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This paper discusses three problems that can prevent the convergence of
learning mechanisms to mixed-strategy Nash equilibria. First, while players’
expectations may converge to a mixed equilibrium, the strategies played typically
fail to converge. Second, even in 2 X 2 games, fictitious play can produce a
sequence of frequency distributions in which the marginal frequencies converge
to equilibrium mixed strategies but the joint frequencies violate independence
Third, in a three-player matching-pennies game with a unique equilibrium, i
is shown that if players learn as Bayesian statisticians then the equilibrium is
locally unstable. Journal of Economic Literature Classification Numbers: C72,
C73, D83. © 1993 Academic Press, Inc.

1. INTRODUCTION

The current literature on learning in games is, in many respects, a
natural successor to the earlier literature on learning rational expectations
(e.g., Blume et al., 1982). Both literatures address the question of whether
decision-makers can, through repeated experience, learn to make optimal
or equilibrium decisions. At the level of economic interpretation, the
issues studied by the two literatures are as similar as all of the parallels
between game theory and general equilibrium theory would suggest. At
the level of formal analysis, however, important distinctions arise. Models
of learning in games are typically much simpler because of the comron
assumption that players have only a fixed finite number of pure strategies,
which virtually eliminates the measure theoretic difficulties commonly
found in rational expectations models. Unfortunately, the cost of this
simplifying assumption is the need to include mixed strategies in order to
ensure the general existence of equilibrium. Moreover, mixed-strategy
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equilibria present learning difficulties which are not presented by pure-
strategy equilibria and are not found in rational expectations learning
models. This paper is devoted to three such problems.

The first difficulty with mixed-strategy equilibria arises from the fact
that mixed strategies occur at points where a player’s optimali response
correspondence is not lower semicontinuous. As aresult, a player’s expec-
tations of the other players’ strategies may converge to the other players’
Nash equilibrium strategies but the player’s optimal response to the con-
verging expectations may be a unique pure strategy at every point of the
expectations sequence. Thus the convergence of expectations to equilib-
rium need not imply the convergence of actual strategies to equilibrium.
Given a typical payoff matrix, a mixed strategy is expected-payoff max-
imizing only when the expected mixed strategies of the other players lie
in a subspace of positive codimension. Since the set of pure strategies is
finite, the set of all possible finite histories of play is countable. Hence,
for any given learning mechanism, it is unlikely that a player’s expectations
will ever lie in the subspace for which a mixed strategy is an optimal
response. Section 2 of this paper constructs a continuum of 2 X 2 (two
players, each with two pure strategies) games, with the properties that
(a) each game has a mixed-strategy equilibrium as its unique Nash equilib-
rium and (b) any mechanism for forming expectations based on the history
of play will lead exclusively to pure-strategy responses in all but a count-
able subset of games. Thus, while it is possible to construct learning
mechanisms which support the general convergence of expectations to
Nash equilibrium (Jordan, 1991a), the general convergence of expected-
payoff maximizing strategies is not possible.

Section 3 of this paper exposes an additional reason why the conver-
gence of expectations can be a less satisfying resuit if the limit is a mixed-
strategy equilibrium than if the limit is a pure-strategy equilibrium. The
definition of a mixed-strategy Nash equilibrium includes the requirement
that players randomize independently of one another. However, the pro-
cess of learning from repeated play can induce correlation among the
actual strategy choices which may persist in the limit even if expectations
converge to the Nash equilibrium marginal distributions. Section 3 bor-
rows from Young (1993} an example of a 2 x 2 **battle of the sexes’ game
in which the players form expectations via fictitious play, that is, each
player uses the frequency distribution of past plays to forecast the other
player's future play. In this example, the two players exactly miscoordi-
nate, so that each player receives the zero payoff in every period, even
though expectations converge to the mixed-strategy equilibrium.

Nash equilibrium is analogous to a Walrasian equilibrium in the sense
that each player is assumed to ignore the possibility that other players
might change their strategies in response to a change in his or her own
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strategy. In a mixed-strategy equilibrium players regard the random plays
of others as though they were exogenously generated by nature. This view
of Nash equilibrium motivates the concept of ‘‘naive Bayesian learning’’
(e.g., Eichberger et al. 1990), of which fictitious play is the best-known
example. Suppose that each player assumes that the plays of others are
independent random draws from a fixed but unknown distribution. Each
player has a prior probability distribution over the possible strategy distri-
butions of the other players, and forecasts future plays according to the
posterior expectations determined by the prior distribution and observed
past plays. If the support of the prior distribution contains all mixed
strategies, then the posterior expectations are asymptotically close to the
empirical frequency distribution.

Shapley (1964) constructed a family of two-player 3 X 3 games for which
he demonstrated that fictitious play, if started at certain strategies, would
drive expectations to a limit cycle rather than the unique mixed-strategy
Nash equilibrium. This proved that fictitious play is not in general a
globally convergent learning process. One might still hope that naive
Bayesian learning is at least locally stable, in the sense that if initial
expectations are sufficiently near the unique equilibrium, then conver-
gence to equilibrium is assured. This property is obviously satisfied at
strict pure-strategy equilibria. However, Corollary 4.14 in Section 4 shows
that even local stability can fail when the unique equilibrium involves
mixed strategies. This result is based on an example of a three-person
matching pennies game. In this example, the space of expectations is a
three-dimensional cube, as opposed to the product of two two-dimensional
simplices in Shapley’s example. The lower dimension makes the learning
dynamics easier to analyze and to visualize. For this example we obtain
a stronger version of Shapley’s nonconvergence result. In particular, even
if initial beliefs are concentrated arbitrarily close to the unique Nash
equilibrium, naive Bayesian learning can lead to a limit cycle. Thus a
mixed-strategy equilibrium can lead to the same local instability of naive
disequilibrium dynamics as is found in the tatonnement price-adjustment
process in general equilibrium theory (e.g., Scarf, 1960).

Sections 2—4 are each formally self-contained and may be read indepen-
dently of one another. Section 5 contains some concluding remarks on
the implications of the preceding results for the theory of learning in
games.

The learning processes studied below all assume best-response dynam-
ics. That is, each player, at each iteration, chooses a strategy which
maximizes the player’s own expected payoff given the player’s current
expectations about the strategies of the other players. Best-response dy-
namics differ from gradient-like dynamics, in which strategies are partially
adjusted at each iteration in a payoff increasing direction. A very general
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instability result for mixed-strategy equilibria under gradient-like dynam-
ics has already been obtained by Crawford (1985). However, the source
of instability discovered by Crawford does not appear to extend to best-
response dynamics, and is thus quite different from the impediments to
convergence described below.

2. NONCONVERGENCE OF STRATEGIES

2.1. DEeriNiTIONS. Consider the class of 2 X 2 games defined by the
payoff bimatrix

L R
T Il —a, -1 -, 0
B 0,8 0,0

for a, 8 € (0, 1). Let p; denote the probability that the row player, player
1, plays 7, and let p; denote the probability that the column player, player
2, plays L. Let S = {T, B}, S? = {L, R}, and § = S' x §2 For each
integer ¢ = 1, define the set of t-period histories by H, = I—[,;,S, and let
H, denote the one-point set {*}. A generic element of H, is denoted A, =

Gk, 81y o o v s S = (55 8y, Sa15 - - o5 S S2). A Iearn_ing process is a pair
(e!, ), where each ¢ is a sequence of functions e: H,— [0, 1], 1 = 0,
1,....Foreach h, € H,, ¢'(h,) represents player 1's believed probability

that player 2 will play L in period ¢ + [, and ¢*(#,) represents player 2’s
believed probability that player 1 will play T in period ¢ + 1.

Given a, 8 € (0, 1) and a learning process, we say that strategies are
forever pure if

(1) for every t = 0, e!(h,) # a and e(h,) # B; where for each t = 0,

1 T  ifelh)>ea; 2
51T ifel(h) < a; (2.

and

L ifeXh)<B;

o s (2.2)
R ife;(h) > B.

-
Sit1 =

In other words, strategies are forever pure if, for every period 7, each



372 J. S. JORDAN

player i’s optimal response to the expectation ei(h,) is a unique pure
strategy.

2.2. THEOREM. Foreacha, B8 € (0, 1), the unique Nash equilibrium
is the mixed-strategy Nash equilibrium defined by p; = « and p;y = B.
However, given any learning process (¢!, %) there are countable sets C,
and C, such that if a € (0, INC, and B € (0, IN\C,, then strategies are
forever pure.

Proof. The first assertion is direct, The second assertion is proved by
defining C, = UZ, e'(H)and C, = UL, ¢%(H). =

2.3. Remarks. Theorem 2.2 indicates that learning to play equilibrium
mixed strategies is more problematic than learning mixed-strategy equilib-
rium expectations. Mixed strategies are controversial in game theory (2.g.,
Rubenstein 1991), and theorists who dislike mixed strategies as a model
of player behavior would probably not be disappointed by this result.
However, such prominent learning theorists as Kalai and Lehrer (1991)
and Fudenberg and Kreps (1993) have asserted the importance of learning
to play equilibrium strategies. Most of Kalai and Lehrer’s work concerns
repeated games with discounted payoffs in which players learn by forming
Bayesian expectations based on prior beliefs over possible histories of
play. Beliefs are assumed to satisfy a certain mutual consistency condition
across players. As a corollary to their main result, they show that a
Bayesian learning process based on prior beliefs over player types will
ensure the convergence of actual strategies to the Nash equilibrium set
with probability one, assuming that the support of the type distribution
is countable (Kalai and Lehrer, 1991, Theorem 2.1). Theorem 2.2 shows
that the countable support assumption is essential. Fudenberg and Kreps
(1993, Section 8) show that for 2 x 2 games with a unique mixed-strategy
equilibrium, the convergence of strategies played can be obtained by
augmenting the game with random perturbations of the payoff characteris-
tics of each player. This device purifies the mixed strategies over the
realizations of payoff characteristics.

It may be worth mentioning that Crawford’s instability result (Crawford,
1985) applies to games for which both Kalai and Lehrer (1991) and Fuden-
berg and Kreps (1993) obtain the convergence of both expectations and
strategies. This contrast illustrates how differently learning and gradient-
like dynamics can behave. In particular, the reader should be cautious in
attempting to draw inferences about evolutionary models from the results
of the present paper.

3. MARGINAL VERSUS JOINT FREQUENCIES

In 2 X 2 games, fictitious play is known to converge to Nash equilibrium
(e.g., Rosenmiiller 1971). That is, if each player uses the empirical fre-
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quency distribution of the opponent’s plays to estimate the opponent’s
mixed strategy, then the pair of frequency distributions will converge to the
set of Nash equilibrium strategy pairs. However, we borrow an example of
Young (1993) to show that the empirical joint-frequency distribution over
pairs of pure strategies need not converge to the Nash equilibrium set.
Thus the joint-frequency distribution can be quite different, in the limit,
from the product of the two marginal-frequency distributions.

Consider the ‘‘battle of the sexes’’ game represented by the payoff
bimatrix:

L R
T 0,0 1, V2
B V2,1 0,0

For each i, let p, denote the frequency with which player /i’s first pure
strategy (T for player 1 and L for player 2) has occurred during the first
t plays. Suppose that player i’s expectation of the mixed strategy to be
used by player j in period r + 1 is p;. Then play in each period ¢ > 1 is
determined by

T aspy.;s(1+V2)!

B ; (*)

sl =

and

L aspyySU+V2)!
R :

s2=

Since empirical frequencies are rational numbers, only strict inequalities
need be included on the right-hand side of (). Play in period 1 is arbitrary,
so let s, = (si, s9) = (T, L). Then we have (p,,, py)) = (1, 1), s, = (B, R);
(P12y P2 = (4, 1), 53 = (B, R); etc. More generally, it is easily verified
that every period ¢ satisfies either

Case (1). p,, = ps < (1 + V2)~'and s, = (T, L); or

Case (2). p, =p» >+ V2 'ands, = (B, R).

In Case 1, py,.yy = (1 + tp,)/(t + 1) > p,, and in Case 2, py,.,, = tp,/
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(t + 1) < p,,. Therefore p,,— (1 + V2)~! for each i, so the frequency pair
(P P2 converges to the mixed-strategy Nash equlibrium. The joint-
frequency distribution, however, is concentrated on the two strategy pairs
(T, L) and (B, R), and thus does not converge to the Nash equilibrium
joint distribution. In fact, both players receive the zero payoff in every
period, so it is clear that the limiting joint-frequency distribution also fails
to be a correlated Nash equilibrium.

It should be mentioned that this example is not robust because it depends
on the symmetry of the payoffs. A slight perturbation away from symmetry
will induce convergence to one of the two pure-strategy equilibria.

Asfaraslamaware, Young (1993) was the first to note that fictitious play
could lead to persistent miscoordination. A similar example is described by
Fudenberg and Kreps (1993, Section 5). The pathological behavior of
the joint-frequency distribution is possible in such examples because the
players ignore the correlation between their strategies, which is caused
by the learning process. In the Bayesian learning processes described by
Jordan (1991a,b, 1992a), Kalai and Lehrer (1991), and Nyarko (1992a,b),
expectations are defined as joint distributions, so the convergence of
expectations to Nash equilibrium entails the convergence of expected
probabilities over joint strategies. In fact, Nyarko (1992a) and Jordan
(1992a) have shown that the joint frequencies converge to the Nash equilib-
rium set under Bayesian learning. In this sense, Bayesian learning is a
device for purifying a mixed-strategy equilibrium over time.

4., NONCONVERGENCE OF NAIVE BAYESIAN LEARNING

Shapley (1964, pp. 24--27) exhibited a family of two-player 3 X 3 games
with the property that expectations formed via fictitious play can cycle
rather than converge to equilibrium. The purpose of this section is to
exhibit a simple three-player game with the same property. More importan-
tly, it will be shown that expectations paths which begin outside a one-
dimensional stable manifold will converge to the limit cycle, and that
this property extends to other methods of expectations formation, naive
Bayesian learning in particular, which behave like fictitious play asymptot-
ically.

The game itself is a three-person version of matching pennies. Player
1 seeks to match player 2, player 2 seeks to match player 3, and player
3 seeks not to match player 1. In particular, each player i is concerned
only with predicting the actions of player i + 1 (mod 3). It is easily seen
that the unique Nash equilibrium requires each player to mix equally
between heads and tails.

4.1. DEeFrFINITIONS. There are three players and each player has two
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pure strategies, which we will denote heads and tails. Thus for each i,
S = {heads, tails}, 1 = i = 3. Player ’s payoff function, w’: § — R, is
defined for each i as

el 2.
3 I ifs' = 5%
mi(s, %, 87) = e 12
-1 if s # 5%
e 2 3.
2 1 if s°=s";
mHs', 5%, 87) = o2, 3
-1 if s° # §7;
and
e 3 1.
w2 o if s’ #s';
ms', $%, 87) = .3
~1 ifs’=s'".

For each player i, a mixed strategy is represented by a number p, €
[0, 1] which represents the probability that s' = heads.

4.2. ProposITION. The above game has a unique Nash equilibrium,
which is given by p¥ = § for each 1 =i = 3.

Proof. Direct. m

4.3. Stable Manifold and Limit Cycle. Let Q denote the closed unit
cube [0, 11} in R?, with generic element p = (p,, p,, p;). Let M denote
the closed line segment between (0, 1, 0) and (1, 0, 1). Let g denote the
“‘golden ratio,”” g = (1 + V)2 (g is characterized as the positive solution
to the equation x ™' = x — 1). Let

x4 =Qg) ' =(V5- 14
xB=1~(gl?)=03-V5)4
XT=1~Qg)"=(5- V54
x8=gl2 = (1 +V5)A4.

Let

Pl = (x, x84

pt = (xP §,x7)
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pe = x, x%

pi=W"x%h

p=(x%4,x%

p =@, x%, x").
Define the set C C Q by

C=p‘—p'—>p-—pisp—plop,
where the arrows represent the closed line segments between the respec-
tive points.
4.4. Remarks. Suppose that each player i uses the observed fre-

quency

Pisiy = Hr = t: 57" = heads}t

to estimate the probability that player i + 1 (mod 3) will play heads at
iteration ¢ + 1. The resulting path of expectations (3,,, p,,, #,) in the unit
cube Q is fairly easy to visualize. First, note that the three planes p;, = }
partition Q into eight octants, in the interior of which each player has a
unique optimal pure strategy. The optimal responses to the expectations
(p)); in the eight octants are given by

py <t

Py <4 pr>1

P < 1, T.H H T H

p >4 T, T, T HTT

pr<1? pr>3

b <} T.H H | H HH

p >4 T.H T H HT
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FIGURE 1

where T denotes tails and H denotes heads.

If p, lies in one such octant, then p will proceed from p, in the direction
of the corner of Q which represents the optimal pure-strategy triple. For
example, if p, satisfies p, < } for each i, then p proceeds along the line
segment from J, to the corner (0, 0, 1) until the first iteration ¢’ > ¢ with
Di > 1} (neglecting, for the moment, the case j;, = }), and thence from
p,, toward (0, 1, 1); and so on. The resulting path, which is shown in Fig.
1,'is a sequence of line segments with kinks near the planes p; = 4, unless
P, € M. In this case the relevant corners are the two endpoints of M, so
p stays within M, converging in an oscillating fashion to the equilibrium
(3, 4, B). Of course, if p, = (4, 4, 3) for some ', the strategies played at
iteration ¢’ + 1 are not uniquely defined, so j, ., may lie outside M (this

'l am indebted to Julio Escalano for this drawing.
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can be avoided by imposing the choices (H, T, H) or (T, H, T) at (}, §,
2).

From any p, &€ M, the expectations path spirals toward the limit cycle
C. This fact is a consequence of Theorem 4.11 below, and depends on ¢
being large enough so that the effect of fortuitous strategy choices at the
p; = § planes can be ignored. The set C, which lies in the six octants of
O which do not intersect M, is derived as follows: p* is the point at which
the line segment from g to (0, 1, 1) intersects the p, =  plane, p¢ is the
point at which the line segment from p* to (1, 1, 1) intersects the =13
plane, etc.

Figure 1 depicts the sets M and C. The black ball in the center of the
cube indicates the unique Nash equilibrium, the diagonal line segment
from (0, 1, 0) to (1, 0, 1) depicts the stable manifold M, and the six
hexagonal line segments represent the limit cycle C. The corner point p°
is indicated in Fig. 1, and the points p®, p¢, etc., lie at the clockwise
successive corners of C.

4.5. DEFINITION. An expectations process is a triple of functions e':
0, 1] xZ,,—1[0,1],i=1, 2,3, where Z,, denotes the strictly positive
integers.

4.6. Assumption. For each i and each € > 0 there exists ¢° > 0 such
that |e'(p;.;, 1) — Py < eforall p,,, € [0, 1] and all £ > .

4,7. Remarks. The number €'(p,,,, ?) is interpreted as player i’s ex-
pectation of the probability that player { + 1 will play heads in period
t + 1 as a function of the empirical frequency p,., of heads during the
previous ¢ periods. Naive Bayesian expectations conform to this definition
because the posterior expectation of the probability of heads depends on
an observed history (si*', . . ., si*") only through the frequency of heads
and the number, ¢, of observations. A formal definition of naive Bayesian
expectations is given below. Any expectations process satisfying Assump-
tion 4.6 is asymptotically empirical, as this term is defined by Fudenberg
and Kreps (1903, Section 4) but the converse is not generally true because
the latter property does not require expectations to depend solely on the
frequency of past plays, or to be uniformly close to the frequency for
large 7. Proposition 4.9 below shows that naive Bayesian learning satisfies
Assumption 4.6.

4.8. Naive Bayesian Learning. Let A([0, 1]) denote the set of Borel
probability measures on [0, 1]. Define the function 8: A([0, 1}) x [0, 1]
X Z,,— [0, 1] by

B(M’ X, t) — (J;: q[qlx(l — q)’(]_'”]ﬂ(dq))/(];‘ q”(l - Q)'u;”#‘(dQ)) .
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For each i, let u' € A([0, 1]). Then the expectations process (B(u!, ),
is a naive Bayesian expectations process.

The number B(u, x, t) defined above is simply the expected value of g
conditional on observing xt heads in ¢ observations, provided that x7 is
an integer. The combinatorial coefficient r!/xt!i(r — xr)! cancels from the
numerator and denominator in the above expression. Nonintegral values
of xt would never by observed, but including them simplifies the definition.

4.9. ProprosITiON. Let u € A({0, 1]) and suppose that supp u = {0,
1]. Then for each £ > 0 there exists #* > 0 such that |B(u, x, 1) — x| < ¢
for all t > 1° and all x € [0, 1}. In particular if supp &' = [0, 1] for each
i = 1, 2, 3, then the naive Bayesian expectations process (8(u’, ).,
satisfies Assumption 4.6.

Proof. Let € > 0. Since supp u = [0, 1] and [0, 1] is compact,
inf{u((x — /2, x + e2]): x €1{0, 1]} > 0. (*)

Also, it is straightforward to show that for any k > 0 there is some 1® >
0 such that

X”(l — x)l(l‘,\')/ql,\'(l __ q)l(]—x) > k, (**)

for all, x, g € [0, 1] with |q — x| = &/2 and all r > {°. The desired conclusion
follows from (*) and (**) and the definition of 3. m

4.10. Dynamics. For each i, define the function f*: [0, 1] X $' X Z,
— [0, 11 by

(tp; + e+ 1) if s; = heads;

i "., _’t = .
LB sin 1) p/(t+ 1) otherwise.

Let O = [0, 1}} and define f: Q X § X Z, — Q by f(p, 5, 1) = (f(P', s,
1))}_,. In what follows, for any p € Q and any ¢, i/, we conserve notation
by writing ¢‘(q, t) to mean ¢/(g;,,, t). For each (p, ) € 9 X Z_, a
frequency path from (p, t°) is defined to be a sequence {p,};=» satisfying
pp = p and, for each 1 > 1,

ﬁr :f(ﬁ(—l’ Spt ’_l)»

where, for each i, si is an optimal response to the expectation €(p,_|,
t — 1), thatis, fori =1, 2,
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st = headsife'(p, ,t — 1) >4
and

si=tailsife'(p,_,, t — 1) <3},

with the inequalities reversed for i = 3. For each ¢ > ¢° and each i, let
Puriy = €'(P,—;, t — 1). The sequence {p,};_p,, C Q is defined to be an
expectations path from (p, 1°).

4.11. THEOREM. Suppose that the expectations process satisfies As-
sumption 4.6, and let p € Q\M. Then there exists t > 0 such that for
every t® > t, the set of cluster points of every expectations path from (p,
1% is equal to C.

4.12. Remarks. The proof of Theorem 4.11, which is quite tedious,
is given in the appendix. The proof consists largely of showing that C is
a limit cycle for fictitious play, and that the convergence of fictitious play
to C is sufficiently robust that C is also a limit cycle for any process that
behaves like fictitious play asymptotically in the sense of Assumption 4.6.
The proof also suggests that the theorem is qualitatively robust to small
perturbations of the payoff matrices, although we will not state or prove
this claim formally. Of course, the equilibrium and the sets M and C will
be perturbed as well. If player i's payoff becomes slightly sensitive to
51, then player i’s plane of strategy indifference is a slight perturbation
of the p;,, = } plane within the cube Q. Assumption 4.6 and Proposition
4.9 extend directly to bivariate expectations. The appendix also contains
a more detailed discussion of the behavior of fictitious play itself.

The requirement that ¢ be sufficiently large is needed for two reasons.
First, since the adjustment process is discrete and the strategy s is not
uniquely defined if player i’s expectation p,,, = 4, a fortuitous choice of
s' might place next period’s expectations in M if r is small enough for this
to be accomplished in one step. This could not occur in a continuous time
version of the expectations adjustment process. Second, Assumption 4.6
only restricts the expectations functions f  asymptotically in ¢. Thus expec-
tations can be forced artificially to the stable manifold, or to the equilibrium
itself, for any given value of ¢ without violating Assumption 4.6.

For a naive Bayesian expectations process, it is more natural to initialize
expectations using the prior distributions (1))}, so Definition 4.13 below
defines a naive Bayesian expectations path accordingly. Proposition 4.9
and Theorem 4.11 imply that the Nash equilibrium is not locally stable
under naive Bayesian expectations. More precisely, even if the initial
beliefs (u')._, are concentrated arbitrarily near the Nash equilibrium (4, §,
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1), the expectations path may converge to the limit cycle C. This follows
from Proposition 4.9 and Theorem 4.11 because beliefs concentrated near
the equilibrium can be obtained from arbitrary prior distributions (u{)}-,,
satisfying supp wpi = [0, 1] for each i, by updating in response to a #°-
period history in which the associated frequency vector p is near the
equlibrium but outside M. This local instability result is stated formally
as Corollary 4.14.

4.13. DEerFINITION. For each i, let u' € A([0, 1]), a naive Bayesian
expectations path from (')}, is defined as a sequence {p,}7=, C Q con-
structed as follows. For each i, let p;,y, = fo gui(dg), and let

1 if s{ = heads;

Pr=V0  ifsi = ails,

where s; is an optimal response to p;.;;. Now let {p}7, be an
expectations path from (p;, 1) for the naive Bayesian expectations
process (B(p's )i,

4.14. CoroLLARY. For any & > 0 there exists ' € A([0, 1]), i = 1,
2, 3, satisfying

plg:|d —ql<e)>1 -k, (*)

such that the set of cluster points of every naive Bayesian expectations
path from (u’)}_, is equal to C.

Proof. For each i, let u) € A([0, 1]) with supp ui = [0, 1]. Then by
Proposition 4.9, the naive Bayesian expectations process ( 8(u), )., satis-
fies Assumption 4.6. Let € > 0 and let p € Q\M such that for each i, p,
is a rational number and |(3) — p,| < e. Let 1° be given by Theorem 4.11
and, choosing ¢® larger if necessary, let {s,}{il be a #%-period history such
that for each i, *{t < % s{ = heads}/t° = p,. For each i, let u* € A([0, 1])
be the ‘‘posterior’ distribution on [0, 1] determined by ‘“‘prior’’ distribu-
tion uj and the “‘observations’” {si*'}'.,. By the same argument used to
prove Proposition 4.9, 1° can be chosen large enough so that u' satisfies
(x) for each i. The corollary now follows from the fact that the naive
Bayesian expectations path from (u%)}_, is identical to the expectations
path from (p, 1°) for the expectations process (8'(ud, Di-,. =

4.15. Remarks. Proposition 6.4 of Fudenberg and Kreps (1993, Sec-
tion 6) shows that asymptotically empirical expectations, together with
the players’ behavior strategies, can converge to the equilibrium of the
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above matching-pennies game, provided that either: (1) the players’ expec-
tations can be fixed at the equilibrium as long as the equilibrium expecta-
tions are, in a certain sense, approximately empirical or (2) the players’
strategies can be fixed at the equilibrium strategies as long as the equilib-
rium strategies are, in a certain sense, approximately best responses to
expectations. In both cases the adjustment process is tailored to the partic-
ular equilibrium. Theorem 4.11 and Corollary 4.14 show that some such
tailoring is essential to obtain even the convergence of expectations alone.
Corollary 4.14 indicates that naive Bayesian learning can drive expecta-
tions to the limit cycle even when initial beliefs are arbitrarily close to
the equilibrium expectations.

4.16. THE SHAPLEY ExampLE. The 3 X 3 game constructed by
Shapley (1964) can be represented by the following payoff bimatrix:

L C R

T 1,0 | 0,0 | 0,1

M 0, 1 1,0 0,0

B 0,0 0, 1 1,0

Shapley demonstrated that if the first play is (7, L) then expectations
formed via fictitious play will approach a hexagonal limit cycle Cs as “he
sequence of plays follows the cycle

(F,LYy—~»(T,R)—(B,R)—(B,C)—=>(M,C)— (M, L)y— (T, L).

Moreover, the number of periods spent at each successive play pair in-
creases exponentially. Shapley also demonstrated that these properties
are not dependent on the particular payoff numbers, but are satisfied as
long as the payoffs satisfy certain inequalities.

I am not aware of any formal analysis of the fictitious play dynamics from
arbitrary initial conditions in this example, but some numerical analysis
suggests that the Shapley example behaves much the same as the match-
ing-pennies game studied above. The space of expectations is A> X 47,
where A? is the unit simplex in R’. Within this space there is a two-
dimensional subset Mg = {(p,, p,) € A® X A% py; = pips Pac = Pi7» and
Por = Py} such that if initial expectations lie in My, fictitious play con-
verges to the unique Nash equilibrium pf = @, 3, 3), pf = @, 3§, 2).
Convergence takes the form of an inward spiral in M, as the sequence of
plays follows the cycle
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(T,C)» (M,R)— (B, L)—(T,C).

If initial expectations lie outside of M, fictitious play appears to diverge
to the limit cycle Cs. This behavior seems sufficiently robust that a result
very similar to Theorem 4.11 may hold for the Shapley example as well,
but I have not attempted to prove this.

5. CONCLUSION

The problems described above represent obstacles to learning which
must be addressed by any general theory of learning in games. To date,
the only learning mechanisms for which expectations have been shown
to be asymptotically Nash for all normal form games with a finite number
of players and a finite number of pure strategies are the Bayesian learning
processes described by Jordan (1991a, Corollary 3.10). The Bayesian
learning processes have two notable shortcomings. First, convergence
occurs at the level of expectations but not necessarily at the level of actual
strategies. Second, the sophistication and implicit coordination required
of players in order to form the specified expectations seems excessive.
Theorem 2.2 shows that the first limitation is inevitable unless one relaxes
either the requirement that expectations are functions of the history of
play or the requirement that plays are chosen as optimal responses to
expectations. With respect to the second shortcoming, the example in
Section 3 and Theorem 4. 11 indicate that any generally convergent learning
process is likely to require, at least implicitly, that the players possess
more awareness of their strategic interactions than one might wish to
require in a theory of Nash disequilibrium dynamics.

APPENDIX

THEOREM 4.11. Suppose that the expectations process satisfies Assumption 4.6, and let
p € Q\M. Then there exists t > 0 such that for every 1 > t, the set of cluster points of
every expectations path from (p, 1% is equal to C.

Proof. LetQy={peQ:pystpy=tpy=HandQp={pEQ:p =ztp, =4
P; = 4} (Qp U Oy contains the stable manifold M). Let p = (p,, p,, By), and suppose that p
& Oy U Q- Without loss of generality, assume p; <}, p, <4, and p; =} Lete <} - p,,
and choose &® and &’ with 0 < £® < ¢’ < ¢/3 so that forany 0 < A < I,

(Hifa+d - -e)=d)—Bethenx + (1 - MNE - >4+ ¢
Let ¢* satisfy

(2) for all i and all ¢ € Q, |eilq, t) — q;.,] < €° for all ¢ = ¢*, and
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(3) t* > 1/e".

Suppose that 1* > t*, and let {,}- 0, be a frequency path from (5, 1%). By (2), s} = keads
for every t such that p,, < § — &°. Hence, for all such f, py,,,, > By Similarly, if 5, <
4 — €% sl = rails, and if py, < & — €% s?,; = tails. Thus, if g, < § — €°, the sequence
{B.}op,, moves toward the corner (0, 0, 1) until p;, = § — % Alternatively, suppose p, =
b — & If py < 4 — &% then p,, as before, will decrease at least until the first time 1’ that
Py = b — &, at which time p,, < p, = (}) — . Hence, there are two possible cases, differing
only in ps,:

Case (1). p, =4 —e.py<3— e ()~ e =p,=14and
Cuse ). py=t—ed-=p,=4 ) -=p,=4

In Case 2, 53, = heads, but s}, and s?,, are ambiguous. However, by (1) and (2), there will
be some ¢’ > ¢ with g, <1 ~ (§)e and p;, >} + &'. Fort > t', we have s, = heads and
53, = heads until some t with p,, = 4 — £°, at which point, again by (1) and (3), we have

Case 3). py=4—&"p,>4+¢&.py>4+¢.

By a similar argument, Case | also leads eventually to Case 3.

Now suppose p € Oy U Q. 5ay p € Q. Let p denote the point at which the line segment
from p to the corner (1, 0, 1) intersects the boundary of Q,. Since p & M, there is sore {
with p; # 4. Without loss of generality suppose that p, < 4. Let ¢ = (} — p,) and let § and
1* satisfy (1-3) above. Then the frequency path {5} »,, proceeds along the line segment
from p to (1, 0, 1) until some period ¢’ in which |g, — | < & fori = 2, or i = 3. From this
point, virtually the same reasoning as in the previous paragraph leads to Case 3.

Proceeding from Case 3, we have sl = heads, st,, = heads, and s}, is ambiguous. Let
t° denote the first period ¢’ > ¢ with p, > 4 + €% From py, the frequency path will procced
along the line segment from j. to (1, 1, 0y until j; = 4 + &% Let p’* denote the point at
which this line segment, if extended back from p,, would intersect the plane g, = 4, and
let p'Y denote the point at which the line segment intersects the plane p; = 4. Recall the
points p¢ = (4, x¥, x¥) at p¢ = (1", %%, §) defined in 4.3 above, and note that the line segment
from p¢ to (1, 1, 0) intersects the plane p; = § at p?. Then a geometric argument shows that

@) |pd ~ psd) < |pg — pili2xt + [(h — 28)/¢h + 28))|ps — pi)/2x%; and
G) 1pt = piYl < |p§ — pilr2x’.

Let » = (1 — €)/(1 + &'). Then, in matrix notation, the right-hand side of (4) and (5) can
be written as

(28! )] [ ey — p3l
2 0 s —pil |

The 2 x 2 matrix has the characteristic polynomial r(r — 5/2x%) ~ (2x*)72 = 0. Since 5 < 1
and (2x%)7% = 1 — (2x%7! (2« is the golden ratio), both characteristic roots have absolute
value less than unity. Let r| be the positive root, which also has the larger absolute value.
Then (4) and (5) imply that [|p? = p"¥| < rllp® — p"[; then since [p§ — p3¥| = |pf - pi| =
0, (4) and (5) imply

l

©® lp* = pll < rllp” = p
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where (||| denotes the Euclidean norm. Let ¢ be the first period 1’ > ¢ with pb < } ~ &%
then ||p? — pull < 66°. pell < 6€°, so

D lp* = Pl < rilllp® = pill + 6€%) + 6.

From p4, the frequency path proceeds along the line segment from p 4 to (1, 0, 0) until some
period ¢’ with p,. = } + £°. Then, using p* = (x*, 4, x%), the same argument can be used to
show that ||p¢ — pell < ri(|pY — pell + 6% + 6%, where py is defined analogously to pu«
and p,. Continuing in this fashion leads, via (7) and its analogues for the other five turning
points of C, to the implication that

{8) lim sup,_,. (min{|p, — pl: p € C} = 6%l + rpiK1 — r))).

As t — <, ¢” can be made arbitrarily small, independently of r|, so the right-hand side of
(8) can be replaced by zero. Along the frequency path the step size is on the order of /1,
and thus approaches zero as + — =. Hence, for each p € C, lin inf,.,, [p, - p| =
Let {p}-p,, be the expectations path corresponding to the frequency path {p };=0. By As-
sumption 4.6, im,_, |p;. 1y — €'( B, 1)] = 0, so the proof is complete. M

The asymptotic behavior of fictitious play in the three-person matching-pennies game can
be described more precisely than is done in Theorem 4.11. This appendix mentions some
further results which were obtained numerically via a program available from the author on
request. The program selects initial expectations p’ € @ and an initial time ° pseudo-
randomly, and then computes the successive ‘‘turning points’’ of the path from (p® 1%
according to fictitious play. A turning point occurs when some player i’s pure strategy
switches from heads to tails, or vice versa, that is, when p,,, crosses the p;;, =  plane.
The expectations path from ( p°, 1°) is a sequence of points within the line segments connecting
successive turning points, including the turning points themselves. The line segments con-
necting the successive turning points form a hexagonal spiral converging to the limit cycle
C. The program terminates when it reaches a turning point which lies within a prespecified
distance ¢ of the corresponding turning point in C. The program also computes a **continuous-
time"’ version of fictitious play, which puts the turning points exactly on the respective

= } planes.

The golden ratio, g = (1 + V5)2 = 1.618, plays a large role in the asymptotic behavior
of fictitious play. First, the number of periods spent between successive turning points
increases at the rate g. That is, given successive turning points p, P , and p,,, we have
(thsr = 0 )/(tysy — t,) — g as n — =, Second, g is also involved'in the rate at which
the path approaches C. Let P, be a turning point on the expectations path, and let p¢ be
the corresponding turning point in C. Suppose that p, =4= Pic » and let x, = |p§.p, —
Puttx, [and ¥, = {PGiyn — Pison, [. Then, along a typncal” path, as n — , Xpey T Yaur)/
(x, + y) = g y/x, = g. yourlx, — 1, and x,, /x, — g~ An cxceptlon to this behavior
occurs along paths starting from initial condmons such as ¥ = 3 and p® (4, 4. ), which have
the property that x, = y, for all n and x,.,/x, — g~*. This case depends on the equality
x, = y, for all n, and is therefore disrupted by rounding errors in floating point arithmetic.
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