 0’ in the last period. How could he
know how players 1 and 2 would have reacted to “burn 1?7 In fact, he
cannot, although he may have some beliefs.

In this section we will consider the case where players observe only the
outcomes in the recent past. We assume that all agents form expectations
on the basis of observed outcomes, and that different agents within a pool
may form different beliefs. We pose only one restriction on the beliefs:
When a player is able to conclude from the observed outcomes that a
particular strategy has not been played during the last K periods, he expects
it will not be played next period. As before, we assume that the classes are
very diverse: As soon as strategy s; is a best reply against some independent
belief, satisfying this restriction, s; will be played with positive probability.

We will define a class of transition matrices that correspond to such a
“learning from outcomes’’ process, and we denote this class by P°". Before
we can do so, we need some notation.

Let G be an extensive form game. Let O denote the set of outcomes (i.e.,
paths in the tree from the root to an endpoint) and let o: § — € be the
mapping that assigns to a pure strategy combination the outcome it gener-
ates. We will assume that there are no moves of nature in G, since this

7 For an example, consider the game shown in Fig. 5. The set of strategy profiles yielding
the payoff vector (3, 3, 3) is the unique minimal curb set, but it is also a primitive formation.
Moreover, it is also the unique primitive* and robust formation.
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mapping is not well defined if there are. For a history h = (s7%, ..., s7"),
let outc(h) = {o(s™X), ..., o(s™!)}. Note that outc(h) summarizes
the information a player has. Let cons{h) = {s; € §|3s_; € S, s.t.
o((s;, s-;)) € outc(h)} denote the set of strategies of player i that are
consistent with the observed outcomes. Let cons(k) = II7., cons,(h).

DeriniTION 8. Let P°" denote the set of transition matrices P that
satisfy for all histories h, h € H,

h is a successor of 4, and

Ph.h)>0 e {r(ﬁ) € BR(B™(cons(h))).

In general, it is not true that play will settle down in minimal curb sets.
Note that cons(h) D span(k). This implies that if P € ® and P(h, k) > 0,
then P*'(h, h) > 0 for all P°t € ®°ut. Using part of the proof of Theorem
2, it follows that, if K is large enough, for every history & and every
PO € PO there exists a curb history / such that & ~> A. The problem
is that there might exist a history &, which is not a curb history, such that
i ~> h. This might even happen in “generic” extensive form games, as
the game presented in Fig. 6 shows.

This game has a unique minimal curb set, namely {U, D} X {aA, aB,
aC, bA}. However, suppose that in the recent (curb) history the strategy
combinations (D, aB) and (U, bA) were played. Hence, player 1 observes
(among other things) the outcomes DB and Ub. He might believe that the
strategy bB was played and will be played again next period. If he does
so, he will choose “Out,” which is not a curb strategy.

The above example seems to suggest that there is no hope to obtain a
result like Theorem 2 in the case of learning from outcomes. There are,
however, two classes of games for which such an analogy does exist. The

(6,6) (1,1) 3,3 (55 (2,2) (84)

FIGURE 6



LEARNING BY FORGETFUL PLAYERS 325

first class consists of the extensive form games without moves of nature,
where each player has only one information set at which he has to make
a choice. For obvious reasons we call such a game an agent normal form
game without moves of nature, and we denote the class by ANF. The
second class of games consists of those games G that have the property
that any minimal curb set C of G corresponds to a single outcome; i.e., the
set {o(¢)lc € C} is a singleton. We denote this class by SCO (single curb
outcome). Examples of these games are shown in Figs. 1b, 1c, and 5.

To prove the above claims we just need to show that #°** C &, where
% is as defined at the beginning of Section 5. Part (5.1) follows from
span(k) C cons(#) and part (5.2) follows from the next lemma.

LEmMMA 3. Let G € ANF or G € SCO and let C be a minimal curb set
of G. Then

h € CX = cons(h) C C.

Proof. First consider the case G € ANF. Let j be a player. If there is
an outcome o(s™™) € outc(h) that does not intersect j’s information set,
then it follows that BR;(s™) = S;. This implies that C; = §; D cons;(h). If
there is no such outcome, all outcomes intersect j’s information set and
cons;(h) = m(h) C C;. Hence, cons(h) C C.

Now consider the case G € SCO. Let § = r(#). Now we have
outc(h) = {o(5)}. Let j be a player and suppose s; € cons;(4). In any in-
formation set of j that intersects o(5), s; picks the same action as s;, since
s; is consistent with . Since G € SCO, we have that §5; is a best reply
against 5_;. But this implies that s; is a best reply against 5_; as well, and
hence s; € C;.

The reader can check that there are also analogies of Theorems 3 and
4 to the case where players learn from outcomes. The definition of a
mimicker needs to be adapted, since players do not observe strategies. We
may assume that mimickers choose at random a strategy from the set of
strategies that are consistent with (some of) the observed outcomes. There
is also an analogy of Theorem 5, where players’ beliefs are not independent.
There are, however, no analogues for the results of Section 5.2 on the
refined notions of undominated best replies or of semi-robust best replies.
This is due to the fact that strategies that are consistent with a curb* history
may be weakly dominated. The game presented in Fig. 6 shows an example
of such a case: The only curb* strategy is (U, aA), but ¢B and aC are
consistent with the curb* outcome.
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7. LEARNING AND EXPERIMENTATION

In many papers on learning, experimentation plays a prominent role.
(See, e.g., Kandori et al., 1993; Samuelson, 1994; Young, 1993; Fudenberg
and Kreps, 1988). :

In Young (1993), Samuelson (1994), and Kandori et al. (1993) the possibil-
ity of experimentation (or mistakes or mutations) implies that the Markov
chain describing the learning process becomes irreducible and hence has
a unique stationary distribution. By taking the limit as the experimentation
rate tends to zero, one stationary distribution of the unperturbed process
is selected. In Young (1993) and Kandori et al. (1993) this yields typically
a unique so called stochastically stable state because they consider a special
class of games. Samuelson (1994) considers games with alternative best
replies and then the support of the limit distribution consists usually of one
or more line segments.

It turns out that the introduction of experimentation does not change
the results of the present paper, at least not for two-person games. If a
two-person game has multiple minimal curb sets, experimentation will not
yield the selection of a particular one: the limiting distribution puts positive
weight on all states that are ergodic under the unperturbed process. The
intuition behind this result is that only one mistake by one player is neces-
sary in order to move the system from one ergodic set to another. When
the game has more than two players, it might happen that a particular
minimal curb set is selected. One can characterize the selected minimal
curb set graph-theoretically.

In order to prove these results formally, we would have to recall the
essential definitions and theorems from Young (1993). We refer the reader
to the original paper for a formal treatment. We will just illustrate the
result by means of an example.

Consider again the coordination game from Fig. 1a. As we have seen
before, this game has two minimal curb sets, {(7, L)} and {(B, R)}. Suppose
the system is in state ™t = (TL, ..., TL) and player 1 makes a mistake
and plays B. Since sampling occurs with replacement, player 2 may receive
a draw containing many B’s, in which case he will play R. It may happen
that from then on player 1 receives draws with many R’s while player 2
keeps drawing many B’s. It follows that, after the initial mistake, the system
can move to h®R = (BR, ..., BR), without making any further mistakes.
Hence, only one mistake is needed to move the system from A™- to ABR.
Similarly, only one mistake is needed to move the system from h%% to
h™L. Since the mistake probabilities are of the same order, the limiting
distribution puts positive weight on both ergodic states.

This result is in contrast with Young (1993). In Young (1993) the players
also have information about play in the recent history: Every player draws
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a sample of m plays out of the plays of the most recent K periods, but
without replacement. Then players play a best reply in a fictitious play
fashion. Consider again the coordination game from Fig. 1a. Suppose that
the system is in state 7" and that player 1 makes a mistake and plays B.
If no further mistakes occur, the system will move back to 47~ if the sample
size is at least 2: Since sampling occurs without replacement, every sample
contains at least as many 7’s as B’s, and player 2 will always play L (unless
he makes a mistake). It is easy to see that in this example at least 3m/4
mistakes are needed to move the system from A" to h®R, while only m/4
mistakes are needed to move the system in the other direction. It follows
that A7t is the unique stochastically stable state.

8. CoNCLUDING REMARKS

We have considered learning processes where the players have a bounded
memory and play best replies against past play. The importance of the
bounded memory can be elucidated by comparing our learning process
with Milgrom and Roberts (1991). In general they consider games with
compact strategy sets that are played continuously. Translated to the context
of a two-player finite normal form game which is played repeatedly at
discrete points in time, they define a sequence of plays {s(¢)};z, to be consis-
tent with adaptive learning if for all  there exists a 7 such that for all ¢t = T,
s(t + 1) € BR(B™({s(), s(f + 1), ..., s(t)})). We could similarly define
this sequence to be consistent with learning with bounded memory if there
exists K € N such that for all ¢, s(t + K) € BR(B™({s (1), st + 1), ...,
s(t + K — 1)})). This definition illustrates the similarity between the present
paper and Milgrom and Roberts (1991).

Consider for example the pure coordination game shown in Fig. 1a. The
sequence TR, BL, TR, BL, TR, ... satisfies both definitions of consistency.
However, the finiteness of the memory and of the strategy space allows us
to obtain a finite Markov chain, from which we can compute that the
probability of obtaining the above sequence is zero: Only sequences with
tails TL, TL, TL, ... or BR, BR, BR, ... are obtained with positive proba-
bility.

Milgrom and Roberts (1991) show that sequences that are consistent with
adaptive learning will eventually lie within the set of serially undominated
strategies, which is a superset of the set of rationalizable strategies. They
give some examples of games with strategic complementarities where this
set is a singleton, which implies that these sequences must converge to the
unique equilibrium. We get the same results in these games because the
set of curb strategies is a subset of the set of rationalizable strategies. But we
get similar results in some games where the set of rationalizable strategies is
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large. In every game that has a unique and strict equilibrium 3, {§} is the
unique minimal curb set. Hence, in such games our learning process leads
the players (with probability 1) to the unique equilibrium (Corollary 2).
An example of such a game is given in Fig. 3, where all strategies are
rationalizable.

Another example is the discretized version of the following three player
Cournot oligopoly game. Player i chooses to produce g; at zero costs
to maximize q.(A — g, — g2 — g3). The unique (and strict) equilibrium
is (A/4, Al4, A/4). The set of rationalizable strategies is [0, A/2} X
[0, A/2] x [0, A/2].
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