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We examine a general class of adaptive behavior models in which the distant past 
has only a weak effect on current actions, and assume that agents sometimes make 
mistakes, to show that average behavior (averaged over time) converges, with 
probability one, to a unique limit. Mistakes generate global convergence and 
are an equilibrium selection device; for small mistake probabilities the equilibrium 
selected is close to an equilibrium of the model without mistakes. The overlapping 
generations model, and learning in games with bounded memory, tit into this 
framework and are examined as examples of the result. Journal of Economic 
Literature Classification Numbers: D80, C62. c’ 1992 Academic PKSS. IWZ. 

1. INTRODUCTION 

The assumption that agents have perfect information, though frequently 
used in economic theory, is often not satisfied in practice. While useful as 
a bench-mark, to discover which effects do not depend on imperfect 
information, realism dictates that we go further and investigate models 
with imperfect information. 

One approach to the problem of imperfect information is to assume that 
agents know the structure of the “true model” but that some relevant 
parameters of the model are random and unobserved. This view is based 
on Savage’s [23] idea that the agent knows all the possible “states of the 
world” but is uncertain about which have, or will, occur. In addition, we 
often assume that the ‘agent knows the objective probability distribution 
over states of the world and, given this prior belief, uses Bayes’ rule to 
update whenever he observes some new information. Harsanyi’s [17] 
Bayesian-Nash equilibrium uses this method to deal with imperfect 
information in game theory. 

There are three drawbacks to this approach; we must assume that agents 
know all the possible states of the world, that they know the objective 
probability distribution of the random draws made over these states, and 
that they have the computational capability to solve the rather complex 
problem of applying Bayes’ rule to such a large state space. To highlight 
these problems we need only consider the likely size of the set of states of 
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the world. In game theory it must consist of all the possible information 
sets that could be given to each agent; we may be uncertain not only about 
the structure of the model but also about what our opponents’ know. Part 
of what our opponents’ have information about is our knowledge; we must 
form beliefs over their beliefs about our beliefs. They, in turn, will have 
beliefs over these beliefs of ours, and so on, given an infinite hierarchy of 
beliefs. While this problem can be resolved, using common knowledge 
assumptions (see Brandenburger and Dekel [Z] ), it is difficult to imagine 
agents going very far down this route in practice. 

A more intuitively appealing approach is to assume that agents follow 
behavioral rules that are less complex than full Bayesian learning. A 
behavioral rule should tell the agent what actions to take, and how to 
change these actions in the light of experience. The behavioral rule we use 
in economics, expected utility maximization ombined with Bayesian 
updating, requires too much of the agents. At the other extreme biologists 
(see Maynard Smith [20] ) take the animal’s choice of action as fixed and 
instinctive, changes in behavior occurring only at the level of the popula- 
tion due to the higher reproductive rates of animals using successful 
strategies. In economics we like to think of human behavior as being a little 
more sophisticated than the instinctive choices of animals. People do 
change their behavior with new experience and we do observe adaptive 
behavior, though perhaps not of the kind predicted by full Bayesian 
learning. 

It is natural to assume that agents learn by adapting to the variables 
they observe. In the Savage approach agents form beliefs about the 
fundamentals of the problem and their subjective probabilities on par- 
ticular events occurring are given by the probability they put on the 
fundamentals being such that the event happens. If we wish to guess if 
someone will press a button or not the Savage approach is to form 
probabilities over all possible “states of mind” of that person and add 
together the probabilities on all those states which lead him to press the 
button. An alternative approach is to consider probabilities as frequencies, 
and to assign as the probability that this agent will press the button the 
frequency with which we have observed people press the button in the 
past. This approach is applied to learning in games by Canning [6] and 
Fudenberg and Levine [15]. We can think of this type of learning as 
“superficial”; agents have beliefs over what will happen; they do not care, or 
think much about, why things happen. This concentration on observables, 
and probabilities (or frequencies) on observables, certainly makes calcula- 
tion easier for the agents; however, it does give rise to the problem that the 
agent’s model of how events are linked may be misspecilied. 

The fundamental problem with learning using such an approach is the 
non-stationarity of the observable variables. If the observed variables are 
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stationary then a simple learning rule based on this stationarity will, 
eventually, learn the distribution and subjective beliefs will be close to the 
underlying objective probability distribution. However, in situations in 
which many agents interact, and learn, non-stationarity arises naturally 
from the fact that agents are observing each other, and each is changing his 
behavior as he learns. Bray and Savin [3] investigate a linear rational 
expectations model in which agents learn by using ordinary least squares 
and they show that convergence to a steady state depends on the 
parameters of the model. 

In this paper, instead of focusing on a particular model, we attempt 
to derive conditions under which general learning models will give 
convergence. The two key behavioral assumptions we require are that the 
agents actions are based on boundary memory (or that the distant past 
does not matter “too much”) and that they sometimes make mistakes, 
choosing an action that is independent of their history. These conditions 
imply that the empirical distribution of outcomes in the model converges 
to an unique limit distribution. If we average outcomes over time this 
empirical average converges, with probability one, to the average of the 
limit distribution, which is independent of the initial conditions of the 
model. Additionally, we can consider a model made up of large number of 
“villages” or “islands,” agents interacting within each village, but with 
independence between villages. Averaging over villages, at sufficiently 
large times, will give average behavior close to the average of the limit 
distribution. 

In the proofs of my results I rely heavily on the convergence theorems 
for stochastic dynamical systems given by Futia [ 161. An alternative 
approach is to follow Norman [21] and study the system as a random 
contraction (a contraction “on the average”). This has the advantage of 
giving a clearer intuition for the results; different histories given rise to 
different future behavior, but mistakes, being independent of history, tend, 
when they occur, to bring different paths for the system “closer together.” 
I the long run, the possibility of mistakes, even if they are unlikely, tends 
to lead to convergence and this force dominates over the divergent paths 
the system might otherwise follow. While more intuitive, and allowing 
more direct proofs, the random contraction approach has only been 
developed for the case where the set of possible outcomes is bounded. 
In many interesting economic models the set of possible outcomes is 
unbounded (e.g. the explosive price paths in speculative bubbles) and 
it seems desirable to include this possibility in the analysis. The random 
contraction approach is used in this paper in the case where outcomes are 
bounded when it allows us to relax the bounded memory assumption to 
allow actions which depend upon, but which are relatively insensitive to, 
the distant past. 
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The idea that stochastic dynamical systems have better convergence 
properties than deterministic systems appears in Young [26], Evans [lo], 
and Canning [S]. These papers all use a similar approach; the equilibrium 
of the system is an absorbing state, once such an absorbing state occurs the 
system is stuck there forever. Out of equilibrium the system moves ran- 
domly, but has a positive probability of entering an absorbing state within 
some finite number of periods; in the long run it must enter such a state 
(the probability of being in an absorbing state approaches one as time 
passes). The model presented here differs in that with the possibility of 
mistakes there are no absorbing states; the system keeps being perturbed. 
Instead of converging to an absorbing state the system converges to a 
limiting, non-degenerate, probability distribution over states. Equilibrium, 
if thought of as a fixed point of the dynamic system, must be thought of 
not as a particular state but as a probability distribution over states. 

In general the equilibrium behavior we derive depends on the 
probabilities with which agents make mistakes and what they do when they 
make a mistake. If the model was very sensitive to these factors we would 
not be able to use the results from a particular model with any confidence 
about their robustness. We therefore investigate the nature of the equi- 
librium distributions of behavior when the probability of mistakes is small. 
We show that for small probabilities of mistakes equilibrium behavior is 
close to an equilibrium distribution for the model without mistakes. 
Without mistakes we do not have existence, uniqueness, or convergence 
results. If we assume the set of possible outcomes is compact we can show 
existence of an equilibrium and, for small probabilities of mistakes, average 
behavior converges to a limit which is close to one of these equilibria. 
Mistakes, therefore, give global convergence and provide an equilibrium 
selection criterion. In particular, if, in the case of adaptive behavior without 
mistakes, we can show the existence of a unique equilibrium, mistakes will 
make this globally stable. This equilibrium selection criterion is intuitively 
similar to using randomly perturbed continuous time dynamical systems to 
select robust equilibria (see Freidlin and Wenzel [13]), a device applied 
by Foster and Young [ 121 in the context of biological evolution with 
mutation. 

Adding a small probability of mistakes selects a unique equilibrium but 
which equilibrium is selected depends, in general, on the distribution of 
mistakes assumed. However, Young [27] examines a large class of learning 
models for which the equilibrium selected is independent of the mistake 
distribution providing it full support. 

The power of our results is shown by applying them to some simple 
models. To begin with we investigate the game theory models of learning 
developed by Canning [6] and Fudenberg and Levine [ 151. In a simple 
example of a repeated many player game, with two pure strategy equilibria, 
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we actually work out what the equilibrium distribution of behavior looks 
like and show that the risk dominant equilibrium (Harsanyi and Selten 
[18]) is stable. This result is similar to that found in Kandori, Mailath, 
and Rob 1191. Finally, we give an example showing how our assumptions 
that agents have finite memories and make mistakes can be replaced by the 
assumption that the model consists of overlapping generations; death 
limits memory and the newborn, having no information, tend to make 
“mistakes.” 

2. AVERAGE BEHAVIOR IN ADAPTIVE MODELS 

We consider a society with n agents. At every time t each agent i has 
a set of possible actions Ai. The n vector of actions a E A = A, x 
A, x ... x A,, together with a random component, determines an outcome 
s E S. In an adaptive behavior model we assume that the action ui an agent 
chooses at time t is a function of the history of outcomes up to that time. 

This formulation may appear restrictive; however, as we shall see in our 
examples, it is not. The generality comes from the fact that we have not 
restricted the action or event spaces. For example, we can admit mixed 
strategy choices as “actions.” Alternatively, in models where we may wish 
agents’ actions to depend on current state variables, as well as history, we 
can take the “action” to be the submission of a function which says what 
to do depending on the current state. If agents observe only part of the 
relevant history, and there is incomplete or asymmetric information, we 
can take each agent’s actions as a function which is constant over histories 
which lie in the same information partition. 

To put some structure on the model we make the following assumptions. 

Assumption 1. Each Ai and S are Bore1 subsets of complete separable 
metric spaces. 

This is a technical condition which will usually be satisfied in practice. 
For example, it is satisfied if the action and outcome spaces are finite 
dimensional Euclidean spaces. Agents actions depend on the history they 
have experienced. We restrict the choice of action by assuming either of the 
following. 

Assumption 2a. H=Sk, for k finite, and ai,=fj(h,) where h,= (s,- i, 
s,_*, . . . . s,-~) and each Ji: H + Ai (i= 1, 2, 3, . . . . n) is continuous in the 
product topology on H. 

or 

Assumption 2b. S is compact, H = S”, and a, = fi(h,) where h, = 
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(St- ,, St-29 ... ) and each A.: H+ Ai (i= 1,2, 3, . . . . n) is continuous in the 
product topology on H. 

The product topology on H = S m can be generated by the metric 

where d, is the metric on the space S. Under Assumption 2b we allow 
unbounded memory but note that the factor l/2’ in the metric implies that 
outcomes in the distant past have little effect on current behavior. 

Both Assumptions 2a and 2b require actions to be continuous in the 
agent’s history. The difference lies in the fact that in 2a we require bounded 
memory while in 2b we have unbounded memory but require the outcome 
space to be compact. 

The key to Assumption 2a is that there is a limit on how far back agents 
can remember. There is of course, in practice, the problem that while 
agents may have bounded lives, and hence bounded memory, information 
may be transmitted between generations by written, or other, messages. 
Indeed, an agent who knows he forgets things will often write messages to 
himself (e.g., in a diary or in files). The model is directly applicable only in 
circumstances, such as overlapping generation models where, for some 
reason, the new entrants either do not have, or do not take account of, 
evidence on the previous, distant, history. In practice, moral hazard 
problems may well give to circumstances where agents give little weight to 
what other agents tell them has happened, preferring to rely on personal 
experience. 

If we include writing messages in the action space, and let the outcome 
space include receiving these messages, there is no loss of generality in 
asuming agents have bounded memory. We can embed the history in the 
current state of the system, making the current state space very large, but 
reducing the memory requirement. In practice when we “remember” the 
past we really only access a current state stored in our mind. Similarly 
books and historical artifacts, indeed any relics of the past, are current 
states. Sabourian [22] shows how this embedding can be carried out in 
repeated games with one period memory, without restricting the agents’ 
abilities to implement strategies that normally depend on longer time 
spans. While such embedding appears to overcome the bounded memory 
assumption it is an illusory achievement once we add the possibility of 
mistakes; mistakes in repeatedly recording history to keep it in the current 
state eventually corrupt ancient history to the point where it is worthless. 

We can drop the assumption of bounded memory providing we take the 
outcome space, S, to be compact and assume continuity of the actions in 
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a topology (such as the infinite product topology) over the infinite history 
which makes histories “close” if they are the similar in latest k components 
for some bounded k. This implies that agents take similar actions for 
histories which are similar in the recent past; the distant past does not 
affect current actions much. 

The assumption that actions are continuous in histories appears restric- 
tive. For example, in matrix games actions are not continuous in beliefs 
over the opponents’ mixed strategy choice. In addition, if agents have infor- 
mation sets which are derived from a finite partition of a Euclidean history 
space then their actions cannot be continuous over histories unless they are 
independent of the history. However, these problems can be overcome if we 
assume that agents’ observations of the history are noisy; that is, what they 
see is close to the actual outcome but randomly perturbed. This “trembling 
eye” generates a probability distribution over actions and it is easy to show 
that this probability distribution varies continuously with the history, and 
so satisfies our assumption. In this paper we do not use this technical 
device and simply take Assumption 2 as given. However, it is worth noting 
that the continuity condition always holds when the state space is 
countable; in the discrete topology no two histories can be close and so any 
function is continuous. 

Taking a, to be the vector of planned actions at time t we can write 
a, = f(h,) where f is the vector of functions fi and h, is the history. Clearly, 
since each of the functions fi is continuous S is continuous, under either 2a 
or 2b. 

So far we have talked only about planned actions, actual actions may 
differ from planned actions due to a “trembling hand”; agents may make 
mistakes when choosing their strategy. 

Assumption 3. With probability (1 - p) < 1 an agent plays his planned 
action. With probability p he plays randomly, choosing from the fixed 
distribution cli on A, where tlj has finite support. 

I have assumed that the error probability is the same for each agent; this 
is not essential. All our results hold with different error probabilities for 
each agent so long as all these probabilities are strictly positive. The 
assumption that the mistake distributions have a finite support is also 
made for simplicity; our results hold for more general probability 
distributions, but this requires more complex proofs than given here. 

The actions played by the agents depend on whether or not agents make 
mistakes. Given a planned vector of actionsf(h) (depending on the history 
h) we can calculate the probability measure fl(f(h)) on A that results from 
the different possible combinations of mistakes. t?(f(h)) will have an atom 
of weight (1 - p)” on the planned actions j(h) and a weight of p” on the 
measure generated by all the agents making a mistake. We also have to 
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take all the possible combinations among the n players of planned actions 
and mistakes to calculate B(h) completely. The probability of an action in 
the set B given the history h is given by (O(f(h)))(B); to avoid confusion 
we write this simply as B,(B) where Oh denotes the probability measure 
generated by the probability p, the distribution cli, and function A which 
operates on the history h. 

The idea that agents make mistakes can be justified, as in Selten [24], 
on straightforward “trembling hand” grounds; agents genuinely do make 
mistakes. Alternatively, we might think of the “mistakes” as part of a 
behavioral strategy; agents might be unsure of the payoffs to different 
actions and may experiment in an effort to determine these payoffs (see 
Fudenberg and Kreps [14]). Another possible justification of Assump- 
tion 3 is to consider an overlapping generations model, as in Fudenberg 
and Levine [ 151; the newborn, with no information about history, must 
take an action which is history independent. In Section 6 we show how 
our assumption that agents make mistakes can be replaced with the 
assumption of overlapping generations. 

Given an action at time r the outcome may depend on some random 
elements. We can regard S as a measurable space by taking S* to be the 
a-algebra generated by the Bore1 subsets of S. Let 

g: A + Q(S) 

denote the mapping from the set of actions to the set of probability 
measures over the possible outcomes. If the model is deterministic then 
g(a,) will put an atom of weight one on the outcome; if the model is 
stochastic g(a,) will be a probability distribution over outcomes. 

In what follows we use two notions of distance in the space of proba- 
bility measures. Let w  be a probability measure on the set X. First, the total 
variation norm on X is defined by (see Stokey and Lucas [25]) 

(“‘I =stP ,f: IW(Bi)l, 
r=l 

where the supremum is taken over the set of all finite partitions B = 
(B,, B,, . . . . B,) of X. Second, the topology of weak convergence in which 
we say w, + w* weakly if for all bounded, continuous, real valued, 
functions C$ on X we have that 

.r, 4x) w,(dx) -+ .r, 44x) w*(dx). 
Note that convergence in the total variation norm implies convergence in 
the topology of weak convergence but not vice versa. In fact convergence 
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in the total variation norm implies convergence of the integrals for any 
measurable function 4. Whittle [29] contains a discussion of the rela- 
tionships between the different notions of convergence for probability 
measures. 

Assumption 4. The mapping g, from actions to probability measures 
over outcomes, is continuous in the total variation norm. 

Assumption 4 says that if two actions are close the probability distribu- 
tions over their results are similar. To see how strong this is consider a out- 
come mapping which produces a continuously varying outcome; this may 
fail Assumption 4 since even if two outcomes are close each represents an 
atom of probability on different outcomes. However Assumption 4 holds 
immediately if actions are mixed strategies, the action space has the total 
variation norm, and outcomes are simply the resulting pure strategy: That 
is, if A is the same as Q(S) and g is the identity map. Note that in this 
example we require A to be endowed with the total variation norm; if it has 
only the topology of weak convergence continuity in the sense of Assump- 
tion 4 does not hold. Two other examples in which Assumption 4 holds 
are, when the set of actions is finite, or the outcome depends continuously 
on the actions with the addition of a independent noise term which has a 
continuous probability density function over S. 

In order to avoid confusion we shall write the probability of the set 
BE S*, given the action a, generated by probability measure g(a), as 
g(a, B) rather than (g(a))(B). 

The history determines what is in the minds of the players when they 
plan their actions. Given a history h, (in the appropriate space H which 
depends on whether we are applying Assumption 2a or 2b we write 

as the probability, given a history h,, that agents actions lead to an out- 
come in the (measurable) subset B of S. Given the history h, the planned 
action isf(h,). The possibility of mistakes generates a probability measure 
@(f(h,)) = O,,, over actual actions. We integrate over actual actions to get 
the distribution of outcomes that the history generates. 

LEMMA 1. Q: H x S* + [0, l] is a stochastic kernel; that is (see Feller 
Clll), if 

(i) for fixed h E H we have that Q(h, .) is a probability distribution 
over S. 

(ii) for j2xed BE S* we have that Q( ., B) is a Baire function on H. 
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Further, Q, when regarded as a mapping from histories to probability 
measures over outcomes, is continuous in the total variation norm. 

Proof: See Appendix. 

Lemma 1 ensures that for each possible history our mapping Q generates 
a well-defined probability measure on the set of possible outcomes, and 
does so in a continuous way. 

Given an outcome s, at time t we can define the history, in the finite 
memory case, at time t + 1 by setting 

h t+ I = (s,, s,- I, . . . . s ,-,c+i)=zhs,), 

where Z: H x S + H is clearly continuous in both h, and s,. In the case of 
infinite memory we have 

h If1 = (St, St- 1, s,-z, .-.)=z(h,, s,) 

which again is continuous in the product topology. 
Taking h, to be the state of the system at time t the system evolves in the 

following way. Given h, the mapping Q generates a probability distribution 
over outcomes at time t. Given the actual realization of the outcome the 
updating rule z then gives us the new state at time t + 1. 

LetDcHxSandforhEHdefineD,={sES:(h,s)ED}.LetH*bethe 
Bore1 subsets of H and define a function P: H x H* -+ [0, I] by 

P(h, G) = Q(h, W’G),), hEH, GsH* 

P(h, G) tells us the probability of going from a history h at time t to a 
history in the set G of histories at time t + 1. This is just the probability of 
an outcome at time t in the set (z-‘G)~, the set of outcomes which causes 
the history to move from h to an element of G. 

LEMMA 2. P is a transition probability on (H, H*). 

By definition and Lemma 1 our system satisfies all the conditions 
required by Futia [ 16, Theorem 5.23 and the result follows. 

Lemma 2 ensures that the probability operator P is well defined. 
At any time t the state of the system is h,. Given the stochastic evolution 

of the system we will be unsure of the state of the system at future times. 
Let w, be a probability easure on H at time t representing our uncertainty 
as to the state of the system. Then we write 

Tw,(G) = j P(h, G) w,(dh). 
H 
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The probability that the system is in a state in the set G at time t + 1 is 
given by Tw,(G). It is the probability that the system is in state h at time 
t and goes to an element of G from h, integrated over the possible values 
of h weighted by the probability of being in state h at time t. Since the 
equation holds for each G c H (assuming GE H*) we have that Tw, is a 
probability measure on H and, by its definition, it follows that 

MI,+ 1 = Tw,. 

Given a probability measure on the state at time t the operator T generates 
a probability measure on the state at time t + 1. Clearly T defines a 
Markov operator on the set of probabilities. Given an initial measure w0 
on the state of the system at time t =0 (which may be an atom on a 
particular state h) we can write u’, = T’wO where T’ is defined iteratively by 
T’w,,= T(T’~‘w,). 

THEOREM 3a. Under Assumptions 1, 2a, 3, and 4 there exists a unique 
invariant measure w* over H such that Tw* = w* and for all initial condi- 
tions wO we have w, -+ w*, where convergence is in the total variation norm 
and occurs at a geometric rate. Further, the empirical distributions of the 
realizations of actions a, and outcomes s, converge, with probability one, to 
distributions which are independent of initial conditions, and depend only 
on w*. 

Proof See Appendix. 

THEOREM 3b. Theorem 3a holds if we replace Assumption 2a with 
Assumption 2b. 

Proof See Appendix. 

The main result in Theorem 3 is that if we draw histograms of the 
realizations of actions and outcomes the results, as time passes, will 
converge to unique distributions which are independent of the initial 
conditions. 

We end this section by illustrating why the result holds. To illustrate the 
power of the result we work with a “difficult” case in which the system has 
an inherent tendency to unbounded behavior. Consider a simple model 
with one agent with one period memory. Suppose the outcome at date t is 
simply the action he takes so s, = a, and with one period memory we can 
write 

h,=a,+,. 

Now suppose that agent tries to choose a, so as to equal his expected value 
of s, plus one and that he uses the simple forecasting rule G(s, 1 h,) = h,; 



AVERAGE BEHAVIOK IN LEARNING MODELS 453 

that is, his “guess” of what will happen next period is simply what 
happened this period. The agent chooses CI, = h, + 1; substituting for h, we 
have the dynamic system 

Clearly this system has no equilibrium distribution of actions; indeed it 
does not even have a rational expectations equilibrium. If a,=0 we have 
a, = t; the action keeps increasing indefinitely. 

In order to meet the conditions for our theorem we need to add the 
possibility of mistakes. Suppose that, with probability p > 0, the agent 
makes the mistake of playing 0, his “default” action. It is now easy to show 
that the model satisfies Assumptions l-4 (we use the trivial metric and 
discrete topology on A and S) and an equilibrium distribution of outcomes 
exists. It is easy to check that the long run equilibrium distribution of 
actions (and histories) is 

w*(a) = p( I- p)” for ~30. 

In the long run the probability of a = 0 is p (the probability of a mistake) 
while the probability of a = x is (1 - p) times the probability of a =X - 1 
(a = x occurs if a = x - 1 occurs and the player does not make a mistake). 

Our main point is that in this example the empirical distribution of 
actions converge to w* for any initial condition. However, it is also worth 
noting that with the possibility of mistakes the model does have a rational 
expectations equilibrium, a* which is (I* = (1 - p)/p. At a* the probability 
(1 - p) of going to a* + 1 and the probability p of going to zero just 
balance to give an expected value of a*. It is easy to check that 
a* = (1 - p)/p is also the expected value of a given the distribution NJ*; it 
is therefore the limit (with probability l), as time passes, of the empirical 
average of actions taken. In the long run average behavior coincides with 
the rational expectations equilibrium. 

The example just given is set in a simple one person, one period memory, 
framework but it does bring out how Theorem 3 works. The key to the 
result is the possibility of mistakes. These ensure that the actions do not to 
explode to infinity. With unbounded memory a few mistakes would not 
matter very much but with bounded memory they must eventually 
dominate the explosive part of the model. 

3. EXPECTED BEHAVIOR 

In general, the probability measure w* on histories generates equilibrium 
probability measures on the set of actions and the set of outcomes. These 
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distributions represent a complete description of the long run average 
behavior of the system. However, in practice we often wish to condense the 
information in the probability distribution to a “representative” number, 
an expected value; this loses information but is a more parsimonious 
representation of the outcome. 

Formally, let a: A + R be a measurable function then we take the 
expected value of a(a) given a history h to be 

Eta(a) I h) = j ata) edda). 
A 

The history h generates a distribution 8, of possible actions; we integrate 
over these actions to get the expected value. Then the expected value of 
a(a) given the distribution w* on h is 

E(a(a) 1 w*) = jH E(a(a) 1 h) w*(dh). 

We can define I@(s)), for arbitrary measurable functions fi: S + R, in a 
similar manner. For each h we have 

where Q(h, s) is the probability of an outcome s occurring given the state 
h. Then to find the expected value of p(s) we integrate over possible states 
h weighted by their probability: 

Jw(s)Iw*)= j Jw(s)lh) w*(dh). 
H 

We now consider the relationship between the actual realizations of the 
actions and outcomes and the expected value given the equilibrium 
distribution. 

THEOREM 4. Under the conditions of Theorem 3a, or 3b, for any 
measurable real valued functions a and /II, the average of the actual realiza- 
tions Ca(a,)/T and C/?(s,)/T, (t=O, 1, . . . . T-l), converge, as T tends to 
infinity, with probability one, to E(a(a) / IV*) and @B(s)1 w*), respectively. 

ProoJ See Appendix. 

The distribution of actions and outcomes is a complete picture of the 
long run average behavior. If we took the expected values of all functions 
over A and S these expected values would capture all the information in 
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the distribution (e.g., use indicator functions on each possible subset). By 
taking one, or a small number, of the expected values we may be able to 
characterize the average behavior of the system sufficiently for our 
purposes. 

4. THE EQUILIBRIUM DISTRIBUTION 

Since the equilibrium distribution w* completely determines the long run 
behavior in the model it would be nice to give a simple characterization of 
this distribution. From the definition of T we have that the measure w* 
satisfies 

w*(G) = J‘ P(h, G) w*(dh) 
H 

for each measurable set G in H*. In the case where the set of possible 
histories H is finite we can regard w* as a vector of probabilities on the 
finite elements of H. We then have 

w*(K) = c P(h, h’) w*(h) 
heH 

for each h’. Letting M be the matrix of transition probabilities (with 
elements P(h, h’)) we have w* = Mw* and so (M - I) w* = 0 and the equi- 
librium probabilities on the histories are given by the (unique) eigenvector 
of M associated with the unit eigenvalue. 

It follows in the case that the set of possible histories is finite that 
knowledge of the transition probabilities allows the calculation of the equi- 
librium distribution directly; this is done explicitly in Section 6 for a simple 
example. In the more general case of an infinite set of possible histories the 
calculation of w* relies on some insight into the structure of the particular 
model being examined. In practice, in such cases, it is often easiest to use 
computer simulation to construct empirical distributions of actions and 
outcomes and use Theorem 3 to argue that these approximate the 
equilibrium distribution. 

It is interesting to compare how adding mistakes changes the nature of 
the equilibrium distribution in relation to the behavior of the model 
without mistakes. With small probabilities of mistakes we can calculate the 
unique invariant distribution. As the probability of mistakes approaches 
zero this equilibrium distribution varies and we want to know under what 
circumstances the equilibrium distribution will converge to an equilibrium 
distribution for the model without mistakes. 

To investigate this consider the family of models generated by taking 
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different values of p, the probability that agents make a mistake. Let T,, be 
the operator generated by using the mistake probability p. T, represents 
Markov operator for the model in which agents do not make mistakes. For 
each p > 0 Theorem 3 guarantees that we can find a unique equilibrium 
distribution of histories w,* and that this determines the long run behavior 
of the system for any initial conditions. 

We would like to be able to say that for p sufticiently small the equi- 
librium distribution MJ~* is close to an equilibrium distribution w$ in the 
model without mistakes. However, our simple example in Section 2 shows 
that this cannot be the case in general; in that example the model without 
mistakes did not even have an equilibrium distribution and the limit of the 
sequence of equilibria as p tends to zero is not defined. As the next theorem 
shows this problem does not arise if the set of outcomes, S, is compact. 

THEOREM 5. If S is compact then (under either Assumptions 2a or 2b, 
and 1, 3, and 4) the equilibrium correspondence, defined by E(p) = 
{w:: T,(w,*) = w,*} is upper hemi continuous, in the topology of weak 
convergence, at p = 0. 

Prooj See Appendix. 

Note that previously we have always used the total variation norm as 
our notion of distance between probability measures. Here we use a weaker 
notion; the sequence w,* has cluster points which converge weakly in dis- 
tribution to the fixed points of T,. Theorem 5 implies that if S is compact 
and 4: H -+ R is continuous and then for any E > 0 there exists p(e) > 0 such 
that O<p< P(E) implies that 

IJ 4th) w,Wh) - j- 4th) w,*(dh) 6 E 

for some w$ satisfying T,w,* = w$. To see the relationship between this 
result and Theorem 3 note that Theorem 3 held for any measurable func- 
tion. It is easy to see that we can prove a similar result, using Theorem 5, 
giving convergence (as p tends to zero) for the expected values E(a(a) ( w,*) 
and E(p(a) 1 w,*) to E(a(a) 1 wg*) and E(fl(a) 1 w$) respectively, only when a 
and /I are continuous functions. 

For p = 0, Theorem 3 does not hold; we can neither guarantee a unique 
equilibrium or global convergence. However, Theorem 5 tells us, for com- 
pact S, there is at least one invariant probability distribution in the model 
without mistakes, and that for low probabilities of making mistakes the 
equilibrium distribution is close (in distribution) to such an invariant 
probability. It follows that in models without mistakes that have a unique 
invariant distribution we can argue that adding mistakes gives rise to a 
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globally convergent system with behavior close to that of the unperturbed 
system. In particular if the unique equilibrium distribution in the unper- 
turbed model is an atom of weight on a particular outcome we can argue 
that with mistakes this outcome becomes globally stable in the sense that 
the actual outcomes are “almost always” close to it. 

Theorem 5 makes it clear that adding mistakes to the model generates a 
refinement of the equilibrium set. In Section 6 we give an example with 
multiple equilibria in the case of no mistakes and show how the presence 
of mistakes can be used to pick out a particular equilibrium. While 
mistakes are a refinement they do not necessarily pick out a unique 
equilibrium; in some cases the distribution of the mistakes, which actions 
are chosen if a mistake is made, may affect which equilibrium is selected. 

While it is true in some cases that the mistake distribution matters often 
it does not, so long as it has full support. The intuition for this surprising 
result is that we can regard each equilibrium as an attractor for some 
neighborhood of initial conditions. Without mistakes which equilibrium is 
chosen depends on the initial conditions. The mistakes, however, mean that 
it is possible to move from one equilibrium, cross the boundary of the 
attracting region, and enter another equilibrium. The stability of an equi- 
librium with mistakes depends on how difficult it is to do this. Suppose 
that no move from equilibrium A to equilibrium B requires n mistakes each 
with a probability b in the mistake distribution; this has total probability 
(pb)“. The corresponding probability of moving from B to the domain of 
attraction of A is (pa)“. The relative stability of B to A depends on the 
ratio of these two numbers; that is, on pnemb”a-“‘. However, as p gets 
small this goes to infinity for n > m and to zero for n cm. It follows that 
which equilibrium is chosen depends only on the relative number of mis- 
takes needed to move from one basin of attraction to another, not on the 
probabilities of each type of mistake. Only in the case where the number 
of mistakes required to move in each direction is the same does the mistake 
probability matter when p becomes small. An example of this phenomenon 
is given in Section 6. A full theoretical treatment of this property can be 
found in Freidlin and Wenzel [ 131 while Kandori, Mailath, and Rob [ 191 
and Young [27] show how useful it is when applied to learning and 
equilibrium selection in games. 

5. AVERAGING OVER “VILLAGES" 

So far we have discussed the average of actions and outcomes over time; 
it would be nice if we could say something about behavior at a point in 
time, for dates sufficiently far in the future. If we consider the model then, 
in the limit as time, t, increases, the probability distribution over the out- 
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come converges to the unique invariant distribution, independently of 
initial conditions; however, the actual outcome at time t is random. 

If we were to start several identical versions of the model (“villages”), 
each with a different initial condition, and with different realizations of any 
random variables, then our probability distribution over each model’s state 
would approach, as time passed, this same limit distribution. It follows that 
for large times the empirical distribution of states, taken over a large num- 
ber of “villages” will approximate the limit distribution. In addition the 
expected value of any function, taken over the villages, will be the limit 
expected value. By the law of large numbers, the actual realization of the 
average outcome will be close to this expected value, providing we average 
over enough villages. 

Let us suppose that our villages are indexed by j and suppose that the 
initial conditions in each village are independent draws from a probability 
distribution over H. Let a,(j) be the vector of actions taken at time t in 
village j. Let 

~1, = plim f: a(a,( j))/J 
J+a j=l 

be the average behavior of ~(a,) across villages. Since the cl(a,(j)) are a 
sequence of independent, identically distributed, random variables the 
strong law of large numbers implies that this average converges with 
probability one (convergence in plim). 

THEOREM 6. Under Assumptions 1 to 4 we have a, + E(a(a) 1 IV*). 

ProoJ See Appendix. 

If we have a large number of villages the average over these, at time t, 
will almost certainly be close to a,. By Theorem 6 tl, is close to the fixed 
value E(a(a) 1 w*) for t large. It follows that for a large, but finite, number 
of villages the average behavior will fluctuate but will almost always be 
close to E(a(a) 1 w*). 

This result is a proof, for our model, of the ergodic hypothesis, an 
hypothesis which is frequently used as an axiom in statistical mechanics. 
The average behavior of our system, averaging over time, is equal to the 
average at a point in time of the behavior in many independent systems. 

To give an example consider the simple model used in Section 2 where 
the agent planned action is his previous action plus one, and a mistake is 
to play zero. If we consider many such agents, each independently 
following this rule, we see that averaging over the population will give a 
sequence of observations which converges, as time passes, to a steady state 
which is the expected value of the action given the equilibrium distribution. 
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However, we have already shown that this expected value is the rational 
expectations equilibrium of the model, so we have global convergence to 
rational expectations equilibrium. 

6. APPLICATIONS 

Consider a group made up of two pools of agents who play the same 2 
player, normal form, finite strategy, game repeatedly, the pairing of agents 
in each period (one from each pool) being random. This situation has been 
investigated in Canning [6] under the assumptions that the set of agents 
is infinite and the agents’ memories are bounded. Here we investigate the 
situation where the number of agents is finite (n) and agents sometimes 
make a mistake in their strategy choice (a trembling hand). Let us suppose 
that agents use the empirical average of their past k (remembered) observa- 
tions to form their beliefs about what will happen in the next period and 
choose a strategy which is a best reply to this subjective belief. If agents are 
indifferent over a set of strategy choices we allow them to choose their 
action function, f;, at this point arbitrarily from the best reply set. If agents 
make a mistake we assume they play a fixed mixed strategy. 

Formally, we can think of a history h as consisting on a n x k matrix, 
giving the last k pure strategy observations of each of the n agents. H is 
finite since there are only finitely many such matrices (elements of the 
matrix are pure strategies). The set of actions is a mixed strategy for each 
agent; we endow each action space Ai with the total variation norm. An 
agent’s subjective belief generates a planned action, and the possibility of a 
mistake (fixed probability p each period) gives a probability distribution 
over possible actions. Note that while each agent plans his action on the 
basis of the current history he actually only uses the history of his own 
observations to work out what to do. While we have assumed that agents 
all condition on the same history we can allow for asymmetric information 
by changing the functions fi. The outcome of an action is an n vector 
assigning to each agent a pure strategy observation given by the actual 
strategy played by the opponent they were matched with. This is just a 
permutation of the actions of the agents in the other pool; under random 
matching we have that each possible permutation is equally likely. 

PROPOSITION 7. This model satisfies Assumptions 1 to 4. 

Proof: Since the action and outcome spaces are finite Assumption 1 
obviously holds. We have assumed that agents base their actions on a finite 
history; the continuity necessary to secure 2 follows from the fact that the 
set of histories, H, is finite, so all functions on it are continuous (we take 
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the discrete topology on H and the usual Euclidean topology on the mixed 
strategy space). Assumption 3 is satisfied since we do have a positive mis- 
take probability; the support of the distribution of mistakes is finite since 
the set of pure strategies is finite and the mistake distribution is over these 
pure strategies. Actions are probability measures over pure strategy choices 
and this, together with the mistakes, induces a probability measure over 
outcomes; the strategies actually played. Since the strategy set is finite the 
total variation norm on mixed strategies is the same as the Euclidean norm 
and Assumption 4 is satisfied. 

In fact in this simple model the set of possible histories is finite; so, if the 
mistakes have full support on the pure strategies of the agents, the system 
is a finite irreducible Markov chain and we can apply elementary matrix 
theory to derive the ergodic result (e.g., see Cox and Miller [7]). All our 
continuity assumptions (Assumptions 2 and 4) hold automatically because 
of the finite nature of the outcome and history spaces. 

To work out a simple example consider a simple coordination game. The 
payoff matrix is given by 

Player 2 

A B 

Player 1 A 3, 3 030 
B 030 1, 1 

Suppose that we have one agent in each pool and they each have one 
period memory, using the last action of the other player as the prediction 
of next period’s behavior. Without mistakes three things can happen, we 
either get “stuck” at the strategy pair (A, A), or at (B, B), or the system 
oscillates giving (A, B) and (B, A) alternatively; what happens depends on 
in which state the system starts. As we increase the length of the agents’ 
memories more complex things can happen (in particular it is interesting to 
study what happens as memories get longer and the number of agents 
grows). Now let us suppose we have a probability p = 0.1 than agents make 
a mistake, in which case they put equal weight (probability l/2) on each 
pure strategy choice. There are four possible states for the system (A, A), 
(A, B), (B, A), and (B, B). Labeling these as histories 1 to 4 we can take 
the distribution over states at time t as w,, where w, is a vector with 4 
elements denoting the weights on states 1 to 4. Taking the transition 
probabilities p(i, j) to be the probability of going from state i to state j we 
can write w,+ i = Mw, were the matrix A4 of transition probabilities (where 
M, = P( i, j)) is given by 
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0.9025 0.0475 0.0475 0.0025 
0.0475 0.0025 0.9025 0.0475 
0.0475 0.9025 0.0025 0.0475 
0.0025 0.0475 0.0475 0.9025 

as compared with the matrix 

1.0 0 0 0 
0 0 1.0 0 
0 1.0 0 0 
0 0 0 1.0 

in the model without mistakes. In the case where mistakes occur it is easy 
to see that the unique equilibrium distribution of histories puts equal 
weight (l/4) on each possibility. This implies that, on the average, agents 
play both their strategies equally often.’ 

In fact for any probability p of making mistakes the equilibrium distribu- 
tion in the model is to put weight l/4 on each possible outcome. Note that 
this distribution is also, by Theorem 5, an invariant probability for the case 
with no mistakes. If we start by putting weight l/4 on each possible state 
our distribution over the states in the next period is the same. It is easy to 
check that this is indeed the case in our example. However, as we have 
already seen, in the long run we cannot have each outcome played l/4 of 
the time; without mistakes we either settle into one of the coordinated equi- 
libria or oscillate, the agents always being out of synchronization. The 
reason for this is that in the case of no mistakes the weights l/4 on each 
outcome do give an equilibrium distribution (as indicated by Theorem 5), 
but Theorem 4 does not hold for p = 0. Without mistakes there is no 
guarantee that a particular equilibrium distribution determines the long 
run average behavior of the system. 

To elaborate on this example now consider a set of n agents who play 
the game against the entire population each period. Each period every 
agent chooses either action A or B so the outcome space is an n vector of 
actions; that is S = {A, B}". The payoff to agent i from playing strategy A 
is given by 3 whenever he meets another “A” player and zero when he 
meets a “B” player. This gives an average payoff of 312, where a is the 

’ It is interesting to note that the matrix M is symmetric; p(i, j) = p( j, i). This is a special 
case rather than usual in models of the type we are describing, but is axiomatic in statistical 
mechanics when applied to physics. It follows, in particular, that in our example we can derive 
the law of increasing entropy; a large coilection of pairs of agents, each acting as in our model, 
will tend to become more disordered as time passes (see Waldram [28]). The limit distribu- 
tion puts equal weight on each possible state. which is the most disorder that is possible. 
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fraction of the population playing strategy A. The payoff to strategy B is 
(1 - a). Note that we assume that the agent plays himself when calculating 
these payoffs. With complete one period memory agents can calculate last 
period’s value of a. An alternative story would be that agents only meet 
pairwise each period but a central agency announces the value of a. If 
agents assume that a is stationary and maximize their expected payoff 
given last period’s value all agents will try to take the same action. They 
will play A if 3a > (1 -a) and B if 3a < (1 -a). The critical value of a is 
l/4, above this agent play A below this they play B. We assume that N is 
chosen so that a = l/4 is not possible to avoid the problem of indifference 
between actions. 

Clearly both a = 1 and a = 0 are steady states of the system without mis- 
takes. The only equilibrium distributions of this system are weights which 
sum to one on the two states A* = (A, A, A, . . . . A) and B* = (B, B, B, . . . . B). 
Suppose we add the possibility of mistakes. If a mistake always leads to 
playing A then A* will be selected as the unique equilibrium. If a mistake 
always leads to a B being played then B* will be the unique equilibrium. 
The more interesting case is when a mistake gives a positive probability to 
both A and B being played; let a be the probability on A and b the 
probability of B (a + b = 1). In this case all states in S are possible even in 
the long run and the equilibrium distribution has full support on S (H= S 
since we have one period memory). However, as the probability of a 
mistake goes to zero the weight on states other than A* and B* must go 
to zero. Let 

S,= (seS(a(s)>b}, S,= {seSja(s)<+}. 

In the equilibrium distribution the probability of entering any set of 
histories must equal the probability of leaving it so that 

P(S, + S,) w*(s,) = P(S, + S,) w*(s,) 

since the probability of leaving the set S, or S, is independent of which 
actual state in those sets the system is in. In S, all agents will try to play 
A; in order to leave S, we require at least z = 3N/4 agents to make 
mistakes and play B. Similarly to leave SB at least N/4 agents must make 
mistakes and play A. It follows that 

P(S, + S,) = 5 
N! 

i=r (N-i)! i! 
(pb)’ (1 - pb)N-i 

N 

fTSB + S,) = c 
N! 

i=N--r+l (N-j)! j! (pa)‘(l--pa) 
N-i 

’ 
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where z is the smallest integer greater than 3N/4. Hence 

w*(sB) b N-=+1 
0 

C;s”=.(N!/(N-i)! i!)(pb)‘-‘N-=+l’(l-pb)N-i -= - 
w*(s,) a C~c”=,_z+,(N!/(N-i)! i!)(,u)i--(N-Z+l)(l -JXZ)~-” 

Taking limits as p tends to zero it is clear that every term on the top line 
contains a power of p while the bottom line has a first term which is strictly 
bounded away from zero as p goes to zero; the key is that we have 
z > (N + 1)/2. Hence the ratio w*(S,)/w*(S,) goes to zero as p tends to 
zero. It follows that as the probability of a mistake is reduced the weight 
on the set S, under w* goes to one. Since the only equilibrium distribution 
in this set for p = 0 is weight one on the state A*. It follows from 
Theorem 5 that 

lim w,*(A*) = 1. 
P-r0 

With a small probability of making a mistake the state will almost always 
be in the state A* = (A, A, A, . . . . A). Only the states A* and B* can be 
persistent; any other state usually leads immediately to one of these. The 
system can get stuck in the state B*, but it takes only N/4 mistakes to leave 
its “basin of attraction,” SB. It takes 3N/4 mistakes to leave S, the basin 
of attraction for A*. It follows that A* is more stable than B* under 
“small” random perturbations.* 

For any symmetric game where the payoffs of one equilibrium risk 
dominate (in the sense of Harsanyi and Selten [18]) those of the other it 
is easy to show, using the method above, that the one period memory 
system will select the risk dominant equilibrium, as the probability of a 
mistake goes to zero. When the two equilibria rank equally (e.g., if we 
replace the payoff (3, 3) with the payoff (1, 1) in the example above) the 
long run behavior of the system (for p small) approximates a correlated 
equilibrium with half the time spent in one Nash equilibrium and half in 
the other. Di Gioacchino [8] derives similar results in simulations of two 
players with memory of each others past actions that extends more than 
one period. Kandori, Mailath, and Rob [19] also have the same result in 
a class of models with one period memory in which a proportion of agents 
adapt each period. 

Now consider a more indirect application of our results. Suppose in each 
period there is a finite set E of events. Suppose agents believe that the 

’ The probability of a perturbation is small asp becomes small. However, the perturbations 
can, though with low probability, be big. It is these low probability, large perturbations, 
which allow us to perform a global (independent of initial conditions) stability analysis as 
opposed to the local stability analysis usually associated with small perturbations. 
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events are independent, identically distributed, random variables, but are 
unsure of their distribution, Note that the belief that the variables are 
stationary need not be correct. Let us suppose they begin with a prior 
distribution over the space of probability distributions on events which 
has full support and update this belief with their experience. The Dirichlet 
functions form a conjugate class for this problem; if the prior belief is 
in the class so is an agent’s posterior given his observation. The Dirichlet 
functions can be parameterized by a finite vector of real numbers; it 
follows, if agents’ priors lie in this class, that we can represent the agent’s 
belief by a vector drawn from a finite dimensional Euclidean space. 

Let us suppose the actual event which occurs is a random variable which 
depends on the agents’s actions and has a distribution which is continuous 
(in the total variation norm). We take events to be continuous in actions 
which are continuous in beliefs. Given their beliefs agents decide on actions 
which give rise to events which cause them to update their beliefs. In addi- 
tion we suppose that with probability p each period the agent dies and is 
replaced by a newborn agent with a fixed prior drawn from a (finite 
support) distribution on the set of Dirichlet functions. Note that this 
formulation is exactly that used by Fudenburg and Levine [ 151 so our 
result will apply to their model. 

In order to apply our results to this model let Q(E) be the set of 
probability measures on E and let D be the set of Dirichlet functions 
(each a probability distribution on Q(E)). Suppose S = D”, where n is the 
number of agents and let agents have one period memory so H = S. Let 
A = S and suppose each agent’s action is simply to state his belief. Given 
this choice of action we perturb it, with probability p replacing it with the 
random draw from the newborn. We then map the vector of actual actions 
(given the outcome of the perturbation) into a probability easure over 
outcomes by finding the outcome for each possible event e (the updating 
of beliefs that results) and weighting them by the probability of e given the 
action taken. An outcome in S is simply a new belief for each agent, which 
depends on their old belief and the event which occurs. Note that instead 
of allowing the agents to take an action directly we use as their “action” 
a statement of their belief, derive the action they would have taken from 
this, and take their new belief as the outcome. 

PROPOSITION 8. Our overlapping generations model satisfies Assump- 
tions 14. 

Proof. Ai and S are finite dimensional Euclidean spaces so Assump- 
tion 1 holds. Assumption 2 holds trivially since planned actions are equal 
to last period’s outcome. Assumption 3 holds because of the random deaths 
and replacement. Assumption 4 holds since the mapping from actions to 
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events is assumed continuous in the total variation norm and it is easy to 
show that the updating rule is continuous in beliefs for fixed events. 

In an overlapping generations model we need not assume bounded 
memory or mistakes. The possibility of death effectively bounds memory 
and the newborn, having randomly drawn prior beliefs, can be considered 
as making “mistakes.” It follows that in a macroeconomic model with over- 
lapping generations we can derive convergence to a unique equilibrium for 
the time average of behavior, and even, if the economy is made up of 
enough independent “villages” convergence of the macroeconomic variables 
themselves. We may have persistent, stable, average behavior, despite the 
fact that agents’ decision rules need not be “rational.” This gives rise to the 
possibility that, as in physics, average behavior, averaging over a large 
number of agents (or particles), is better behaved, and more predictable, 
than individual behavior. 

7. CONCLUSION 

We have examined a wide class of learning models in which agents inter- 
act and shown that provided we assume bounded memory and mistakes 
the average behavior in a model will converge to a long run limit that is 
unique and independent of the initial conditions. The power of the result 
lies in the fact that it applies to any adaptive behavior rule in any model 
of social interaction which satisfies some weak conditions (notably con- 
tinuity of actions with respect to histories and continuity of the probability 
measures over outcomes with respect to actions). While we prove con- 
vergence and uniqueness results we leave open the characterization of the 
average behavior; the nature of the equilibrium depends on the behavioral 
rules that agents follow. 

APPENDIX 

LEMMA 1. Q: H x S* -+ [0, l] is a stochastic kernel; that is (see Feller 

Clll) if 
Over {) for fixed h E H we have that Q(h, .) is a probability distribution 

(ii) for fixed BE S* we have that Q( ., B) is a Baire function on H. 

Further, Q, when regarded as a mapping from histories to probability 
measures over outcomes, is continuous in the total variation norm. 

64?/57;?-I4 
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Proof: For (i) we need to show that Q(h, .) defines a probability 
measure, but this follows immediately from the fact that for each a the 
function g(a, .) defines a probability measure on S and Oh defines a 
probability measure on A. To check, it is easy to see that 

defines a measure on S and that Q(h, S) = 1. 
For (ii) it is sufficient to show that Q( ., B) is continuous, since the Baire 

functions are the closure of the set of continuous functions. Without 
mistakes the probability measure 0, is just an atom of weight 1 on the 
action f(h). Therefore, in the absence of mistakes, we can write 

I Q(k B) - Q(h’, WI = I df(h), B) - df(h’), WI> 

which, since both g and fare continuous (by Assumptions 2 and 4) implies 
Q( ., B) is continuous. With mistakes we can decompose the probability 
measure Oh into 2” possible cases, depending on which agents make 
mistakes and which do not. Hence we can write 

IQ(k B) - QW, WI = c g&z(h), B) p(m) - c g(a,W, B) p(m) 
m m 

G 1 Ida,(h), B) - ddh’), WI p(m), 
m 

where the subscript m takes 2” values, p(m) is the probability of the 
combination of mistakes, m, and the actions u,(h) and u,(h’) refer to the 
actions taken given the combination of mistakes, m (assuming a mistake 
leads to a single choice of action). 

In the case where the agent chooses from a probability distribution over 
actions (rather than select a single action) when he makes a mistake we 
must, for each combination of mistakes m, consider the possible actions 
agents take. However, since we have assumed finite supports, and the 
probability distributions over these supports when a mistake occurs is 
history independent, we can write 

lQ(k B)- QW, WI = c 1 d%Ah)~ B) p(m) P(C) 
m c 

-c c g(~Ah’), B) p(m) P(C) 
m c 

-<c c Ida,,(h), B) - g(~,,W), WI p(m) P(C), 
m c 
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where c is an index over the set of all possible mistakes the agents can 
make. If an agent makes a mistake in the combination m, then his action 
is given by the choice in c. If he does not make a mistake c is irrelevant 
for him and he takes his planned action which depends on h. It is easy to 
see that each amc is continuous in h and the continuity of Q follows. 

THEOREM 3a. Under Assumptions 1, 2a, 3, and 4 there exists a unique 
invariant measure w* over H such that Tw* = w* and for all initial condi- 
tions, wO, we have w, + w*, where convergence is in the total variation norm 
and occurs at a geometric rate. Further, the empirical distributions of the 
realizations of actions a, and outcomes s, converge, with probability one, to 
distributions which are independent of initial conditions, and depend only 
on w*. 

Proof Our proof has four parts. First, in (i) we show that the operator 
T is quasi-compact. In (ii) we show that its adjoint is stable (in the sense 
of mapping continuous functions into continuous functions) which implies 
that T is equicontinuous and invariant probability measures, w*, exist. 
Next, in (iii) we show that the transition probability P, which underlies T, 
satisfies a uniqueness condition which ensures that w* is unique and that 
T’wO -+ w*. Finally in (iv) we show that the empirical realizations of 
actions and outcomes converge, with probability one, to those generated 
by the unique invariant distribution on histories, MI*. 

(i) By Theorem 4.9 of Futia [16] a Markov operator is quasi- 
compact if its transition probability satisfies Doeblin’s condition. Doeblin’s 
condition is that there exists a probability measure 6 on H, an integer m, 
and an 0 <a < 1 such that if GE H* and 6(G) d E then P”(h, G) Q 1 -E for 
all h, where P” is the mth iterate of the transition probability P. 

Let 6 be the probability measure generated on H in the case that all 
agents simultaneously make mistakes for k periods and set m = k, the 
length of agents’ memories. Set E = pk”/( 1 + pk”) where n is the number of 
agents in the system. Suppose 6(G) < E. Now 

Pk(h, G) < 1 - p%(G’); 

the probability of arriving in the set G after k periods is bounded above by 
one minus the probability that everyone makes mistakes in all k periods 
and the result of these mistakes is to take the system into its complement 
G’. Since 6(G) < E we have 6(G’) > 1 - E and so 

Pk(h, G)<l -p““(l --E)= 1 --E 

by our choice of E. Hence P satisfies Doeblin’s condition and T is quasi- 
compact. 
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(ii) Now we show that T is equicontinuous. By Futia [16, 
Theorem 3.33 given that T is quasi-compact, all we need to show is that its 
adjoint operator is stable. But Futia [ 16, Theorem 5.63 shows that such 
stability follows if the mapping Q, regarded as a mapping from histories to 
probability measures over outcomes, is continuous in the total variation 
norm. However this was shown in Lemma 1. 

(iii) Let ho be in the support of the probability distribution 6. Then 
for every neighborhood U of he we have 6(U) > 0 (otherwise we could find 
a set, excluding U, with probability 1, and exclude h, from the support of 
6, which is just the closure of the smallest subset of H with probability 1). 
Further, we have P“(h, U) > 0, since there is a probability pnk> 0 that in 
the last k periods all il agents have made mistakes and the current history 
is a random draw using the probability distribution 6. It follows that the 
transition probability P satisfies the uniqueness criterion given by Futia 
[16, Theorem 2.111. By (ii) the operator T is equicontinuous, hence by 
Futia [ 16, Theorem 2.123, there is a unique w* satisfying Tw* = w*. Since 
P satisfies Futia [ 16, Theorem 2.123 it clearly satisfies the generalized 
uniqueness criterion given by Futia 3.5 and so by Futia [ 16, Theorems 3.6 
and 3.73 we have that TfwO + w*, convergence being in the total variation 
norm, and at a geometric rate (there exists K, E >O such that Iw, - w*l < 
K/( 1 + E)‘). 

(iv) To show the convergence of average behavior in the model let 
BG A be a set of actions and let xs(u) be an indicator function, taking the 
value one if a E B and 0 otherwise. Let B,= C x,(a,)/T (t = 0, 1, . . . . T- 1) 
be the proportion of times the actual action taken is in the set B in the first 
T periods. 

Since a, is a random variable depending on the state h, we can think of 
B, as a random variable depending on h. Let the sequence of random 
variables xg(at) be written as X(T’w,), that is they have distribution X 
depending on w, = T’wo. Clearly, since each X lies between zero and one 
their expected values must be bounded. By Birkhoff’s ergodic theorem (see 
Brieman [4]) the convergence of w, to w* implies that for any sequence of 
random variables such that E( IX,1 ) < cc we have 

T-l 

,To X,/T-, E(XI w*) 

with probability 1. 

THEOREM 3b. Theorem 3a holds if we replace Assumption 2a with 
Assumption 2b. 
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Proof We show that T is random contraction. 

(i) Note first that since S is compact so is H (by Tychonoff’s 
theorem, see Dunford and Schwartz [9, Theorem 1.8.5-j). Hence 

sup d(h, h’) < CE 
h.h’ 

(ii) Let il be the probability measure defined on (S, S*) when all n 
agents make a mistake simultaneously. Clearly for any history h and 
measurable set of outcomes B, Q(h, B) Z p”,?(B). 

(iii) Let 

where d is the metric induced by our norm on H. It is easy to see that 
under the updating rule z, for the same outcome s, we have that d(z(h, s), 
z(h’, s)) = d(h, h’)/2 and, since for h #h’ we have d(h, h’) > 0, it follows that 
r = l/2. 

In addition note that since H is compact the operator T must be tight. 
It follows that T satisfies all the conditions of Futia [ 16, Theorems 6.11 
and 6.121, and w, = T’w,, converges to the unique invariant probability 
measure w* of Tat a geometric rate. The rest of the proof follows from the 
application of Birkoff’s ergodic theorem as in Theorem 3a. 

THEOREM 4. Under the conditions of Theorem 3, for any measurable real 
valued functions u and /I, the average of the actual realizations C cx(a,)/T and 

C B(sAlT (t = 0, 1, . . . . T - 1) converge, as T tends to infinity, with probability 
1, to E(a(a)) w*) and E@(s)) w*), respectively. 

Proof The result follows immediately from the application of Birkhoff’s 
ergodic theorem in a similar way as in the proof of Theorem 3. 

THEOREM 5. Zf S is compact then (under Assumption 2a or 2b, and 1, 3, 
and 4) the equilibrium correspondence, E: p -+ wp*, is upper hemi continuous, 
in the topology of weak convergence, at p = 0. 

Proof. We can write T, as T, = (1 - p)” T, + R,. With probability 
(1 - p)” no one makes a mistake and the operator acts identically to the 
model without mistakes. The operator R, represents the sum of the other 
2” - 1 operators which represent what happens under each possible com- 
bination of mistakes. Given a pattern of mistakes we can apply the 
appropriate operator to find the distribution over the new history. Each of 
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these operators has norm one in the uniform operator topology (see 
Dunford and Schwartz [9]) so, adding the weights on those that make up 
R, we have that R, is a linear operator with norm 1 - (1 - p)“. Hence 

IT,-T,ld2(1-(1-p)“). 

So Tp-+ T, as p-0. 
Let (p) be a sequence of positive probabilities which converge to zero. If 

S is compact so is H = Sk, for k finite, as is H = S” using the product 
topology, and it follows that the family of probability measures {w,*} is 
tight. By Billingsley [ 1, Theorem 1.11, a bounded measure defined on the 
Bore1 subsets of a metric space is regular; since H is metric the family (w,* } 
is regular. Billingsley [ 1, Theorem 6.11 shows that a tight set of 
probabilities is weakly sequentially compact where the weak topology is 
defined by the linear functionals w  + jf(h) w(A), with f continuous, and 
w  regular. It follows that w,* has a convergent subsequence, wJ, (in the 
weak topology), converging to w$ say. 

Restricting p to the converging subsequence q we have T,w,* = 
lim T,, w,* = lim T, wt = lim wt = w,*, where the limits (in the weak 
topology) are taken as q tends to zero. Hence, w$ is a fixed point of T,. 

Now suppose the equilibrium set is not upper hemi continuous (in the 
weak topology) at zero. Then we can find a bounded continuous function 
fand an .s>O such that IJf(h) wd(dh)-jf(h) w,*(dh)l >E, for every fixed 
point w$ of T,, for p arbitrarily small. If this is so we can construct a 
sequence (p) tending to zero for which this condition holds. By weak 
sequential compactness the infinite sequence (w,) has a convergent sub- 
sequence and, by the argument above, its limit, in the weak topology, is a 
fixed point of T,, a contradiction. Hence the condition Iff(h) w,*(dh) - 
1 j(f(h) w$(dh)l > E holds only for p bounded away from zero and our result 
follows. 

THEOREM 6. Under Assumptions 1 to 4 we have LX, -+ E(a(a)) where the 
expectation is taken relative to the invariant distribution w*. 

Proof: 

a, = plim i a(a,(j))/./ 
J+oOj=l 

hence, by the strong law of large numbers 

a,=E(z(a)Iwt)=j E(a(a)Ih)w,(dh) 
H 
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By Theorem 3 w, + w* in norm, hence 

j 
H 

E(a(a)Ih)wt(dh)+ jHE(z(a)lh)w*(dh)=E(a(a)lw*). 
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