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Fis. 1. Some canonical games: (a) Stag-Hunt Game, (b) Death Game, and (c¢) Chicken
Game.

1. INTRODUCTION

The Stag-Hunt Game of Fig. 1a is a canonical example in the literature
on equilibrium selection in games. The game has two Nash equilibria in
pure strategies, (dove, dove) and (hawk, hawk). It also has a mixed Nash
equilibrium in which both players use hawk with probability 3. Harsanyi and
Selten (1988) call (dove, dove) the payoff-dominant equilibrium because it
is Pareto-superior to the other Nash equilibria of the game. They call (hawk,
hawk) the risk-dominant equilibrium. In a 2 X 2 symmetric game with two
symmetric, strict Nash equilibria, the risk-dominant equilibrium is charac-
terized by having the larger basin of attraction under the best-reply dynam-
ics, as illustrated in Fig. 2b.

Which of the Nash equilibria in the Stag-Hunt Game should be selected?
The mixed-strategy equilibrium is commonly dismissed, but the choice
between the two pure strategy equilibria has provoked much debate. This
debate has largely been conducted from the standpoint of evolutionary
game theory, as the literature on refinements of Nash equilibrium is usually
silent when a choice has to be made between two strict Nash equilibria.'

! Amongst nonevolutionary theories that do make a choice, Harsanyi and Selten’s (1988)
equilibrium selection theory proposes the payoff-dominant equilibrium as the rational choice
in the Stag-Hunt Game. (This Nobel Symposium on Game Theory contains papers in which
both Harsanyi and Selten separately offer new and different versions of their theory.) Ander-
lini's (1990) theory of cheap-talking Turing machines also selects the payoff-dominant equilib-
rium. Carlsson and Van Damme (1993), in contrast, offer the risk-dominant equilibrium as
the rational choice.
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FiG. 2. Population states: (a) replicator dynamics with mutation, (b) best reply dynamics,
and (c) the significant x-tree.

Biological theories of evolution in games often take replicator dynamics
as their basic tool of analysis. But such an approach does not readily
distinguish between the two equilibria of the Stag-Hunt Game. Both (dove,
dove) and (hawk, hawk) are asymptotically stable? with respect to the
replicator dynamics. The same conclusion also follows when various other
dynamic adjustment processes are examined. However, Young (1993) and
Kandori et al. recently have studied the effect of introducing small random
shocks (or mutations) into the adjustment dynamics. They considered ver-
sions of a myopic best-reply dynamic, but their methodology is more gener-
ally applicable. If the amount of noise that perturbs the adjustment process
is sufficiently small, then the system is highly likely to begin by finding its
way to an equilibrium of the game and remaining in the vicinity of that
equilibrium for an appreciable time. However, the small random shocks
built into the process make it inevitable that the system will eventually
bounce out of the basin of attraction of whichever equilibrium has captured
it and find its way to another. Such transitions give rise to a probability
distribution that describes the fraction of the time that the system spends
at the various equilibria. In both Young (1993) and Kandori er al. (1993)
we find that, as the noise level becomes negligible, this limiting distribution
places all its probability on the risk-dominant equilibrium.

*We use the terminology of Hofbauer and Sigmund (1988, p. 51). A stable point is a
rest point of the dynamics with the property that orbits that start nearby stay nearby. An
asymptotically stable point is a stable point with the additional property that orbits originating
in some neighborhood of the point converge to the point in question.
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Two concerns arise in connection with this result. First, might not the
noise generated by mutations of arbitrarily small probability be over-
whelmed by other sources of randomness currently excluded from the
model? For example, Foster and Young (1990), Fudenberg and Harris
(1992), and Cabrales (1993) use stochastic differential equations to examine
models in which either payoffs or the process by which relative payoffs are
translated into strategy adjustments are subject to continual perturbation.
These perturbations may be small enough to be negligible in a model where
mutation probabilities are fixed, but can less obviously be ignored in a
model driven by arbitrarily small mutation probabilities. Second, how long
must one wait to reach the stationary distribution? With random shocks
of very low probability, the expected waiting time to get from the payoff-
dominant equilibrium to the risk-dominant equilibrium may be very long
indeed.’

In this paper, we study a ‘“‘musical chairs” model of evolution. The
effective source of noise in this model is located in the selection process
itself. Even when mutations are absent, the selection process may still make
“mistakes” in that agents need not always adjust their strategies in the
direction of the current best reply. In Binmore and Samuelson (1994) it is
argued that such models have a potentially wide application in economics.
However, in the current paper we find it convenient to work with a biological
interpretation of the model.

We have four aims in studying the musical chairs model. The first is to
expose the relationship between (1) an explicit selection model; (2) the
classical replicator dynamics; and (3) the combinatorial methodology of
Freidlin and Wentzell (1984) upon which the equilibrium selection theories
of Young (1993) and Kandori et al. (1993) are based. Making the necessary
linkages turns out to depend primarily on the time span over which one
chooses to study the behavior of the selection model. In particular, if the
population is sufficiently large, then the replicator dynamics provide a good
description of the behavior of the population along any finite interval of
time. However, the replicator dynamics do not provide a good description
of the model’s limiting behavior, which is precisely captured by the methods
of Freidlin and Wentzell.

The second aim is to contrast the equilibrium selection results of the
musical chairs model with the equilibrium selection theories of Young
(1993) and Kandori er al. (1993). Our attempt to incorporate more realistic
sources of noise in the model yields shorter waiting times but generates

*To jump out of the basin of attraction of the payoff-dominant equilibrium in the Stag-
Hunt game of Fig. 1, given the Kandori er al. model with a population size of 1,000, requires
333 simultaneous mutations. Ellison’s (1992) work shows that the long expected waiting times
in these models can be abbreviated if agents are matched only with their “neighbors™ rather
than with all other agents.
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different equilibrium selection results. In particular, the musical chairs
model sometimes chooses the payoff-dominant rather than the risk-domi-
nant equilibrium.

The third aim is to emphasize that the ultralong-run outcomes of an
evolutionary process depend on fitnesses which in turn depend both on the
rewards available in the game and on the nature of the selection process.
In consequence, when one game is obtained from another by making a
strictly increasing, affine transformation of its rewards, the two games need
not be strategically equivalent, since the derived fitnesses in the two games
may differ.

The fourth aim is to comment on the use of continuous-time techniques,
often involving stochastic differential equations, in evolutionary analyses.
We find that these techniques do not always provide good approximations
of the stationary distribution.

Our method in pursuing these aims is to focus on an explicit model of
selection. Given that any such model can be criticized as arbitrary and
unrealistic, why bother? Why not work directly with the replicator dynam-
ics, or with some other abstractly formulated deterministic or stochastic
equations of motion?

In response to such questions, we note that at least four variants of the
discrete replicator dynamics have been studied {Cabrales and Sobel, 1992;
Taylor and Jonker, 1978; Maynard Smith, 1982; Dekel and Scotchmer, 1992;
van Damme, 1991; and Hofbauer and Sigmund, 1988). Limits of these
can be taken to give at least two variants of a continuous-time replicator
dynamics. Hofbauer and Sigmund (1988, p. 133), Samuelson and Zhang
(1992), Dekel and Scotchmer (1992), Cabrales and Sobel (1992), Boylan
(1992), Bomze and Eichberger (1992), and Seymour (1993) all contain
examples showing how such different dynamics can lead to different behav-
ior. Things become more compiicated if one adds perturbations to the
replicator dynamics, with Foster and Young (1990), Fudenberg and Harris
(1992), and Cabrales (1993) advancing various formulations with differ-
ent properties.

Like Boylan (1992, 1995), we see no refuge from such arrays of alterna-
tives other than a close examination of explicit models of selection. The
ultimate aim is to classify different types of models in terms of their equilib-
rium selection properties. The models studied in making a start on this
program are admittedly arbitrary and unrealistic to some degree, but they
must give pause to critics who argue for a more “‘general” theory of equilib-
rium selection, as different types of model demonstrably select different
equilibria.

The following section presents the model. Section 3 examines the sample
paths of the musical chairs model and their relationship to replicator dynam-
ics. Section 4 studies the asymptotic distribution in the musical chairs model
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and its relationship to the techniques of Freidlin and Wentzell (1984).
Section 5 examines equilibrium selection. Section 6 discusses the implica-
tions of interpreting payoffs as fitnesses. Section 7 seeks to relate our
analysis to work based on stochastic differential equations. Section 8 sum-
marizes our conclusions.

2. THe MusicaL CHAIRS MODEL

Births. Time is indexed by . It is divided into periods of length 7, the
first of which begins at time (. When time ¢ is reached. [#/7] periods will
have been completed.’

At the beginning of each period there will be a fixed number N of
rabbits who have survived from the previous period. Rabbits are genetically
programmed either to play ““hawk™ or “*dove.” In every period, each rabbit
gives birth with probability 87 to an instantly mature child who is pro-
grammed just like her mother unless a mutation takes place. Without loss
of generality, we take the birth rate to be 8 = 1.

How long is a period? This depends upon what kind of process we are
trying to model. One possibility is to let 7 = 1, so that in every period
every rabbit gives birth. We can then think of a period as a breeding season.
We might then also assume that parents die after giving birth, though this
is not necessary. From such a model, we could derive a difference equation
describing how the proportions of hawks and doves change {from period
to period.

In contrast, we examine a model in which generations overlap and births
are rarc, isolated cvents. Most periods pass without births occurring, and
the probability of multiple births in a period is negligible. To this end, we
study the limiting casc as 7 goes to zero. We will also be interested in
examining the limit when the population size N gets large and the mutation
probability A gets small—primarily because these limits sharpen the results
and make convenient approximations available. However, we shall always
take the limit 7— 0 first.

An alternative approach would be to work ‘“‘directly” in continuous
time. This would provide immediate access to some elegant mathematical
techniques of the general type discussed in Section 7. However, we avoid
this shortcut because we have doubts about the correct interpretation of
continuous-time models that have not been obtained explicitly as the limits
of discrete-time models.

Deaths. In addition to births being rare, competition for survival in our
world is fierce. It is assumed that, after a birth, there are too many rabbits

*Where [x] is the largest integer smaller than x.
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for the environment to support. One may perhaps imagine that there are
only N rabbit holes into which rabbits can retreat when the fox comes
by—just as there are only N chairs but N + 1 children in the game Musical
Chairs when the music stops.

Whenever a birth occurs and there are then N + 1 rabbits, two randomly
chosen rabbits will be forced to compete for the same hole. As a result of
this competition either both rabbits may escape or one may perish. If both
escape the process is timelessly repeated, with a new, randomly chosen
pair of rabbits each time, until a rabbit dies.”

The competition between rabbits Mopsy and Flopsy for the same rabbit
hole will be described by the Death Game of Fig. lb. When a cell in the
payoff table contains the pair (m, f), then m is the probability that Mopsy
fails to survive the encounter, fis the probability that Flopsy fails to survive,
and 1 — m — fis the probability that both survive. We might accordingly
describe the payoffs in the Death Game as antifitnesses, since they describe
probabilities of death. The payoff pair (s, f) in the Death Game is obtained
from the corresponding payoff pair (M, F) in the Stag-Hunt Game
of Fig. la by making the strictly decreasing, affine transformations
m = a(b — M) and f = a(b — F), where the constants a > 0
and b > 5 are chosen so that m > 0, f > 0, and m + f < 1.

We think of the payoffs in the Stag-Hunt Game as being physical rewards.
In a biological system, they might be measured in calories. In an economic
model they might be monetary rewards. The payoffs in the Death Game
are the antifitnesses or death probabilities that describe the implications
of the physical rewards for survival. The nature of the relationship between
rewards and antifitnesses will depend upon the details of the physical selec-
tion process by which some agents are chosen to die while others survive.

As Binmore and Samuelson (1994) point out, there is obviously no partic-
ular reason why antifitnesses should be affine functions of the physical
rewards. If antifitnesses are affine functions of rewards, then traditionally
minded game theorists would regard the Death Game, with players min-
imizing antifitness, as strategically equivalent to the Stag-Hunt Game in
which players seek to maximize their expected payoffs in the usual way.
For our purposes, the current affine relationship has the virtue of making
the risk-dominant equilibrium in the Death Game the same as the risk-
dominant equilibrium in the Stag-Hunt Game. Because we always work
with the Death Game, our analysis would continue to hold for more general
transformations between rewards and antifitnesses, though interpreting risk
dominance then becomes more complex.

*In the negligible event that more than two rabbits are born in a period, such “*death
games'’ continue until the population size has been reduced to N. The death process need
not be timelessly repeated as long as, in the continuous-time limit, it occurs arbitrarily rapidly
relative to the birth rate.
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Mutation.  Selection is a noisy process in the musical chairs model. Given
the current population mix, it may be optimal to be a dove. But it does
not follow that the number of doves in the population will necessarily
increase, because it remains possible that a dove competing for survival
may simply be unlucky. If the basin of attraction of an equilibrium E is
taken to be the set of population states from which it is possible to move
to E without mutations, then the basin of attraction of the payoff-dominant
equilibrium (in which all rabbits are doves) includes all population states
in (0, 1], where a state identifies the proportion of rabbits who are doves.
Similarly, the basin of attraction of the risk-dominant equilibrium (in which
all rabbits are hawks) includes all population states in [0, 1).

To ensure that the system does not get trapped forever in one of the
two external states in which all agents play the same strategy, mutations
are necessary. When a rabbit is born, it is assumed that she is identical to
her mother with probability 1 — A. But with probability A, she is a mutant
and hence comes programmed with the strategy that her mother does not
use. Unlike the models of Young (1993) and Kandori et al (1993), the
musical chairs model requires only a single mutation to move the system
out of one equilibrium into the basin of attraction of the other. When
mutations are rare, expected waiting times are therefore much shorter than
for a transition that requires large numbers of simultaneous mutations.

How Long is Long? How do we analyze the model? Two approaches
are examined in this paper.

Consider first the traditional story that is told when the classical replicator
dynamics are introduced. By first dispensing with mutations (A -» 0) and
then letting the population size grow large (N — =), a model is obtained
in which large numbers of simultaneous births occur at discrete intervals.
This model is described by a deterministic difference equation known as
the discrete replicator dynamic. This difference equation is commonly ap-
proximated by a differential equation (7 — 0). The limiting behavior of
the differential equation is then studied (r — ). We can summarize this
derivation by representing the parameters of the model as having been
taken to their limits in the following order: first A — 0, next N — o, next
7— 0, then  — .5

In contrast, we are concerned in this paper with an overlapping genera-
tions model with isolated births. As we have noted, this dictates that the
limit 7 — 0 be taken before N — . We are not convinced that the limit
A — 0 should be taken at all, and in some cases it makes no difference
when this limit is taken. However, we argue in Section 5 that, where it

% The replicator dynamics are generally not rigorously derived from precise limiting opera-
tions and we view these limits as providing a convenient summary of the common informal deri-
vation.
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makes a difference, the limit N — o should be taken before A — 0. Hence,
the order of the limits 7— 0, N — o, and A — 0 is set.

We are then left with one key choice. Should we first let the parameters
7, N, and A go to their limits and then calculate the limiting outcome of
the model, or should we first calculate the limiting outcome of the model
and then let 7, &, and A go to their limits? In considering this question, we
let “t — =« be shorthand for “‘calculating the limiting outcome of the
model.”” Note that using t — < in this way is at this point simply a convention.
One of the topics we will investigate is whether the calculations to be
performed in finding the limiting outcome of the model can be interpreted
as taking the limit r — % in some precise way.

In Section 3, we first let the parameters 7, N, and A go to their limits
and then examine the outcome of the model. We find that the important
relationship here is that 7 and N approach their limits before examining
the model, and that the treatment of A does not matter. The limiting
operations can thus be described as one of the following two cases.’

Case 1. First 7— 0, next N — o, next A — 0, then t — oo,
Case 2. First 7— 0, next N — o, next t — o, then A — 0.

This analysis leads us to a version of the classical replicator dynamics
(with an extra term added to take account of the existence of mutations).
Studies of the replicator dynamics usually examine the asymptotics of the
system with the simplifying assumption that A = 0. This corresponds to
our Case 1, in which A — O first and then t — . The more realistic Case
2, in which mutations are eliminated after the asymptotics of the system
have been studied, leads to the same conclusions. Section 3 shows that the
replicator dynamics we derive provide a good approximation of the behav-
ior of our model over arbitrarily long finite periods. The replicator dynamics
do not necessarily provide a good approximation over infinite periods of
time, so that our usage of r — o must be interpreted with care here, even
though most analyses based on the replicator dynamics simply assert that
they are examining the behavior of the underlying system in the limit as
t — o and literally take such a limit in the replicator model.

Section 4 turns to the case in which the outcome of the model is examined
before the parameters , N, and A are taken to their limits. We find that it
is crucial here that the model be examined before N — o, and hence we
have the following two cases:

Case 3. First 7— 0, next t — o, next N — o, then A — 0.

Case 4. First t — o next 7 — 0, next N — o, then A — 0.

" The precise operation here is that (7. N) — (0, =) at rates such that N7 — 0.
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After showing that the two cases give identical results, we concentrate
on the more convenient Case 4. Here, the first limit is r — o, meaning that
the first step is to derive the stationary distribution (also called the limiting
distribution or asymptotic distribution) of the Markov process for fixed
values of the parameters. In this analysis, ¢t — o is a literal description.
The study of this case leads to limiting predictions for the musical chairs
model that could be obtained using the techniques of Freidlin and Wentzell
(1984) but which we prefer to derive using standard techniques of birth—
death processes developed, for example, in Gardiner (1985). The remaining
limits are comparative static exercises that allow the derivation of particu-
larly sharp approximations of the limiting distribution. Sections 5 and 6
discuss some of the implications of these results.

Section 7 considers an alternative approach to characterizing the station-
ary distribution of the Markov process. It is shown that, if a commonly
used approximation is introduced after taking the limit 7— 0 when following
the program specified by Case 3, we are led to equations familiar in diffusion
theory, which economics usually study with the aid of the theory of stochas-
tic differential equations. We find that the approximation sometimes yiclds
inaccurate predictions concerning the stationary distribution.

Which of these modes of analysis is appropriate? This depends upon the
period of time over which we are interested in the behavior of the model.
Following Binmore and Samuelson (1993), we find it helpful to speak of
the short run, medium run, long run, and ultralong run. By the short run,
we refer to the initial conditions that prevail when one begins one’s observa-
tion or analysis. By the ultralong run, we mean a period of time long enough
for the asymptotic distribution to be a good description of the behavior of
the system. The long run refers to the time span needed for the system to
reach the vicinity of the first equilibrium in whose neighborhood it will
linger for some time. We speak of the medium run as the time intermediate
between the short run and the long run, during which the adjustment to
equilibrium is occurring. The analysis of Cases 1 and 2 thus applies if one
is interested in the medium or long run, while the analysis of Cases 3 and
4 is relevant to the ultralong run. Medium- and long-run behavior is often
referred to as “‘sample path” behavior, meaning behavior over time spans
too short for the asymptotic distribution to be a good description.

Why do we use both medium run and long run to refer to sample path
behavior, hijacking the latter from its more conventional use in describing
the asymptotic distribution, and then invent the new term “‘ultralong run"
to refer to the asymptotic distribution? There are two reasons.

First, consider the behavior one might observe in an experimental dy-
namic system. Initial behavior in experiments is driven to a large extent
by rules and norms of behavior that are triggered by the framing of the
problem. This is short-run behavior. Given adequate incentives and suffi-
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cient time, experimental subjects begin to learn. It is the importance of this
learning phase that prompts us to give it a name. Following Roth and Erev
(1995), we refer to this as medium-run behavior.® This learning process
may converge on an equilibrium, with this equilibrium behavior persisting
apparently indefinitely. This is the long run.

Second, suppose the system has settled on a long-run equilibrium. The
occurrence of extremely unlikely realizations of the random components
of the learning process may jolt the system from one equilibrium to the
basin of attraction of another. Given sufficient time, these jumps will occur
often enough to produce a well-defined asymptotic probability distribution
over states. But, as Ellison in (1992) has noted, the “‘sufficient time™ re-
quired here can be extraordinarily long, much longer than is often meant
by the long run. Such concern about the length of time required for the
asymptotic distribution to be relevant suggests the need for a new term.
This is the ultralong-run distribution.

The important point is that sample path properties include both learning
(the medium run) and apparent convergence to stable behavior (the long
run). The ultralong-run phenomenon embodied in the asymptotic distribu-
tion may be very misleading as a guide to such sample path properties. We
believe that in most applications to which economic theory is relevant, the
time span of interest is likely to be the long run. If we are correct, then
theories of equilibrium selection based on the ultralong run must bear the
burden of showing that the ultralong run is not so long as to be irrelevant.

3. Cases 1 AND 2: LoNG RUN DYNAMICS

Our aim in this section is to show how the musical chairs model is related
to the replicator dynamics. In particular, we show that when the population
size is large, finite segments of the sample paths of our musical chairs model
are well approximated by the deterministic replicator dynamics.

The variant of the replicator dynamics to be studied has the form®

y=y( —_v)%g—’f+A(1 - 2y), (1)

® See also, for example, the discussions of learning in Andreoni and Miller (1993), Crawford
(1991, 1992). and Miller and Andreoni (1991).

Y A more familiar form of the replicator dynamics can be written as v =y, —7) =
y(1 = yXm, — m,), where 7, and 7, are the fitnesses attached to doves and hawks respectively.
To reduce (1) to this form, begin by setting A = 0. Next rescale time, as in Maynard Smith
(1982, p. 183), to remove the denominator g from the right side of (1). Finally. definite fitnesses
as the negative of death probabilities, or m, = —g, and 7, = —gu.
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where y is the fraction of doves in an infinite population, g = ygs +
(1 — v)g., and the quantities

ga(y) = a(b - 5y)
gn(y) =a(b—2-2y)

are the death probabilities faced by Mopsy in the Death Game of Fig. 1b
when Mopsy plays dove and hawk respectively and when the probability
that Flopsy plays dove is y and the probability that Flopsy plays hawk is
1 -y

When the population size is N and the length of a time period is 7, the
musical chairs model is a Markov process with N + 1 population states
z€{0,v,2v,...,1}, where v = 1/N and zN is the number of doves in state
z. We can calculate the probability r(z, », ) of moving one step to the
right in a single period, from a state z with 0 = z < 1 to the state z + »:

r(z,v, )= 7N — DV H{z(1 — A) + (1 — 2)A}Gu(z) + O(N?7?) @)
= 7N(1 — )V IR(z, ¥} + O(N?*7?),

where TN(1 — 7)V! = 7N + O(N?*7?) is the probability that there will
be exactly one birth in the period, z(1 — A) + (1 — z)A is the probability
that a dove is born given that there is a birth, and G,(z) is the probability
that a hawk will die given that a dove is born."” Similarly, the probability
€(z, v, 7) of moving one step to the left in a single period from a state z
with 0 < z < 1 to the state z — wis given by

€z, v, 1) = N1 — V(1 — 2)(1 — A) + zA}G4(2) + O(N37?) 3)
=N — )V L(z, v) + O(N37%),

where Gy4(z) is the probability that a dove will die given that a hawk is
born. Note that (2) and (3) implicitly define R(z, v) and L(z, v) by

R(z,v) ={z(1 = A) + (1 = 2)A}Gi(2) 4
L(z.v)={(1 —2)(1 = }) + 2A} Gy(2). )

To expose the connection between this model and the replicator dynam-
ics, we must calculate Gy(z). For this purpose, we need the probabilities

" The O(N?7?) term in (2) arises out of the possibility that there are multiple births in a
period. The probability that two or more births occur and move the state one step to the
ri%ht is less than or equal to the probability of two or more births, which is given by
Z2C¥*(1 ~ 1)V X, where CY} is the relevant binomial coefficient. This is in turn bounded
above by SeaNkrk = 2N = O(N27), where the penultimate inequality requires Nt < §,
which is ensured by taking the limit 7 — 0 before N — oo,
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that various pairs of rabbits will be chosen to play the Death Game from
a population containing Nz + 1 doves and N(1 — z) hawks. The probability
that a hawk and a dove will be drawn is 2z(1 — z) + O(v)."' Similarly, the
probability of drawing two hawks is (1 — z)* + O(v). The probability of
drawing two doves is z2 + O(v).

The probability that a hawk will die at the first draw can then be calcu-
lated as

Fu(z) =a(b — 4)2z(1 — 2) + 2a(b — 2)(1 — 2)* + O(v),
while the probability that a dove dies at the first draw is
Fy(z)=2z(1 — 2)ab +2z%a(b — 3) + O(v).
The probability that the rabbit who eventually dies will be a hawk is'?

Fi(2) 1 gn(2)
———————Fd(z) TFD) =(1-2) . + O(v).

Gh(z) =

Similar considerations lead to Gy(z) = zg4(z)/g + O(»).
We can now estimate the expectation and variance of z(t + 7) — z(¢)
conditional on z{r) = z. To this end, we introduce the quantities

w(z,v) = R(z,v) — L(z.v)
8gh — Bd

=z(l "Z)T-FA(I —22)+ O(v) (6)
o¥(z,v)=R(z,v) + L(z,v)
=(1-2A)z(1 —z)%‘gﬂ+A+0(v)- (7)

It is important to note that the replicator equation (1) can now be written
in the form

¥ =wm(y,0). (8)

In Theorem 1, we shall meet the perturbed form y = w(y, v) of this
equation, to which a diffusion term involving o?(z, v) will be added in
Section 7.

"' Given that there arc Nz + 1 doves, N(1 — z) hawks. and N + 1 rabbits in all, the
probability of drawing a dove and a hawk is given by 2(Nz + DN(l - 2)/((N + YN =
2Nz(1l — 2 (N + 1) + 2(1 = 2)/(N + 1) = 2z(1 — z) + O(»), where the final cquality uses
the facts that N/(N + 1) =1 - 1/(N+ D)and I/{N + 1) = /N - 1IIN(N + 1)

12 Here, we use the fact that (o« + O(»))/(B8 + O(v)) = aiff + O(v).
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Let z(t + 7) — z(t) = 6z(r). Then since €{z(1)|z(t) = z} = z and the
probability of moving more than one step in a single period is O(N?27?),
Egs. (6) and (7) lead to the following estimates:

€{oz(O|z(t) =z} = vr(z. v 7) — vé(z, v, 7) + O(N?7?)

= tu(z, v) + O(N?1?), 9)
E{(8z2(0)|z() = 2} = v?r(z, v, 1) + v (z, v, T) + O(N?1?)
= 1vo(z,v) + O(N?7?), (10)

var{z(1)[z(t) = z} = Tvo’(z, v) — {Tu(z, V)’ + O(N?7?)
= 0z, v) + O(N?12), (11)

Rewrite Eq. (9) as

Elz(t+ D]z (1) = zi— ez =2} _ w(z.v) + O(N?7).  (12)

When (7, N) — (0, ») in (12) so that N*7 — 0, the right side converges
to w(z. 0), which is the right side of the replicator equation (8) with y
replaced by z.

When 7— 0 and then N — =, the left side of (12) converges to a derivative
which informal derivations of the replicator dynamics often identify with
z'(r) without further ado. Equation (12) then reduces to the replicator
equation in the limit. But, as Borgers and Sarin {(1993) note, the identifica-
tion of the left side of (12) with z'(r) requires a formal justification. Borgers
and Sarin (1993) appeal to Theorem 1.1 of Norman (1972, p. 118) in deriving
the replicator dynamics for their model (in which the “population size™ is
infinite from the outset). We construct a proof of the following theorem
along the lines of Boylan (1992, 1995)." In this theorem, it is important to
distinguish between the state z(r) of the system described by the musical
chairs model and the state y(f) of the system governed by the replicator
equation (8). The former is a random variable, the latter is deterministic.

THEOREM 1. Let y(t) be the solution of the replicator equation y = u{y,
0) subject to the boundary condition y(0) = z(0). Then for any ¢ > 0 and
any integer T > 0, there exist positive constants N, and 7, such that if N >
Ny and N1 < 14, then

prob{|y(t) — z(n)| = €} <,

for any t satisfying 0 < t = T at which z(t) is defined.

'* We thank Rob Seymour for his help in aiding our understanding of this proof.
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Proof. Fix a value of T > 0. Unless otherwise stated, t will be assumed
to be admissible, i.e., to be of the form ¢+ = k7 for some integer k. Bounds
that are not given explicitly hold for all admissible ¢ satisfying 0 =t < T.

The first step is to observe that because u(y, v) satisfies appropriate
Lipschitz conditions, we can replace y(f) by Y(¢), where Y () is the solution
of Y = u(Y, v) subject to the boundary condition Y(0) = z(0). In particular,
| Y(1) — y(1)| < t& provided that N is sufficiently large.'* It then remains
to establish the theorem with y replaced by Y and e replaced by ie.

On integrating, we obtain the following expression for Y ():

Y(1) - 2(0) = ﬁ)p.(Y(s), v) ds. (13)

The next step is to find a corresponding expression for z(r) — z(0). To this
end, we follow Boylan (1995, p. 16) in defining

m(kr) = z(k7) = 2(0) - Z%{Z(ﬂ’) —z(jr=Dlz(r— ) (14)
=

Boylan notes that m(k 1) is a martingale, which is a fact that will be needed
later. For the moment, we note only that € {m(k7)} = €{m(0)} = m(0) =0
On rearranging (14) and making use of (9), we obtain that

2(0) = 2(0) = m(1) + 2 €{2(jn) — 2(j7= Dlz(j7— 1)
= m() + z w(z(jm = 1), v) + O(N*7%k) (15)
=m() + [} w(z((s/7). v) ds + O(N*7).
The next step is to subtract (15) from (13) to obtain
YO = 20 = Im@)] + [ |(Y(9). ) = w(z((/7]), v)| ds + O(N?7)

=|m(@)| + C [ 1Y(s) = z(s/717]). »)l ds + O(N*7),  (16)

where C has been chosen independently of v so that |u(a, v) —
(b, v)| = Cla — b|. Since 1 = k7, we have that ¢ = [t/7] 7. Hence, on writing

" From (6). there is a C > 0 such that for all x and y in [0, 1], |u(x, 0) — u(y, 0)} =
C{x — yland |p(y, ¥) — p(y. 0)] = Cw. It is then standard to observe that |y(r) — Y{(1)| =
f”m(y(s) 0) = w(Y(s), v)|ds = Clur + f“[v(s |ds. It follows from Gronwall's lemma (Revuz
and Yor, 1991, p. 499) that |¥(1) — Y(£). = Cure®’ < £/2, provided that N is sufficiently large.



16 BINMORE, SAMUELSON, AND VAUGHAN

$(s) = |Y(s) — z([s/7] )

inequality (16) implies that
B(1) = M) + C j | (s) ds, (17)

where

M) = sup |m([s/T]7)| + O(N37) + O(»).

The final error term O(v) has been added to the expression for M(t) so
that (17) holds for all ¢ satisfying 0 < r = T and not just ¢ of the form k.
The supremum in the expression for M(t) ensures that M increases in ¢. We
can then appeal directly to Gronwall’s lemma, from which we deduce that

(1) = M()e“

for all ¢ satisfying 0 < ¢t = T.

Restricting ourselves again to the case where time variables take only
admissible values of the form kr, we recall that €{m(:)} = 0 and use
Chebychev’s inequality to obtain

prob{|Y(r) — z(1)| = ¢} = prob{M(r) = }ze '} |
< t max prob{|m(s)| = jee "}
=y5=1t

= T max prob{|m(s)| = Lee <7} (18)
O=s=T

2¢T
= 7 max 1662 var{m(s)}
EXE £
GZCT,
= T max —€{m(s)y, (19)
OsssT &

provided that N is sufficiently large and N7 is sufficiently small.!®

To make further progress, it is necessary to estimate €{m(r)}*. In so
doing, we follow Boylan (1995) closely in exploiting the fact that m (k) is
a martingale. Define

A =m(ity —m(it— 7).

'S Inequality (18) is the statement that the probability of the largest of r random variables
exceeding a constant is no greater than ¢ times the largest probability that one of the random
variables exceeds the constant. To obtain (18), we need N large enough to ensure that the
error term O(N?7) + O(v) in the definition of M(¢) is less than ge” /4.
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Then, if { > j, we have
Cé{AiAj} = %{%{A:A; |Z(]T)}} = %{Aj%{Aitz(jT)}} =0,

because €{A,|z(jn)} = €{m(in)z(jn)} — E{m(it — D)z(jn} = m(j7) -
m(j7) = 0. It follows that

E{m(kn)F =¢ {i A'_}z =% {i i A,A]} = i%{A%}. (20)

i=1j=

To estimate € {A?}, we use (11). Since €{A,;} = €{m(i7)} — €{m(it— 7)} =
0. we have

€{A}} = var A, = var{z(i7) — z(it— 7)|z(iT— 1)}
= ’TVg'z(z(iT—— 7—)’ V) + O(NZTZ) (21)
= 78 + O(N?1?),

where S is an upper bound for o*(z, v) that is independent of z and .
Inserting the estimate (21) into (20), we obtain that

€{m(kn) < kS + O(N>7%k)

-5+ o(N (22)

3
AN Yo o

167°¢

=

provided that N is sufficiently large and N7 is sufficiently small.
On using the estimate (22) in (19), we find that

prob{|y(1) — z(1)| = &} = prob{| Y (1) — z(1)| = }¢}

20T 3
- 16e € et
= T max —
o<s=7 &- 16T

=g,

which yields the conclusion of the theorem. ®

Theorem 1 is a weak convergence result that applies when (7, N) —
(0, ) so that N27— 0. Note that A is not mentioned and the limit A — 0
is not even notionally taken in Theorem 1. The result holds for both
A >0 and A = 0, and hence applies to both Cases 1 and 2 of Section 2.

Since Theorem 1 holds for finite values of ¢, it establishes sample-path
properties of the musical chairs Markov process. These sample path proper-
ties have long-run implications. To explore these implications, suppose that
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y(t) is governed by the replicator dynamics (1) (or (8)) with the boundary
condition y(0) = z(0). Figure 2a shows a phase diagram for the replicator
dynamics (1) when A is small compared with b. There are three rest point$
¢, 7, and ¢ satisfying 0 < ¢ < 1 < { < 1. The inner rest point is unstable,
but ¢ and ¢ are asymptotically stable with basins of attraction [0, n) and
(7. 1] respectively. As A — 0, the rest points £ 7, and { converge to the
three Nash eqilibria of the Stag-Hunt Game. The rest point ¢ converges
to the risk-dominant equilibrium in which the whole population is hawks.
The rest point { converges to the payoff-dominant equilibrium in which
the whole population are doves. The rest point n converges to the mixed
equilibrium in which two-thirds of the population are doves and one-third
is hawks.

Suppose that y(0) = z(0) happens to lie in the basin of attraction of ¢.
The replicator dynamics will then move close to ¢ and remain in the vicinity
of { forever. For sufficiently large N, our continuous-time musical chairs
model is arbitrarily likely to duplicate this behavior over any finite time
period. More precisely, take 7 large enough so that, by time 7, the process
y(¢) will have spent a long period of time near {. Take & to be arbitrarily
small. Then for sufficiently large N and small N?7 we have from Theorem
1 that |y(s) — z(f)| < & with probability at least 1 — ¢ for all t = T. With
high probability, the musical chairs model thus also moves close to { and
remains in the vicinity of { for an extended period of time. Upon observing
such behavior, we would be tempted to say that the process has “*selected”
the equilibrium ¢. This is a long-run result in our terms.

Note, however, that when the limit ¢ — o is actually taken to obtain the
limiting outcome y(o) of the replicator dynamic, the limit is applied to the
process y{¢) and not to the process z(¢). As the next section on the ultralong-
run behavior of z(z) demonstrates, z(¢) will definitely not remain in the
vicinity of y() forever.

4. CasEs 3 AND 4: ASYMPTOTIC DISTRIBUTION

In this section we study the asymptotic distribution over states given by
the musical chairs model.

For fixed values of 7, v, and A, the musical chairs model is a Markov
process on the state space {0, v, 2v, ..., 1} with a single ergodic set consisting
of the entire state space. Hence, the following standard result for Markov
processes is immediate:

THEOREM 2. Fix 7, v, and A. Then there exists a unique probability
distribution P(z, v, 7y on {0, v, 2v, ..., 1} that is a stationary distribution for
the musical chairs Markov process. With the exception of a set of sample
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paths of measure zero, the relative frequencies of the various states along a
sample path approach the distribution P(z, v, 7). For any initial condition
2(0), the probability distribution describing the likely state of the process at
time t converges to P(z, v, 1) as t grows large.

Proof. See Kemeny and Snell (1960, Theorems 4.14, 4.1.6, and
421). =

For the case of small values of 7, we can derive a particularly convenient
representation for P(z, », 7). Let P(z, v, 7, t) be the probability attached
to state z by the Markov process at time ¢, given v and 7. Then for small
values of 7, this satisfies

Pliz.v,m,t+7=Plz+vvn,0)l(z+v1n,T)
+ P(Z A I)r(z -0, 7') (23)
+ P(z, v, . 0{1 — €(z,v,7) — r(z,v. )} + O(N?7°),

where €(z, v, 7) and r(z, v, 7) are defined by (2) and (3) in Section 2, €(0,
v,7)=r(l.v,7)=0,and P(1 + v, v, 7,¢) = P(—v, v, 7. t) = 0. The error
O(N*1%) term in (23) arises from the possibility that there may be multiple
births in a single period. The stationary distribution P(z, v, 7) is character-
ized by the following version of (23):

P(z.v. =Pz +vvl(z+ v, +P(z—vunr(z— v o)
+ P(z, v, {1 — €(z,v, 1) — r(z,v, D)} + O(N37?).

We find it helpful to think of this stationary distribution as corresponding
to taking the limit z — o in P(z, v, 7, ¢). This is the first limit to be taken
in Case 4. On rearranging (24), we obtain

O0=Plz+vv,Dl(z+v,v)— P(z,v, (2,0, 7) (25)
+P(z—v.v,nr(z—v,v,7)— P(z.v.r(z,v. 1) + O(N?*7?).

The next limit to take in Casea 4 is 7— 0. As we let 7— 0, the probability
of more than one birth in a single period becomes negligible. Transitions
then consist of either a single step to the left or a single step to the right.
The result is a birth—death chain (cf. Gardiner, 1985). The following descrip-
tion of the stationary distribution is standard for such chains.

THEOREM 3. Let P(z, v) = lim,_4P(z, v, 7). Then for z € {0, v, 2v, ...,

1}, we have

P(z+wr,v)  R(z.v)
P(z.v) L(z+ vy

(26)
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Proof. Summing (25) for values z and (z + ») and taking the limit as
7— 0 gives (26). =

An alternative route to this conclusion, which isolates the nature of the
limiting argument as 7 — 0, uses the method of Freidlin and Wentzell
(1984), as employed by Young (1993) and Kandori et al. (1993). One first
constructs, for each state z in the finite Markov process, the collection of
all z-trees, where a z-tree is a collection of transitions between states with
the property that each state other than z is the origin of one and only one
transition, z is the origin of no transition, and there is a path of transitions
to z from every state other than z. One then computes the products of the
transition probabilities in each z-tree and adds these products (for all of
the z-trees) to obtain a number Z(z). The exact ultralong-run probabilities
P(z, v) and P(z’, v) of being at states z and z' are then proportional to
Z(z) and Z(z'). In our model, products of order greater than 7V can be
neglected, since the limit 7 — 0 is to be taken.'® Only the single z-tree of
order O(7") illustrated in Fig. 2¢c then needs to be retained. When the
products for z and z + v are divided, only one factor from each does not
cancel, leaving (26).

Yet another path to this conclusion is provided by an analysis that we
represent with limits in the order given by Case 3. First, we rewrite Eq.
(23) in the form

P(z,v,nt+ 71— P(z,v71)
V{ o1 — 7V =Plz+vv.,)L(z+ v, v)
—P(z,v,7,1)L(z,0)
+ P(Z - VT I)R(Z - b, V)

— P(z,v, , )R(z,v) + O(N?*7?).

Now take the limit 7 — O to obtain a continuous-time process. The error
term on the right disappears and we are left with the probability P(z, v, 1)
that satisfies

VaP(z, vit) _

o P(z+v,v,0)L(z+ v,v)— P(z,,t)L(z.,V)

+ Pz —v,v,)R(z —v.v) — P(z, v, ) R(z, V).

27)

Now we take the limit t — oo, which is to say that we examine the stationary
distribution of this process, if one exists. A stationary distribution is defined
by the property that dP(z, v, t)/dt = 0. Writing dP(z, v, 1)/0t = O in (27)
leads us to Eq. (25) with a zero error term. Theorem 3 therefore still applies.

6 For similar reasons, Young (1993) and Kandori et al. (1993) can neglect products that
do not minimize the order of A because the limit A — 0 is taken.
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It follows that the stationary distribution for Case 3 exists and is the same
as for Case 4. We record this formally as

THEOREM 4. Cases 3 and 4 yield identical stationary distributions.

Waiting Times. 'What is the relationship between the replicator approxi-
mation of the musical chairs model and the asymptotic distribution? To
bring this question into sharper focus, suppose that the initial condition
lies in the basin of attraction of { relative to the replicator dynamics. As
a result, the system will initially be highly likely to approach ¢ and spend
an extended period of time in the neighborhood of {. The larger N gets,
the more likely this will be a good description of the behavior of the system
and the longer the “long run” over which it will be valid. Yet the asymptotic
distribution may put almost all of its probability masses on & Hence, the
ultralong-run behavior described by the asymptotic distribution need not
provide useful information about the long-run behavior of the system.

To reconcile these observations, we note that a transition from a state
near { to a state in the basin of attraction of ¢ requires a rather special
realization of random events. These events require a much larger propor-
tion of hawk births and dove deaths than the system is expected to
produce. During any bounded time interval, the probability of such a combi-
nation of hawk births and dove deaths, and hence the probability that
the musical chairs population will reach the basin of attraction of ¢, is
extraordinarily small and one must wait an extraordinarily long time for
such an event to become likely. However, “‘extraordinarily long” is not the
same as ‘‘forever.” The probability that such a combination of births and
deaths will eventually occur is unity. As a result, the system will, with
certainty, visit states near £ and will spend virtually all of its time in such
states.

Should we be interested in the long run or the ultralong run? The answer
to this question turns on the length of time required to reach the station-
ary distribution.

We gain some insight into this question by comparing the expected
waiting times in our model with those obtained from the model of Kandori
et al. (1993) for the Stag-Hunt Game given in Fig. 1a. When examining our
model, we work in the limiting case as 7 — 0, meaning that we work with
the birth—death process whose stationary distribution is described by (3).
We let N = 100 and A = 0.001. To make the models comparable, we let
each agent in the Kandori er al. model revise his strategy once in each unit
of time, while in our model the probability that an agent gives birth in a
period of length 7is 7. Hence, in both models, changes in an agent’s strategy
are expected to come at the rate of one per unit of time.

In the Kandori et al. model (1993), the expected waiting time to be
estimated is the same as that for escaping from the basin of attraction of
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the payoff-dominant equilibrium.'” In each period, such an escape requires
at least 33 simultaneous mutations, an event whose probability is g =
(0.001)*(0.999)°7(100!/33!67!). This leads to the approximation 1/q =
1.7 X 107 units of time for the expected number of periods before the
risk-dominant equilibrium is reached.

Following Gardiner (1985, Chap. 7), one easily derives the following
formula for the corresponding waiting time in our model, where v = 1/100
and R(y, v) is defined by (5),"

99 100
1

2 0RG, PG .2, P (28)

When b = 10, the expected waiting time is approximately 5,000 units of time.

Our expected waiting time is much shorter than that of Kandori er al.
(1993). The driving force behind this difference is that our selection process
is noisy while that of Kandori et al. is not. In particular, suppose the
system begins in the basin of attraction of the payoff-dominant equilibrium.
Because the Kandori et al. learning process always calls for agents to choose
best replies, the only hope for escaping this equilibrium is that enough
simultaneous mutations occur to reach the basin of attraction of the risk-
dominant equilibrium. In our example, this required 33 mutations, a very
unlikely event when A is small. In the Musical Chairs model, a mutation
is again required to introduce the hawk strategy into the population. But
once this mutation has occurred, the noisy learning process can cause more
agents to switch to hawk. It is still an unlikely event that noisy learning
causes enough agents to switch to hawk as to reach the risk-dominant
equilibrium, but if the mutation probability is small this event is much more
likely than the number of simultaneous mutations required to reach the
risk-dominant equilibrium in the Kandori ef al. model.

It is interesting to note that the model of Young (1993) differs from that
of Kandori et al. in allowing learning to be noisy. In particular, before
agents play in Young’s model they observe k of the most recent m plays
of the game, where k < m. The randomness involved in drawing this sample
of size k produces noisy learning. This suggests that Young’s model should
give faster convergence than does that of Kandori er al. and suggests that
convergence will be faster in Young’s model as & is smaller relative to m.

On the one hand, we are encouraged by the relatively short waiting time

17 Kandori ef al. report much shorter waiting times which apply to small values of N and
larger values of A (e.g., A = 0.1), or are averages over the waiting times for initial conditions
that are randomly selected according to probabilities given by the stationary distribution.

'8 This formula corrects a typo in formula (7.4.13) of Gardiner (1985).
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of our model, viewing the use of a noisy selection process as both a step
toward realism and also a path to shorter expected waiting times. However,
our expected waiting times are still sufficiently large that it will often be
the long run rather than the ultralong run that is relevant to the equilibrium
observed in practice.'® We think this conclusion is likely to be robust when-
ever the inevitable noise in the selection process is realistically modeled.
[t is disappointing that the sharp, history-independent predictions of an
ultralong-run analysis should have a limited domain of application. How-
ever, the fact has to be faced that, for practical purposes, one will usually
need access to historical data in order to conduct a long-run analysis of
the model.

5. EQUILIBRIUM SELECTION

Equilibrium. In this section, we consider the ultralong-run equilibrium
selection implications of the musical chairs model. In particular, we examine
P(z. v} as the population gets large and then the mutation rate gets small.
We say that an equilibrium F is selected in the ultralong run if, given any
e > 0, the stationary distribution converges weakly to a distribution that
places unit mass on E as first N — o and then A — 0.

The key to our investigation is the characterization of the asymptotic
distribution P(z, v) given by (26). Figure 3 shows P(z, v) and u(z, ») for
a fixed but small value of v (so that the error term O(v) is small).?” Note
first (from (26)) that P(z, v) increases exponentially where u(z, v) = 6 >
0 and decreases exponentially where w(z, v) < ¢ < 0. It follows that as
long as NV is reasonably large, the probability mass of P(z, v) must be
concentrated in the neighborhood of the points z at which u(z, v) = 0.
The solutions of this equation approximate the rest points ¢ 7, and { of
the replicator dynamics (1). As previously, only ¢ and ¢ will be serious
candidates for consideration, and in the limiting case when N — o all of
the probability mass of the limiting distribution P(z, v) will be arbitrarily
close to one of these points.

Which of £ and ¢ will be selected? Let £, and ¢, be the local maxima of
P(z. v). Continuity ensures that &, — £ and ¢, — { as N — «. From (26),

' How can we assert that 5000 is long without having an idea of the units in which time
is measured? Recall that agents are expected to change their strategies at the rate of once
per unit of time. A waiting time of 5000 is then sufficiently long to expect each agent to
change strategies 5000 times, which strikes us as long.

**The function u(z, ») is meaningful only for values of z € {0, », 2v, ..., 1}. but we find
it convenient to draw it as a continuous function on [0, 1].



24 BINMORE, SAMUELSON, AND VAUGHAN

Fii. 3. Probability distributions.

the ratio

P _ o Ry
P(6.v)  oan L+ 0.7) @

then converges (as N — =) to the ratio of the probability masses placed
on £ and . After taking the limit N — o, we let A — 0 so that £ and ¢
converge to the equilibria of the Stag-Hunt Game.

THEOREM 5. Let b = b* = 5.08 solve

(b - 2)‘”2’”({) - 5)“/5"’ _(b=2)(b~-5)

b—4 b (b — 4y

Then

o0, if b < b*,
lim lim 2 2) ,
10 =0 P(&,, V) 0, if b > b*.

Proof. Letd>0.f0<d=x=1 - §<1, then we have from
Section 3 that

. R(x,v) _ gn(x)
IER L(x+ v, 1) gax)

+ O(A).
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After taking logarithms in (29), we express the sum that appears on the
right as the product of N and an integral. Taking the limit A — O in the
integral, we obtain

toogelx) b—2x—-2
fo log 24(0) dx = fo log (W) dx. (30)

The integral is positive when 5 < b < b* and negative when b > b*. m

Because £ corresponds to the risk-dominant equilibrium when A = 0,
and is selected when (30) is negative, we have

CoroLLary 1. The risk-dominant equilibrium is selected when b > b*,
but the payoff-dominant equilibrium is selected when b < b*.

Why does this result differ from that of Kandori et al.(1993), who uses
the techniques of Freidlin and Wentzell to show that the risk-dominant
equilibrium is always selected in their model in the ultralong run? Kandori
et al. first show that in their model, the deterministic best-reply learning
dynamics ensure that the system spends virtually all of its time at one of
the two strict Nash equilibria. How are the relative probabilities attached
to these two equilibria determined?

To move from one equilibrium to the other in the Kandori et al. model
requires enough simultaneous mutations for the system to jump from an
equilibrium to the basin of attraction of the other equilibrium. Such a jump
is less likely to happen for the equilibrium with the larger basin of attraction,
i.c., the risk-dominant equilibrium, because it requires more mutations. As
the limit in which the mutation probability becomes arbitrarily small is
examined, the system becomes arbitrarily less likely to switch from the risk-
dominant equilibrium than from the other equilibrium, and the asymptotic
distribution accordingly attaches virtually all of its limiting probability to
the risk-dominant equilibrium.

In our musical chairs model, only the transitions away from the endpoints
require mutations. All other transitions can occur as a result of the noisiness
of the selection model. In the limiting case of rare mutations, transitions
arising out of noisy selection become much more likely than transitions
driven by mutations, and the latter play a very small role in equilibrium
selection. Equilibrium selection results are then driven by the relative ease
with which noisy selections can lead the system from one equilibrium,
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through its basin of attraction, to the basin of attraction of the other equilib-
rium. In essence, the system ‘‘swims upstream™ out of the basin of attraction
of an equilibrium, rather than jumping over the basin.?! Both the sizes of
basins of attraction and the magnitude of the *“‘current’ against which one
must swim in making an escape are then relevant (where the strength of
the current in a state depends on the relative magnitudes of the probabilities
that the system moves to the left or right). As b increases, transitions have
less and less to do with the payoffs in the game, and the ratio of left and
right transition probabilities at any state approaches unity. For sufficiently
large b, only the sizes of the basins of attraction then matter, and forces
analogous to those appearing in Kandori ef a/. lead us to the risk-dominant
equilibrium. For smaller values of b, however, the strengths of the currents
within basins can overwhelm the different sizes of the basins, leading to
the selection of the payoff-dominant equilibrium.

Making Mutation Negligible Prematurely. 1n Theorem 5, the limits are
taken by first allowing the population size to approach infinity and then
allowing the mutation probability to approach zero. What if we reversed
the order of these limits? In 2 X 2 games with two strict Nash equilibria,
such as the Stag-Hunt Game, reversing the order of limits has no effect,
and the order is arbitrary. This is not always the case, however. The order
does matter in 2 X 2 games with a single, mixed-strategy Nash equilibrium.

To illustrate this point, we briefly consider the Chicken Game of Fig. 1c,
which is a special case of the Hawk-Dove game of Maynard Smith (1982).
Chicken has a unique symmetric equilibrium in which each player plays
dove and hawk with equal probability. The replicator dynamics lead to this
equilibrium and the asymptotic distribution concentrates all of its probabil-
ity near this equilibrium given that N — « before A — 0. Since there are
no rival symmetric equilibria, its selection should come as no surprise—
given that an equilibrium is to be selected at all.?

Suppose that the order of the limits N — % and A — 0 is reversed. Before
the limit N — o is taken, the system will then have a positive probability
of reaching any state z from any initial state z(0) satisfying 0 < z(0) < 1.
But if A = 0, the boundary states z = 0 and z = 1, in which the population

! Similar considerations, including the swimming upstream analogy, appear in Fudenberg
and Harris (1992).

22 The two asymmetric pure Nash equilibria are not candidates for selection because the
musical chairs model has only one population from which both players are always drawn. To
select an asymmetric equilibrium, it would be necessary to draw the two players from different
populations that evolve separately.
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consists either of all hawks or all doves, are absorbing states. Once the
population enters such a state, it cannot leave without a mutation. In the
ultralong run, the system will therefore necessarily lie in one of these two
nonequilibrium states, with all rabbits playing a payoff-inferior strategy.
This limit persists as N — o, The outcome of the system is then determined
by accidental extinctions from which the population cannot recover. This
contrasts with the selection of the mixed equilibrium when N — o before
A— 0.

The latter strikes us as the more appropriate ultralong-run model. As
a result, our belief is that if one is interested in large populations and
small mutation rates, the limit A — 0 should be taken last (or not taken
at all).

6. PAYOFFS VERSUS FITNESSES

In conventional analyses, affine transformations of payoffs have no effect
on the analysis. This is not the case in the musical chairs model. In particular,
changes in the parameter b affect both the sample-path properties of the
model and the asymptotic distribution. As b or A increases, the system
gets noisier in the sense that relative rewards become less important in
driving transitions.

Consider first the replicator dynamics and the three rest points given by
¢ m, and {. As b or A increase, ¢ and 7 increase and { decreases. When
A(9b — 40) gets to about 2, £ is approximately 4 and 7 and ¢ coincide near
§. When b or A increases further, only ¢ survives as a rest point. As b —
w or A — 1, £ — 3. It follows that the asymptotically stable state £ nearest
the risk-dominant equilibrium of the Stag-Hunt Game is more likely to
include z(0) in its basin of attraction for the replicator dynamics (1) as the
system gets noisier.

Alternatively, fix b > 5 and let A — 0, so that the system gets less noisy.
We then have the following estimates:

E=0+3(b—2)A+ O\
n=3+43b—-10)A + O(X?)
{=1—=(b—=35r+ 0.

Note that, since £ — 0, n— %, and {— 1 as A — 0, the long-run predictions
for models approximated by the replicator dynamics are close to those that
would be obtained from the naive best-response dynamics for the Stag-
Hunt Game, which are illustrated in Fig. 2b.
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Now consider the asymptotic distribution. From Theorem S, we can again
note that it is unsafe to treat affine transformations of the payoffs in a game
as being strategically irrelevant. Instead, the risk-dominant equilibrium is
more likely to be selected when b is large, and hence selection is rela-
tively noisy.

In the classical replicator dynamics without mutation, absolute fitness
levels are irrelevant. The entries in the game matrices in an evolutionary
context are therefore often taken to be “‘incremental fitnesses” above
some arbitrary background level, and long-run predictions are unaffected
by transformations that preserve these incremental fitnesses. Qur results
show that the same is not true for ultralong-run behavior in the musical
chairs model and, from Eq. (1) of Section 2, is not true for the classical
replicator dynamics, and hence long-run behavior, when the mutation
rate is positive.

The parameter b can be seen as a measure of the extent to which
deaths are due to causes that have nothing to do with the strategic
behavior of the rabbits. As such, it is a measure of background antifitness.
The effect of increasing b is to increase the noise with which the rabbits
must cope. As b increases, their lives become increasingly hazardous.
It is therefore appropriate that they end up at the risk-dominant equilib-
rium in the ultralong run when b is sufficiently large. But this is only
one side of the coin. As b decreases, so that the manner in which the
rabbits play becomes increasingly important to their survival prospects,
it is the payoff-dominant equilibrium that eventually becomes the ul-
tralong-run choice. One might say that the more important the game
is to the rabbits, the more likely it is that they will be found playing
the payoff-dominant equilibrium.

Biologists often escape the necessity of studying the relationship between
payoffs and fitnesses by simply taking payoffs to be fitnesses. In economic
applications, this luxury is seldom available. The payoffs with which we work
commonly represent monetary rewards. Fitnesses refer to the relationship
between these monetary rewards and the learning process by which agents
switch strategies. This relationship is unlikely to be so straightforward as
to allow us simply to equate rewards and fitnesses, and a more detailed
study of the relationship between the two is essential. Binmore and Sam-
uelson (1994) begins such a study.

7. DirrusioN THEORY

The literature contains a host of techniques involving continuous-time
models based on stochastic differential equations that allow the stationary
distribution to be conveniently approximated. We show in this section that
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one such approximation is not always sufficiently sharp.?® This provides
one reason to be wary when models in which all the variables are continuous
are written down directly and standard techniques applied without being
derived from more primitive discrete models.**

We consider a standard textbook procedure from diffusion theory
(Risken, 1984, pp. 77-81). As specified in Case 3, we first take the limit
T--» 0 to obtain Eq. (27). Following Risken, we then replace the right side
of Eq. (27) by an approximation before taking the limit t — . To obtain
this approximation, we expand the functions on the right of (27) around
their first variables in a Taylor series in powers of v and then discard
terms of order higher than v% This leads to a version of the classical
Fokker—-Planck equation

d 3 32
o+ —Aup}+ v (o), (31)

where z has been replaced by y to signal that it will now be treated as a
continuous variable and P(z, v. ) has been replaced by p(y, v, ¢} to empha-
size that we are now working only with an approximation. Recall that the
functions u and o are defined by (9) and (10).

The diffusion problems that physicists study with the aid of the Fokker—
Planck equation are not new to economics, but they have usually been
studied in the past using the theory of stochastic differential equations.
The conclusions in this section are the same as would be obtained had we
begun with the stochastic differential equation

dy = pdt + va* dW, (32)

with reflecting boundaries at y = 0 and y = 1, where dW is the standard
Wiener process.?” If we write v = 0 in (32), then the stochastic term vo?
dW disappears and the equation reduces to the replicator equation in the
form (8).

23 Evolutionary models involving stochastic differential equations are examined by Cabrales
(1993), Foster and Young (1990), and Fudenberg and Harris (1992). Direct comparisons are
difficult because our model has been constructed with a view to studying different phenomena.
For example. the principle source of noise in the Fudenberg and Harris model consists of
shocks to the payoff matrix, whereas our payoff matrix remains fixed. We will use Case 3 as
our scheme for taking limits in this section. We know from Theorem 4 that Cases 3 and 4
yield identical stationary distributions, characterized by (26) and Corollary 1. The fact that
we shall be led to conclusions different from Corollary 1 does not imply that Theorem 4 is
false—it implies that the approximation to be used here is inadequately sharp.

4 Physicists seldom do this, and when they do they are guided by physical intuitions that
seldom have reliable analogues in social science applications.

3 Note that our o is not constant as in Foster and Young (1990). When A = 0, for example,
oz, v)—=0asz—>0o0rz— 1.
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We now take the limit + — % in the Fokker-Planck equation (31),
meaning that we look for a stationary distribution p(y, v) that satisfies (31)
with op(y, v)/ot = 0. We thereby derive the following second-order, ordi-
nary differential equation:

(jfv ) (33)

0=- diy{w)} +hv
The solution to this equation, p(y, v), is an approximation of the stationary
distribution of the musical chairs Markov process.?
The limits 7— ( and t — < have now been taken, as specified by Case
3 (albeit with an intervening approximation). We have yet to take the limits
N — o« and A — 0. If the limit N — « is taken before solving (33), then
we neglect the second-order term on the right side of (33), yielding a first-
order differential equation with solution up = 0.’ The resulting approxima-
tion p(y. 0) to the ultralong-run probability of finding the system near y
would then be zero except at the zeros & 7, and ¢ of u(y, 0) (the rest
points of the replicator dynamic (8)). Aty = £ y = n, or y = £, the values
of p(y, 0) would be indeterminate. Taking the limit N — % before solving
the differential equation (33) therefore provides no useful information
about the ultralong-run behavior of the system. In essence, it returns us to
the long-run case studied in Section 3. If we are to have any hope of gaining
information about the ultralong run, it is then essential to delay taking the
limit N — < in (33) until after the equation has been solved. The reason
may be more transparent in the stochastic differential equation formulation
(32). It is the diffusion term vo* dW that does all the work in shifting the
system between equilibria in the ultralong run, and it cannot be neglected
(by taking N — oo before solving the equation) in an ultralong-run analysis.
In particular, it is this term that provides information about the relative
magnitudes of p(&, v), p(m, v), and p(Z, v). N
Neglecting the second-order term in (33) is equivalent to neglecting terms
of order »* and higher in (27). But what of terms of order »* and higher
in (27)?7 Surely these can be neglected, since they will become negligible
compared with terms of order »* when the limit N — is taken. Natural
though this conclusion may seem, we shall sec that it is mistaken. After
solving (33) and taking the limits N — o« and A — 0, we do not always
come close to the stationary distribution of the musical chairs Markov
process. It follows that there is a significant loss of accuracy involved in
making the approximation that leads to the Fokker-Planck equation. This

*® That is, p( A, v) is an approximation to the ultralong-run probability of finding the system
at one of the population states z in a subset 4 of [0, 1).
27 The constant of integration is zero because. for example, u(£) = 0.
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loss of accuracy is presumably unimportant in the physics applications for
which it is employed, but is not unimportant in our musical chairs model.

Returning to this section’s program, we now integrate (33) before taking
the limits N — o« and A — 0. Integrating once between 0 and Y yields
the equation

0=—u(Y,v)p(Y,v) + %v%{az()’. v)p(Y.v)} (34)

Integrating again, we obtain

__Cn v ulY.v)
ply,v)= 20y, SXP {ZNL,de} (35)

where Cy is a constant. The integral on the right side of (35) is referred
to as a potential in the diffusion literature.

The shape of p(y, v) is illustrated in Fig. 3. Pontryagin et al. and Vitt
(1989, p. 338) discuss such distributions in some detail. Matters are simpler
for us because we need only consider the relative heights of the peaks near
£and Z, as all of the probability of the stationary distribution is concentrated
on ¢ and ¢ when N is large and A small. For this purpose, the ratio

plLy) _ o*(é ) { (pu(y,v) } ;
p(&n) L) P ZNLa?(y,u)dy (36)

suffices, in which we take the limits N — o« and A — 0.

THEOREM 6.

P v)
=2 =),
IAI—I.rol lwl_r.ll p(&v)

Proof. First take the limit »— 0 and then the limit A — 0 in the integral
of (36) to obtain

vigy) —g 3. 2 . 2b—9
Jn{gh(ngd(y)}dy BT 3b)1°g{2b—2}' @7

Express the right side of (37) in the form f(x), where x = 7/(2b — 2). When
b = 5,x = § Expand f(x) in powers of x. The coefficient of x? is zero, but
higher powers have positive coefficients. It follows that f is strictly convex
on (0, 1). Since f(0) = 0 and f(3) is (just) negative, it follows that (37)
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is negative for all b > 5. For all b > 5, the limiting value of (36) is
therefore zero. m

Recalling that £ corresponds to the risk-dominant equilibrium, Theorem
(6) tells us that a system governed by the stochastic differential equation
(32) would be close to the risk-dominant equilibrium nearly all the time
in the ultralong run, regardless of the background fitness level b, provided
that the mutation rate A is sufficiently small and the population size N is
sufficicntly large. The approximation we are working with in this section
is therefore insufficiently accurate for our purposes, since Section 5 showed
that the payoff-dominant equilibrium is sometimes selected.

The replicator dynamics do not provide a good approximation of the
asymptotic distribution of the process because they fail to capture certain
transitions that play a crucial role in shaping the asymptotic distribution.
The approximation of this section captures more transitions, and hence
provides more hope of being a good tool for studying the asymptotic
distribution, but still falls short.* The value of the integral (37) to which
we are led in the current section is close to the integral (30) to which we
were led in the preceding section, because the estimate log 6 =~ 2(6 — 1)/
(6 + 1) is quite accurate. In consequence, the range of values of b over
which the approximation of this section leads to a wrong prediction of the
equilibrium selected in the ultralong run is small.

Is the approximation of this section adequate for such purposes as esti-
mating expected waiting times, provided b is safely in the range where it
provides a good approximation of the asymptotic distribution? We present
an example. The following formula, adapted slightly from (24) of Pontryagin
et al. (1989, p. 342), gives the expected waiting time for a process governed
by the stochastic differential equation (32) to get from { to &

j jna o, )exp (ZNj‘ :((S v) ds )dw (38)

* Could we not have drawn this conclusion simply from the observation that we are
examining the case in which N — = which reduces the stochastic differential equation in
(32) to the replicator dynamics? We might use the fact that (32) approaches the replicator
dynamics as N — = to show that their sample-path properties and hence their long-run
behaviors become similar, though we would expect (32) to provide a better approximation
than does the replicator dynamics for finite N. But this does not tell us anything about how
well (31) performs in approximating the asymptotic distribution, even though we know the
replicator dynamics do not provide a good approximation. In particular, the asymptotic
distributions derived from the replicator dynamics (8) and the Fokker-Planck equation (31)
for large N are quite different. The latter concentrates all of its probability around the risk-
dominant equilibrium, while the former attaches probability to cither the risk-dominant or
payoff-dominant equilibrium, depending upon initial conditions.
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When N = 100, A = 0.001, and b = 10, (38) is approximately 4,400. Recall
that, using the exact model of Section 4, we estimated the corresponding
waiting time as 5,000.

8. CoNcCLUSION

This paper has discussed a particular noisy evolutionary process. The
process differs from that considered by Kandori et al. (1993) in that noise
is intrinsic to the selection process rather than being derived entirely from
mutations. We found that a version of the classical replicator dynamics
suffices to describe long-run equilibrium selection. In discussing equilibrium
selection in the ultralong run, we considered two approaches: the use of
differential equations and the use of combinatorial methods. Both have
their advantages, but only the second provided an exact result in our simple
case. Finally, we confirmed that a model like ours is able to generate
substantial reductions in the expected transit times between equilibria in
the ultralong run, but waiting times are still sufficiently long that a long-
run analysis will typically be more appropriate in applications.

Unlike Young (1993) and Kandori et al. (1993), we found that the payoff-
dominant equilibrium is sometimes selected rather than the risk-dominant
equilibrium in the ultralong run. The parameter that determines which is
selected would normally be regarded as strategically irrelevant. Its relevance
in this model is a reminder that in evolutionary analysis, the relevant payoffs
are not the monetary rewards or even utilities that often appear in games,
but rather fitnesses that are determined by the interaction of these rewards
and the selection process.
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