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A PROBABILISTIC MODEL OF LEARNING IN GAMES 

BY CHRIS WILLIAM SANCHIRICO' 

This paper presents a new, probabilistic model of learning in games which investigates 
the often stated intuition that common knowledge of strategic intent may arise from 
repeated interaction. The model is set in the usual repeated game framework, but the two 
key assumptions are framed in terms of the likelihood of beliefs and actions conditional 
on the history of play. The first assumption formalizes the basic intuition of the learning 
approach; the second, the indeterminacy that inspired resort to learning models in the 
first place. Together the assumptions imply that, almost surely, play will remain almost 
always within one of the stage game's "minimal inclusive sets." In important classes of 
games, including those with strategic complementarities, potential functions, and band- 
wagon effects, all such sets are singleton Nash. 

KEYWORDS: Learning in games, rationalizability. 

FOR ALMOST HALF A CENTURY Nash equilibrium has been game theory's predom- 
inant solution concept. Yet in recent years foundational research on games has 
focused on the need to shore up the justification for equilibrium's fundamental 
assumption: in plain terms, that players correctly guess their opponents' strate- 
gies. Figuring large in this new literature is a resurgence in research on learning 
in games. The learning approach rests on a simple intuition: namely that players 
who play together repeatedly will eventually reach a common understanding of 
their strategic intentions. Translating this intuition into concrete convergence 
results, however, has proven to be no simple matter. 

Consider, for example, "fictitious play." In this leading model agents' beliefs 
about their opponents' current actions are assumed to equal the empirical 
frequency of past opponent play. Agents, moreover, act "myopically" in choos- 
ing to play a best response to such beliefs without regard to the effect on their 
opponents' future beliefs. Shapley's (1964) well known example showed that the 
resulting empirical frequencies of play do not generally converge. More recent 
research, however, has focused on the model's proclivity to generate nonconver- 
gent sequences of actual play even when frequencies do converge. Such is the 
case in Game 1.2 A simple geometric argument confirms that for a range of 
initial conditions the generated sequence of actions fails to converge to the 
game's unique pure equilibrium (Heads, Out), but instead behaves as if the 
game consisted solely of its Matching Pennies component (shaded). Beliefs cycle 

1I wish to thank Truman Bewley, Margaret Bray, Joseph Chang, John Geanakoplos, Roger 
Myerson, Phil Reny, Rafael Rob, Susan Rose-Ackerman, the members of Yale's game theory 
reading group, and seminar participants at the Econometric Society's 1994 North American Summer 
Meetings, SITE's 1994 Summer Workshop, U. C. Berkeley Economics, Yale Law School, Yale 
Economics, and the Universidad Carlos III de Madrid's 1995 Summer Conference in Economic 
Theory. I especially wish to thank David Pearce for his advice and encouragement. 

2Game 1 is essentially the same as an example in Fudenberg and Kreps (1993). 
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Heads Tails Out 

Heads It -1l1 1,2 

Tails -1,1 1,j -1.-4 

FIGURE 1.-Game 1. 

toward the Matching Pennies mixed equilibrium while actual play cycles among 
the four action profiles. 

Convergence of actual play, here and in general, requires the coordination of 
two complementary phenomepa. First, (Heads, Out) must be in some sense 
"absorbing." Second, there must be sufficient "entropy" in the system to insure 
that play reaches (Heads, Out) often enough for this absorption to occur. Under 
fictitious play, strict equilibria like (Heads, Out) are in fact immediately absorb- 
ing in the sense that if they are ever played, they are played forever after. Yet 
fictitious play fails to converge because the same rigid structure that produces 
absorption makes the process prone to eternally ignore its absorptive states. 

The central problem of learning in games is to simultaneously generate both 
of these seemingly contradictory forces-absorption and entropy-in general 
games and from reasonable assumptions about how the history of play affects 
current beliefs. Such is the design here. The paper introduces a class of models 
defined by two mutually consistent assumptions, one each for absorption and 
entropy. Impotant on their own, the assumptions combine to imply convergence 
of actual play to one of the stage game's "minimal inclusive sets" (Basu and 
Weibull (1991)). Roughly, a minimal inclusive set is one that includes all its own 
best responses, and no other sets with the same property. In Game 1, for 
instance, {(Heads, Out)} is the only minimal inclusive set. More generally, such 
sets are generically singleton, Nash in games with strategic complementarities, 
potential functions, identical interests, or bandwagon effects. At the other 
extreme, in Shapley's example and Matching Pennies, the whole set of profiles is 
minimal inclusive; the paper leaves open the question of whether and how a 
common understanding of intent could develop in such "irreducible" games. 

An example of a process satisfying the two assumptions for Game 1 will help 
to introduce the general approach, describe the assumptions, and explain how 
they imply convergence. Given 0 ? A < 1, define for each player i and each 
subset of stage game action profiles,3 E cA the set A (E) = ei E 

A(A _j)I +f r(E_ i) ? A}, where A(A - i) represents the set of probability measures 
on the set of opponent actions, A- . The set A(E) represents the event that i 
thinks her opponent likely to play within E__, with "likely" defined by A. For 

3Ali symbols used here are defined formally in the first paragraph of Section 2. 
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each subset B c A(A _i) of stage game beliefs for i, let ui(B) represent the 
measure placing unit weight uniformly on B and zero weight elsewhere. Com- 
bining notation, consider for a given history {a',..., at- 1, the measure4 
ui( A(a'-r,...,a-')). The measure puts probability one on the event that i 
believes her opponent likely to repeat an action he has taken within the last r 
periods.S All beliefs consistent with this event are regarded as equally likely. The 
graph marked "A" in Figure 2, for instance, shows the frequency distribution of 
Ucol( Ao('*)) when r = 2 and Row has just played Tails twice in a row. 

In this example the measure describing i's current beliefs after the partial 
history {a', . ., a- 1} is a convex combination of the measure 
u (A(atr , ar-1)) and a one period lag:6 

(1) pi(a at- ) = api(al,...,a'-2) + (1- a)ui(A(at-r t-l)) 

Thus, the measure after the history {a',...,a7,..., aaT t is just a geometric 
average of past ui( A(a r, .. . a- 1))s. Figure 2, for example, shows the progres- 
sion of uco(AAoa(at-r,...at-l)) and pcoI(al...,at'-) for a given history of play 
for Row, starting from given initial conditions, with a = 1/2 and r = 2. Finally, 
assume that players' current beliefs are drawn independently at each partial 
history and that both players play a myopic best response to their current 
beliefs. 

These specifications define a probability measure P on the set of all se- 
quences {q,t, at} of beliefs and actions.7 The theorems of this paper imply that if 
we set A 2 3/4 (which we do hereinafter), then P converges to (Heads, Out) in 
the sense that almost surely (Heads, Out) will be played almost always. In other 
words, P assigns probability one to the set of all sequences { 4ft, at} in which at 
remains at (Heads, Out) forever after some point. 

Before explaining how this result obtains, it is worth emphasizing an impor- 
tant difference between this and more traditional learning models. Notice that 
the measure pi(al,.. ., at- 1) is not player i's belief about her opponent's choice 
at t, but rather, a probability measure on such beliefs. While learning rules such 
as fictitious play stipulate for each history what players' beliefs certainly are, this 
model specifies a measure describing what such beliefs tend to be. This proba- 
bilistic approach rests on three general assertions: 

(i) Placing "extra-rational" restrictions on beliefs is unavoidable given the indeter- 
minacy of rational strategic interaction. A corollary to the literature on extensive 
form rationalizability (Pearce (1984)) is that rationality alone will not yield 

4I use sequential notation for both the sequence and its range. 
5The parameter r should not be confused with the parameter p in Assumption 2. 
6All statements made about this system of measures applies to any system which approximates it 

in a particular sense: the approximating measures always assign the same weights as (1) to each cell 
in a canonical simplicial subdivision of the simplex (of i's beliefs), whose cells have sides with length 
no greater than 1 - A. 

7First, specify arbitrary tie-breaking measures for the case where two or more actions are best 
response to agent's stage game beliefs. Then apply Ash (1972, Theorem 2.7.2) to the product 
(AJ(Ac,,) x A(ARoW) XAc0, XAROW) x (A(Ac,j) x A(AROW) XAc0, XARow) X .... 
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convergence. In Game 1, for instance, wherein all actions are stage game 
rationalizable, any sequence of action profiles {at} is consistent with common 
knowledge of rationality in the extensive form of the repeated game.8 

(ii) Such "extra-rational" restrictions should reflect the indeterminacy that necessi- 
tates their use. The usual way to impose extra-rational restrictions is to stipulate 
that players form their beliefs according to a particular learning rule, such as 
fictitious play. In contrast, the probabilistic approach introduced herein eschews 
rigid, formulaic algorithms in favor of probabilistic statements about the ten- 
dency of players to think the past repeats itself. The necessary restrictions are 
thus cast in a manner that acknowledges and incorporates our agnosticism about 
how players form their beliefs (c.f., Gul (1991) and Milgrom and Roberts 
(1991)). 

(iii) Formalizing indeterminacy in a probabilistic framework is a natural way to 
generate entropy. If we believe that many things are possible after each partial 
history of play, then we must also believe it likely that many things will happen 
over time. Thus, to the extent that convergence requires both absorption and 
entropy, the use of probability theory makes the model not only more palatable, 
but also more effective in generating convergence. 

Returning to Game 1, convergence here follows from two intermediate 
results, which follow in turn from two properties of the process9 (1). The first 
result is that (Heads, Out) is eventually absorbing: conditional on the event that 
(Heads, Out) is played infinitely often, it will be played almost always (i.e., 
always, after some point) with probability 1. Eventual absorption is in turn a 
consequence of the manner in which (Heads, Out) feeds back on itself under 
this process. 

Feedback follows jointly from (1) and the best response properties of (Heads, 
Out). The more (Heads, Out) is played, the more often and predominant it is in 
recent history, (a- .. . , a '), and so the more probable it is that both players 
think their opponent likely to play (Heads, Out) again (since each player i's 
current beliefs pi(al . . . , at-l) are a geometric average of past 
ui(Ck(a ar...aT 1)) measures). This much is true of all action profiles. Since 
(Heads, Out) is an equilibrium (and A is large enough), each player does in fact 
repeat her part of (Heads, Out) when she thinks her opponent likely to do the 

8To "rationalize" {at)OW, for example, construct the history-independent strategy SRow prescrib- 

ing aROW at all time-t information sets/stage games. Since all Row's actions are stage game 
rationalizable, aROW is stage game best response to some stage game beliefs qLRow on Column's 
rationalizable actions. By the classic measure theorem (see, e.g., Ash (1972, Corollary 2.7.3)) we can 
then find a repeated game prior A-Row that is supported on similarly history-independent, stage 
game rationalizable strategies for Column, and induces 1 t R ow at each time-t information set. Since 
Row believes his current actions do not affect Column's future play, SRow is a perfect best response 
to I_ROw, whatever Row's discount factor a E [0,1). Thus, the sequence {a ow} is generated by a 
perfect best response to a prior that is supported on similarly structured strategies for Column, 
which may be similarly rationalized. 

9Convergence is no easier to prove for this example than for the general case and so, to save 
space, the following analysis is confined to explanation of these properties rather than proof. 
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same. Hence, the feedback: the more (Heads, Out) is played, the more likely it 
is to be played yet again. 

Feedback per se, however, is not enough to generate eventual absorption. For 
example, the probability that (Heads, Out) is repeated might increase to an 
asymptote of 2, implying that almost surely (Heads, Out) is infinitely often not 
played. Indeed, the bare fact that the probability of (Heads, Out) approaches 1 
is also not sufficient. Theorem 1, however, establishes that eventual absorption 
does follow if the feedback is uniformly summable: i.e., the probability that 
players think (Heads, Out) likely to recur always increases (in the number of 
times in a row' n that it has played) faster than 1 - xn for some uniformly chosen 
(across t), nonnegative, summable sequence {xnj. Such is the case here, where, 
as the reader can check, after n + r - 1 plays of (Heads, Out), the chance that 
the players jointly think it likely to recur is always at least 

[(1 -a)(1 +a+ + .. +an-1)]2 = [1 -an]2 = 1-(2a - a2). 

The proof that eventual absorption follows from uniformly summable feed- 
back has two steps. By an argument related to the second Borel-Cantelli 
Lemma, the summability condition just discussed implies that every time we 
arrive at (Heads, Out) there is some chance we stay there forever. Since the 
summability is uniform, this chance is uniform as well. An argument from the 
first Borel-Cantelli Lemma then establishes that this small chance of absorption 
on each arrival translates into a long run certainty, so long as we arrive at 
(Heads, Out) sufficiently often. 

Arriving at (Heads, Out) sufficiently often is the role of this process' second 
key property, best response entropy: namely, if the profile a is a best response (for 
both players) to a, and d is played at t, then the chance that a will be played at 
t + 1 is, in this example, never less than ((1/16)(1 - a))2. Importantly, the 
chance is uniformly (over t) bounded away from zero. The indeterminacy of 
rational strategic interaction might suggest that anything is possible after all 
partial histories. Applied literally, this precludes any form of convergence. Best 
response entropy insists only that best responses to actions played recently-ac- 
tions that are in a sense still "in play"-be regarded as possible. The degree of 
entropy over current play is thus a function of whether recent history has many 
or few best responses, which depends in turn on whether recent history is itself 
diffuse or concentrated. 

That best response entropy implies infinite plays of (Heads, Out) is the 
content of Theorem 2. For intuition, note that if (Heads, Out) is not played 
infinitely many times, some other profile in this finite game, say (Tails, Tails), 
must be. But, because (Tails, Heads) is a joint best response to (Tails, Tails), 
each time the former is played, there is a chance the latter is played in the 
following period, implying that (Tails, Heads) is also played infinitely often. 
Continuing the argument to (Heads, Heads) and then (Heads, Out) we obtain a 
contradiction. There being such a "best response chain" from all profiles to 
(Heads, Out), the result follows. 
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Taken alone, uniformly summable feedback is consistent with the perfor- 
mance of fictitious play in Game 1. Best response entropy on its own is 
consistent with drawing action profiles in i.i.d. fashion. Together, however, the 
properties imply almost sure, almost always convergence to (Heads, Out). Best 
response entropy gives Pr(Heads, Out) i.o.) = 1, where i.o. means infinitely 
often. Uniformly summable feedback yields Pr((Heads, Out) a.a.j(Heads, Out) 
i.o.) = 1, where a.a. means almost always. The product of these is the conver- 
gence result. 

It is worth noting that this convergence is not a special case of Kalai and 
Lehrer's (1993) model of "rational learning." Indeed, so long as A < 1, one can 
show that players will almost surely not put positive weight on the true path of 
play-what is required by rational learning's absolute continuity assumption in 
this context. Yet the main point of comparison with rational learning is perhaps 
more methodological than technical. Arguably, rational learning's assumption 
that i puts positive weight on the true path of play10 is really just another way of 
saying that as play unfolds, i becomes more and more certain and correct in her 
beliefs about the future course of the game1 -thus begging the question of why 
this might occur. In contrast, this paper is an explicit attempt to explain 
convergence. The result is not in any sense a mathematical restatement of the 
fact of convergence, but rather a mathematical formalization of an explanation 
for convergence that is fundamentally behavioral: namely, that the right combi- 
nation of indeterminacy, and a self-intensifying tendency for players to think 
that history repeats itself, will lead players over time to a common understand- 
ing of their strategic intentions. 

The theorems and lemmas of this paper generalize this introductory example 
along several dimensions. First, the model captures the two highlighted proper- 
ties of this example in two assumptions on general measures over paths of play 
and beliefs. Any measure satisfying these assumptions is shown to converge. 
Second, convergence is shown for general games, to one of the stage game's 
minimal inclusive sets. Third, in the general model it is the probability that a 
subset is "salient" that increases as the subset is played repeatedly, not necessar- 
ily the probability that players think it likely to recur. As explained within, 
salience generalizes the latter to full hierarchies of beliefs. A final generalization 
-not included here-is that players need not be myopic. It is enough that 

'0To be sure Kalai and Lehrer (1993) allow for behavioral strategies, in which case there is no 
one true path of play. This makes their theorems more interesting and difficult than the results 
reported here, but it does not defeat the basic criticism. 

1" Let {a'} be the true path of play induced by the players' repeated game strategy profile. Let p, 
be the probability that i places on the true action profile a' in the stage game following the true 
history {a',..., a' 1}. (We may derive this from i's strategy and prior.) The probability that i places 
on the true path is just rltI pt. A basic result on infinite products says that FI , Tp, > 0 for some 
X 2 1 is equivalent to limT HI 't , pt = 1. But HI, Tpt is just the probability that i's prior assigns to 
the continuation WaT, aT+ 1,r.. of the true path from time T on. 
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discount factors are sufficiently small. (Note that no matter how small a player's 
positive discount factor, her current beliefs may be so close to the break-even 
between two actions that future effects are decisive in her current choice.12) 

It is possible to construct many other examples satisfying the assumptions of 
the general model. To come full circle, we can use the framework to alter 
fictitious play so as to improve its performance in Game 1. We make the weights 
geometric, rather than arithmetic, and simultaneously add some constant posi- 
tive probability that players play last period best response instead of what is 
dictated by the re-weighted fictitious play beliefs: 

t J 
(3gu(1 + (1 -13 )at?il, with probability a, 

\ at-i 1, with probability (1 - a), 

where here '"at-1 represents the belief putting unit weight on the action at-' . 
This system of measures clearly satisfies best response entropy and, proceeding 
as if a = 1, one can show that 

x = , f ? if n < ln(1/4)/ln /3, 
n ( 1 otherwise, 

is a uniform (across t) lower bound on the probability that the players think it 
likely that (Heads, Out) will be repeated again after it has been played n times 
in a row. (n < ln(1/4)/ln 8= 1 - f3" ? (3/4) = A.) 

The bounding sequence here is almost always zero: if (Heads, Out) is ever 
played ln(1/4)/ln,13 times in a row, it is played forever after. Contrast this 
"lock-in" dynamic with the example above wherein there is always some chance 
of not playing (Heads, Out) no matter how many times it has been played. 
Hurkens' (1994) model of learning by forgetful players also satisfies the assump- 
tions of the general model with a bounding sequence that is almost always zero 
-always zero for all n larger than the bound on memory. Sonsino (1994) 
generates convergence to patterns of play (see the conclusion for more on 
patterns); convergence there also operates by a similar "lock-in" dynamic. 

Section 2 of the paper sets out the general framework of the model. Section 3 
proves the two intermediate results. The main convergence result is proven in 
Section 4, which also discusses the consistency of the assumptions. Section 5 
concerns the size of minimal inclusive sets in special classes of games and 
Section 6 concludes the paper. 

1. GENERAL FRAMEWORK AND ASSUMPTIONS 

Fix a stage game G = (A1,,.. . Am; vj,..., ,m), where Ai is player i's finite 
set of actions and iTe: A1 x ... xAm -> 9J is i's payoff function. For any 

12For more details, please see the appendix to Sanchirico (1996a). 
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subset E_ cA _ of opponent action profiles,13 let A(E- ) denote the set 
of all probability measures f-i on A-i with fr_i(E_i) = 1. Extend vi to an 
expected payoff function u i: Ai x A(A- ) --> M in the usual manner. Denote 
the set of (stage game) best responses for player i to the belief -i E (A -) as 
bi ( i). The set of (stage game) best responses for player i to beliefs on any subset 
E_ cA-i is bi o A(E_) U q, - EA(E)bi(i). Finally, for any subset E cA 
of action profiles whether or not rectangular, define b o z(E) = 

(b1 ? A(E- ),.bm A(E-m)). 
The model's assumptions concern the manner in which the history of play 

affects the likelihood of players' belief hierarchies regarding opponents' current 
actions. A formal statement of these assumptions, then, requires both a defini- 
tion of such belief hierarchies and a probability space in which to cast state- 
ments about likelihoods. For the first task we borrow from Tan and Werlang's 
(1988) adaptation of "types" to uncertainty regarding strategic intent; let &i 
denote the topological space of stage game types for player i with respect to the 
set of opponent action profiles A__, as in their Definition 3.9 (applied to A_ 
rather than A). For the second task we provide the following definition. 

DEFINITION 1: Define the probability space of action / belief paths for the game 
G to be the tuple ([6 xA1, 5, P), where: (i) [ xxAI' denotes the set of all 
sequences {0, at) of profiles of stage game types and actions, (ii) Z is the 
product o-algebra on [6? x AYw constructed from the Borel sets on each copy of 
6 and the power set on each copy of A, and (iii) P: ` 

-* 91 is a probability 
measure.14 

The object here is to generate common knowledge of strategic intent from 
repeated play; common knowledge of rationality is assumed from the onset. 
Assumption 0, which translates the assumption of common knowledge of ratio- 
nality into our probability space, borrows more from Tan and Werlang (1988). 
First, the subset Ki c 6i (from their Definition 5.2) represents the set of all 
types for player i consistent with common knowledge of rationality. Second, 
since by their Theorem 3.1 each Oi may be regarded as a probability measure on 
A-i x 6-i, we may let Oi(A-i) and Oi(O_i) denote the marginal of Oi on A_ 
and O-i, respectively. 

131 use the following conventional notation for products. A product set X1 x X X,, is denoted 
interchangeably as X. Given any subset S of a product X1 X . x X X (whether or not the subset is 
itself a product), Si denotes the projection of S onto the ith factor and S-i denotes the projection 
of S onto the product of all factors except the ith. 

14Two technical notes about this probability space: First, since each pair of profiles of repeated 
game strategies and beliefs (types) induces a unique sequence ((01, at)}, specifying P is the same as 
specifying a measure on these repeated game objects (with an appropriately defined 0-algebra). 
Second, specifying one "big" P over all sequences of stage game beliefs and actions is essentially 
equivalent to specifying a separate probability measure over current beliefs and actions at each 
"node," {0', a',... 1, at- 1). See again Ash (1972, Theorem 2.7.2). 
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ASSUMPTION 0:15 Vt 2 1, Vi = 1,... m, P([at e bi(0/(A-i))] CA [/ E K']) = 1. 

In the introduction's example the history of play affected the probability that 
players thought a given subset E-i of profiles (there, a singleton) likely to recur. 
In general, it need only affect the probability that the set is "salient:" every 
player i either believes it likely that his opponents will play in E_i in the 
incipient stage game, or believes it likely that his opponents hold such beliefs, 
or, believes it likely that his opponents believe their opponents hold such beliefs, 
or, etc... up to any order. (For simplicity the parameter A and hence the 
qualifier "likely" is left out of the formal definition of salience. The generaliza- 
tion is easily conceived, yet tedious to denote.) 

For any product X1 x .X X,,, and any subset Sk of any factor Xk, let (Sk> 
denote the "slab" of Sk, that is, the subset {x EX, X ... X XmIXk E Ski. 

DEFINITION 2: Fix a rectangular subset of action profiles E = El X ..x Em C 
A. Define, for all i, the set Sj(1)(E) = {0ti E 01i0(A.) E A(E- )). Continuing 
inductively, given Sj(n - 1)(E) for each player j, define 

Si(n)(E) = {i E(0 eilVj # i, Vaj E supp 0i(Aj), 

either ai E Ej or oi(( {aj) n( Sj(n - 1)(E)) ) > o}. 

Then, define for all i, the set Si(E)= U '= Si(nXE). Lastly, define S(E) 
S,(E) x X Sm(E). The subset E is said to be salient at time t, if 0' E S(E). 

Assumption 1 is the source of the uniformly summable feedback discussed in 
the introduction. Assumption 2 is the source of best response entropy. Both 
assumptions are parameterized, the former by the class of subsets to which it 
applies, the latter by the length of recent history, p. This parameterization 
allows for two modes of convergence in the main theorem. For each r c2A 
define: 

ASSuMPTION 1(r): For all subsets of action profiles E e r, there exists a 
summable sequence {xn1 such that: 

(2) Vt > 1, Vl < n < t-2, 

P(0Ot e S(E)lat- .,at-n eE; at-n-1 ,4E) 1 -xv, 

if defined. 

For each p > 1 define: 

ASSUMPTION 2( p): There exists e > 0 such that for all t ? 1 and all {a',... , at- 1}, 
if a E b o({at-P,..., at- 1)), then P(at = a{al,..., at- 1)) > , if defined. 

15Assumption 0 is less general than it might be. First, all results hold with a sufficiently small, 

nonzero discount rate. Second, (as with all the assumptions) it need only hold for almost all t. Third, 

it suffices that players' play a best response to some belief that is "almost" supported on the support 

of their current beliefs and that this is "almost" common knowledge. 
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2. INTERMEDIATE RESULTS 

2.1 Inclusive Sets, Feedback, and EventualAbsorption 

Following Basu and Weibull (1991) let us say that a nonempty subset of action 
profiles E = E1 X .oo XE_ cA is (best response) inclusive, if bi o A(E- ) cEi, Vi. 
In Game 1 the entire set of profiles and (Heads, Out) as a singleton are the only 
inclusive sets. The importance of inclusive sets in this model of learning lies in 
the following lemma, which says that if rationality is common knowledge, then 
whenever an inclusive set is salient it will in fact be played in. The lemma thus 
establishes that inclusive sets feed back on themselves under Assumption 1. 
That this implies eventual absorption is the content of Theorem 1. 

LEMMA 1: If P satisfies Assumption 0 and I is inclusive, then for all t > 1, 
P(a' EtEII S(I)) = 1, if defined. 

The proof, which appears in the Appendix, is inductive on orders of belief. 
For intuition, note that if i believes her opponents will play in I, then she, being 
rational, will herself play in I, since I contains all best responses to itself. 
Similarly, if i believes both that her opponents are rational and that they think 
their opponents will play in I, then she must think that her opponents will 
themselves play in I. Then, again, she will play in I. 

Let [at E I i.o.] denote the event that play is in I "infinitely often"-in set 
notation nl 1 Us=t[as EI]. Let [at eI a.a.] be the event that play is in I 
"almost always," U t= f n =t[as E I]. 

THEOREM 1 (Eventual Absorption): For all p ? 1 and all Fc 2A, if Assump- 
tions 0, l(F), and 2( p) hold and I is an inclusive set in F, then P(at cI 
a.a.1at cI i.o.) = 1, if defined. 

A sketch of the following proof appears in the introduction. 

PROOF: Let I satisfy Assumption 1 with sequence {xnj. From Lemma 1 it 
followsthat Vt19 Vl1<n<t-2, 

(3) P(a , . .., a- E=I; a-- 14 I) 
> PO' ES(I)M; at- 1,... ,at- =I; at-- ,4I). 

Combining (3) with Assumption 1 yields: Vt > 1, Vl < n < t - 2, 

(4) P(at, ... .at-n E. I; at-n-I14 I ) 

> (1 -xn)P(at- 1 ... , at-n E I; atnl t I)1 

Re-indexing, write (4) as: Vt > 1, Vn > 1, 

(5) P(at+n+1, . . . S t+1 E I;at 1 I) 
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By Assumption 2 and the fact that I is inclusive, we may take xn < 1, all n. Now 
for any t, the family of inequalities in (5) indexed by n yields, by iterative 
substitution: 

m m 
(6) P n It+n+ 1nIt+I_It 2 (1-Xn)P(It+1 -It) 

n =1 n= 1 

where I have written, and will henceforth write It for the event [at E I]. The fact 
that {xn} c [0, 1) and Exn < X implies that limm H0 fl n= 1( - Xn) exists and is a 
strictly positive number, call it 6. (See, e.g., Knopp (1971).) Taking the limit of 
both sides in (6) yields: Vt 2 1, 

(7) P n It+n+1 'nIt+1 _It) > 6-P(It+1 _It). 

Now the sequence of sets {n n= =t+n+ 1 n It+ 1 _ It}t= 1 is disjoint. Hence, sum- 
ming the left side of (7) over all t ? 1 yields a number less than 1. Then since 

> 0, (7) implies = 1P(It+1 - It) <oo. Therefore, by the first Borel-Cantelli 
lemma P((It+ 1 - It) i.o.) = 0. A standard argument shows [It i.o.] - [It a.a.] c 
[(It+ 1 - It) i.o.] and the result follows. Q.E.D. 

2.2 Plateaus, Entropy, and Eventual Repulsion 

An inclusive set is said to be minimal if it does not strictly contain another 
inclusive set. The plateau of an inclusive set is constructed by removing from the 
inclusive set all smaller inclusive sets nested therein. (By convention the plateau 
of a minimal inclusive set is the empty set.) Thus, the plateau of the entire set of 
profiles in Game 1 is the Matching Pennies component plus (Tails, Out). In 
Game 1, but not in general, the plateau of the entire set of profiles corresponds 
to the grand plateau: what remains of the entire set of profiles when we remove 
all minimal inclusive sets. 

Plateaus, and perhaps also the grand plateau, will be eventually repelling if 
recent history is sufficiently long. What length suffices depends on certain 
properties of the game's best response correspondence, which are summarized 
in the following notion of "size." (All results hold if we take the size of the game 
to be the number of profiles.) 

DEFINITION 3: For all subsets E cA and all action profiles a E E, a best 
response chain from a to E is a finite sequence of action profiles {a(1),. .., a(n)} 
satisfying: (i) a(1) = a, (ii) Vl < k < n, a(k) E b o ({a(1), ..., a(k - 1)), and (iii) 
a(n) E E. The span of the chain {a(1),..., a(n)} is defined as max1 < k < n{min j: 
a(k) E b o ({a(k - j),. . . , a(k - 1)})}. Let a be an element of a nonempty plateau 
E. The size of the profile, a, is the smallest span across all chains from a to - E. 
The size of the game s(G) is the largest size across all profiles. 
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Recall that in discussing the application of Theorem 2 to Game 1, we noted 
the existence of a best response chain (of span 1) from every profile to (Heads, 
Out). More generally, one can show for all finite games the existence of such a 
chain (not necessarily of span 1) from every point in every plateau to that 
plateau's complement. This insures that "size" is well defined and, though 
implicit in the proof, is central to eventual repulsion. 

THEOREM 2 (Eventual Repulsion from Plateaus): Let P satisfy Assumption 
2( p). (i) If p 2 s(G), then for all plateaus E cA, P(at e E a.a.) = 0. (ii) If 
p 2 Al, then P(at E H a.a.) = 0, where H is the grand plateau. 

A sketch of the following proof appears in the introduction. 

PROOF: I prove only part (i) of the theorem. Part (ii) follows in the same 
manner. Since the plateau E cA is finite, at least one of its members is played 
infinitely often, so that [E' a.a.] =[Et a.a.] n U a E[at'= a i.o.]. Then by the 
subadditivity of P, 

(8) P(Et a.a.) < , P([at = a i.o.] n [Et a.a.]). 
aeE 

Now take any a E E. Let {a(1),..., a(n)} be a chain from a(1) = a to E that 
has the smallest span of all chains from a to - E (i.e. a chain whose span is the 
size of a). We show 

(9) P({at, ..., at- l} = {a(1),... a(n)} i.o.) = p(at =a i.o.). 

The "?"direction is obvious since a(1) = a. To show " > suppose, contra, that 
r < n is the largest index for which (9) does hold with "> ". Now a(r + 1) E 
b o A({a(r - p +1),..., a(r)}), since {a(1),... a(n)} is a chain with smallest span 
among those from a to - E and s(G) < p. Hence, Assumption 2( p) insures the 
existence of e > 0 such that Vt 2 1 and each individual history {a',... , at- 1} that 
has {at-r, ... , at 1} = {a(1),..., a(r)}, P(at = a(r + 1)I{al, ... , at 1}) 2 s. There- 
fore, by a standard result (see, e.g., the appendix to Sanchirico (1996a)), 

P({at-r, ... , at 1} = {a(1),..., a(r)} i.o.) 

= P(([at = a(r + 1)] rn [{at-r, . . ., at- 1} = {a(1),..., a(r)}]) i.o.) 

= P({at-r, ... , at} = {a(1),..., a(r + 1)} i.o.), 

contradicting our supposition. This proves equation (9), which in turn implies 

p([at = a i.o.] n [Et a.a.]) 

=Pflat-n, ... , at-l} 1= {a(1),...,a(n)} i.o.] rn [Et a.a.]). 

But since a(n) 0 E, P([{at-n, .. ., at- 1} = {a(1), ..., a(n)} i.o.] n [Et a.a.]) = 0, and 
so P([at = a i.o.] n [Et a.a.]) = 0 also. This holding for all a e E, the result 
follows from (8). Q.E.D. 
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3. CONVERGENCE AND CONSISTENCY 

Neither Assumption 1 nor 2 guarantees convergence on its own. Fictitious 
play's performance in Game 1-as observed in the opening paragraphs of this 
paper-is fully consistent with Assumptions 0 and l(F), even with F taken to 
be the power set of A. Moreover, any probability measure that draws actions 
from Game 1 in i.i.d. uniform fashion is consistent with Assumptions 0 and 2( p), 
for any p. 

The interaction of these assumptions, however, produces a strong form of 
convergence to minimal inclusive sets, as proven below in Theorem 3. The 
theorem is perhaps best understood visually. Figure 3 depicts a stage game 
((0,0) payoffs are not shown) as a contour map with smaller inclusive sets 
marked with darker shading. Figure 4 translates this contour map into three 
dimensions (making clear the choice of the term "plateau"). The second 
intermediate result, eventual repulsion, guarantees that we do not remain on the 
highest plateau almost always, implying that we are infinitely often in one of its 
"holes." In particular, calling the smaller hole S and the larger L, eventual 
repulsion yields p([at E S i.o.] U [a' e L i.o.]) = 1. (Note that this is not the 
same as "P([a' E S i.o.]) = 1 or P([at E L i.o.]) = 1."). Now split the event [at E S 
i.o.] U [at E L i.o.] into two (intersecting) sections, [at E S i.o.] and [at E L i.o.], 
and consider first [at E S i.o.]. The first intermediate result, eventual absorption 
says that conditional on [at E S i.o.], the event [at E S a.a.] has probability one. 
Similarly, conditional on [at E L i.o.], [at E L a.a.] receives probability one. 
Together with p([at E S i.o.] U [at E L i.o.]) = 1, these conditions imply (with 
some Boolean manipulation) that P([at e S a.a.] U [at E L a.a.]) = 1. In words, 
probability is divided between those sequences of play that stay in the larger 
hole always after some point and those sequences that stay in the smaller hole 

- . I 
--I-.. |i 

FIGURE 3 
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FIGURE 4 

always after some point. Now, conditional on either of these (disjoint) "almost 
always" events we reapply eventual repulsion and absorption in parallel fashion 
to whatever holes (even smaller inclusive sets) there may be in either S and L, 
respectively. (Since there are no holes in S, we work again with S itself.) When 
we eventually reach a level at which none of the inclusive sets has a hole, we 
have established that there is probability one on those sequences of play that 
after some point remain in one of the stage game's minimal inclusive sets. 

This describes the process of convergence when Assumption 2 holds with 
recent history of relatively short duration and Assumption 1 applies to all 
inclusive sets. Only one iteration is necessary if recent history is long enough to 
guarantee that the grand plateau does not absorb, in which case Assumption 1 
need only be applied to minimal inclusive sets. 

THEOREM 3 (Convergence): Let P satisfy Assumptions 0, l(F), and 2( p). If 
either (i) F contains all G's inclusive sets and p 2 s(G), or (ii) F contains all G's 
minimal inclusive sets and p 2 IAl, then P( U {[at E I a.a.]1I is minimal inclusive}) 
= 1. 

PROOF: Case (ii) follows directly from Theorems 1 and 2. For case (i) see the 
appendix to Sanchirico (1996a). 

If p is smaller than the size of the game, then Assumption 0, l(F), and 2( p) 
do not imply convergence. Game 2, for instance, is of size 2. One can construct a 
measure P satisfying Assumption 0, l(F =A), and 2( p = 1), that puts probabil- 
ity 1 on the sequence of actions generated by "last-period-best-response" 
starting from (Heads, Heads): namely, (Heads, Heads), (Heads, Tails), (Tails, 
Tails), (Tails, Heads), (Heads, Heads), etc.... 
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Convergence is of little interest if no probability measure could possibly 
satisfy the assumptions from which it has been shown to follow. Mere existence, 
however, is trivial. For any game G, let j,..*, q'm be a mixed equilibrium in one 
of G's minimal inclusive sets. The measure P that, at each t, (i) puts unit weight 
on the type profile 0 such that (a) each player's belief about incipient opponent 
play is i/l x ... x qi-l x 'k 1 x ... X q,m and (b) "(a)" is common knowledge, 
and (ii) draws play according to i/l x ... x rm, is consistent with Assumption 0, 
Assumption 1 applied to all subsets, and Assumption 2 for any length of recent 
history. The appendix to Sanchirico (1996a) shows that nontrivial measures exist 
for all games. 

4. MINIMAL INCLUSIVE SETS IN SPECIAL CLASSES OF GAMES 

This section concerns the size of minimal inclusive sets in classes of games for 
which other learning processes have been shown to converge (in a manner 
weaker than proven here). The main result relies on a general theorem whose 
proof is straightforward and so omitted. (For more details, see Sanchirico 
(1996b).) 

Let E be a rectangular subset of action space A. The restriction of stage game 
G to E, denoted GE is the finite game with strategy sets E, and payoffs 1TjIE. 
Let R be a property defined on the set of all finite games. We say R is 
restrictable to inclusive sets, if for all games G with property R and all inclusive 
sets I in G, the restriction GI also has the property. The property: "has no more 
than one (pure strategy) equilibrium," for instance, is restrictable to inclusive 
sets, since all equilibria in the restriction of G to an inclusive set are equilibria 
in G as well. The property is not, however, restrictable to general subsets of 
profiles. The property "has no less than one (pure) equilibrium" is not re- 
strictable, even to inclusive sets. 

THEOREM 4: If property R implies the existence of a pure strategy Nash equilib- 
rium and is restrictable to inclusive sets, then in all games with property R for which 
all pure equilibria are strict,16 all minimal inclusive sets are singletons consisting of 
strict equilibria. 

Heads Tails Out 

Heads 1,-l -iV 1 -i I 

Tails -1, I 11-1 -2 2 

Out 
o 

,4 0, 
FIG2 U- 2 2 5 - 2. 

FIGURE 5.-Game 2. 
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For lack of space the reader is referred to the papers cited for formal 
definitions of the classes in the following corollary. However, one new concept is 
required. Because the subset of a complete lattice may not be a complete lattice 
in its own right, general supermodular games are not restrictable to inclusive 
sets and so not subject to Theorem 4. Let us say, then, that an ordinal 
supermodular game (Milgrom and Shannon (1994)) is restrictable, if for all 
inclusive sets I, each Ii is a complete lattice in its own right. Contained in this 
subclass are all supermodular games whose strategy sets may be completely 
ordered, including all those analyzed by Krishna (1991). 

COROLLARY 1 (Singleton Minimal Inclusive Sets in Special Classes of Games): 
Let G be a finite game. All of G's minimal inclusive sets are singletons consisting of 
strict equilibria, if any of the following hold: 

(i) G is a restrictable ordinal supermodular game all of whose pure equilibria are 
strict, 

(ii) G is an ordinal potential game (Monderer and Shapley (1993b)) all of whose 
pure equilibria are strict, 

(iii) G is a game with identical interests (Monderer and Shapley (1993a)) all of 
whose pure equilibria are strict, 

(iv) G has the marginal bandwagon property (Kandori and Rob (1992)). 

PROOF: By Theorem 4, we need only show that each property (i)-(iv) is 
restrictable to inclusive sets and implies the existence of a pure equilibrium 
(with a slight variation in case (iv)). In all cases, restrictability follows directly 
from the definitions. For existence: (i) Existence of a pure equilibrium is given 
by Milgrom and Shannon (1991, Theorem 15). (ii) Existence is given by 
Monderer and Shapley (1993b, Corollary 2.2). (iii) Existence is noted by Mon- 
derer and Shapley (1993b, p. 9). (iv) One can show that the definition of the 
marginal bandwagon property implies the existence of a strict equilibrium. 

5. CONCLUSION 

One direction for future research would be to extend the model to nonsimul- 
taneous stage games, including several plays of a given normal form. This would 
in turn allow convergence to patterns of equilibria in the simultaneous game, as 
in Sonsino (1994), but without the lock-in dynamic that operates there. It would 
also be broad enough to encompass convergence to equilibria that are not 
simple sequences of equilibria in the simultaneous game. Extending the model 
in this direction would also force confrontation with the observability problems 
identified in Fudenberg and Kreps (1988). 

16Clearly some sort of genericity requirement (such as the requirement here that "all pure 
equilibria are strict") will be necessary, since these classes of games typically include those with 
constant payoffs. 
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Other directions for future research include discovering the precise relation- 
ship between the "parameters" in the two assumptions (r, {xnj, p, and s) and 
the speed of convergence, and analyzing the issue of which minimal inclusive 
sets are likely to be selected. 

Dept. of Economics, Columbia University in the City of New York, 420 W 118th 
St., 10th Floor, New York, New York 10027, U.S.A. 

Manuscript received July, 1994; final revision received January, 1996. 

APPENDIX: PROOF OF LEMMA 1 

Take any inclusive set I. I give the proof in two steps. 
Step 1: First I show that 0 E K n s(I) implies Oi(A _.) e A(L_) for all i. For this it suffices to 

show that for all n and all i, Oi E Kl n Si(nXI) implies Oi(A - i) E A(I_ ). The proposition is true for 
all i and n = 1 by definition of Si(1XI). Continuing inductively, suppose that, for all j, Oj E Kj n Sj(n 
- 1XI) implies Oj(A_j) E A(I_j). Take any i and any Oi EKi n Si(nXI). I must show Oi(A- ) e 

A(I_i). To this end take any j # i and any aj E supp Oi(A1). I claim aj E Ij. By definition of Si(n)(I) 
either (i) aj E I, in which case we are done, or (ii) 0i(({aj}) n (Sj(n - 1XI)>) > 0. (Recall that Oi 
may be regarded as a measure on 9 x A _- and that the notation "( )" denotes the inverse image 
of the projection mapping.) Consider case (ii). First, since Oi e Ki, we know that Oi((Kj(m -1)) = 1, 
for all m. Therefore, Oi((Kj)) = 1 and, in turn, oi(({a,}) n (Kj n Sj(n - 1XI)>) > 0. Then by the 
inductive hypothesis, Oi(({aj)) n <0jE -9 j0j(A i) E A(I-j))))> O. Second, O E Ki c Ki(1) also 
means that Oi({(0j, aj) E 9, xAjIaj e bj(0j(A -j))}) = 1, where the inverse projection here is with 
respect to the factor 9j in &9-, x A _ i. Combining these two implications yields aj E bj ? A(I_j). 
Then since I is inclusive, aj E Ij. 

Step 2: For all t 2 1, 

P([ a' E S(I)]) 

=P([Q0t E K n S(I)]) (Assumption 0) 

fl [a ei (A 0/) = (A)If /) = SI](tp m m 
=P n [ ai E- bi(0i (A_l,))] n n[ [it(A _i) E -A(I_i)] n Oat E- S(I)] 

i=l ~~~~~~i=l1 
(Assumption 0) 

< P([at E b A a(I)] n [ Ot E S(I)]) (Definition of A(E-i)) 

< P([at E Ii] n [ 0t E S(I)]) (I is inclusive). 

Hence, P([at E Ii] n [ 0t E S(I)]) = P([ 0t E S(M)]) or P([at e IilI[0't E S(I)]) = 1, if defined. Q.E.D. 
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