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We study the evolution of the continuous-time replicator dynamics when payoffs 
are subject to aggregate shocks that take the form of a Wiener process. In the 
absence of “mutation,” the system need not have an ergodic distribution. With 
mutation, the system does have an ergodic distribution. In the limit as the mutation 
rate and the variance of the shocks converge to zero, this distribution concentrates 
on the risk-dominant equilibrium. This result is not, however, robust to changes in 
the underlying deterministic dynamics. Journal of Economic Literature Classification 
Numbers: C72, C73, C79. Q 1992 Academic PI~SS. 1~. 

I. INTRODUCTION 

Until recently, studies of evolutionary dynamics have used deterministic 
models, and in particular have focused on the adjustment process known 
as the replicator dynamics, in which the proportion of the population 
playing a particular pure strategy grows at a rate proportional to the 
difference between that strategy’s current payoff and the average payoff 
obtained by the population as a whole. All Nash equilibria are fixed points 
of these dynamics, and all strict Nash equilibria are asymptotically stable 
fixed points.’ Thus, the deterministic replicator model does not help in 
selecting between strict equilibria. 

* We thank Dean Foster, Peyton Young, George Mailath, Raj Parekh, and the referee for 
helpful comments, Glenn Ellison for able research assistance, and the National Science 
Foundation (Grant SES-9008770) for financial support. 

’ A strategy profile is a strict Nash equilibrium if each player’s strategy is a strict best 
response to the strategies of his opponents, i.e., all other strategies yield strictly lower payoffs. 
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Of course, results derived in deterministic models leave open the ques- 
tion of whether different conclusions obtain once stochastic influences 
are taken into account. This paper modifies the usual continuous-time 
replicator model by supposing that the payoff functions are subject to 
population-level or aggregate shocks that we model using Wiener 
processes. We exploit this specific stochastic system to make a number of 
points that we feel apply to the study of stochastic evolutionary models 
more generally. First, whether a stochastic evolutionary model has an 
ergodic distribution depends on apparently tine details about which it is 
difficult to have a very precise intuition. Second, in order to identify which 
stochastic models are most reasonable, it is better to introduce the stochastic 
elements at the level of the growth rates of individual populations than to 
introduce them directly at the level of the dynamics of population shares. 
Introducing the stochastic shocks at the more primitive level of the 
individual populations has the advantage of focusing attention on how the 
stochastic shocks are meant to be interpreted. In a model with a large 
population, such shocks are more naturally thought of as due to aggregate 
effects like the “weather” than as the results of individual-specific effects 
that might be expected to average out across the population. Another 
benefit of introducing the stochastic shocks at the level of the populations 
is that the implications of these shocks for the behavior of the population 
shares can be different than what intuition might suggest. 

Our paper follows previous work by Foster and Young [4] and 
Kandori, Mailath, and Rob [g], which suggests that it may be possible to 
discriminate between strict Nash equilibria by considering evolutionary 
models with stochastic shocks. More precisely, both papers consider 
stochastic models that have ergodic distributions-asymptotic distributions 
over strategies that are independent of the initial position of the 
system-and consider the limits of the ergodic distributions over strategies 
as the variance of the noise term converges to 0. The papers then identify 
a class of 2 x 2 games in which the limit distribution is concentrated at one 
of the game’s two strict Nash equilibria, namely the equilibrium which is 
“risk dominant” in the sense of Harsanyi and Selten [6]. 

Our paper is closer to Foster and Young, who were, as far as we 
know, the first to consider a stochastic-differential-equation model of 
evolutionary dynamics. Our paper differs from theirs in the following ways. 
First, Foster and Young add the stochastic shocks directly to the 
deterministic replicator dynamics for population shares. As we will see, 
once stochastic effects are taken into account, it is not clear that the 
deterministic part of the evolution of the aggregate state should be the 
same as if stochastic effects are absent. Second, while Foster and Young 
only determine the limit of the ergodic distribution for the case where the 
variance of the stochastic process is independent of the population shares, 
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our analysis suggests that the most neutral assumption is that the variance 
depends on the population shares in a particular way. That is, if the 
variance is constant at the level of the growth rates of the individual 
populations, it will not be constant in the derived system for population 
shares. Third, Foster and Young suppose that the boundary of the strategy 
simplex is reflecting, which they justify as an approximation of the effects 
of immigration and mutation. (As we explain in the concluding section, we 
do not believe that their model can be interpreted in this way.) Fourth, our 
basic model does not always have an ergodic distribution, and the 
asymptotic behavior of the system can depend on its initial conditions. In 
particular, it is not possible to choose between two strict equilibria by 
letting the variance of the noise term go to zero, since the limiting distribu- 
tion depends on the initial condition. (There is an ergodic distribution, 
however, when mutations are included in the model, and it converges to 
the risk-dominant equilibrium as the mutation rates and the variance of the 
noise term go to zero.) 

Kandori, Mailath, and Rob differ in considering a discrete-time system 
with a finite population size, where each individual “mutates” from one 
strategy to the other strategy with a fixed probability. Not only does this 
model have an ergodic distribution, but the limit of this distribution as the 
probability of mutations shrinks is concentrated at the risk-dominant equi- 
librium for any deterministic dynamics that is a sign-preserving transforma- 
tion of the replicator dynamics, i.e., so long as the population share playing 
a strategy tends to grow when that strategy does better than the population 
average. This striking conclusion is due to the fact that Kandori, Mailath, 
and Rob consider a system which can make discrete jumps: When the 
probability of mutation is low, the system spends most of its time at the 
two strict equilibria, with shifts from one equilibrium to the other 
occurring when enough individuals mutate simultaneously to shift the state 
of the system to the region where the other strategy is a best response. The 
limit of the ergodic distribution is determined by the relative probabilities 
of the shifts from one equilibrium to the other, which depends only on the 
relative sizes of the equilibria’s basins of attraction, and not on the speed 
of adjustment in each basin. In contrast, the limit of the ergodic distribu- 
tion in our model (when one exists) does depend on the exact form of the 
deterministic dynamics. Intuitively, the likelihood that a Wiener process 
will be able to “swim upstream” k meters against a deterministic flow 
depends both on the distance k and on the strength of the flow, while the 
probability that a discrete-time system jumps k or more meters “over the 
flow” in a single period depends on k but not on the strength of the flow. 

This explains the differences in the generality of the models’ conclusions, 
and suggests that long-run behavior may depend on the precise form of the 
deterministic dynamics in any model with continuous sample paths. 
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II. THE MODEL 

This section develops a stochastic version of the continuous-time 
replicator dynamics that we call our “preferred model.” We begin by 
reviewing the deterministic replicator dynamics. Consider a symmetric two- 
player game with n pure strategies sl, . . . . s, and payoff function u( .,.). We 
suppose that there are n different populations or phenotypes of players, 
with every member of the ith population genetically coded to play si. Each 
population contains a continuum of infinitesimal individuals. The size of 
the ith population is rir r = (rl, . . . . r,) is the vector of population sizes, and 
the total size of the population is R=Ciri. 

The model evolves over time as follows. Individuals are repeatedly 
matched with a randomly chosen opponent to play the stage game. Let 
ui(r) = cj U(Si, s,) rj/R denote the expected payoff of an individual of type 
i when matched against a randomly chosen member of the population. 
Then we assume that 

dr,(t)/df = r,(t). u,(r(t)), (1) 

where r(t) is the vector of population sizes at time f. If we then define 
di= ri/R to be the proportion of type-i individuals, and note that u; is 
homogeneous of degree 0, we can compute: 

Lh;(t)/dt=d,(t)~ 
[ 

u;(~(t))-C~j(t)Uj(3(f)) . 1 (2) 
j 

Equation (2) is the deterministic replicator dynamics. 
For future reference, we note that in the case of only two strategies, (2) 

simplifies to 

d~t(t)ld~ = a,(t) 4f)CU,(4f)) - %(4f))l. (3) 

Before introducing the aggregate shocks, it may be helpful to review a 
few key features of the deterministic model. The standard interpretation of 
(1) is that individuals reproduce asexually, and that the number of their 
offspring is determined by their payoff in the game. Under this interpreta- 
tion, (1) describes the net growth rate of the populations, i.e., the difference 
between the birth and death rates, so negative growth rates correspond to 
situations in which deaths outnumber births. Of course, actual populations 
are finite; (1) is intended to describe the limit behavior of a discrete- 
population process in which players from the various population are 
randomly matched to play the game. Intuitively, the randomness created 
by the random-matching process will “average out” by a law of large 
numbers, so that the continuum-of-players limit will be deterministic. 2 The 

* Boylan [3] provides conditions under which the solution to (1) approximates the limit 
behavior of a finite-population, discrete-time, random-matching evolutionary model, where 
the time period shrinks to zero as the number of players tends to infinity. 
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same large-numbers intuition suggests that any stochastic effects that 
are i.i.d. across individuals will average out as well. In particular, i.i.d. 
“mutations” would not lead to a stochastic continuum-of-players limit, and 
any stochastic effects that persist in the limit must stem from shocks that 
are correlated across individuals. 

Note finally that for any j the boundary point 9, = 1 is a steady state of 
(2) for any specification of the payoff functions. 3 (This is because a popula- 
tion with zero members cannot grow by reproduction.) These boundary 
points will be steady states in our stochastic model as well, which is one 
way of explaining why we will not encounter difficulties in describing the 
behavior of the system near the boundary. 

Now suppose that we wish to introduce the possibility of stochastic 
shocks. One way to do this is to add a stochastic disturbance directly to 
(2), which is the method used by Foster and Young. In our opinion, such 
an approach has two drawbacks. The first one is primarily technical: If, as 
in Foster and Young, one adds a Wiener process with constant variance to 
Eq. (2), the resulting solutions can have negative population shares, so that 
some additional changes are required for the model to be well defined; our 
method avoids these complications. Second, under the biological inter- 
pretation of the replicator dynamics, it is (1) that is fundamental, so that 
it is easier to interpret and evaluate changes to it than changes to the 
derived (2). 

For these reasons, we prefer to add the disturbance to (l), and then 
derive the analog of (2). Let W be an n-dimensional Wiener process with 
unit variance and 0 covariance. Then suppose that r is an Ito process, with 

dr,(t)=ri(t).[ui(r(t))dt+a,dWi(t)]. (1’) 

Note that the term o,dW, is added to the expected payoff ui(r) of an 
individual of type i and is not added directly to dri. For this reason, the 
population size ri will remain positive for any realization of Wi. The inter- 
pretation of (1’) is that the payoff to playing strategy i is subject to an 
aggregate shock, say due to the “weather.” The equation incorporates the 
restrictions that the shock on each strategy i is independent of which other 
strategy it is matched with, and that the shocks on different strategies are 
independent. 4 

3 Strategies that are not Nash equilibria are unstable steady states. 
4To emphasize this point, consider for the moment a more general model in which the 

payoff to playing strategy i against strategy j is u(s,, s,) + dV,(r)/dr, where dV(t)/dt is a matrix 
of possibly correlated payoff shocks. The model of this section is then the special case in which 
dV,(t)/dr = dV,(r)/dr for all i, j and k, and dVo(r)/dr and dV,,(r)/dr are independent for all 
i# k. We believe that main points would still emerge without these restrictions, but we have 
not verified that this is the case. 
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Now we want to use (1’) to compute the analog of (2). To do this, we 
write a;(t) =fj(r(t)) = r,(t)/R(t), and apply Ito’s lemma to obtain 

ddi=c [8f,(r)/ar,] dr,+iC [a%(r)/&,&-,] drjdr,, (2’) 
i 1.k 

where dr, drk = rj a; dt if j = k, and 0 otherwise. 
When there are only two pure strategies, substituting in for the partial 

derivatives of L in (3 ) and simplifying yields 

d5, = il, +[(u1(.3)- uz(d)) dt + ( a:ci,-a:a,)dt+a,dW,-o,dW,] 

=31”12[(~l(d)-~Z(~))df+(~:32-~:~,)dr+~d~)], (3’) 

where u = jqz, and m= ( W, - W,)/a is a standard Wiener process. 

Let us discuss this equation before proceeding. The first term inside the 
square brackets, (u,(d) - u*(g)) dt, says that til tends to increase when 
strategy 1 does better than strategy 2; this term is familiar from the deter- 
ministic dynamics. The deterministic term (o:o, - 6:~~) dt is not present in 
Eq. (2), and does not arise if the stochastic shocks are added directly to 
that equation. This term, which says roughly that if ti, gets large the 
stochastic shocks in the system will tend to make it smaller, arises for the 
following reason: For fixed r2, the function g,(r,) = rl/(rl + r2), which 
maps [0, 00) to [0, 11, is concave for r, > r2, so by Jensen’s inequality the 
expected value of g,(r, ) is less than g, applied to the expected value of rl . 
Likewise, g, is convex for r, =c rz. 

The third term in square brackets represents the direct effect of the 
current shock. Finally, note that, as in (3), each term inside the square 
brackets in (3’), including the stochastic term (T d@, is multiplied by a,+. 
Thus, the boundary points are steady states of the stochastic process, and, 
if the process begins with positive shares for each strategy, the boundaries 
will never be reached in finite time. 

III. ASYMPTOTIC BEHAVIOR 

This section analyzes the asymptotic behavior of the system represented 
by (2’), with particular emphasis on when the model has an ergodic dis- 
tribution, and when instead the system is eventually absorbed at a steady 
state. 

4 a b, c 

El 
c, b d, d 

FIGURE 1 
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Suppose that the payoff matrix is as in Fig. 1. We distinguish three cases: 

(i) The case of a strictly dominant strategy. If a > c and b > d then 
strategy 1 strictly dominates strategy 2. Similarly, if a < c and b < d then 
strategy 2 strictly dominates strategy 1. 

(ii) The coordination case. If a > c and b < d then the game has 
three Nash equilibria: two pure-strategy equilibria at 4, = 1 and d, = 0, and 
a mixed-strategy equilibrium at 3: = (d - b)/( (d - b) + (a - c)). 

(iii) The case of a mixed-strategy equilibrium. If a < c and b > d then 
the unique symmetric equilibrium is a mixed-strategy equilibrium at 
4: = (d - b)/( (d - b) + (a - c)). (There are also two asymmetric pure- 
strategy equilibria, but these are not relevant in our setting.) 

Aside from borderline cases, these cases are exhaustive. 
Our main finding for these cases are as follows. In the case of a strictly 

dominant strategy, the deterministic replicator dynamics converge to this 
strategy. This is true of the stochastic dynamics (3’) as well, provided that 
the variances u: and 0: of the shocks are sufficiently small. The basic 
reason for this is that when 0: and 0: are small, the contribution that 5: 

and C$ make to the deterministic part of the dynamics is swamped by the 
contribution made by the payoffs, resulting in an unambiguous flow in the 
direction of the strictly dominant strategy. Since the variance of the 
stochastic part of the dynamics tends to zero as the strictly dominant 
strategy is approached, the stochastic dynamics converge to this strategy. 
(Because the deterministic part of the dynamics also tends to zero as the 
strictly dominant strategy is approached, the exact argument is somewhat 
more complex. The result depends, roughly speaking, on the ratio of the 
deterministic and stochastic parts.) 

In the coordination case, the deterministic replicator dynamics converge 
to til = 1 if the initial state a,(O)> a:, and to d, = 0 if the initial state 
41(0)<61*. If g,(O)=,lf, then the system remains at the unstable steady 
state a:. The stochastic dynamics are similar: Provided that UT and C: are 
suff%iently small, the solution to (2’) converges to one of the pure-strategy 
equilibria with probability one. The main difference with the deterministic 
dynamics is that each of the pure-strategy equilibria is reached with 
positive probability. This difference disappears, however, as VT and C: go 
to zero. For example, if d,(O) > 4: then the probability that our stochastic 
dynamics converge to til = 1 goes to 1 as 0: and C: go to zero. 

The intuition for this case builds on that for the case of a strictly domi- 
nant strategy. In that case there is a single strict equilibrium that acts as 
a stable attractor for the stochastic dynamics. In the coordination case 
there are two strict equilibria, each of which acts as a stable attractor. 
Either attractor may “capture” the system; which one does will depend on 
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the stochastic shocks. Finally, as r~r and gZ go to zero, the shocks become 
relatively unimportant in determining which attractor captures the system. 
Our conclusions here are in contrast to those of Foster and Young, and 
Kandori, Mailath and Rob, who both obtain an ergodic distribution in this 
case. 5,6 

In the case of a mixed-strategy equilibrium, the deterministic replicator 
dynamics converges to 4: from all starting points. Our stochastic dynamics 
possess an ergodic distribution, to which the system settles down from all 
starting points. Moreover the ergodic distribution collapses to a point mass 
at ~1: as 0, and o2 + 0. Our dynamics possess an ergodic distribution for 
two reasons. First, at the boundaries 5, = 1 and bl = 0 the contribution of 
the payoffs to the deterministic part of the dynamics and the contribution 
of C: and 0: both point towards the interior of [0, 11. Hence the system 
cannot get stuck at a boundary. Second, the stochastic part of the 
dynamics has positive variance at all interior points, so the system cannot 
get stuck at an interior point either. 

In order to establish these claims, we shall exploit results of Gihman and 
Skorohod [S] and Skorohod [9]. In order to state these results, let 
do1 = a(d,) dt + fl(bi) dm be a stochastic differential equation on the inter- 
val (0, l), and let d,(O) be its initial position. Fix an arbitrary z E (0, l), and 
introduce the quantities 

P(YM*(~)~ & 1 dx, 

12=J+’ exp[ -SX CWYYB*(Y)~ & dx> 
91(O) i 1 

and the function 

2 
W-4 =m w CWYM*(Y)I dy .’ 1 

According to Theorem 16.1 of Gihman and Skorohod [ 5, p. 1191, the main 
features of the asymptotic behavior of the system can be deduced from the 

’ Foster and Young compute the ergodic distribution only for the case b = c. 
6 Both Foster and Young, and Kandori, Mailath and Rob, consider only the coordination 

case. 
’ Note that replacing z by z’ in the formulae for I,, I,, and M has the effect of multiplying 

the exponential term by a constant which is independent of x. The arguments below depend 
on whether I, and I, are finite, on their ratio, and on the relative size of M at various X, and 
all of these properties are invariant when z is changed. 
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properties of I, and I,. * Specifically, if I, is infinite and I, is finite, then 
the system converges to 1 almost surely: if I, is finite and Z2 is infinite, 
then the system converges to 0 almost surely; if II and Z2 are both finite, 
then the system converges to 1 with probability Zr/(Z, + f2) and to 0 with 
probability ZJ(Z, + I,); and if I, and Zz are both infinite, then the system 
oscillates forever, with 

Prob{lim inf til(f) =Oj = Prob{lim sup tlr(t) = 1) = 1 
r-m ,--rZC 

Also, according to Theorem 1.17 of Skorohod [9, p. 481, the description 
of the asymptotic behavior of the system can be refined in the case where 
I, and I, are both infinite by using the properties of M.9 Specifically, if I, 
and Z, are both infinite and Sh M(x) dx is finite, then the system has 
a unique ergodic distribution with density M(x)/jA M(w) dw, and the 
distribution of err(t) converges to this ergodic distribution as t + cc. 

We can now establish 

PROPOSITION 1. (i) rf a-c>(of-(r:)/2 and d-b<(ai-a:)/2 then 
ti,( t) + 1 as t + 00 with probability 1. 

(ii) Zf a-~<(a:-a:)/2 and d-b>(c:-r$)/2 then Cjl(t)-+O as 
t -+ CC with probability 1. 

(iii) Zf u-c>(c7:--af)/2 and d-b>(ai-a:)/2 then J1(t)+ 1 as 
t + cc with probability I, J(Z, + Z2) and d,(t) + 0 as t -+ co with complemen- 
tary probability. 

*The theorem quoted is actually developed for processes on the whole real line, whereas 
our process is confined to the unit interval. That a parallel theorem applies to our process can 
be seen in at least two ways. First it can be checked that Theorem 15.4 of Gihman and 
Skorohod [S, p. 1101 applies to the unit interval, and that the proof of Theorem 16.1 there- 
fore extends as well. Secondly, one can consider the process 3’, given by the formula 2, = 
ln(j,/( 1 - 9,)). By Ito’s lemma, the process ?, satisfies the stochastic differential equation 

But Theorem 16.1 of Gihman and Skorohod applies to 2, in the case in which we are 
interested, namely Eq. (2’): a(dr) and b(dl) both include the factor dr(l -3r), and so the 
standing regularity conditions of Gihman and Skorohod, namely linear boundedness and 
Lipschitz continuity, are satisfied. Hence the relevant features of the asymptotic behavior of 
3, can be determined by reference to integrals 7, and 7,. Finally, it turns out that there is a 
scalar k > 0 such that I, = kf, and I, = kr2. (This can be verified by changing the variables of 
integration in 7, and 71 twice in the natural way.) 

’ Once again, the theorem quoted is actually developed for processes on the whole real line. 
This difftculty can be overcome in exactly the same way as in the preceeding footnote. 
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(iv) rfa-~<(a:-a:)/2 and d-b<(of-a:)/2 then 

Prob{liminf~,(t)=O} =Prob{limsup~,(t)= l> = 1. 
t-m I + rx ,x7 

Moreover, the system possesses a unique ergodie distribution, to which the 
distribution of gl(t) converges as t -+ CO. 

Part (i) of the proposition shows that, if strategy 1 is strictly dominant 
and if c1 and cz are sufficiently small, then our stochastic dynamics con- 
verge with probability one to strategy 1. Part (ii) establishes the analogous 
result for the case when strategy 2 is strictly dominant. Part (iii) shows 
that, if the coordination case obtains and if CT, and c2 are sufficiently small, 
then our stochastic dynamics converge with probability one to one of the 
two strict equilibria, and that each equilibrium is reached with positive 
probability. Part (iv) shows that, in the case of a mixed-strategy equi- 
librium our stochastic dynamics possesses an ergodic distribution. 

More generally, the proposition shows how the qualitative features of the 
asymptotics of our stochastic system, such as the existence or non-existence 
of an ergodic distribution, depend in relatively subtle ways on the inter- 
action between the payoffs of the game and the size of the shocks to the 
system. It also shows that such qualitative features may be sensitive to the 
choice of stochastic system. For example, the systems of Foster and Young, 
and Kandori, Mailath and Rob both possess ergodic distributions irrespec- 
tive of the exact configuration of payoffs. 

Proof: Substituting the payoff matrix into (3’) and eliminating 
g2= l-3, yields 

a(aI)=ti,(l -ti,)[a:(l -r1~)--~~f3~+ti,(a-c)+(1-3,)(b-d)], 

and 
P(~1)=31(1-~*)~. 

Substituting these values of a and /I into the definitions of I, and Z2 yields 

1, = j"'"' exp [ - j-' 2[a:(l-y)-a:y+(a-c)y 
0 T 

- Cd-b)(l - ~)llC~~y(l- y)l dy 1 dx 

z2=[>:,o,exP[ 4: 2[41 -y)-f++(a-c)y 

- (d- b)( 1 - y)llCa2y( 1 - y)] dyl dx. 
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To evaluate these integrals, note that the inner integral can be integrated 
exactly to obtain 

-2(a-c-fJ:)ln l-x - - 
CT2 ( 1 1-Z 

2(d-b-fJ;)In 5 
a2 ( >. z (4) 

Hence 

zI =I”(“’ (x/z)2C~-~--o:1/~Z[(1 vx)/(l ~z)]2~~-~-d1/~zdx~ (5) 
0 

But (5) is finite if and only if 2[d- b - u:]/o’ > - 1, i.e., if and only if 
d-b> (a:-crf)/2. Similarly, (6) is finite if and only if a-c> (a: -0:)/2. 
This establishes parts (i), (ii), and (iii), and the first part of (iv). (Note that 
we only need a - c < (0: - 0:)/2 and d- b < (a: - a:)/2 for the first part of 
(iv).) 

Proceeding as for I, and Z,, one obtains 

2[-+d+b]/oz 

So j; M(x) dx < 00 if and only if 2[-a:-d+b]/a2> -1 and 
2[-as-a+c]/a2> -1, i.e., if and only if d-b<(ai-a:)/2 and 
a - c < (0: - 0:)/2. This establishes the second part of (iv). 1 

Proposition 1 has established the basic asymptotics of our stochastic 
dynamics. However, in the coordination case it tells us only that the system 
converges to one of the two strict equilibria with a probability depending 
on the initial condition, and in the mixed-strategy case it tells us only that 
the system possesses an ergodic distribution. Proposition 2 which follows 
examines the behavior of the probability with which a given equilibrium is 
reached in the coordination case, and the behavior of the ergodic distribu- 
tion in the mixed-strategy case, as (TV and o2 go to zero. 

PROPOSITION 2. Suppose that a > c and b < d (the coordination case). 
Then 

(i) Zf dl(0) > (d- b)/[d- b + a - c], the probability that the system 
converges to strategy 1 converges to 1 us (a,, az) -+ (0,O). 

(ii) Zf LJ~(O) < (d- b)/[d- b + u-c], the probability that the system 
converges to strategy 2 converges to 1 us (a,, a2) + (0,O). 
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Suppose, on the other hand, that a -C c and b > d (the mixed-strategy case) . 
Then : 

(iii) The ergodic distribution converges to the degenerate distribution 
that assigns unit mass to the unique mixed strategy equilibrium. 

These conclusions show that, as 6, and a2 become small, the behavior 
of the stochastic system comes to resemble that of the deterministic 
replicator dynamics more and more closely. 

Proof: We begin with cases (i) and (ii). Note first that the integrands 
in (5) and (6) for I, and Z2 are the same, and are proportional to 

f(x; aI, a2) = [xdpbeof( 1 - x)“-c-o:]2/u2 = g(x; al, a2)2/u2, 

say. Second, because a > c and b cd, I, and I2 are both finite for a,, a2 
sufficiently small. (Cf. the proof of Proposition (iii)). It follows that 
f( .; ai, az) can be thought of as the unnormalized density of a random 
variable on [0, 11. The ratios Z,/(Z, + Z,) and Z,/(Z, + Z2) are then the 
probability that this random variable lies in the intervals [0, cli(O)] and 
[di(O), l] respectively. Hence, to establish parts (i) and (ii), it will suffice 
to show that the distribution of this random variable converges to a unit 
mass at tif=(d-b)/(d-b+a-c). For this implies that if rii(O)<J: then 
the probability that the random variable lies in [0, (I,(O)] converges to 
zero, and if dr(O) > d? then the probability that the random variable lies in 
[0, d,(O)] converges to one. 

To this end, fix E > 0. Since g( . ; 0,O) has a unique maximum at 
ilf, ( = g(df; 0, 0) - max{g(a: - 2s; 0, 0), g(ilf + 2s; 0, 0)} > 0. Since 
g(.;a,,a,)+g(.;O,O) uniformly as a1,a2-+0, we may find 6>0 
such that: 6<s; g(x;a,,a,)ag(cl:;O,O)-l/3 for all x~[n:-8,3T+h] 
and all \(a,, a2)j ~6; and g(x; a,, a2) < g(d I* ; 0,O) - 2[/3 for all 
x~[O,rli’-22~]u[a:+2~, 11. It follows that 

min xE~J;--6.J;+6,f(x;a1,a2) 

rnax,e [O, +-Z&l” [J; +2E.Ijf(x;al,a2) ’ 

for all ](a,, a2)] < 6. Since the right-hand side of this inequality tends to 
infinity as a,, a2 + 0, we conclude that all the mass of the distribution 
corresponding tof(x; a,, a2) concentrates in the interval [d: - 2s, 5: + 2~1 
as ai, a2 + 0. Since E was arbitrary, this completes the demonstration of 
parts (i) and (ii). 

A similar argument applied to the unnormalized density M establishes 
part (iii). 1 

Note that Proposition 2 and the discussion immediately preceding it 
shows that the limiting behavior as the variance shrinks does not depend 
on the ratio of a, to a2. 
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IV. DETERMINISTIC “MUTATION” RATES 

We call the system represented by (2’) our “preferred” model because it 
adds aggregate stochastic shocks to the replicator dynamics in a way that 
we find natural. However, stochastic shocks are far from the only change 
to the replicator dynamics that one might want to consider. This section 
further alters the replicator dynamics to capture the possibility of mutation. 
We think of mutations as being independent between the many individuals 
in the population. This being the case, mutation is best modelled as a 
deterministic flow between strategies, as in Boylan [ 11. 

More precisely, suppose that each individual of phenotype i has a finite 
flow probability of mutating into each phenotype j# i. Then, because there 
is an infinite number of individuals of phenotype i, there will be for each 
j# i a deterministic flow from phenotype i into phenotype j equal to the 
flow probability for mutations of i into j times the total number of 
individuals in phenotype i. In the case of two phenotypes, if Ai is the flow 
probability that an individual of phenotype i mutates into an individual of 
phenotype 3 - i, then the ith population satisfies the stochastic differential 
equation 

dri= ri(ui(r) dt + oi dW,) - Airi dt + E,r, dt. (7) 

Note that this specification is appropriate for reproduction-independent 
mutations. lo With reproduction-dependent mutations it would be better to 
model mutation by a deterministic flow from phenotype i to phenotype j 
proportional to the gross rate of reproduction of phenotype i. I1 Such a 
model would be interesting, but complex, as it would require that separate 
processes be introduced to model births and deaths, both of which would 
have to be positive-valued. (Note that the above does nor suggest that the 
mutation rate should apply to the net growth rate dr,/dt.) 

Returning to the system (7) we define 4, = rl/(r, + rz) to be the popula- 
tion fraction playing strategy 1, and use Ito’s lemma to compute 

+ s1g2cs, dW, - 3, 32c2 dW, 

lo Reproduction-independent mutations include those caused by mutagen damage 
(including chemical and spectral mutagens) and those caused by mobile genetic elements 
(including those associated with plasmids, transposons, viruses, and phages). 

” Reproduction-independent mutations occur because replication of DNA is error-prone. 
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= ~(6~) dt+ fi(dI) dm, 

say, where dm is a standard Wiener process. 

(8) 

Inspection of (8) shows that the mutation terms A, and 1, enter in two 
ways, once scaled by a, g2 along with the payoffs, and once not so scaled, 
so that, e.g., the term &cii does not vanish at the boundary 3, = 1, but 
rather points inwards. Thus the population will never converge to the 
boundaries. The deterministic part of the system may vanish in the interior 
of the interval, but here the variance is bounded away from zero. So we 
would not expect the population to converge to an interior point either, 
and hence we expect that (8) will have an ergodic distribution for any 
specification of the stage-game payoffs. Proposition 3 shows that this is the 
case. 

PROPOSITION 3. The process corresponding to (8) has an ergodic distribu- 
tion for all c,, (T? > 0 and all A,, 1, > 0. Moreover the distribution of b,(t) 
converges to this ergodic distribution as t -+ co. 

Proof: As above, we need to show that I, and I2 are both infinite, and 
that JAM(x) dx is finite. To this end, note that 

4Y)/B2(Y) = Ml - Y)Coi(l - y) - o:y + (a - c) y 

- (d- b)(l - Y) + 12 - &I+ A,(1 - Y)~ - 2, y2]/[o;y2(l - y)21. 

The largest contribution to a( y)/p’( y) in the neighborhood of zero comes 
from the term A,( 1 - y)2 in the numerator, and is of order l/v2. It follows 
that the integral of LY( y)//?‘( y) 
order s;(O) 

is of order - l/x, and therefore that I, is of 
exp( l/x) dx. That is, I, is infinite. Similarly, I, is infinite. 

Arguing in the same way we conclude that M(x) is of order 
exp( - l/x)/x2 in the neighborhood of 0 and of order exp( - I/( 1 -x))/ 
(1 -x)* in the neighborhood of 1. So 1; M(x) dx is finite. m 

Proposition 1 characterized the long-run behavior of the stochastic 
dynamics (3’). Proposition 3 characterizes the long-run behavior of the 
stochastic dynamics with mutations (8). Comparison of the two proposi- 
tions shows how a small change in the dynamics-in this case the introduc- 
tion of arbitrarily small mutation rates L, and I,+an have a significant 
impact on long-run behavior. The contrast between the two propositions is 
greatest in the coordination case. In that case the long-run behavior of (3’) 
depends on the initial state, whereas the long-run behavior of (8) does not. 

h4?‘57,‘?-12 



434 FUDENBERG AND HARRIS 

One way of understanding why, in the coordination case, there is an 
ergodic distribution for any positive i, and A2 but for A1 = 2, = 0 is to note 
that for a fixed small 0, the expected transit time from one basin of attrac- 
tion to the other grows without bound as 1, and & go to zero. Thus the 
behavior of the system until a fixed finite time T is continuous at the limit 
2,) L2 = 0; it is the asymptotic behavior that changes discontinuously. 

The reason that the expected transit times increase at the L’s shrink is 
that this causes the stable steady states of the deterministic part of (8) to 
approach the boundary, and the process is likely to travel to the 
neighborhood of the “nearby” steady state before transiting to the basin of 
the other one. Thus for small 2r and LZ the process is likely to approach 
very near the “nearer” boundary before reaching the other basin, and near 
the boundary the replicator dynamics evolve very slowly. This raises the 
question posed by Ellison [3] in his critique of the work of Kandori et al.: 
For plausible parameter values, does the system converge to its ergodic dis- 
tribution fast enough for that distribution to be relevant? We will return 
to this question after Proposition 4 below, which determines the limit of the 
ergodic distribution for the coordination case as the mutation rates and the 
variance of the shocks both converge to zero. 

Propositions 1 and 3 show that obtaining an ergodic distribution in 
a modified version of the replicator dynamics requires both some noise at 
the aggregate level and a force that keeps the system away from the 
boundaries. I2 Aggregate shocks to payoffs do not satisfy the second 
requirement, as we have seen. Aggregate shocks with constant variance at 
the level of the population shares, a case considered by Foster and Young, 
provide a probability of moving in from the boundaries, but they also imply 
a positive probability of reaching the boundary in finite time, which poses 
difficulties we discuss in the concluding section. 

It is interesting to note that in the finite-population model of Kandori, 
Mailath, and Rob, stochastic mutations satisfy both requirements: They 
add aggregate noise to the system, and keep it from being absorbed at the 
boundaries. This highlights an important difference between shocks to 
payoffs and shocks that operate directly on the strategies players use: The 
former will have little impact at states in which all players are currently 
using the same strategy, while the latter need not be expected to vanish at 
such states. l3 

Returning to the analysis of (S), one can compare the asymptotic 
behavior as r~r and o2 go to zero with that of system (3’) when (T, and g2 

‘* Actually it suffices that the system be kept away from one of the boundaries: If the other 
one is absorbing, the ergodic distribution will concentrate there. 

I3 Kandori et al. specify the mutation process at the individual level, and then derive the 
associated aggregate process, so that they do not encounter the boundary problems that 
complicate Foster and Young’s model. 
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go to zero, as summarized in the remarks following Proposition 1 and in 
Proposition 2. Fortunately, the ergodic distribution of system (8) always 
has a limit as g1 and c2 go to zero, so the behavior of system (8) in this 
limit is well defined. The limiting distribution does, however, depend on i, 
and A, in general. The most concise way in which to make the comparison 
is therefore to compare the iterated limit in which first 0, and (T* and then 
1, and 1, go to zero in system (8) with the limit in which C, and o2 go 
to zero in system (3’). 

The iterated limit of the ergodic distribution of system (8) is easy to 
calculate in the cases of a strictly dominant strategy and of a mixed- 
strategy equilibrium: In the former case it is the strictly dominant strategy, 
and in the latter it is the mixed-strategy equilibrium. In the coordination 
case the general iterated limit defined above is not well defined. If, however, 
one requires that A, and A2 go to zero in such a way that the ratio between 
them remains fixed, then the iterated limit does exist, and corresponds to 
the risk-dominant equilibrium. 

From this perspective, then, the behavior of the system (3’) as cr, and g2 
to zero is very close to that of system (8) when 0, and CJ~ go to zero in the 
cases of a strictly dominant strategy and of a mixed-strategy equilibrium. 
In the coordination case, on the other hand, the two systems behave very 
differently. Letting gI and oz go to zero in system (3’) leads to the selection 
of an equilibrium based on the initial condition, whereas letting O, and (T? 
go to zero in system (8) (and then letting A, and ;Lz go to zero, holding 
their ratio fixed) leads to the selection of the risk-dominant equilibrium 
independently of the initial condition. So we see once again how a small 
change in the dynamics can have a significant impact on the analysis. 

We do not give precise statements or proofs of these results concerning 
the iterated limit of the ergodic distribution of system (8). The results for 
the cases of a strictly dominant strategy and of a mixed-strategy equi- 
librium are unsurprising; the results for the coordination case are a 
corollary of Proposition 4 below. 

We pursue instead a slightly different line of thought. The overall effect 
of adding noise and mutations to the deterministic replicator dynamics is 
to ensure that the long-run behavior of the system can be described by an 
ergodic distribution independent of the initial condition. How does this dis- 
tribution behave as the perturbation which gave rise to it is made small? 
The answer is contained in Proposition 4. 

PROPOSITION 4. Suppose that a > c and d > b (the coordination case). Fix 
p,,pz>O, and assume that A1=pll and lz=p21, where A>O. Let 
I7( .I (T,, 02, A,, &) denote the ergodic distribution of ~1,. Then 
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(i) apoint mass on n, = 1 ij-a-c>d-b; and 

(ii) a point mass on :I, =0 ifa-c<d-b. 

That is, the ergodic distribution collapses to a point mass on the risk- 
dominant equilibrium when we let 0, , g2, I,, and A2 go to zero, provided 
that the ratio of J., to L2 is held fixed. (Actually, as the proof will make 
clear, all that we really require is that the ratio of i, to A, remains bounded 
away from zero and infinity.) 

It is interesting to compare Proposition 4 with the result obtained by 
Kandori, Mailath, and Rob for the coordination case in their discrete-time, 
finite-population model. They found that the ergodic distribution collapses 
to the risk-dominant equilibrium as the probability of individual mutation 
goes to zero. Proposition 4 shows that the ergodic distribution collapses to 
the risk-dominant equilibrium as the probability of individual mutation 
and the size of aggregate shocks go to zero; moreover, this is true irrespec- 
tive of the order in which limits are taken. Proposition 4 therefore supports 
their conclusion by obtaining a closely related result in a different model. 
The support lent by Proposition 4 is, however, qualified: The result of 
Kandori, Mailath, and Rob is robust to sign-preserving changes in the 
underlying deterministic replicator dynamics, but this is not true of 
Proposition 4. For example, it is easy to see that if we replace ui(s) - z+(s) 
by f(u,(s) - u2b), s) in (81, where f( ., s) is a strictly increasing function 
such that f(0, S) = 0 for all s, then the equilibrium selected will depend on 
f as well as the payoffs a, b, c, and d. 

Proof We treat the case in which a - c > d - b. Recall that 

with ZE (0, 1) fixed. Noting that 

1 1 
p’o = a2x2( 1 - x)’ 

=Lexp[2/‘[&-b]dy--2ln[z(I-z)]]. 
a2 

if follows that M(x) is proportional to 

ew 
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say, where 

w=&J4+~2Cy2(l -y)-y(l -yJ21 

=y(l-y) (a-c+ai)?,-(d-b+cJ?)(l -.y)+$+ 
[ I Y ’ 

and F(Y)= ~(1 -Y). 
Evaluating the integral defining h, and choosing z appropriately, we may 

take it that 

/z(y)= -(a-c+a:+E.,-i,)ln(l -I’) 

-(d-b+a~+,!,-1W2)lny-12/y-1.,/(l-y). 

It can also be shown that, for (T,, a2, E,, , and J2 sufficiently small, 
~Z(y)/fl*(y) has precisely three zeros: 0 < Y, < Y, < Y, < 1. So h is strictly 
increasing on [0, Y,] and on [ Y2, Y,], and strictly decreasing on 
[Y,, Y,] and on [ Yj, 11. Moreover Y,, Y,, and Y, are asymptotically 
equivalent to n&d-b), (d- h)/(d- b + a - c), and 1 - 2,/(a - c), respec- 
tively, when CT,, a2, 1, and A, -+ 0. So h( Y,) and h( Y,) are asymptotically 
equivalent to (a-c)log(l/2,) and (d-h)log(1/1,) when a,, a2, 2, 
and E., + 0. And these expressions in turn are asymptotically equivalent to 
(a-c) log(l/A) and (d-6) log(l/l) when a,, a*, and A+ 0 (in other 
words, when we take account of the additional assumption that the ratio 
of A, to A, is fixed). Since a - c > d - 6, we conclude that Y3 is the global 
maximum of h. (Note that this maximum becomes more pronounced as 2 
gets smaller.) 

Let Xi be the unique point in ( Y,, Y,) such that h(X,) = h( Y,). Let 
X2 = 1 - 1, Y1/A2. Since Y, is asymptotically equivalent to A,/(d- b), X, is 
asymptotically equivalent to 1 - I,/(d- b). Hence we may take it that 
X2 E (Y,, Y,). Next, from the formula for h we obtain 

as .s = max{af, a:, Ai, %,} + 0. Also, 

/2(X,) = (a-c) In 
1 A, ( > - 

l-X, 
-l-x + O(E log E) 

2 

I 
A2 

=(a-c)ln - ( > -$+O(ElogB) 
J,Y, 1 
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as E + 0. Hence, bearing in mind that the ratio 2,/A, is fixed, h(X,) > h(X,) 
for all E sufficiently small, and we may take it that XZ > X,. It can be 
shown, further, that X, is asymptotically equivalent to 1 -exp((d- b)/ 
(a - c)) Y:d-bb)i(rrPL.). In particular, X, + 1 as E + 0. 

Now the ratio of the probability mass that the ergodic distribution 
assigns to the interval [X,, Y3] to the probability mass that it assigns to 
the interval [0, X,] is at least 

But X, --+ 1 as E + 0, and Y, -X2 behaves asymptotically like 

(l-S)? Y,. 

Hence (9) behaves asymptotically like 

(l-s)?exp[-ln($)+-$[((ac)-(d-h)) 

x In 
( ) 

A 
+ +(a-c)ln f 

1 ( )I1 . 
I 

Since 2,/n, is fixed, we conclude that (9) converges to infinity as (r + 0; so 
the probability mass in the interval [0, X,] tends to zero. Since X, + 1, we 
are finished. [ 

As promised, we will now return to the question of the relevance of the 
ergodic distribution for plausible parameter values. Suppose that the payoff 
matrix is given by a = 2, b = c = 0, and d = 1, so that strategy 1 is the risk- 
dominant equilibrium. Supposing that the system starts in the basin of 
strategy 2, say at d1 = i, how long will it take to reach the point g1 = f? If 
we let V(X) be the expected waiting time to reach 3 from initial condition 
x, a standard argument shows that u satisfies the differential equation 

/l’(x) U”(X)/2 + a(x) u’(x) = - 1, (10) 

where a and 8, respectively, are the deterministic and stochastic parts of the 
system (8). This second-order equation requires two boundary conditions. 
Clearly u(s) = 0; and the solution should also satisfy the condition 
lim x+0 u’(x) = - l/L,. (Remember that at d1 = 0, (8) simplifies to 
dd, =A, dt.) 
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It can be verified that the formula 

t1(.x,=l?‘~(j~2~~‘(.s)exp[ - j~(2a(r)/iK’(r)m]L)~~ (11) 
.x s 

satisfies (10) and both boundary conditions. 
For given parameter values, (11) can be numerically integrated to obtain 

the expected transition time. But what parameter values are reasonable? 
Our specification of the deterministic replicator dynamics suggests that one 
unit of time is of the order of the average lifetime of the individuals in the 
population. l4 Thus the mutation rates should correspond to the percentage 
of mutations per generation. Hofbauer and Sigmund [7] cite evidence 
that the frequency of mutations at the level of individual genes is of the 
order 10P6. Of course, even for animals, the rate of mutations at the level 
of the organism can differ from that for the individual genes. Also, if the 
replicator dynamics is interpreted as a rough metaphor for a non-biological 
process, the appropriate mutation rate may be much higher. For this 
reason we computed the transition times for ,? = 10d4 and A= lo-’ as well. 
Finally, we choose the value 0 = 1 for the variance of the payoff shocks. 
For all three parameter values, the expected transition times from $ to f are 
of the order 10/L Thus the transition times are “reasonably small” if 
i = 10P2, and perhaps for A= 10e4 as well. 

V. RELATED WORK 

The paper closest to ours is Foster and Young [4], who were, so far as 
we know, the first to model evolutionary dynamics with a stochastic dif- 
ferential equation. I5 Our work differs from theirs in several ways. First, we 
begin with equations for population sizes, and then derive the equations for 
population shares using Ito’s lemma. This leads us to a different specifica- 
tion of the deterministic part of the system than they used. It also results 
in the variance term shrinking to zero at the boundaries. The processes 
Foster and Young considered did not have this property, and hence their 
analog of our (3’) can have solutions that reach the boundary in finite time. 
In particular, this is the case for their (3) which is the one example to 
which they apply their main theorem. 

I4 If a strategy’s payoff corresponds to its net reproduction rate, and, as in Boylan’s [2] 
construction, each individual reproduces once per unit of time, then the size of that strategy’s 
population should double in one time period. With our specification (1) the strategy’s 
population would actually increase by a factor of e; this could be corrected by multiplying 
the right-hand side of (1) by the constant m(2). 

I5 We thank George Mailath for making us aware of their work. 
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Foster and Young are aware that the state can reach the boundary in 
finite time. They respond to this problem by specifying the dynamics of 
their process only on the subset of the state space in which all population 
shares are at least A > 0, and by arguing that immigration and muta- 
tion-appropriately modelled-will ensure that the process remains within 
this subset almost all of the time. They argue further that the resulting 
process (which they do not specify precisely) will be well approximated by 
a process that undergoes reflection at the boundary. I6 This response raises 
a number of difficulties. First, the conclusions obtained from the analysis 
are likely to be sensitive to the specification of the dynamics for population 
shares less than d. Second, if the process undergoes reflection at the 
boundary, or is well approximated by such a process, then it is as though 
immigration of individuals of a given phenotype, or mutations resulting in 
individuals of a given phenotype, occur only when the population share of 
that phenotype is small. One might argue that the immigration process will 
be small compared to other effects in the interior of Sd, and hence can 
safely be ignored, but this conflicts with the fact that the rate of mutation 
and immigration must be infinite in order to generate instantaneous reflec- 
tion in systems, like Foster and Young’s examples, where the variance of 
the process is constant. ” 

Another closely related paper is Young and Foster [lo], which reports 
simulations of a stochastic discrete-time evolutionary system with a finite 
population on a 3 x 3 two-player game with two pure-strategy equilibria, 
one of which is a strict equilibrium, and the other is weak. Each period, 
each individual plays every other individual, so that the matching process 
is deterministic. However, the payoff to each player given the strategies 
played is a random variable. In the simulations, as the population size 
grows and stochastic effects become correspondingly small, the system 
spends most of its time in the neighborhood of the strict equilibria. They 
suggest that this limit behavior can be proved by first applying their [4] 
results to a continuous-time, continuous-state-space system, and then 
arguing that these results can be extended to large-population limits of the 
kind they are considering. (Note that this will require a different limit 
argument than that of Boylan [2], who considers the case in which the 

I6 They state on page 223 that: “Mutation and immigration keep the process within the 
space Sd almost all of the time, and the boundary acts, to a good approximation, as if it were 
reflecting.” The space S, corresponds in our notation to { 3 1 oi > A > 0 for all i}. They have 
indicated in correspondence with us that they mean the boundary of S, to be reflecting (as 
opposed to the boundary of the original strategy space), and that they have in mind instan- 
taneous, as opposed to delayed, reflection. 

” A third diff’culty with Foster and Young’s use of a model with instantaneous reflection 
is that such models are not covered in the section of Freidhn and Wentzell that they cite. 
Foster and Young acknowledge this mistake and are preparing a note to correct it. 
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fraction of the population that is matched in a single time period goes to 
zero as the population grows.) 

Kandori, Mailath, and Rob [8] consider a discrete-time, linite-popula- 
tion system playing a 2 x 2 game. As in Young and Foster, each period, 
each individual plays every other individual one at a time. At the end of the 
period, the current population shares ill(t) and +(t) of the two strategies 
are updated to “intended” shares Z,(t + 1) and &(t + 1); the actual shares 
at (t + 1) can differ from the intended ones due to “mutations” from one 
strategy to the other. In this model, when the mutation rate is low the most 
probable way for the population to shift from one strict equilibrium to 
another is through a sufficiently large number of simultaneous mutations, as 
opposed to a succession of single mutations. Thus the ergodic distribution 
is determined by how many mutations are required to jump from the basin 
of attraction of one equilibrium to the basin of attraction of the other, i.e., 
on which equilibrium is risk-dominant. Because the transitions are made by 
“large” jumps, as opposed to a succession of small ones, the exact form of 
the process that maps the date-t state to the intended state at date (t + 1) 
is not important. All that matters is the size of the two basins. Since the 
exact form of the deterministic process does matter in models with con- 
tinuous sample paths, their work combined with ours raises the question of 
which type of model is more appropriate for studying the evolution of large 
but finite populations. 
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