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Consider a generalization of fictitious play in which agents’ choices are perturbed
by incomplete information about what the other side has done, variability in their
payoffs, and unexplained trembles. These perturbed best reply dynamics define a
nonstationary Markov process on an infinite state space. It is shown, using results
from stochastic approximation theory, that for 2 X 2 games it converges almost
surely to a point that lies close to a stable Nash equilibrium, whether pure or mixed.
This generalizes a result of Fudenberg and Kreps, who demonstrate convergence
when the game has a unique mixed equilibrium. Journal of Economic Literature
Classification Numbers: 000, 000, 000. © 1995 Academic Press, Inc.

1. A MobpEL oF TECHNOLOGICAL ADOPTION

Consider two classes of agents who are deciding whether to adopt comple-
mentary technologies. Suppose, for example, that a new kind of gasoline
(technology X) comes on the market. Filling stations must decide whether
to stock X, and they will base their choice on an estimate of how many
consumers have cars that run on X. Similarly, a consumer faced with the
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choice of whether to buy a car that runs on X will consider how many filling
stations already offer X. In both cases the individual’s decision depends on
the proportion of people in the other class who have already adopted X,
but these proportions are not precisely known. A consumer, in driving
around, will notice that some stations offer X and some do not. Similarly,
a filling station owner observes that some cars use X and some do not.
From these casual observations they infer the proportions that are relevant
to their decisions, but the information on which they base their decisions
is quite incomplete. A similar story can be told for any technological innova-
tion that complements another innovation, such as the arrangement of
letters on a keyboard and the facility with which secretaries type on such
keyboards (Arthur, 1989; David, 1985).

More generally we are interested in dynamical processes with the follow-
ing four features. First, the current decision of each agent is affected by
prior actions taken by other agents ( feedback effects). Second, an agent
may know some of the previous actions taken by others, but there is no
reason to suppose that he actually knows all of them (incomplete informa-
tion). Third, while a well-informed and highly sophisticated individual
might, in theory, be able to forecast how the process is going to evolve
over time, we do not want to assume that individuals are especially well-
informed or highly sophisticated. We prefer to assume that they do more-
or-less sensible things given a limited knowledge of the world around them
(bounded rationality). Fourth, no matter how carefully we try to specify
individuals’ decision-making processes, there will inevitably be some ran-
dom variation in their responses that arise from unmodeled factors (stochas-
tic perturbations).

In this paper we examine a simple class of learning dynamics that incorpo-
rates these four features.! Specifically, we consider a stochastic version
of fictitious play in which agents’ information is incomplete, their payoff
functions wobble, and their choices are sometimes random. As we show
in Section 2, such a process can be represented as a generalized urn scheme
of the type investigated by Arthur et al. (1987). Unfortunately their results
rely on the existence of a Lyapunov function, which we have been unable
to construct for the increasing returns case.

Another closely related paper is by Fudenberg and Kreps (1993). They
showed that, when agents play a 2 X 2 game repeatedly with slightly
perturbed payoffs, the frequency distribution of play converges with proba-
bility one to a neighborhood of the mixed strategy equilibrium provided

! Other models of this general type include those given by Foster and Young (1990),
Fudenberg and Harris (1992), Kandori et al. (1993), Young (1993a, 1993b), Eichberger et al.
(1993), Jordan (1993), Ellison and Fudenberg (1994), Dosi and Kaniovski (1994), Posch (1994),
and Bomze and Eichberger (1995). After completing this paper, we learned of independent
work by Benaim and Hirsch (1994), who prove results similar to ours.
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that the game has a unique equilibrium, which is completely mixed. Once
again, however, this does not cover the increasing returns case, which has
two pure equilibria.

The purpose of this paper is to establish, for a very general class of
perturbed learning processes, that almost sure convergence holds for all
2 X 2 games. Moreover, when the game is nondegenerate, only the stable
equilibria are attained with positive probability. In particular if the game
has exactly three equilibria—two pure and one mixed—then the former
are attained with probability one and the latter is attained with probability
zero. To prove this result we do not rely on Lyapunov functions; instead
we derive the relevant stability conditions for the associated system of
differential equations using a geometric argument.

The paper proceeds as follows. In Section 2 we define a stochastic version
of fictitious play in which the only noise arises from incomplete information
(i.e., sampling variability). This stripped-down version of the model exhibits
many of the key features mentioned above and is easy to grasp intuitively.
Section 3 shows how to analyze the long-run behavior of such processes
using stochastic approximation techniques (Nevelson and Hasminskii,
1976). We then broaden the framework in Sections 4 and 6 to include other
sources of noise such as random perturbations in the players’ choices and
wobbles in their payoff functions. In Section 5 we introduce the concept
of a “‘perturbed best reply dynamic,”” which covers all of the above sources
of noise, as well as many others, and prove almost sure convergence to a
stable Nash equilibrium. The rate of convergence is studied in Section 7.

2. Ficritious PLAY WITH SAMPLING

Fix a two-person game G with payoff matrix

(‘111 B o, Blz>

an, By @xn,.Bxn

Assume there are two populations of agents, row players (R) and column
players (C). Each of these populations consists of one or more players. In
every time period ¢t = 1, 2, ... one pair is drawn from R X C to play the
game. The state at ¢ is a vector of nonnegative integers (a}, a5, b}, b%),
where al, a5 are the numbers of row players who have chosen strategies 1
and 2, respectively, up to and including time ¢, and b{, b5 are the numbers of
column players who have chosen 1 and 2 respectively. We assume the

agents selected to play the game in period ¢ + 1 have incomplete information
about the current state, which they gather by sampling previous actions
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(see Young, 1993a). For notational simplicity we assume that all players
have the same sample size s (a positive integer), though in fact our results
extend to the case where players have different sample sizes. The sample
size measures the extent of an agent’s information, but we do not view it
as the result of an optimal search. Rather, it reflects the extent to which
the agent “gets around,” i.e., is networked with other members of the
population. We take this parameter to be exogenously given.

The process unfolds as follows. At time ¢ + 1 one new row player and
one new column player come forward. The row player draws a subset of
s actions taken so far by the column players. The total number of such
actions is b’ = b} + b5. For convenience we shall assume that all samples
of size s are equally likely to be drawn.

Let the random variables B{, B5 denote the actual numbers of previous
actions by column players that Row draws at time ¢t + 1. Row then adopts
strategy 1 or 2 according to whether the criterion

an By + apBb — ayBi — anB) (1)

is positive or nonpositive. Independently and simultaneously Column draws
a subset of s previous actions by Row, the total number of such actions
being a' = a} + a5. The random variables A, A% denote the number of
actions of each type in the column player’s sample. She then adopts strategy
1 or 2 according to whether the expression

B AL+ B2 AL — B AL — B Ab (2)

is positive or nonpositive. (Thus we assume that ties are broken in favor
of strategy 2.) These definitions yield a stochastic process of the form

(af"!,a§t b1, bYY) = (at.ah, b, bS) + I'(at, @}, b, b%),  t=1, (3)

where 7’(~, -, -, ) are random vectors that take the values (1, 0, 1, 0), (0,
1,1,0), (0,1, 0, 1), and (1, 0, 0, 1) with probabilities that depend on the
current state and the time period ¢.

To analyze this process, we project it into the space of proportions of
the two populations. Let X' = aj/a’ and Y* = bi/b". Then there exist
independent Bernoulli random variables &¢(y) = 0 or 1 and ¢/(x) = 0 or
1 such that, forr = 1,

Xl = X'+ (]_/a”l)[.f'(Y’) - X’]’

1 1 )
Y=Y+ (U)X - Y,
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These equations define two parallel or co-evolving processes on the space
[0, 1] X [0, 1]. The two-dimensional process (X", Y) is Markov, but nonsta-
tionary because the denominators a™*! and b**! depend on t. In fact we
have the simple relations a”*! =t + a' and b**! = ¢ + b! because the number
of actions already taken grows by one for each player in each period. Note
that the distributions of £(+) and (-} depend on the number of agents in
the other class (not just their proportions) because the sampling is without
replacement. We call this process fictitious play with sampling.

The process can also be represented as an urn scheme. Imagine two urns
R and C of infinite capacity. Each contains two colors of balls—red for
strategy 1 and white for strategy 2. Initially there are a red balls and a}
white balls in Row’s urn. Similarly, there are b} red balls and b3 white balls
in Column’s urn. In the first period, a representative row player reaches
into Column’s urn and pulls out s balls at random. Then he adds a red ball
to his own urn if the criterion (1) is positive and adds a white ball if it is
nonpositive. Simultaneously and independently a representative column
player reaches into Row’s urn and pulls out s balls at random. He then
applies criterion (2) to determine what color of ball to add to his own urn.
We call this a co-evolving urn scheme.

The process can also be represented (in a more complicated way) by a
single urn containing four colors of balls. At each stage r = 1, 2, ... two
balls of various colors are added according to a probability distribution
that depends on ¢ and the proportions of balls currently in the urn. Let us
identify a ball of the first color with a red ball in the first urn, a ball of the
second color with a white ball in the first urn, a ball of the third color with
a red ball in the second urn, and a ball of the fourth color with a white
ball in the second urn. Designate by x! the current proportion of balls of
the ith color, i = 1, 2, 3. (The value x4 is determined by these.) Then

1
X1 X3
and Y’=~———-—r—-—7,
1 — X} T X3

[ G—
x5+ x5

t=1.

Now we can characterize the process as follows. Add one ball of the first
color and one ball of the third color if both (1) and (2) are positive. If (1)
is nonpositive but (2) is positive, add one ball of the second color and one
of the third color, and so on. This is an example of a generalized single-
urn scheme with multiple additions (Arthur et al, 1987). Unfortunately,
proving convergence for such processes using the approach of Arthur er
al. (1987) requires the construction of a Lyapunov function, which poses
difficulties in this case. Instead, we shall develop a new approach that
exploits the geometry of the situation together with the qualitative theory
of ordinary differential equations.
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3. AsyMmpTOTIC BEHAVIOR OF FICTITIOUS PLAY WITH SAMPLING

We begin by analyzing the situation when the only source of noise is
sampling variability. Players always choose best replies given the informa-
tion in their samples; there is no variability in their payoffs and no trembling.
This model is easy to grasp and contains almost all of the essential features
of the more general case.

Consider the following example:

(2, 2 4, 0) 5
1,3 6,4/ )
This game has three equilibria: ((0, 1), (0, 1)), ((1, 0), (1, 0)), and ((3, §),
£, 3)). To simplify notation we shall refer to these equilibria as (0, 0),
(1, 1), and (3, §) respectively, that is, we write only the probabilities of
choosing strategy 1 by each player. The direction of motion of ordinary
fictitious play is deterministic, as shown in Fig. 1. Moreover, each of the

pure equilibria is dynamically stable in the sense that it is the unique limit
of ordinary fictitious play (which is deterministic) whenever the process

Proportion of Column
players who choose t

T e

»
t 4
X

Proportion of Row
piayers who choose 1

FiG. 1. Direction of motion of fictitious play for the game in (5).



336 KANIOVSKI AND YOUNG

starts in a sufficiently small neighborhood of that equilibrium. The mixed
strategy equilibrium, by contrast, is not dynamically stable.

Consider now the stochastic process defined by (4) when agents have
sample information with sample size s. Let the process begin in an arbitrary
state (al, a}, b}, bl), a! = 1, b! = 1. (We have to assume here that al +
al = s and b} + b} = s to be sure that the samples are feasible.) Sampling
changes fictitious play in two ways: (i) it creates variability around the best-
reply path; (ii) it creates bias in the replies because of the finiteness of
the sample.

To state our result precisely, let us say that a2 X 2 game G is nondegener-
ate if it has exactly three Nash equilibria (two pure and one mixed) or
exactly one mixed Nash equilibrium. The situation in which G has exactly
three equilibria will be called “case 1" and the situation where it has a
unique equilibrium will be termed ‘“‘case 2.”

In both cases the formula for the mixed equilibrium (8, «) is (see, for
example, Vorob’ev, 1977, pp. 99-103)

B= B2 — Ba o= Q2 — O
Bii — B — Bt B’ ay T o T aptan

Without loss of generality in case 1 we have

an —ay —oaptan>0 and  Bu — By — B+ Bn >0,
while in case 2 we may assume that

ay —ay —aptap>0  and By - Bx — Bt B <O

THEOREM 1. Let G be a nondegenerate 2 X 2 game. For all sufficiently
large sample sizes, fictitious play with sampling converges almost surely. For
case 1 games, the limit (X*, Y*) takes exactly two values (0, 0) and (1, 1)
with probabilities that depend on the initial state, For case 2 games the limit
(X*, Y*) is deterministic, and for every € > Q there exists a positive integer
s. such that whenever s = s,, ||(X*, Y*) — (B, o) < &.

We now give the intuition behind this theorem. (A formal proof of a
more general result from which this one follows is given in the Appendix.)
We can think of the process as fictitious play with a small noise or ““wobble.”
There are two kinds of wobble. One is sampling variability. In fact, since
the sample size is fixed and the sample frequencies take the values i/s, | =
0,1, ..., s, the expected direction of motion is not quite the same as fictitious
play; that is, there is a slight bias due to the finiteness of s. The second
source of noise is the stochastic variation in the choices that agents make
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each period. As time runs on, each new choice counts for less and less
relative to the total number of choices that have already been made. The
incremental changes in the population proportions decreases as 1/¢, and so
does the variability in these increments. Thus we have an annealing process
in which the level of noise damps down over time. Our result says that the
state of the system—projected into the space of proportions—converges
with probability one. Moreover, the limit of the process is precisely a
fixed point of the expected motion, which is equal to {or close to) a Nash
equilibrium of the game when s is large. If this equlibrium is not dynamically
stable, however, then because of the perpetual wobble the process will not
converge 1o it (except with probability zero).

While these statements make sense intuitively, they are not easy to
establish rigorously. The difficulty is that the expected motion of the process
(projected into the space of population proportions) is slowing down in
tandem with the size of the stochastic perturbations. If the perturbations
die out too slowly, the process will keep bouncing around and may fail
to converge. If the perturbations die out too quickly, the process could
conceivably converge to a nonequilibrium point. Without the benefit of a
Lyapunov function, we are therefore forced to examine the behavior of
the process and the related dynamic system in considerable detail.

The argument proceeds along the following lines. Let G be a nondegener-
ate 2 X 2 game. Let us derive analytic expressions for the distributions of
the Bernoulli random variables involved in (4). Assume we are in case 1.
At time ¢, as above, X' stands for the proportion of strategy 1 chosen so
far by the row players, and Y’ the proportion of strategy 1 chosen so far
by the column players. Let £(Y") be the indicator of the random event
that Row plays strategy 1 in period ¢ + 1 and let ¢'(X"*) be the indicator
of the random event that Column plays strategy 1 in period t + 1. Let s
be the sample size. The random variable Bj denotes the number of 1's that
appear in Row’s sample, while B4 = s — Bj denotes the number of 2’s in
Row’s sample. Define A} and A5 similarly. Then we have the relations?

P{g(Y) =1} = P{Bi > as}, (6)
P{Yi(X") = 1} = P{AL > Bs}. (7

In case 2, (6) still applies but (7) must be replaced by

P{y/(X') = 1} = P{A5 > (1 - B)s}. (8

2 From these formulae it is clear why we require G to be nondegenerate. If, for example,
a & (0, 1) then the event {B)| > as} becomes deterministic and the dynamic for X' is also
deterministic. Hence sampling does not create anything interesting for degenerate games: the
theorem holds a fortiori.
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Consider the inequality B > as. The probability of this event is equal to

5ot t
s Uy, U ),
> H(i; b', s, b})

i>as

where H(i; b', s, b}) is the hypergeometric distribution
()00
i s—1i
b ’
(¢)

To avoid the trivial case when this probability is identically O or 1, we shall
assume that initially

H(i; b', s, bi) = 9

bl > s and bl >s — as.
The analogous condition for the row players is

al > Bs and al>s— Bs.
We say that the initial state is rich if the above inequalities hold. We shall
henceforth assume this condition to avoid the less interesting case where

the process is deterministic.
Since b* = b! + t — 1 and Y! = b{/b', we can write (9) in the form

1 i—1 1 s—i-1
(] e o P [ S S S —_— r — o o P —_ r_
(S)Y(Y b‘+t—1> (Y b'+r—1)(1 Y)(l Y b‘+t—l) (1 Y bl+t—1)
1 s—1 )
l<] b'+t—1) (1 b1+r-1>

i

Consequently we have

> H(i b5, bY) = f(Y*) + 85(b', Y,

where

=3 (f) (1 =y, (10)

i>as
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and
'S ! ']
yzl{xog] |85b", )| < ca /b an

We can sum up these observations in the following lemma.
LemMMA 1. Let G be a nondegenerate 2 X 2 game with mixed Nash

equilibrium (B, a). For all (x, y) € [0, 1] X [0, 1],
Case 1.

P{E(y) =1} =fiy) + 8ub',y),  P{Y(x) =1} = filx) + 8i(d’, x),

Case 2.

P{E'(y) = 1} = fi(y) + 8ub', ),
P{y'(x) = 1} = fi-(1 — x) + 8 4(a’, 1 — x),

where the functions involved are as in (10) and (11).

Define E'(y) = £(y) — E£(y) and ¥'(y) = ¢'(y) — E¥(y), where E
designates mathematical expectation, and rewrite (4) in the following
way:

Case 1.

X =X+ (Ua" Y[ oY) + 8, Y — X'] + EY(Y"},
Y =Y+ (U fa(XY) + 8(a, XY — Y] + V(X))

Case 2.

X = X'+ (Va3 + 8u(b. YY) = X'] + BV,
Yol = YO+ (UB [ f5-p(1 — X + 8@, 1~ X)) — Y] + ¥(X)}

These equations define a two-dimensional stochastic approximation proce-
dure (see, for example, Nevelson and Hasminskii, 1976).

Suppose that at time ¢ the process is at the point (x, y). Then the expected
motion, given the current state (x, y), is to the state

Case 1.

(x + (Ua" DI fu(y) + &b y) = xy + (116" D[ falx) + 85(a', x) — y]);
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F1a. 2. The function fis(-) for s = 2, 128, o.

Case 2.

(e + (Ua () + 88 y) — ¥,
y+ (B[ — x) + 5@, 1 — x) — y]).

Since a'*! = a' + rand b'*! = b! + 1, it seems reasonable to suppose that, as
t— o, this process behaves like the system of ordinary differential equations

Case 1. x=fi(y) —x, y=fi(x) —y;

. : (12)
Case2. x=fuy)—x,  y=fipg(l—x)—y.

(By (11) we have neglected terms of order higher than ¢7!.) This supposition
turns out to be correct, though it requires a detailed argument, which is
given in the Appendix. From this it follows that the singular points of (12)
are the only possible limits of the process, and they are precisely the
solutions of

Case 1. x=f(y), y=fix)
Case2. x=fi(y), y=Ffis(Q—x).

The next step is to show that the solutions of (13) are close to the Nash
equilibria of the game. Consider f5(-) for a fixed « and variable s. As s
increases, fi(-) becomes more and more S-shaped and approaches the step
function (see Fig. 2)

(13)
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1 ifx€(a,1),
fo(x)=141% ifx=a,
0 ifx€(0,a).

We may state this result more exactly as follows. Say that a function
f(): [0, 1] = [0, 1] is convex—concave if for some z € (0, 1), () is convex
on [0, z) and concave on (z, 1].

Lemma 2. For every a € (0, 1)

(i) lim,.. fi(x) = fi(x) for all x € [0, 1];
(i) fi(x) is strictly increasing in x, continuously differentible, and for all
sufficiently large s it is convex—concave.

Proof. The value fi(x) can be represented as

(S e

k=1

where a, are independent Bernoulli random variables satisfying

1 with probability x,
a =
. 0 with probability 1 — x.

Set b, = a; — x. Then the above probability equals

P{i bk>(a~x)s}.
k=1

From the law of large numbers it follows that, in probability,

fim > by=0.

soo 8 30y

Consequently,

D bk>a—x}=0fora>x,

k=1

v =

lim f5(x) = lim P {

R
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and

lim f3(x) =limP{% > b >a ~x} =1lfora<ux.
s k=1

S—o%

Finally, f7(c) = % by symmetry. This proves statement(i).

To prove statement(ii) let us observe that f3(x) can be expressed in
another way. Namely, fi(x) is the probability that at least k = [as] + 1 of
thev;,i = 1,2,...,s, are less than or equal to x. Here v; are independent
random variables that are uniformly distributed over [0, 1] and [as] desig-
nates the integer part of as. Thus f3(-) is the distribution function of the
kth order statistic of the v;,, i = 1, 2, ..., 5. It follows from standard
arguments (see, for example, David, 1981, p. 9) that the corresponding
density is given by

PN | S S PP
Rl s yoenrs TR S URE

It is easily checked that its derivative is positive on (0, (k — 1)/(s — 1))
and negative on ({(k — 1)/(s — 1), 1). Hence fi(-) is convex—concave;
moreover it is continuously differentiable and increasing. This completes
the proof of Lemma 2.

LEMMA 3. Let G be nondegenerate with unique mixed equilibrium (8, o).

Case 1. For all sufficiently large s, (13) has exactly three solutions:
(0, 0), (1, 1), (x5, ¥a), and (x5, yo) — (B, @) as s — o,

Case 2. For each s, (13) has exactly one solution (xp,y.), and
lim,_... (x3,y2) = (B, &).

Proof. We shall give the argument for case 1; the other case is similar.

Fix a small ¢ > 0. By statement(i) of Lemma 2 there is an integer s, such
that, for all s = s,

flB-e)=s  fuB+e)=1-c¢, (14)
and

fila—g)<e, filate)=l-e. 15)
The curves x = (f§)"1(y) and x = f3(y) intersect at (0, 0) and (1, 1), where
(f9'(-) stands for the inverse function. By choice of & the only other

points of intersection (if any) must be inside the box B, = {(x, y): 8 —
e<x=B+ea—e=<y=a+ g Moreover, since the functions are
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continuous, by statement(i) of Lemma 2 they have at least one point of
intersection in B, for s = s5,. We shall show that the intersection is unique.

Let x;be the first x such that (x, f3(x)) is in the box B,. Then there exists
x' € (B — &, xg) such that

130x7) = F3(8 = 8) = = F3(x" )y = B + ),

and hence by (14),

a—2e
.

d ...,
dx falx') = )
Similarly,

d . 1—a—2¢
E;fﬁ(x)z Qe

for some x” € (x;, B + &), where x; is the last x such that (x, f3(x)) is in
the box.

By statement (ii) of Lemma 2, (d/dx) f3(-) is first increasing, then de-
creasing. Hence

d . faa—2e 1 —a~—-2¢
— 5 =
& i) = min (4528, Lo g =)

for x € [x;, x;]. Consequently for sufficiently small £ and all s = s,, we have

?d% fix)>1 for all {x, fa(x)) € B,.

Similarly,

%ff.()’)>1 forall (y, fi(y)) € B..

Suppose now that the curves of y = f3(x) and x = f5(y) intersect in two
distinct points (x1, y1), (x2, ¥2) € B,. Then there is a point (x°, f3(x°)) €
B, such that (d/dx) f5(x°) = (y> — y1)/(x> — x;) and a point (f5(y°), y%) €
B, such that (d/dy) f5(y%) = (x2 — x1)/(y2 — y). Since at least one of
these is less than or equal to 1, we have arrived at a contradiction. This
proves the uniqueness of the interior intersection point (xg, y,) for all
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sufficiently large s and that (x;, y,) — (8, @) as s — . Thus Lemma 3
is proved.

From this it follows that if fictitious play with sampling converges, then
it converges to a solution of (13), which is either a Nash equilibrium of G
or close to one. The proof of convergence is given in the Appendix, where
we also show that for case 1 games the limit is almost surely not contained
in every sufficiently small neighborhood of the unstable Nash equilibrium.
At this point let us also note that, for case 1 games, both of the pure
equilibria are attained in the limit with positive probability if the initial
state is rich; i.e., if in the initial state, strategies 1 and 2 are played with
positive probability by both players.

4. MISTAKES AND OTHER SOURCES OF NOISE

In this section we relax the assumption that agents always choose best
replies by supposing that they sometimes make ‘“‘mistakes,” that is, they
do things for unexplained reasons. To make this idea concrete, assume that
Row samples from the previous actions by Column and chooses a best
reply with probability 1 — 2¢, but with probability 2e she chooses 1 or 2
at random. For notational convenience we shall assume that Row selects
1 and 2 with equal probability, though all that really matters is that she
chooses both 1 and 2 with fixed positive probabilities whenever she random-
izes. The column player acts similarly.

In place of the expressions in Lemma 1 we obtain the following:

Case 1.

P{g(y) = 1} = (1 = 2&)[faly) + &b, y)] + &,
Plyi(x) =1} = (1 = 2e)[ fa(x) + &p(a', x)] + &
Case 2.
P{g(y) =11 = (1 = 2e)[fuly) + 8u(b" y)] + &,
Pg(x) = 1} = (1~ 28)[ fip(1 — %) + 15", 1 — x)] + &.

Consider case 1. Let f5°(y) = (1 — 2¢) fi(y) + &, and fi*(x) =
(1 — 2&)f3(x) + . An argument similar to the preceding shows that if
the stochastic process defined by (4) converges, then it converges to a
solution of the system

x=fe(y),  y=£frt.

If ¢ < B <1 — ¢ the situation is similar to the previous one.
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We remark that these inequalities have two interpretations. On the one
hand, they allow us to conclude that the limit points of the process are
close to the Nash equilibria of a given game, provided the rate of mistakes
in the populations is sufficiently small. On the other hand, they say that if
the rate of mistakes in a given population is &, then the limit points are
close to the Nash equilibria provided the game is such that a and 8 satisfy
the given inequalities. Thus, this is a condition relating the characteristics
of the nonhomogeneous pools of players and the characteristics of the game
that they are playing.

For a fixed ¢, the curves f5¢(-) and f3°(+) become more and more S-shaped
as s increases. Hence the curves x = f5°(y) and y = f3*(x) cross at exactly
three points, which are the only possible limits of the stochastic process.
In case 1, the interior crossing point is not stable, and the process converges
to it with probability zero. The two stable crossing points are e-close to
the two pure Nash equilibria (when s is large), and hence the process
converges almost surely to an e-neighborhood of the pure Nash equilibria.

Incase 2,if ¢ < a, B <1 — ¢, there is a unique crossing point for a fixed
e and all sufficiently large s. The process converges to a neighborhood of
the mixed Nash equilibrium of the game, and the neighborhood shrinks to
(B, @) as s increases.

It should be remarked that nothing essential in this argument changes
if the populations are heterogeneous with respect to the probability that
they make mistakes, so long as all these probabilities are small.

5. PERTURBED BEST REPLY DYNAMICS

We now formulate a general model that captures the preceding examples
as special cases. Let G be a nondegenerate 2 X 2 game with mixed Nash
equilibrium (B8, «). We say that the coevolving process given by equations
(4) is a perturbed best-reply dynamic of G if it is driven on average by
slightly perturbed step functions plus terms that go to zero at least as fast
as ¢t~ for some « > 0. More precisely, suppose that for ¢ > 0 and & € [0,
3) there is a set of functions A% %(-), g5°(:), vi(b', -), ui(a', -) such that for
some choice of the parameters, the Bernoulli random variables £(-) and
§'(+) can be represented in the following form:

Case 1.

P{&(y) =1} = hi?(y) + vi(B" y),
P{y/(x) = 1} = g5°(x) + ui(a', x);
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Case 2.

P{&(y) =1} = hi%(y) + vi(b',y),
P{g'(x) = 1} = g1%(1 — x) + pip(a’, 1 — x).

We assume that:

(i) for all small enough & the functions A5%(-) and g§°() are increasing,
continuously differentiable, and convex—concave;

(i)

S ifx €[0,v),

lim h%%(y) =
) 1-8 ifxe 1),

e—l)

{5 ify €[0, ),

lim g2%(x) =
1-6 ify€(a1], im &5°(x) {

where § < min(e, 8) = max(a, B8) <1 — &;

(ill) supyep¥ilt, ¥) = ciot ™ and supeppi(t x) < ¢yt for some
k>0, wherey = 8,1 — B.

THEOREM 2. Let G be a nondegenerate 2 X 2 game. Every perturbed
best reply dynamic converges almost surely provided ¢ is sufficiently small.
The limit (X*, Y*) takes exactly two values for case 1 games, one close to
(8, 8), the other close to (1 — 8, 1 — §), with probabilities that depend on
the initial state. For case 2 games the limit is deterministic, and lies close to
the mixed equilibrium (B, ). In both cases, for every o> O thereis €, > O such
that whenever € < g,, (X*, Y*) lies within o of a stable Nash equilibrium.

The proof is given in the Appendix. We remark that, in case 1, for &
small enough, the curves x = h%%(y) and y = g§°(x) cross at exactly three
points: (xo, ¥o), (xg, ¥o) and (x{, y;). One of them, (x4, y.), approaches the
mixed equilibrium as & goes to 0. This point is not stable, so the process
converges to it with zero probability. The other two lie close to (or coincide
with) (8, 8) and (1 — 8,1 — §). It can be shown (though we shall not
show it here) that the process (4) converges to each of them with positive
probability as long as P{{'(y) = 1} € (0, 1) and P{¢/(x) = 1} € (0, 1) for
ally € (0,1),x € (0, 1), and ¢ = 1. Similarly, in case 2 if & is small enough
there is a unique crossing point, which approaches the unique equilibrium
of the game as & goes to zero. The process converges to the crossing point
with probability one. Similar conclusions hold if the limiting step functions
in (ii) have different 8, say & and 3.
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6. PERTURBED PAYOFFs

In this section we shall show how slight perturbations in the players’
payoffs can be treated within this framework. This is the case considered
by Fudenberg and Kreps (1993) and by Benaim and Hirsch (1994). Assume
that in each period ¢ the payoffs af;, 8]; are random variables. Specifically,
let us assume that

ay=a; +eje),  Bi= B+ &e),

where «;;, 8;; are the mean payoffs and e}(¢), &;(e) are independent random
variables with mean zero and distribution functions F,(:) and R.(-). We
want the errors to be “small” as £ — 0; the most straightforward way to
ensure this is to assume that £ are the standard deviations of the correspond-
ing distributions. For simplicity of exposition we shall assume that F.(-)
and R.(-) are normal, though it will be apparent that the analysis holds
much more generally. We shall also assume for convenience that players
have full information about past actions by the other side. Sampling, mis-
takes, and other perturbations can be included without substantially chang-
ing the conclusions, though at significant notational cost.

Our task is to show that this process satisfies the conditions of a perturbed
best-reply dynamic. Assume that we have a case 1 game, and let us focus
on the row player. Suppose that, at some period ¢, the proportion of column
players choosing strategy 1 is y. Then the row player chooses 1 with proba-
bility

hi(y) = Plaj; — @b < (af, — afy — ab + ab)y}
= P{(1 — y)ea(e) — (1 — y)eia(e) + yeh(e) — yeii(e)

<(ay — o —ayn +tap)y — (an — ap)h

Leta = a; — ay3 — as + agzn, so that & = (ax — agz)a’!. Let us also
recall that @ > 0. We have

ol oY — a(y — a)
hi(y) =P N(0,1)<8 2[(1_y)2+y2]},

where N(0, 1) is a normal random variable with zero mean and variance

1. In particular,

(1 — y)eta(e) ~ (1 ~ y)eia(e) + yela(e) — yeii(e)
eV2[(1—y) + 7 '

N@©,1) =

Clearly,
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lim Ai(y)=0ify <« and lim Ai(y)=1lify > .
e—0 -0

It remains to be shown that, for all sufficiently small g, h2(*) is increasing
and convex-concave.

Let
- y —«
LV T
Then

d ey =1 oo | L .
E;ha()—s\/igexp[ 282]‘1()

A straightforward calculation shows that g’(y) > 0 for all y € [0, 1]; hence
h5(+) is increasing. To demonstrate that h%(-) is convex—concave we need
to show that (d?/dy?) hi(-) is first positive then negative. Now

dzc.—.____.__l _ﬂ_)_ ".___1_ . (.Y)2
'd—)')iha()_s\/é—ﬂ'exp[ 232}{[1() gZQ( )[q()] }

Let us examine the behavior of
" 1 ’ 2
Q.()=4"() = 7z a0Mq ()

Since g(y)(y — a) > 0 for y # a and ¢"(-) is bounded on {0, 1], for all
small enough & the function Q.(-) changes sign over [0, 1] from plus to
minus. Hence there is at least one point y, where Q.(y.) = 0. Moreover,
this point must belong to a neighborhood of «, which shrinks to zero as
e — 0. Let us show that the root is unique.

If there were more than one such root, there would exist y; (in the same
neighborhood) such that Q;(y;) = 0. But

01() = 4"() = 1 OF - Sa()g (I

Since g(y;) — 0 as ¢ — 0, the sign of this derivative coincides with the
sign of —[g’(*)}’. which is negative. Consequently Q/(-) cannot have zeros
in a sufficiently small neighborhood of &, and hence y, is unique.

Thus we have established that there is a unique point y, such that
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Q.(y) > 0fory €0, y,) and Q.(y) < 0 for y € (y,, 1). This implies that
hi(-) is convex—concave.

We have proved that hZ(-) has all the properties of a perturbed best-
reply dynamic for the row player in a case 1 game. The other cases are
verified similarly.

Note that

() = _ A
hi(0) P{N(0,1)< 8\/5}>O,

£(1) = a(l a)}
< < 1.
hi(1) = {N(O 1) 5 1
Similarly g5(0) > 0 and gj(1) < 1, where gj(x) stands for the probability
that Column chooses strategy 1 given that the proportion of row players
choosing 1 is x. The inequalities imply that in case 1 there are two limits
(x0, yo) and (x,, y;) for the random process generated by the perturbed
best-reply dynamic, which do not coincide with (0, 0) and (1, 1), though
they approach these values as € — 0.

From this and Theorem 2 it follows that, when the variance (standard
deviation) of perturbations is sufficiently small, fictitious play with normally
perturbed payoffs converges almost surely to a neighborhood of a stable
Nash equilibrium of the game and the size of the neighborhood goes to zero
with the variance.

A similar argument holds for a wide class of perturbations. For example,
we could consider bounded perturbations that are uniformly distributed
over some finite interval. In this case, ¢ is proportional to the length of the
interval. The corresponding functions A%(+) and gg(*) attain the values 0
and 1 for all sufficiently small &, and hence (for case 1 games) the dynamic
converges to the pure equilibria exactly.

7. RATE oF CONVERGENCE

We conclude by studying the rate of convergence of perturbed best-reply
dynamics. As we have already mentioned, (4) can be thought of as a two-
dimensional stochastic approximation procedure. The central limit theorem
for stochastic approximation (see Fabian, 1968; Nevelson and Hasminskii,
1976) shows that when the process has a unique limit, the deviation from
the limit is approximately N(0, r 'K) as t — %, where N(0, ¢ 'K) stands
for a normal distribution with mean zero and variance matrix ¢! K. For
case 2 games, where the limit is a singleton, we can apply this result directly
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to our processes and conclude that they converge at the rate 1/V't, which
is the typical convergence rate for statistical estimation processes. In case
1, there are two points that are attainable with positive probability in the
limit. In this situation we need to use conditional limit theorems (see Arthur
et al., 1987, 1988). These results imply the following.

THEOREM 3. Let G be a nondegenerate 2 X 2 game. Every perturbed
best-reply dynamic converges to its limit at rate at least 1/Vtast— ». More
precisely, there exists a > 0 such that for all ¢ = o and 7 € R?

lim P{VI(X'Y") = (x,»)] <Zlim (X7, Y™) = (x,y)}
= P{N(@©, K(x,)) < Z} P{lim (X", Y") = (x.y)}.
Here (x, y) can be any of the points to which the process converges with

positive probability, and N((-j, K(x, y)) is a two-dimensional normal random
vector with mean zero and variance matrix K(x, y) satisfying the equation

L(x,y)K(x,y) + K(x,y)L(x,y) = ~B(x, y),

where L(x,y) = I(x,y) + (1/2)I, the sign T designates transposition, I stands
for the identity matrix in R?, and

x(1 —x) 0
B(x,y) = .
0 y(1~y)
Case 1.
— ___d_ £
1 dy h’(y)
J(x,y) = )
ol .
dx 85 (X) 1
Case 2.
— _d_ £,8
1 a4 he*(y)
Iy =| ,
gi%(1 ~ x) -1

dx

This theorem is proved in the Appendix.
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Let us consider some implications of this result. For case 1 games, if a
limit coincides with a pure equilibrium, then Theorem 3 gives a zero variance
matrix for the limiting normal distribution. This indicates that the actual
convergence rate is faster than 1/Vt. In fact, if the payoff perturbations
are bounded, and these are the only perturbations, then it can be shown
(we shall not do so here) that convergence occurs nearly as fast as 1/4, that
is, faster than ¢! for every small * > 0. A similar result holds if the
perturbations arise solely from sampling.

For case 2 games, by contrast, under both types of perturbations conver-
gence occurs only at rate 1/Vt, and the limit lies only in a neighborhood
of the mixed Nash equilibrium. The same holds for case 1 games if agents
make systernatic random errors. In other words, sampling variability and
payoff perturbations lead to a substantially faster rate of learning when
the stable equilibria are pure as opposed to mixed. When the players make
small systematic errors, the rates are the same in both cases. We suspect
that similar results hold for a wide class of games, but for the moment this
remains a matter of conjecture.

APPENDIX

This Appendix gives proofs of Theorems 2 and 3.

THEOREM 2. Let G be a nondegenerate 2 X 2 game. Every perturbed
best-reply dynamic converges almost surely. The limit (X*, Y*) takes exactly
two values for case 1 games, one close to (8, 8), the other close to (1 — &,
1 — &), with probabilities that depend on the initial state. For case 2 games
the limit is deterministic and lies close to the mixed equilibrium (B, «). That
is, for every o > ( there is €, > 0 such that whenever € < g,, (X*, Y*) lies
within o of a stable Nash equilibrium.

Proof. Consider the system of ordinary differential equations

Case 1. x = h%(y) — x, y=g§x) —y, (al)
a
Case2. x=h(y)—x, y=g%%1~-x)—y.

The functions involved in (al) are continuously differentiable on ¥ =
[0, 1] x [0, 1]. Hence for every X € ¥ there is a unique solution y(X, f),
t = 0, of (al) such that y(, 0) = X.

Since in case 1,

S () = ]+ - g) — ) = =2

and in case 2,
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1) ~ 3] + 281~ )~ ] = 2
ax- " ay 1-# ’

Bendixson’s criterion (see Hahn, 1967, p. 66) says that (al) does not have
cycles or phase polygons belonging to ¥. From the theorem of Bendixson
(Hahn, 1967, p. 66), we conclude that every half trajectory of (al) belonging
to X either is identically equal to some singular point of these equations
or approaches one of them. In what follows next we shall deal only with
half trajectories of (al) belonging to .

Let us first consider case 1. Arguing as in the proof of Lemma 3, we
conclude that there are three singular points, (xo, ¥), (Xa, ¥4), and (xy, y;)
such that

(X0, ¥0) = (8, 8), (xg, yu) = (B, @), and (x1, y1) = (1 = 8,1 — 8), (a2)

as ¢ — (. The argument also shows that

_d._. .8 ﬂ (2]
dy hﬂ (yﬂ) dx &8 (xﬁ) >1 (33)

for all sufficiently small e.
Introduce the Jacobian of (al)

—_ _4__ £,8
1 ay h(y)
J(x,y) = ,
L gEd —_

dr gi°(x) 1

Its eigenvalues are

— j_ £.6 _i €,0,
1= \/dyha (}’)dxgﬂ (x)

Due to (a3) one of the eigenvalues of J(xg, y,) is positive, so the matrix
is not stable. Using standard results in stochastic approximation on the
nonattainability of unstable points (see Arthur ef al, 1988, Lemma 2, Pem-
antle, 1990, Theorem 1) we conclude that

P{(Xr’ Yl) - (xB’ya)} =0 (34)

for every initial state of the system.
Next we show that the matrices J(x,, yy) and J(x,, y,) are stable. To
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prove this, note that 42%(-) is increasing over [0, 1], is convex—concave, and
converges to the step function at «. Hence its derivative (which is mono-
tone since the function is convex-concave) converges uniformly to 0 on
any closed set that does not contain «. The same holds for the deriva-
tive of g#’(:) on any closed set which does not contain 8. Consequently
J(x;, y;) = —1 as e — O for i = 0, 1. Hence the matrices are stable for all
sufficiently small .

Now we can prove convergence with probability one of the vector
(X', Y') as t — . Rewrite (4) in the vector form

X=X+ (Ua*H[REY) + O, XY + U, X)), (a5)
where for every X = (x, y) we have
R(D) = (h0) - x g8 =), W) = (B, E5 w0,
Vi(x) = ¢i(x) — E¢'(x), E'(y)=E&(y)— EE(y),

1+1

A b 1 a ef of al _ bl &6
Q([’ x) = (Vf,(b V.Y)7 b_,:fl“‘ﬂ(avx) + —F- [gﬁ‘ (x) - Y])‘

Note that R(-) and é(t, -) are deterministic, whereas (1, -) is a random
vector. The martingale convergence theorem implies that

S (a3, X7)
i1

exists with probability one. Designate by (), the joint event that the series
limit exists and that X* does not converge to (xg, y,) as  — . Then owing
to (ad), P{Q,} = 1. Fix an elementary outcome w from {)3. Then the
realization of the stochastic sequence (a$) takes the form

=3+ (Ma"HRE) + &, (a6)

where X' and ¢’ stand for the realizations of X' and (1/a"YH)[Q(, X*) +
{(t, X*)] and

8

It
e

lim (a7)

P

L

it
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What remains to be shown is that {x’} converges to either (xo, yo) or
(x1, y1)-

The set & of all limit points of {X'} is a closed, connected set, £ C X.
We have to show that it is a singleton set consisting of either (xq, yo) or
(xl ) )’l)-

First, let us establish that £ is an invariant set for (al). The series
221 Va'! diverges; hence for all integers n = 2 and all real 1 = 0 we
can define

i i+1
() =X, where >, (1/a/*) =1 <> (1/a/*").

j=n j=n

We include the possibility that i = n — 1, in which case the left-hand sum
is vacuous and takes the value zero. For every convergent subsequence
{¥"r}, one can show (see, for example, Benveniste et al., 1990, pp. 230, 231)
that for every fixed T > 0

lim su[;] |x(6) = (X, 0|l = 0, (a8)

p—= t€[0,

where X" — X as p — o, For each X € ¥ there is such a subsequence
X"» — X. Denote by n,(f) the number i such that x"»(r) = X’. Hence by (a8)

[¥E ) = 2% —~0  asp— e, (a%)

for an arbitrary but fixed ¢ > 0. Since & is a closed set, by (a9),x € &£
implies that y(X, 1) € ¥. Hence y(%, t) € &£ for all ¢ > 0. The same is true
for all + < 0. Thus we have shown that if X € &£, then y(X, t) € ¥ for
—o <t < o, This means that & is an invariant set for (al).

Every invariant set is made up of whole trajectories (see Hahn, 1967, p.
60). Since &£ is compact, we can use the theory of Bendixson to analyze
the half trajectories that begin in . Namely, each of them either approaches
a singular point or coincides with it. Hence, if ¥ € &, then (X, 1) converges
as 1 —  to one of (xq, yo), (xg, Ya), OT (X1, ¥1). Since & is a closed set, by
(a8) we conclude that at least one of these points belongs to &£.

There are two situations to consider: first, (xo, yg) or (x;, y;) or both are
in &; second, neither is in £. In the latter case, £ must contain (xg, v,).
We shall show that in the first situation & is a singleton set, while the latter
situation is impossible.

Consider the first situation. Without loss of generality we can assume
that (xg, yo) € £. If £ = {(x0, yo)}, then there is nothing to prove. Let us
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assume that £ is not a singleton set and let us show that this assumption
leads to a contradiction.

Since J(xg, yo) — —1I as € — 0, by Taylor’s expansion we conclude that
there exists 70 such that ||¥ — (xo, yo)|| = 7° implies

(R(E), % = (%0, yo)) = —H|% — (x0, ¥o)|I? (al0)

whenever ¢ is sufficiently small.

Fix 7 > 0 such that 7 < } min(7°, max;cg||¥ — (xq, yo)l). Let U, define
the open o-neighborhood of (xq, yg). Since there are limit points inside of
U. and outside of U,,, there exists a sequence {k,} of instants when {x"} is
inside of U,, that is, |[%» — (xg, yo)| < 7. and also there exists a sequence
{g,} of instants when {¥"} is outside of U,,, that is, [¥% — (xo, yo)|l = 2=.
Let us form new sequences {k;} and {g,} in the following way:

ki=k,, g,=minlg;:q,>k;}, kp.  =mindk;:k;>q,},p=1.

Then &, < q, < k,., for all p = 1. To simplify notation, we can assume that
the original sequences have this property, that is,

k,<q,<Kkp., xke U, X ¢ U,,p=1.

Now we define two new sequences {m,} and {r,}. One, {m,}, is formed by
the last instants from [k,, q,] when {¥"} is still in U,, while the other, {r,},
is formed by the first instants from [m,, g,] when {Z"} is outside of U,,.
That is,

m, =max{n:k,=n<=gqg,and X" € U},

r,=min{n:m,<n=<gq,and X" & U,}.

Since between k, and g, the sequence {X¥"} moves from inside of U, to

outside of U, such moments always exist. The value M =
max;ex|R(X)|| is finite; hence by (a6) and (a7)

lim [|x"*! — X"} = 0. (a1l)

This implies that for all sufficiently large » the sequence {¥"} needs several
steps to get from inside of U, to outside of U,.. Hence r, > m, for all
sufficiently large p. Consequently, dropping some finite number of initial
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terms in these sequences, we can assume that this inequality holds for all
p=1

Since m,, is the last moment from [k,, g,] when {Z"} belongs to U,, we
have |¥™ — (xo, yo)| < 7 and |™*' — (x0. yo)l = 7 By (all) these
inequalities imply that

X — (xg, yoll = 7 asp— o,

Hence, selecting a subsequence {p;} if necessary, we can assume that there
is X(7) such that

X™e,— X(7) asl— o,
where [¥(7) — (x0, yo)ll = =

From now on we shall identify {m, } and {r, } with {m,} and {r,} to simplify
notation. The properties we need are summarized in the relations

lim ¥ = ¥(71), IX(7) — (x0, yo)ll = 7, m, <r,, p=1. (al2)
pom

Fix a small positive ¥ < 7. For all sufficiently large p, there is a subse-
quence {/,} such that

l, = max{n:m, <n <r,and||¥" — ¥"|| < 7'}.

Since 7 < rand {X¥"} between m, and r, moves from inside of U, to outside
of U,,, we have, for all sufficiently large p,

my <l <rp,
Hence, dropping some finite number of initial terms in these sequences,

we can assume that the above inequalities hold for all p = 1.
From (a6)

-1

Bh—3m=3 (UaRE) + D7, (al3)

where
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Letting L be a Lipschitz constant for R(-) and
%—l
T,= 2 (Ua™h,

l:mp

one obtains from (al3)

[ — %7 < [|[RG™)| + L7]T, +

and

[ = %] = [IRG™)| — L7]T, +

By (all) and the definition of {/,} we have (X ~ ¥"»|| — 7’. Furthermore
(al2) implies that IRGE™)| — “R(r(r))“ where |[R(Z(7))|| > 0. Let R =
IRGE()||. From the above inequalities and (a7) it follows that

(R— LT, =7[1+0,(1)] =(R+ L7)T,,

where 0,(1) — 0 as p — . Thus we may choose positive constants ¢ and
C and a 7 > 0 such that for all ¥ < +* and all sufficiently large p

cr=T1,=C7. (al4)
From (al3) we get

-1 2

X" — (x0,¥0) + E (UUM)R(X )+ Z

lmp

= ”)-Em” - (xo,y())”z + ZTp(xm” = (x0. Yo), k(fm”))

Hx P (xo,}’o)ﬂz =

1 (315)
+2 <;mp = (50, y0), 3 (Va™)[RE) - iz(zmp)]>

+0,(1),

-1

(a HRF )

P

i=m
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where we included in o0,(1) all terms containing S”. Since all terms con-
taining space variables are bounded and, by (a7), |I2P [ — 0, it follows that
0,(1) — 0 as p — . By (al0) and (al4),

2Tp<}mp - (Xo,)’())s k(}m”» =- Tp‘iim” - (xo’yO)HZ (a16)

= —cr'[[&7 — (x0, yo)l.

Also, since [[¥' — ™| =< 7 for m, < i =< I,, the Lipschitz property and
(al4) imply that

1,1 . .
<f”’ﬂ = (%0, yo), ; (L/a")[RF) - R(}mp)]>l

2
» (al7)
= 203" — (xo, Y| LT T, = 2™ — (x0, yo)| LC(7')".
Finally, since ||X¥’» — X¥™| < 7', it follows from (a13) that
-1 2
> (Va"HRE)| = ()2 + 05(1), (al8)

p

where 0,(1) — 0 as p — . Putting together (al5)—(al8), we get

% = (xo, yo)IP = &7 — (xq, yo)lP(1 ~ 7'}
+ 201%™ — (x0, YOILC(T'Y? + (7')* + 0,(1) + 0,(1).

Taking into account (al2) and passing to the limit as p — %, we obtain
lim sup [|[X% — (xo, yo)lF = 72(1 — ¢7') + 27LC + 1)(7')%
P>
If 7' is chosen small enough that 72(1 — ¢7') + (2LC + 1)(7')* < 77, then

lim sup ||x> ~ (xo, yo)| < .
p—pw

However, m, < I, < r, and X", m, < n < r,, lie outside of U,. Hence %%
must be outside of U,, that is,

”}I” - (X(), yO)” =T, p= 1,
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which is a contradiction. This contradiction shows that & cannot be a
nonsingleton set that contains (xo, yo) or (xy, y;) or both.

We conclude that either &£ = {(xg, yo)}, or £ = {(x; y1)}, or £ contains
neither (xy, yo) nor (x;, y;) and does contain (xg; x,). Let us show that this
latter situation is impossible.

First, let us show that for every X € &£

(X, 1) — (x3, ) as t~» o, (al9)

Assume to the contrary that (15) does not hold. Since for every
7 € £, y(X, 1) must converge to a singular point as 1 — %, we have

;(Zat)""(x()a)’O) or ;(29I)_—)(x1 YI)aSt“‘)w-

Since & is a closed invariant set, the latter implies that (x,, yo) or (x;, y;)
belongs to &, which is contrary to our current hypothesis.

Let y be a whole trajectory and y € £, y # (X3, y.)- Set y, and y_ for
any half trajectories constituting y. By (al9), y. approaches (xg, y,) at t —
«©; 50 does y- as t — —c. (By the theory of Bendixson, each half-trajectory
must approach a singular point, but due to the argument above this point
cannot be (x,, yo) or (x;, ¥;).) Then y U (xg, y.) is a phase 1-gon (see
Hahn, 1967, p. 66). This is not possible, since, by the theory of Bendixson,
(al) does not have phase polygons. Consequently, the trajectories constitut-
ing & must coincide with (x;, v,), which implies that £ = {(x;, v,)}. Thus
in the second situation ¥ is always a singleton set consisting of (xz, y.).
This is not possible by (a4) and the construction of (). Consequently the
second situation is not possible at all. This completes the proof for the
second situation and case 1 as a whole.

In case 2, we find the solutions of the system

rA(y)=x and  g9%(1 —x) =y.

An argument similar to the proof of Lemma 3 shows that it has a unique
solution (x5,y,) and as e — 0

d
hf!.(; ;)—) m’
; (y

(x5, ye)— (B,@), and (a20)

d
d )
‘czx" g‘i‘fﬁ(l - xﬁ)-") 0,
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The Jacobian of this system is

—_ .Li. £,6,
1 a2 he(y)
J(x,y) = d
T gi2%(1 — x) -1

and its eigenvalues are

— _i €. _1 8 _
1= \/ dy ha (y) dx gi‘ﬂ(l X).

From (a20) we see that for sufficiently small & the eigenvalues of
J(x., yp) have a negative real part. Consequently the matrix is stable. Using
an argument similar to the one given above,? it follows that, with probability
one, (X*, Y') converges to (xg, v.). This concludes the proof of Theorem 2.

THEOREM 3. Let G be a nondegenerate 2 X 2 game. Every perturbed
best reply dynamic converges to its limit at rate at least 1/ Viast— ®. More
precisely, there exists o > 0 such that for all e = g and 7 € R?

limP{\/t[(X‘, Yy - (x,y)] <2, lirri (Xm ym) = (x,y)}

nox

= P{N(0, K (x,y)) < Z}P {lin}o (X™ Y™ = (x, y)}.

Here (x, y) can be any of the points to which the process converges with
positive probability, and X/(O, K(x, v)) is a two-dimensional normal ran-
dom vector with mean zero and variance matrix K(x, y) satisfying the
equation

L(x, y)K(x,y) + K(x, y)L"(x,y) = —B(x,y),

3 Alternatively, if weset X = x — x5, Y = y — v., o X) = =1, b(Y) = [R2%Y + y.) —
xglY L,d(Y)=—1,c(X) = [gi%(1 — X — x}) — y.]X "}, then, taking into account monotonicity
of h2%(- ) and g%( - ), the global stability of the point (x}, y.) follows from a result of Krasovskii
(see Hahn, 1967, p. 132). Hence we can apply in this case the standard stochastic approximation
technique (see, Benveniste er al., 1990).
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where L(x,y) = J(x,y) + (1/2)I, the sign T designates transposition, I stands
for the identity matrix in R? and

Bx.y) (x(l——x) 0 )
X, = .
Y 0 yi-y)
Case 1.
d
-1 E;haa(y)
J(x,y) = d ,
ng;-"(x) -1
Case 2.
d
-1 E;ha,a(y)
J(x,y)= 4
_E;g?fa(l - x) -1

Proof. Consider our game dynamic given as a stochastic approxima-
tion procedure (a5). Since the noise term (¢, -) is bounded, the Lindeberg
condition holds. (See, for example, condition 4 in Theorem 6.6.1 from
Nevelson and Hasminskii, 1976, Theorem 6.6.1.)

Let us check that EZ(t, (x, y){(t, (x, y)) T is close to B(x, y). For case 1
games we have

EYt, (6, y) et (x, )T

_ R ()1 — k()] 0 +0f(1)
0 g’ (O - ggf0l)

where 0{(1) stands for a matrix whose elements converge uniformly to 0
as t — oo. Similarly for case 2 games

ELt, (x, ), (x,y)7

_ (hf,-"(y)ll — h(y)] 0

2(1).
0 141 ~ 01 - i1 —x)]) rorm
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But if (x, y) is a singular point of our dynamic, then
Case 1.

he(y) =x,  gi'x) =y,
Case 2.
R(y) =x,  gif(l—x)=y.
These formulae imply

AL = R =x(1 —x),  g&()[l — g&’(x)] = y(1 —y),
g72(1 — x)[1 — gi2(1 — x)] = y(1 = y).

Hence,

EUL, (x, y)){( (x, y)) T = B(x, y) + o,(1).

To apply the limit theorem for stochastic approximation, we need to check
the stability of the matrix J(-, -) + 1/2I at the stable singular points (see,
for example, Nevelson and Hasminskii, 1976, Theorem 6.6.1, condition 2).
But we already showed in the proof of Theorem 2 that in case 1 for all
small enough ¢, J(-, -) is close to — 1. In case 2, J(-, -) has two eigenvalues
with the real part equal to —1. Thus in both cases for all small enough &,
J(-, -) + 1/2I has eigenvalues with negative real parts at the stable singular
points (i.e., the limits of our process) which means that the matrices are
stable. Now, taking into account that Theorem 2 guarantees convergence
of (X', Y*) with probability one to the limit, Theorem 3 follows from
Theorem 6.6.1 by Nevelson and Hasminskii (1976) in case 2 games and
from Theorems 3 and 4 by Arthur et al. (1987) in case 1 games.
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