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Econometrica, Vol. 50, No. 2 (March, 1982) 

INVARIANT DISTRIBUTIONS AND THE LIMITING BEHAVIOR 
OF MARKOVIAN ECONOMIC MODELS 

BY CARL A. FUTIA 

Equilibria in stochastic economic models are often time series which fluctuate in 
complex ways. But it is sometimes possible to summarize the long run, average characteris- 
tics of these fluctuations. For example, if the law of motion determined by economic 
interactions is Markovian and if the equilibrium time series converges in a specific 
probabilistic sense then the long run behavior is completely determined by an invariant 
probability distribution. This paper develops and unifies a number of results found in the 
probability literature which enable one to prove, under very general conditions, the 
existence of an invariant distribution and the convergence of the corresponding Markov 
process. 

VIRTUALLY ALL OF ECONOMIC THEORY focuses upon the study of economic 
equilibrium. This concept has recently undergone several subtle elaborations. No 
longer must a system of markets in equilibrium be thought of as one at rest in a 
static steady state. Instead there is a growing body of literature (e.g., [4, 5, 12, 16, 
20, 21]) which defines equilibrium as a stochastic process of market clearing 
prices and quantities which is consistent with the self-interested behavior of 
economic agents. 

Needless to say equilibrium stochastic processes can be very complex time 
series which fluctuate in irregular ways. For theoretical and econometric pur- 
poses it is useful to have a convenient way of summarizing the "average" 
behavior of such processes over time. This paper draws together and unifies a 
number of fundamental results from the probability literature which enable one 
to do this for discrete time, Markov processes on general state spaces. 

The starting point of the analysis is a set S of economic states (e.g., prices 
and/or quantities). The only technical restriction placed upon S is that it be a 
Borel subset of a complete, separable metric space. The second datum is a 
transition probability P(s, ) on S. The number P(s,A) records the probability 
that the economic system moves from the state s to some state in the Borel subset 
A of S during one unit of elapsed time. In economic applications the transition 
probability is usually derived from hypotheses about market clearing and the 
maximizing behavior of economic agents. 

The transition probability (together with an initial probability measure on S) 
defines a discrete time Markov process. One way of summarizing the dynamic 
behavior implied by P is to look for an invariant probability. A probability 
measure X on S is invariant for P if for all Borel subsets A of S one has the 
equality f P(s, A )X(ds) = X(A). An invariant probability is a kind of probabilistic 
steady state for the dynamics defined by P. Of course there may be no invariant 
probability for P at all; and even if one exists it may convey no information 
about the average behavior of the process over time except under very special 
initial conditions. 

There is a second way of summarizing the behavior of Markov processes 
defined by the transition probability P. Let P (s,A) denote the n step transition 
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probability derived from P. If the sequence of probability measures (P'(s, ), 

n = 1,2.... ) is convergent in the weak topology on probabilities, then two 
conclusions follow. First, the limit of the sequence is an invariant probability X, 
for P. Secondly, if the Markov process starts from the state s then its average 
behavior over time is determined completely by AS. Thus one would like to prove 
that the sequence (pn(s, *)) converges for each s; if possible, one would also like 
to deduce that the invariant probabilities ?? do not depend on s so that P has 
only one invariant probability. 

It is the thesis of this paper that for most Markovian stochastic models one can 
prove the existence of invariant distributions and the convergence of the process 
to them by appealing to some very general theorems. One usually verifies the 
hypotheses of the theorems by verifying certain properties of the transition 
probability. 

The mathematical theory I shall discuss is well known (in various guises) to 
experts in stochastic processes. Some of it is also familiar to a handful of 
economic theorists. The role of this paper is, therefore, largely a pedagogical one. 
It presents a unified mathematical framework and a collection of techniques in a 
form useful for direct economic applications. 

I would next like to outline this paper's contents and suggest how the main 
results might be applied to stochastic models which have appeared in the 
literature. 

Section 1 establishes the unifying mathematical theme of this paper by 
defining the concept of a Markov operator. Such operators are linear transforma- 
tions which are defined naturally by transition probabilities and which mirror all 
the essential features of the associated Markov process. 

In Section 2 we establish conditions sufficient to imply the existence of an 
invariant probability for a Markov process. These conditions require that the 
process not wander too often from compact sets and that the associated Markov 
operator have the so-called Feller property of mapping continuous functions into 
continuous functions. These conditions easily lead to the main implication of 
Theorem 2 in [4] and also allow a quick proof of the existence of invariant 
distributions in the Grandmont-Hildenbrand temporary equilibrium model [12]. 

Section 2 also develops an easy-to-use uniqueness criterion for invariant 
distributions. The criterion can be simply stated in terms of the transition 
probability and allows one (for example) to easily prove the uniqueness of the 
stochastic steady state in the Brock-Majumdar growth model [4] for an open, 
dense set of exogenous shock distributions. 

A powerful and frequently employed tool (see for example [16, 22]) for 
proving the convergence of Markov processes to invariant distributions is the 
famous condition of Doeblin. Sections 3 and 4 establish the equivalence between 
Doeblin's condition and the quasi-compactness of the associated Markov opera- 
tor. More importantly, they present results which enable one to recognize 
quasi-compact operators by inspecting the associated transition probability. 

In many applications (e.g., [5, 13, 22]) one must derive the transition probabil- 
ity from more basic economic hypotheses. This often makes it difficult to show 
that the intuitively correct definition of the transition probability has the neces- 
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sary measurability properties. Section 5 shows how these problems can be 
overcome for economic models which can be represented as "random dynamical 
systems." We also establish conditions on such systems sufficient to imply the 
quasi-compactness of the corresponding Markov operator. 

Section 6 studies random contractions; these are random dynamical systems 
having additional contraction mapping properties. Random contractions arise 
naturally when studying the dynamics defined by optimal policies for concave, 
stochastic, dynamic programming problems [10]. They also arise from stochastic 
learning models [6, 25, 32] and from certain kinds of stochastic games [31]. 

One important topic has been omitted from this paper. In economic applica- 
tions (e.g., [11, 23]) one often wishes to determine how the invariant distributions 
of a Markov process change when the transition probability is altered. Such 
comparative statics questions are difficult to answer in any generality. The only 
known results along these lines require strong restrictions upon the transition 
probability. The reader is referred to [7] for the basic results on this problem. 

The Markov processes studied in this paper are all discrete time processes. The 
reader interested in studying continuous time Markov models should consult [2] 
for a discussion of diffusion processes applied to economic problems. 

A final note: the reader is assumed to be familiar with the definitions of 
several standard mathematical terms used in this paper. For the convenience of 
those unfamiliar with these terms the Appendix contains references to appropri- 
ate definitions. 

1. TRANSITION PROBABILITIES AND MARKOV OPERATORS 

In this section we shall show how a transition probability that defines a 
Markov process also gives rise to a continuous, linear operator on a certain 
Banach space. From such an operator one can actually reconstruct the original 
transition probability. In fact, this procedure establishes a one to one correspon- 
dence between transition probabilities and Markov operators (m-operators). We 
shall see in later sections that this correspondence allows one to bring powerful 
Banach space techniques to bear upon the study of the asymptotic properties of 
Markov processes. 

1.1 Transition Probabilities 

To begin the discussion let (S, S) be a measurable space (references to 
undefined mathematical terms can be found in the Appendix to this paper). The 
set S should be interpreted as the set of possible states of the economic system. 

DEFINITION 1.1: A transition probability on (S, S) is a function P: S>< S -* 

[0, 1] with two properties: (a) for each measurable set A E S the real valued 
function P(.,A) is S measurable; (b) for each point s in S the set function P(s, -) 
with domain S is a probability measure on (S, S). The number P(s,A) should be 
interpreted as the probability that the economic system will move from the state s 
to some state in the set A during one unit of time. 
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Given a tranlsition probability P on (S. S), one can define, for each nonnega- 
tive integer, a transition probability Pi on (S,S) by the formulae: 

p "( s, A ) - J I if s E A, 
O otherwise, 

P'(s, $4 A JP -(s dt)P(t A) 

Clearly P'(s,A) can be interpreted as the probability of reaching a state in A 
from the state s after precisely i units of time elapse. Furthermore, Pl = P. 

It is well known that once an initial probability is specified, a transition 
probability can be used to define a Markov process whose random variables take 
their values in (S, S) (see, for example, Breiman [3, p. 130] or Neveu [24, pp. 
169-170]). 

1.2 Markov Operators 

Let B(S) denote the set of all bounded, S measurable, real valued functions on 
S. This set is a Banach space under the sup norm lfl _ sup.ESIf(s)I. A transition 
probability defines a continuous linear transformation T from B(S) to itself via 
the formula 

(Tf )( s)- f t ) P (s, dt). 

The measurability of Tf follows from two observations. First, f can be expressed 
as the difference of two nonnegative, measurable functions (Bartle [1, p. 12]). 
Secondly, every nonnegative function in B(S) is the pointwise limit of functions 
taking on only finitely many values (Bartle [1, p. 13]). 

The operator T defined above is called the Markov operator associated with P. 
T is a continuous mapping of operator norm equal to I (equivalently, 

supi o - I I Tf = 1). Note that Tf(s) is the mathematical expectation of the random 
variable f with respect to the probability measure P(s, *). Exactly the same 
formula can be used to define Markov operators T' associated with the i-step 
transition probabilities P'. Note that T' is just T composed with T- '. Thus T' is 
in fact the ith power of T. 

The adjoint T* of the operator T is defined by the formula 

( T*X)(A ) = P(t, A )X(dt). 

T* maps the Banach space of bounded finitely additive set functions defined on 
(S, S) to itself. This is the Banach space dual to B(S) and is denoted by ba(S); it 
has as its norm the total variation norm defined by 

n 

I/XI =sup l 

where the supremum is taken over all finite partitions of S into disjoint subsets 
I A, . One can easily show, using the monotone convergence theorem, that T*X is 
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countably additive whenever X is. Thus T* maps probabilities into probabilities. 
If X(A ) is the probability that the economic system is in the set A at date T. then 
(T*X)(A ) is the probability that it is in A at date T + 1. 

2. EQUICONTINUOUIS MARKOV OPERATORS 

In this section we study a class of Markov operators with three very important 
properties. First of all, if T is such an operator there is always at least onle 
probability A such that T*X = X. Such probabilities are called invariant and are 
the equilibria or steady states of the stochastic, dynamic process defined by T. 
Secondly, if we define the continuous linear operator A,( T) by the formula 
A, (T) (I/n)1j] T' (for n 1) then, for any probability X on (S,S). the 
scquence of probabilities ,A,,( T*)/Xl converges in the weak topology to an 
invariant probability. (Note that A,( T)* = A,,( T*).) Thus the statistical, long run 
average behavior of the dynamic process is completely determined by the set of 
invariant probabilities. Finally, a simple criterion is available that allows one to 
determine whether the invariant probability is unique. This criterion is the direct 
gcneralization of that used when S is a finite set. In section three we will see that 
this uniqueness criterion can be generalized in such a way as to provide a method 
for proving the convergence of the sequence '(T*)X'I rather than just conver- 
gcnce of ',A,,( T*)/X. 

The reader should note that the results presented in this section are just minor 
variations (for the case of a noncompact state space S) of results obtained by 
Sine [33] and Jamison [17, 18]. 

2.1 Convergence Properties of Equicontinuous Operators 

We begin the discussion by defining equicontinuous Markov operators. 

ASSUMPTION: The state space S is a separable metric space. (Recall that a 
topological space is separable whenever it has a countable subset whose closure is 
the whole space.) The o-field S is just the Borel o-field of S. Finally, S is a Borel 
subset of a complete, separable metric space W, and its topology and metric are 
inherited from W. 

This assumption will be maintained throughout this paper. For economic 
applications it seems quite unrestrictive. For example, any Borel subset of a finite 
dimensional Euclidean space or, more generally, of any separable Banach space 
has the required properties. 

Define C(S) to be the closed subspace of B(S) consisting of the continuous 
functions. 

DEFINITION 2.1: An m-operator T is said to be stable if Tf is continuous and 
bounded whenever f is. A stable m-operator is said to be uniformly mean stable 
(u.m.s) if the sequence of continuous functions {A,,(T)f} is uniformly conver- 
gent for each fin C(S). 
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The property of being a stable operator is often referred to in the probability 
literature as the Feller property. Please note that the term "stable" used in this 
sense does not necessarily connote any kind of dynamic stability as it often 
would in economic contexts. 

DEFINITION 2.2: Let B be a set of probability measures on (S, S). Then B is 
said to be e-tight if there is a compact set F, c S such that X(F,) _ 1 - for all X 
in B. The set B is said to be tight if it is e-tight for all e > 0. 

DEFINITION 2.3: An in-operator T is said to be tight if, for each e > 0, there is 
an integer n such that the family of probability measures {(T*)n6.,s C S } is 
e-tight. 

In other words, an m-operator is tight provided that for each e > 0, there is an 
n and a compact set F, such that Pn(s, F,) i 1 - for all s (where P is the 
transition probability corresponding to the operator). 

DEFINITION 2.4: An m-operator T is equicontinuous if it is uniformly mean 
stable and tight. 

Now let rca(S) denote the closed subspace of ba(S) consisting of all regular, 
countably additive measures. In order to develop the properties of equicon- 
tinuous operators we introduce a topology on rca(S) which is coarser than that 
defined by the total variation norm. 

DEFINITION 2.5: The weak topology on rca(S) is the coarsest topology making 
each linear functional in the set {X -x f dA, f c C(QS) } continuous. 

In other words, a sequence {} Cn rca(S) converges weakly to an element ?v0 if 
and only if, for each f in C(S), the sequence of real numbers {ffdXn} converges 
to ffdX0I 

Since S is a metric space every countably additive measure is regular 
(Parthasarathy [27, p. 27, Theorem 1.2]). Thus T* maps rca(S) to itself; that T* 
is weakly continuous then follows easily from the fact that T is a stable operator. 

For compact S it is well known that the set of probabilities on (S, S) is a 
convex, weakly compact subset of rca(S) (Parthasarathy [27, p. 45, Theorem 
6.4]). The standard fixed point argument then shows that T* has an invariant 
probability, i.e., that there exists a probability X such that T*X = X. But in some 
applications one needs tools which can be applied to the case where S is not 
compact. The following results show that the assumption of tightness can replace 
the compactness of S when proving the existence of invariant distributions. 

LEMMA 2.6: Suppose T is a tight m-operator. If X is a probability, then the set of 
probabilities {(T*)'X, i = 0, 1, . . . } is tight. 
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PROOF: Fix c > 0. There is by hypothesis an integer n and a compact set Fen 
such that Pn(s, Fen) 1- for all s. But then 

pn+mn(SFn )= Jpn(tS Fen )pm(s,dt) 

Thus, for any probability X, 

(T*n+mX)(Fen)-f P:n+m(t, Fn )X(dt) 

- (1- C)X(S) =1 - . 

Therefore, the family { T*n+m? ,Mm ' O0 is e-tight. Now by Parthasarathy [27, p. 
29, Theorem 3.2] there is, for each i between zero and n - 1, a compact set F' 
such that (T* X)(F) _I - C. Define Fe Un=0Fe. Then (T*AX)(F)_ 1 - C for 
all i ' 0. Hence { T*'K} is e-tight. Since e was chosen arbitrarily, the proof of the 
lemma is complete. Q. E. D. 

COROLLARY 2.7: If T is a tight m-operator, then for any probability X, the family 
{A,1(T*)X, n _ 1} is tight. 

Tight families of probabilities have an important property. 

PROPOSITION 2.8: Let B be a tight set of probabilities. Then the closure of B in 
the weak topology is compact (cf. Parthasarathy [27, p. 47, Theorem 6.7]). 

ThiEOREM 2.9: Suppose T is a stable, tight m-operator. Then there is a probabil- 
itp X such that T*X = X. 

PROOF: Let A be an arbitrary probability, and consider the sequence 
' A,,(T*)A). Applying Corollary 2.7 and Proposition 2.8, we see that this 
sequence has weakly compact closure in the set of all probabilities. Since S 
is separable metric the weak topology on the set of all probabilities on 
S is metrizable. Therefore, there must be a probability X and a subsequence 

A,1 (T*)A a that converges weakly to X. Since T* is weakly continuous, the 
sequence f T* * A,1 (T*), /3 converges weakly to T*X. The sequence /3- a is 
just (1 /n)(T*(h' + -) -). But this converges weakly to zero. Since rca(S) is a 
topological vector space in its weak topology, it follows that the sequences /3 and 
a have the same weak limit. Thus T*X = X, completing the proof. Q.E.D. 

Theorem 2.9 shows that stochastic, dynamic processes giving rise to stable, 
tight Markov operators have stochastic steady states, i.e., invariant probabilities. 
But this fact in itself is not very interesting unless one knows that these invariant 
probabilities accurately mirror the long run average behavior of the process. We 
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next show that the additional hypothesis of uniform mean stability implies the 
desired convergence result. 

THEOREM 2.10: Suppose T is an equicontinuous m-operator. Then, for any 
probability A, the sequence { An ( T*), } converges weakly to only one invariant 
probability X. 

PROOF: The proof of Theorem 2.8 shows that there is an invariant probability 
X that is the weak limit of a subsequence {A,1(T*)A}. In other words, for each 
bounded continuous f, 

But (fAn (T*)A) = (An (T)f, ,). Since T is uniformly mean stable, both se- 
quences of continuous functions { An ( T)f} and { An (T)f} converge uniformly to 
the same limit. Hence 

lim(An,(T)f, A) = limn(An(T)f, A) 

= lim (f, An ( T*). 

Thus {nA(T*)A} converges weakly to X. Since rca(S) is Hausdorff in the weak 
topology, this is the only limit point of the sequence. Q.E.D. 

The reader should be careful to note that the limiting invariant probability X 
appearing in Theorem 2.10 will generally depend upon the choice of the initial 
probability A. 

2.2 A Uniqueness Criterion 

In economic problems it is often important to have a criterion that will imply 
the uniqueness of the invariant probability. We develop just such a criterion in 
this subsection. It is applicable to processes giving rise to equicontinuous m- 
operators. 

One crucial hypothesis that we shall use time and again is the hypothesis of 
stability. In other words, the operator in question must preserve continuous 
functions (i.e., it must "respect the topology of S"). In Section 3 we shall present 
an example which shows that if the stability hypothesis is dropped, our unique- 
ness criterion is no longer valid; this is despite the fact that the operator in 
question exhibits very nice convergence properties. 

The results in this subsection are those of Sine [33] modified by replacing the 
assumption of compact S by the assumption of tightness on T. For this reason 
we shall omit many technical details and refer the interested reader to Sine [33] 
for the necessary proofs. 
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UNIQUENESS CRITERION 2.11: There is a point s0 in S with the following 
property. For any neighborhood U of so, and any point s in S, one can find an 
integer n such that P'(s, U) > 0. 

The reader should note that when S is a finite set in the discrete topology, this 
criterion directly generalizes the usual uniqueness criterion for finite Markov 
chains. 

We wish to prove the following theorem. 

TIIEOREM 2.12: Let T be an equicontinuous m-operator with transition probabil- 
itv, P. Then the following conditions are equivalent: (a) there is a unique probability 
X satisfying T*X = X; (b) P satisfies the uniqueness criterion 2.1 1. 

Theorem 2.12 has a very useful corollary. 

COROLLARY 2.13: Let T,, T2 be stable m-operators, and let a be a real number 
0 < a _ 1. Suppose that the m-operators T= aT1 + (1 - a)T2 and T, are both 
equicontinuous, and further that T, has a unique invariant probability. Then T has a 
unique invariant probability. 

PROOF: Let X be the unique probability such that T*X = X, and let P, be the 
transition probability for T,. By Theorem 2.12, P, satisfies the uniqueness 
criterion with respect to some point so. Let a neighborhood U of so be given, and 
let s be any point in S. We can then find an integer n such that pn(s, U) > 0. But 
P'(s, U)_' anP (s, U) > 0. Thus P also satisfies the uniqueness criterion; another 
application of 2.12 then gives the result. Q.E.D. 

The proof of Theorem 2.12 will take up the rest of this section. The reader 
uninterested in the technical details should move on to Section 3. 

If T is an m-operator, define KT to be the subset of rca(S) consisting of the 
probabilities invariant under T. Our first task is to show that KT is completely 
determined by its extreme points provided T is equicontinuous. 

LEMMA 2.14: Suppose T is equicontinuous. Then KT is convex and weakly 
compact. 

PROOF: Because T* is linear, KT is obviously convex; KT is weakly closed 
because T* is weakly continuous. To show that KT is weakly compact, it will, in 
view of Proposition 2.8 and the fact that KT is weakly closed, suffice to show that 
KT is a tight family of probabilities. 

By hypothesis, T is a tight operator. Let P be the corresponding transition 
probability, and fix e > 0. We can then choose an n and a compact set Fe such 
that pn(S' Fe) - 1 -,E. Now suppose X is in KT. Since X is invariant under T*, we 
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conclude that 

)= ((T*)nX)(FE) = pn(S Ff )A(ds) 

(1 - E)X(S) = 1 - E. 

Thus Kr is e-tight for every e. This completes the proof. Q.E.D. 

In order to state the principal implication of Lemma 2.14, we need a defini- 
tion. Suppose A is a convex subset of a linear space. 

DEFINITION 2.15: An element x in A is said to be an extreme point of A if the 
following condition holds. Whenever y, z are in A and x = ty + (1 - t)z with 
0 < t < 1, then x =y = z. 

COROLLARY 2.16: If T is equicontinuous, then KT is the closed (in the weak 
topology) convex hull of its extreme points (cf. Robertson [29, p. 138]). 

The idea behind the proof of Theorem 2.12 is to show that the uniqueness 
criterion is equivalent to the assertion that KT has only one extreme point. 
Corollary 2.16 then implies that KT must consist of a single point. In order to 
carry through this program, we must first characterize the extreme points of KT. 

The remarkable property of equicontinuous operators is that such a characteriza- 
tion can be developed using only the supports of invariant probabilities. 

DEFINITION 2.17: Let js be a probability. The support of jt, denoted a( M), is the 
smallest, closed subset of S with the property t(a([t)) = 1. 

Since S has been assumed to be a separable metric space, Parthasarathy, [27, 
p. 27, Theorem 2.1] tells us that every probability in S has a unique support. 

DEFINITION 2.18: Let F be a non-empty, closed subset of S. F is said to be 
self-supporting if a(T*68) C F for every point s in F (recall that 65 is the unit point 
mass at s). 

Thus, a closed set is self-supporting provided that no probability can ever 
escape from it. 

PROPOSITION 2.19: Let X be in KT. Then a(X) is a self-supporting set (cf. Sine 
[33, Theorem 1.3]). 

Since the support of every invariant probability is a self-supporting set, one 
might hope to show that the extreme, invariant probabilities are supported on 
self-supporting sets with special properties. When T is equicontinuous, this turns 
out to be the case. 
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DEFINITION 2.20: A self-supporting set F is called minimal if 4 # Fo C F and 
Fo self-supporting implies Fo = F. 

The main step in the proof of Theorem 2.12 is the following result. 

THEOREM 2.21: Let T be an equicontinuous m-operator. Then a probability X is 
an extreme point of KT if and only if a(X) is a minimal, self-supporting set (cf. Sine 
[33, Corollary 2.3]). 

PROOF OF THEOREM 2.12: First suppose that the uniqueness criterion holds 
with respect to the point so. Let y be an extreme invariant probability. Since a( t) 
is a closed set and is self-supporting, so E& a( j). This shows that the supports of 
any two extreme invariant probabilities must intersect. But in view of Theorem 
2.21, the support of any invariant probability is a minimal, self-supporting set. 
Since the intersection of two self-supporting sets is again self-supporting, it must 
then be that all extreme invariant probabilities have identical supports. Let X, jt 
be two such probabilities with a(X) = a( y). As in Sine [33, Theorem 2.2], if X # It 
we can find a j-invariant function g such that fg dX # fg d,u. But then g cannot 
be constant on a( t); this contradicts the minimality of a( y) implied by Theorem 
2.21 (cf. Sine [33, Theorem 1.2]). Thus, X = t, and there must therefore be only 
one extreme, invariant probability. But then Corollary 2.16 implies that KT 
consists of only one probability. 

To prove the other direction, suppose y is the unique invariant probability in 
KT. Let so E a(yi) and let U be a neighborhood of so. Choose a nonnegative 
continuous function f that vanishes on the complement of U but such that 
1 = f(so). We may assume that 0 ' f - 1. Define 

hu (s) 
I if s Ez U, 

u 0 otherwise. 

Now let s be any point in S. Since T is equicontinuous and y is the unique 
invariant probability, {An(T*)6s} converges weakly to A. Thus (f,An(T*)as)-- 
(f, y) > 0. In particular, there is a finite n such that (f,An(T*)6S) > 0. Since 
f' hu, it follows that (hu,nA(T*)6S) > 0. But then there must be an no n-- 
such that 

pfno(s, U) = (T*no6s)(U) > 0. 

Thus P satisfies the uniqueness criterion. This completes the proof of Theorem 
2.12. Q.E.D. 

3. QUASI-COMPACT MARKOV OPERATORS 

The equicontinuous operators studied in the previous section enjoyed several 
very useful properties. Unfortunately, it is in practice often difficult to determine 
directly whether a given operator is equicontinuous. In this section we introduce 
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the class of quasi-compact Markov operators. If a quasi-compact operator is also 
a stable operator it is then equicontinuous. In the following section we shall see 
that, unlike the general equicontinuous operator, quasi-compact operators are 
easily recognized; in fact, we shall find that "most" operators are quasi-compact. 

If a given m-operator T can be shown to be quasi-compact, one can immedi- 
ately deduce the existence of at least one invariant probability and also the 
convergence of the sequence {A,(T*)X}, for any probability X, to some invariant 
probability. This is true even if Tfails to be stable. In fact even more is true. The 
set of invariant probabilities is finite dimensional and the convergence occurs at 
an arithmetic rate with respect to the total variation norm on probability 
measures; this, of course, is a much stronger convergence result than simply 
convergence in the weak topology (a much coarser topology than the total 
variation topology). Unfortunately, as we shall show by example, the uniqueness 
theorem, 2.12, is not valid, even for a quasi-compact operator, unless the 
operator is also stable. 

The last part of this section is devoted to a generalization of the uniqueness 
criterion of Section 2 that is applicable to stable, quasi-compact m-operators. If 
this critcrion is satisfied, then one can infer not only the uniqueness of the 
invariant probability, but the convergence of the sequence { T*'A}, for any 
probability X, to the invariant probability at a geometric rate in the total 
variation norm. 

3.1 Quasi-Compact Operators 

To begin the discussion, we introduce the following notation. If X is a Banach 
space write lin(X) to denote the Banach space of all continuous, linear maps of 
X to itself. Define the unit ball of the Banach space X to be bX _ {x E XHiI 

1 Note that lin(X) is a Banach space under the operator norm ITI 
supv,hx jTxj. 

DEFINITION 3.1: Let X be a Banach space and T an operator in lin(X). Then 
T is said to be compact if the image of bX under T has compact closure in X. The 
operator T is said to be quasi-compact if there is a compact operator L and an 
integer n such that I Tn - Li < 1. 

The following theorem reveals the importance of quasi-compact operators. 

TiIEOREM 3.2 (Dunford and Schwartz [9, p. 711, Corollary 4]): Let T be a 
quasi-comlpact operator in lin(X) with norm not exceeding one. Then the sequence 
of linear operators { An( T)} converges in the Banach space lin (X) to an operator V. 
V is a projection (i.e., V2 = V); the image of X under V is finite dimensional and 
consists precisely of the fixed points of T. 

Theorcm 3.2 allows us to prove that every stable, quasi-compact m-operator is 
equicontinuous. 
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THEOREM 3.3: Let T E lin(B(S)) be a stable, quasi-compact m-operator. Then 
T is equicontinuous. 

PROOF: Since T is stable, the sequence A (T)f is a sequence of continuous 
functions wheneverf is continuous. In view of Theorem 3.2, An(T) is a conver- 
gent sequence of operators in the operator norm. Hence T is uniformly mean 
stable. 

We now show that T is a tight operator. First note that T* is also a 
quasi-compact operator for IT*f - L*I < 1. And L* is compact if and only if L 
is compact [9, p. 485, Theorem 2]. Note that if An(T)-< V, then An(T*) * V*. 

Now let K7- denote the set of invariant probabilities, i.e., the probabilities that 
are fixed points of T*. It is well known (see, for example, Neveu [24, p. 181]) that 
when T is quasi-compact, KT is a closed (in the total variation topology), convex 
set with a finite number of extreme points. Denote these by {i , . . , .,}. Since 
S is assumed to be a metric subspace of a complete, separable metric space, 
every probability on S is tight [27, p. 29, Theorem 3.2]. Thus given e > 0, there 
exists compact sets Ke,i i =1, . . ., I, such that 1i (K) 1-c. Let KAlUE Kei. 
Then if A is in K.', X(KE)_ 1 - 

The fact that T is a tight operator now follows easily. For from Theorem 3.2 
we conclude that the sequence of operators { T*', i = 0, 1, . .. } must be infinitely 
often in every neighborhood of the operator V*. Given e > 0, choose an integer 
m so that i T*m - V*l < e/2. Then, for any probability measure A, I T*mA - V*-I 
< e/2. Since KAl has been shown to be a tight family, and since V*A E KT, we 
can find a compact set B/2 such that V*=(BE/2) 1 - /2. But then T*mA(BE/2) 
_ 1 - e. Defining K, B,/2, and letting A= 6s, we have shown the family of 
probabilities f T* .h. } to be e-tight. Hence T is a tight operator. Q.E.D. 

Of course, if a quasi-compact m-operator fails to be stable it cannot be 
equicontinuous. Nevertheless, Theorem 3.2 asserts that for such operators, invari- 
ant probabilities exist (because T* is quasi-compact and preserves probabilities) 
and that the Cesaro iterates of any initial probability converge in total variation 
to an invariant probability. 

If an m-operator is quasi-compact, one gets "free of charge" the following rate 
of convergence result. 

THEOREM 3.4 (Yosida and Kakutani [34, p. 204, Corollary]): Let T, V be as in 
Theorem 3.2. Then there is a constant M such that 

IAn(T) - V|_ M for n = 1,2. 
VI=n 

Putting together Theorems 3.2 and 3.4, we can assert that whenever T is 
quasi-compact the Cesaro iterates of any initial probability converge at an 
arithmetic rate in the total variation norm to an invariant probability. This is 
much stronger than simply asserting convergence in the weak topology on 
probability measures. 
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We close this subsection with an example showing that the stability hypothesis 
in Theorem 2.12 is a necessary one. 

Let S = [0, 1] and let -q denote lebesgue measure. Define a transition probabil- 
ity by the formula 

,q(A) if s # 0, 
P(s,A) I ifs = 0 and 0 A, 

0O if s = 0 and 0 M A. 

The m-operator T defined by P is evidently compact. For the range of T is two 
dimensional; if f E B(S), then Tf(O) = f(O) and Tf(s) = ff d1 if s #& 0. Thus T is 
a quasi-compact operator, and Theorems 3.2 and 3.4 give all the desired 
existence and convergence results. Furthermore, the uniqueness criterion 2.11 
holds with so = 0. But clearly there is more than one invariant probability; for 
the point mass concentrated at zero as well as lebesgue measure on [0, 1] are 
invariant. Thus Theorem 2.12 does not hold. Of course, the problem is that T is 
not a stable operator, as can easily be seen by considering Tf where f(s) = s. 

3.2 A Generalized Uniqueness Criterion 

It often happens that one would like to infer convergence of the sequences 
{T*nlv}, for any probability v, rather than simply convergence of {An(T*)j}. 
One might also ask for rates of convergence that are geometric rather than 
arithmetic. In this subsection, we develop for stable, quasi-compact m-operators 
a generalization of the Uniqueness Criterion 2.11 which, if satisfied, implies these 
results. 

GENERALIZED UNIQUENESS CRITERION 3.5: There should exist a point so in S 
with the following property. For any integer k 1, any point s in S, and any 
neighborhood U of so, one can find an integer n such that pnk(S U) > 0. 

The main theorem in this subsection is the following. 

THEOREM 3.6: Let T be a stable, quasi-compact m-operator with transition 
probability P satisfying 3.5. Regard T as an operator on C(S). Then 1 is the only 
proper value of T of modulus one. 

The significance of Theorem 3.6 arises from the following result. 

THEOREM 3.7 (Yosida and Kakutani [34, p. 204, Corollary]): Let T, V be as in 
Theorem 3.2. In order that the sequence { T n } be convergent in lin(X) it is 
necessary and sufficient that 1 be the only proper value of T of modulus one. In this 
case, there exist constants M, e > 0 such that 

I Tn - _ M (n= 1,2,.*.). 
(1+ ,)n 
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We apply Theorems 3.6 and 3.7 to give the desired convergence results as 
follows. Let X = C(S). Theorem 3.6 shows that if T is regarded as an operator 
on C(S), then T has 1 as its only proper value of modulus one. (Of course, T 
maps C(S) to itself because T is a stable operator by hypothesis.) Theorem 3.7 
then tells us that the sequence of operators { T" } converges geometrically to a 
limit V. Using Proposition 1.7, we can then infer the same result for the operators 
{ T*l }, V* on C(S)*. In general, C(S)* properly includes the space rca(S) 
(because S need not be compact). However, the Banach space rca(S) is a closed 
subspace of C(S)* and is in fact mapped to itself by T* (because T is an 
m-operator). Thus, as operators on rca(S), ( T*n } converges geometrically to V*. 

The readers should note that the Uniqueness Criterion 2.11 is just the case 
k = 1 of Criterion 3.5. Furthermore, Theorem 3.3 tells us that every stable, 
quasi-compact m-operator is equicontinuous. Therefore, if the transition proba- 
bility for such an operator satisfies 3.5, we can apply Theorem 2.12 to infer the 
uniqueness of the invariant probability. 

The reader uninterested in the details behind the proof of 3.6 should now 
proceed to Section 4. 

To prove Theorem 3.6 we need some preliminary definitions. 
Let C(S) denote the Banach space of all bounded complex valued continuous 

functions with the sup norm (the absolute value of a complex number is just its 
complex modulus). If T is a stable m-operator, then T defines an operator T on 
C(S) in the following way. Suppose g is in C(S). Then g can be written uniquely 
as g(s) = f,(s) + if2(s) with f1 in C(S). Define Tg_ Tf, + iTf2. Clearly, T is a 
continuous linear operator of norm one on C(S). 

DEFINITION 3.8: If T is a stable m-operator, a complex number a is a proper 
value of T on C(S) if there is an x E C(S) such that Tx = ax. 

THEOREM 3.9: Let T be a stable, quasi-compact m-operator. Suppose that for 
each n the only fixed points of the operator T' on C(S) are the constant functions. 
Then 1 is the only proper value of T of modulus 1. 

PROOF: Let a be a proper value of T of modulus 1, and let g E C(S) be a 
function such that Tg = ag. Now C(S) is isometrically isomorphic with the 
Banach space of all real valued continuous functions on some compact Haus- 
dorff space [9, p. 274, Theorem 18]. Therefore, we can apply [9, p. 71 1, Lemma 5] 
to infer the existence of an integer k such that a k = 1. Therefore Tkg = g and g is 

a fixed point of Tk. Write g uniquely as g = gl + ig2. From the definition of T 
we note that 

Tkg = Tkg1 + iT g2 

= g1 + ig2. 

Therefore, gl g2 are fixed points of Tk, and by hypothesis must therefore be real 
constants. Thus, g is a complex constant and is therefore a fixed point of T (not 
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~~~~~~~~~~~~~~~~~~~~~~~A 
just Tkk). This last observation follows from the definition of T and the fact that 
m-operators preserve real constants. But then g = Tg = ag. Therefore a = 1. 

Q.E.D. 

Theorem 3.6 will now be a direct consequence of Theorem 3.9 and of the 
following result. 

THiEOREM 3.10: Let T be a stable, quasi-compact m-operator. Suppose the 
corresponding transition probability P satisfies Condition 3.5. Then, for each k, the 
only fixed points of Tk in C(S) are the constant functions. 

PROOF: First note that if T is quasi-compact, then so is Tk for each k. For 
suppose L is a compact operator and n an integer such that IT" - LI < 1. We 
then infer Tkn - L T(kI-n < 1. But [9, p. 486, Corollary 5] asserts that 
LT( -I)n is a compact operator. Hence TA is quasi-compact, and stable. There- 
fore Tk is equicontinuous for each k. 

Now note that if P satisfies the conditions in 3.5, then PF satisfies the 
uniqueness criterion 2.11. But FL is just the transition probability for the 
m-operator Tk. Theorem 2.12 then asserts that there is a unique invariant 
probability for the operator Tk. But this in turn implies that the only fixed points 
of Tk in C(S) are the constant functions. To see this, suppose to the contrary 
that f is not constant and Tkf = f. There must then be two points so, s1 such that 

(f ASS) = f(s0) + f(s ) = (f, 6) 
But then 

(f, SS) = (An( Tk )f, 6s,) 

- (f, A, ( T* )6,) 

(f,An( T*k)S S 

= (f, Q). 

Hence limn(An(T*L)6,) + limnAn(T*)6s. This contradicts the uniqueness of the 
invariant probability for Tk . Q. E. D. 

4. RECOGNIZING QUASI-COMPACT OPERATORS 

The results of Section 3 make it desirable to develop easy-to-apply criteria that 
allow one to recognize a quasi-compact operator by identifying characteristics of 
the corresponding transition probability. This section provides proofs of several 
well known results along these lines. 

The first is that any operator defined by integrating a bounded transition 
density with respect to a finite measure is quasi-compact. The second is the well 
known characterization of the class of quasi-compact m-operators as precisely 
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the class of operators with transition probabilities that satisfy Doeblin's famous 
condition. Finally, we show that a non-trivial convex combination of a quasi- 
compact m-operator and any m-operator is again quasi-compact. This last result 
immediately implies that quasi-compact m-operators are open and dense in the 
set of all m-operators. 

4.1 Weaklv Compact Operators 

DEFINITION 4.1: The weak topology on a Banach space X is defined to be the 
coarsest topology on X making every element of X* continuous. Recall that X* 
denotes the Banach space dual to X. 

WARNING 4.2: If X = rca(S) the weak topology on X defined in 4.1 is not the 
same topology as the weak topology of Definition 2.5. This is because, in general, 
rca(S)* + C(S). However, no serious confusion should result since we shall 
never apply Definition 4.1 to rca(S). 

DEFINITION 4.3: If T is in lin(X), T is said to be weaklv compact if the image 
under T of the unit ball of X has compact closure in the weak topology on X. An 
operator T is said to be quasi-weakly compact if there is a weakly compact 
operator L and an integer n such that I Tn - LI < 1. 

The class of weakly compact m-operators properly includes the class of 
compact m-operators. However, one has the following result. 

PROPOSITION 4.4: An operator T in lin(B(S)) is quasi-weakly compact if and 
onlv if it is quasi-compact. 

PROOF: To prove the non-trivial direction, we first make some preliminary 
observations. First of all, if K and L are weakly compact operators on B(S), then 
K* L is a compact operator. To see this, first note that B(S) is isometrically, 
isomorphic to the Banach space of all continuous functions on some compact 
Hausdorff space [9, p. 274. Theorem 18]. The assertion then follows from the 
similar assertion for C(S), S compact Hausdorff [9, p. 494, Corollary 5]. 
Secondly, the product of a weakly compact operator with any continuous 
operator is again weakly compact [9, p. 484, Theorem 5]. 

With these observations in hand, we can now use an argument appearing in 
Jamison [18]. 

Suppose T is quasi-weakly compact. Then there is an integer n such that 
T" = L + V where L is weakly compact and I VI < 1. Let L,M2 be the compact 
operator defined to be the sum of all terms in (L + V)"2 in which L appears as a 
factor at least twice. Then 

(L + V)" = L, + LV"'- + VLV"''-2 

+ ... + V' 'L + V"U 
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Hence 

Tnt' Lt,, I-' mlg LI I V I m-l+ | V l 

Since I VI < 1, we may choose m so large as to make the right hand side of this 
inequality strictly less than one. Thus T is quasi-compact. Q.E.D. 

We shall next exhibit a large class of easily recognized, weakly compact 
operators on B(S). 

TTIEOREM 4.6: Suppose p(s, t) is a real valued function on S x S that is bounded 
and measurable with respect to the smallest a-field on S x S that contains S x S. 
Let -q be a finite, positive measure on (S, S). Define an operator T E lin(B(S)) by 
the formula 

Tf(s) = t Jt)p (s, t) -1(dt). 

Then T is weakly compact. 

PROOF: Since T is weakly compact if and only if T* is weakly compact [9, p. 
485, Theorem 8] it suffices to show that T* :ba(S)-> ba(S), is weakly compact. 
By Theorem 12, p. 314 of [9], it suffices to exhibit a nonnegative element -q of 
ba(S) such that lim(A OT*p(A) = 0 uniformly for all y in the unit ball of 
ba(S). 

Let r1 be as in the hypothesis of the theorem. Define M sup,, p(s, t)l. Then 
M < oo by hypothesis. By definition 

T*p(A) =f(fP(s, t)(dt) )t(ds) 

psS J (s, t),q (dt)) It ,(ds) 

psJ I (s, t) Jq(dt)) It(ds 

M- Mr(A )y (ds) 

- M-M (A )I M(ds) 

(where 1t is the total variation (see [9, p. 97]) of the set function y) 

_ M-1(A) since I pl(S) = 1. 

This completes the proof of the theorem. Q.E.D. 
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COROLLARY 4.7: Maintain the hypothesis of Theorem 4.6, dropping onlv the 
requirement that -q be a finite measure. Instead assume that the function 

q (t) =_ sup p (s, t) 
s C S 

is integrable, i.e., that fq(t)P(dt) < oo. Then T is weakly compact. 

PROOF: Define a finite measure v by the formula v(A) = fA q(t)-(dt). Define 
a bounded, measurable function p(s, t) by 

p (s, t) if q(t) 7- 0, 
fl(s, t) = q (t) 

0 otherwise. 

Clearly 

Jf( t)p (s, t),q ( dt) = ft) -) (s, t) v (dt). 

The conclusion now follows from 4.6. QE.D. 

4.2 Doeblin's Condition and Quasi- Compactness 

In this subsection we prove that an m-operator is quasi-compact if and only if 
its transition probability satisfies Doeblin's condition. 

DEFINITION 4.8: Let P be a transition probability. We say that P satisfies 
Doeblin's condition if the following assertion holds. There is a probability -q, an 
integer n, and an e with O < e < I such that if A E S and 71(A)- E, then 
P'(s,A)-,< 1 - e for all s. 

Loosely speaking, a transition probability satisfies Doeblin's condition if there 
is a probability 'q such that the corresponding Markov process is not concen- 
trated on sets of small r1 measure. 

THEOREM 4.9: Let T be an m-operator and P the corresponding transition 
probability. Then T is quasi-compact if and only if P satisfies Doeblin's condition. 

PROOF: Suppose T is quasi-compact. It is well known (see for example Neveu 
[24, p. 181]) that the set KT consisting of all invariant probabilities then has a 
finite number of extreme points {'q,1 . . ., IqK}. Define q- (l/K)E'q,. 

Now choose a positive number 6 so that 0 < (2 - 36)/2K < 1. If -q(A)_ 
(2 - 36)/2K, then qj(A) c 1 - (3/2)6 for allj and hence y(A) cf3 I - (3/2)6 for 
any I in KT. Let V be the limit of the sequence of operators {A (T*)}. Choose 
an integer n so that I T*n - V*1 < 6/2. We conclude that 

lPn(s, A - V*64(A )I I T*nfl V*-sl 

=IT*fnl V*1< 6/2. 
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Hence Pf(s, A) _ 1 - 6 if -q(A) _ (2 - 36)/2K. Define E = min{(2 - 36)/2K 
6 ). Clearly P satisfies Doeblin's condition with respect to ij, E, and n. 

We next show that if P satisfies Doeblin's condition, then T is quasi-weakly 
compact, hence quasi-compact by Proposition 4.4. 

Let E, , n be the data with respect to which P satisfies Doeblin's condition. 
Since S was assumed to be a separable metric space, its Borel a-field is countably 
generated. We can therefore apply a well known lemma (see, for example, Revuz 
[28, p. 32, Lemma 5.3], or Orey [26, p. 5, Proposition 1.1]) to conclude that 

Pn(s,A) = q(s, t)rq (dt) + Q(s, A ) 

where q(s,t) is a positive measurable function and the measures Q(s, ) are all 
singular with respect to ij. 

Define an operator L on B(S) by the equation 

Lf(s) = f( t)p (s ?t) q (dt) where 

p(s,t)=-min (q(s,t), E)- 

By Theorem 4.6, L is a weakly compact operator. We claim that I Tn L I < 1. 
Since 

ITn U LI = 1- inf f p(s, t)q (dt) 

it will suffice to show that 

1 p(S, t)-q(dt)-' 1-E for all s. 

For each s, choose a subset Ns C S to satisfy 

-j (N, ) =0, Q (s, Ns ) =Q (s, S )_ 

Define Bs { t E S - N q(s, t) i 2/E}. Since P(s, S) 1, we conclude that 
ij(B.) ? E/2. Now 

1 - p (s, t)-q (dt) = P (s,S) p (s t) (dt) 

= (q (s, t) -p (s, t)) (dt) + Q (s, S) 

X [ q (s, t) -p (s, t) ](dt) + Q (s,N s n B) 

-f, q(s, t)r (dt) + Q(s, N, n B) 
N5 n B5, 

- P(s, S n Bs) )-1 - E 

because -q(Ns n BS) -' E/2 ?. Q.E.D. 
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4.3 A Final Recognition Result 

In this subsection we prove a simple recognition theorem that has many 
important applications. 

ILet X be a Banach space and suppose T1 T2 are in lin(X). Let a be a real 
number 0 < a ' 1. 

TIIFOREM 4.10: Suppose T,j 1 and that T, is quasi-compact. Then T -=a a Ti + 
(I -- a)T2 is quasi-compact. 

PROOF: Let L be a compact operator and n an integer such that I T - LI < 1. 
Note that for any real number a, anL is a compact operator. Consider the 
expression 

ITt'- a"LI = I(aT, + (1 -a)T2) -anLI 

Since IT, _ 1, the binomial expansion of Tn shows that 

I(aT1 + (1 - a)T2)n- a TI' - 1 - at. 

Thus 
n _ a nLI a ta' 7- LI + 1- - n 

< an + 1- an = 1. Q.E.D. 

Theorem 4.10 has an easy and interesting corollary. Let T,, T2 be m-operators. 
Suppose a is a measurable, real valued function on S with 0? a(s) 1. Define 
the operator T= a(s)T, + (1 - a(s))T2 by the formula 

Tf(s) = a(s)(Tif(s)) + (1 - a(s))(T2f(s)). 

The transition probability for T is just a(s)PI(s, *) + (1 - a(s))P2(s, *). Thus the 
process corresponding to T is just a weighted average of the processes corre- 
sponding to T, and T2, with weights depending upon the state s. 

COROLLARY 4.1 1: Let T,, T2 be m-operators and let a be a real valued function 
defined as above. Suppose that T, is quasi-compact, and that inf, a(s) > 0. Then T 
is quasi-compact. 

PROOF: Let B inf, a(s). Then note that 

T= BTI + (a(s) - B)TI + (1 - a(s))T2. 

Since B > 0, Theorem 4.10 applies and the result is proven. Q.E.D. 

As a final remark, the reader should note that Theorem 4.10 asserts that the set 
of quasi-compact m-operators on B(S) is dense in the set of all m-operators. 
Since the set of quasi-compact m-operators is clearly relatively open in the set of 
all m-operators, it is therefore open and dense. 
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5. RANDOM DYNAMICAL SYSTEMS 

In many economic problems a Markov process on a state space S is defined as 
a "state dependent stochastic average" of deterministic adjustment processes on 
S. Processes defined in this way are studied in this section where they are termed 
random dynamical systems. We shall develop conditions under which the results 
of previous sections can be applied to such processes. 

DEFINITION 5.1: A random dynamical system (r.d.s.) is defined by the following 
data: (a) a state space (S, S) satisfying the assumption made in Section 2, i.e., S 
is a separable metric space, and a Borel subset and metric subspace of a 
complete, separable metric space; S is its Borel a-field; (b) a measurable space 
(E, E) of "events"; (c) a stochastic kernel Q: S x E->[O, 1]; thus Q(s,A) is the 
probability of realizing the event A E E, given that the current state is s E S; (d) 
a mapping 9: S x E-> S; for each s in S, 9(s, ) is assumed to be measurable, 
while for each e in E, 9(', e) is assumed to be continuous. 

Loosely speaking, the state of the system evolves from one period to the next 
in the following way. If the state at date t is s,, an event e, c E is realized 
according to the probability law Q(s,, ). The state at date t + 1 is then s,+ 
= 9(S, e,)- 

Given a random dynamical system, one should be able to define a transition 
probability on the state space in the following way. If B C S x E and s is in S, 
define B, {e C E I (s, e) C B }. Then we define a function P = S x S - [O, 1] by 
the formula: 

P(s,A) = Q (s ( )'A)) 

The first theorem in this section asserts that this definition actually works. 

THEOREM 5.2: Let the function P be defined as above from the data of a random 
dynamical system. Then P is a transition probability on (S. S). 

To prove 5.2, we need to establish two facts. We must first show that for each s 
in S, P(s, -) is a probability on (S, S). But it is easy to see that this must be so. 
For (9 - 'A) E&- E for each s in S and A in S because 9(s, *) is assumed to be 
measurable. In other words (9 -`A), = { e I(s, e) C A 4. This last equality also 
shows that P(s, ) is a probability; for Q(s, .) is and taking inverse images under 
9(s,.) preserves all the required set theoretic operations. 

The proof of 5.2 will be complete if we can show that for each A E S, P(.,A) 
is a measurable function. We do this in the following sequence of lemmas. 

DEFINITION 5.3: S 0 E is the smallest a-field of S x E that contains all sets of 
the form A x B with A S, B C E. 

LEMMA 5.4: The mapping 9 is S 0 E measurable. 
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PROOF: Since S is the Borel a-field of S, it will suffice to show that for each 
closed set F C S? 9 - 'F is in S 0 E. The proof will depend upon the fact that S is 
a separable metric space. 

Let C = {s,s2, . . . } be a countable dense subset of S. For each pair of 
integers i, j > 0 define a subset Aj' of S by the equality AJ' _ s E S I d(sj, s) 
< 1 / i }. Clearly A1' E S and S = UJjI1 A.' for any fixed i. Next, define a family of 
subsets of E by the equalities 

Bj'- e E E IEd(9(s,,e),F) < l/i} 

where d(s, F) inf,EFd(s, t). Since B; is the inverse image of an open subset of 
S under 9(s ), Bj' E. 

We now claim that 

0-'F=n[U(A,'x Bj) 

To prove the claim, suppose first that (s, e) is an element of the right hand side. 
It follows that for each i, there is an integer ji such that (s, e) C Aj1' X B1. Thus 
d(s , s) < I / i and d(9(s1, e), F) < I / i. The sequence { sj, i = 1,2, ... } therefore 
converges to s and, since 9(, e) is continuous, {9(s1,e)} converges to H(s,e). But 
9(s1,e) must also converge to some point in F. Hence H(s,e) C F and so 
(s, e) E 0 - 'F. 

Now suppose that (s, e) E 9 - 'F. Let {sj be a sequence from C that converges 
to s. Because ( ,e) is continuous, we may choose a subsequence { s1 } such that 
d(s ,s) < l/i and d(9(s1,e),F) < I/i. But then (s,e) c AJ' x B,'. This completes 
the proof of the claim and of the lemma. QE.D. 

LEMMA 5.5: For any A E S X E, Q(s,A,) is a measurable function of s. 

PROOF: Let A be the subset of S 0 E consisting of those sets A for which 
Q(s,A,) is measurable. We are going to show that A contains the Boolean 
algebra of rectangles and also that A is a monotone class. Since the monotone 
class lemma (e.g., Neveu [24, p. 14]) implies that S 0 E is the smallest monotone 
class containing the Boolean algebra of rectangles, this will prove the lemma. 

We first show that A contains the Boolean algebra generated by the rectangles, 
i.e., that it contains all sets of the form A = B X C with B E S, C E E, and is 
closed under finite unions and intersections, and under complementation. Let 
A = B x C be a rectangle. Then 

Q A,) 0 if s (t B, 
Q(s, As) = ( Q(s, C) if s C B. 

This is clearly a measurable function. Now let (A , . . . , A,, } be a finite collec- 
tion of n rectangles. We wish to show that Q(s, (U'Ai),) is measurable. We do 
this by induction, noting that the assertion is true for n = 1. and then assuming 
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that it is true for n - 1. But note that 

Q( ( A)) Q(s, ( U Ai)) + Q(S (A ) 

-Q (S( U (Ai n An) 

This follows from the observation that the operation of "taking the s-section of 
set A" commutes with all the usual operations of union, intersection, and 
complementation. Since the intersection of two rectangles is again a rectangle, 
this exhibits Q(s,(Un Ai)s) as a sum of functions known to be measurable by 
induction. Finally, note that the complement of any rectangle is a finite union of 
rectangles, and that the intersection of a finite number of rectangles is the 
complement of the union of the complements. Thus, A contains the Boolean 
algebra generated by the rectangles. 

We next show that A is a monotone class. It will suffice to show that if 
A ci A2 c ... is a countable, increasing sequence of sets in A, then A -U lA 

is in A. Define Bn = UnAi. For any fixed s, we know that 

lim Q(s, (Bn)s) = Q(s,As) 

because taking s-sections commutes with unions and because Q(s, ) is a proba- 
bility. Thus Q(s,As) is the pointwise limit of measurable functions and is 
therefore measurable. This shows that A is a monotone class and thus completes 
the proof of the lemma. Q.E.D. 

If A E S, Lemma 5.4 shows that 9 - 'A E S 0 E. Lemma 5.5 then shows that 
Q(s, (9 - 'A)) is measurable, i.e., that P(s, A) is measurable, thus completing the 
proof of Theorem 5.2. 

In view of Theorem 5.2, a random dynamical system defines a transition 
probability P and thus an m-operator T on B(S). The results of Section 2 make 
it desirable to find conditions under which T can be shown to be a stable 
operator. The next proposition is a result in this direction that seems to be 
sufficient for most applications. Let ca(E) denote the subset of ba(E) which 
consists of the countably additive set functions. 

PROPOSITION 5.6: Suppose a random dynamical system is given. Assume that the 
map S - ca(E) defined by s - Q(s, *) is continuous when ca(E) is regarded as a 
Banach space in the total variation norm. If f E C(S), it then follows that 
Tf E C(S). 

PROOF: Let f E C(S) be given, and let {Sn} be a convergent sequence in S 
with limit so. We need to show that Tf(sn) converges to Tf(so). 

For each s in S, denote by f5 the measurable function on E defined by 
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f(e)if(9 (s, e)). Note that 

Tf (s) _ J(t)P(s dt) 

- f(9(s, e))Q(s,de) 

-(f, Q(S9*) 

Because f is a bounded function, the family of measurable functions { f5 is 
contained in a bounded subset of B(E). Since s-> Q(s,.) is assumed to be 
continuous with respect to the total variation norm on ca(E) it follows that 

nlm |(fvn Q(S,) Q(s0 .)) ?=. 

Thus 

lim (f,,, Q(Sn, *)) =lM (fn, Q(s, )) 

if either limit exists. But since f5 converges pointwise to f, (since 9(,e) is 
continuous for each e) the Lebesgue dominated convergence theorem implies 
that the limit on the right hand side exists and equals (f,, Q(so, ))= Tf(so). 
Thus limn Tf(sn) = Tf(s0)- Q.E.D. 

Here are three commonly encountered situations where the hypothesis of 
Proposition 5.6 is satisfied. 

(a) The probability Q(s, .) is independent of s. Hence the map s -> Q(s, ) is 
just a constant map and therefore continuous. 

(b) More generally, suppose that there is a positive constant M such that for 
each A E E, 

Q(s,A) - A(t,A) -< Md(s,t). 

Then 

|Q( S, )Q(t, ) 2Md(s, t) 

and so the map s - Q(s,.) is Lipschitz with constant not exceeding 2M. 
(c) Suppose there is a S 0 E measurable function q(s, e) such that s -> q(s, e) 

E B(E) is norm continuous. Suppose in addition that there is a positive, finite 
measure q on (E,E) such that Q(s,A)= JA q(s,e)-q(de). Then it is easy to see 
that the map s -- Q(s, .) is continuous with respect to the total variation norm on 
ca(E). 

In Sections 3 and 4 we saw that quasi-compact m-operators were very well 
behaved. In view of these results, it is desirable to find conditions under which 
the m-operators defined by a random dynamical system is quasi-compact. The 
difficult part of this problem is to describe conditions under which the operator 
can be shown to be weakly compact. Our next proposition presents a general 
condition that ensures weak compactness. 
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PROPOSITION 5.7: Let T be the m-operator defined by a random dynamical 
system. Assume that there are nonnegative measurable functions a(s), /3(s), and 
positive, finite measures q on (E, E), y on (S, S) such that (a) Q(s, B) o a(s). *q (B) 

for all B E E; (b) 'q((9 - 'A)) ? /3(s) (A) for all A E S. If sup, (a(s) * /3(s)) < x, 
then T is weakly compact. 

PROOF: Let T* E lin(ba(S)) be the adjoint of T. Now T is weakly compact if 
and only if T* is weakly compact [9, p. 485, Theorem 8]. We shall show that T* 
is weakly compact. By [9, p. 314, Theorem 12], it is sufficient to exhibit a positive 

E ba(S) such that limV(A)>OT*X(A) = 0 uniformly for X in the unit ball of 
ba(S) and A E S. 

Note that, for A E S, 

P(s,A) Q(s, (9- 'A)) a (s)'q((- 'A)) 

a (s) /3(s) 4A ) _ M * (A 

Let X be in the unit ball of ba(S). Then 

T*X(A)I fP(s,A)X(ds) |jIP(s,A) 1X1 (ds) 

- M,(A) X1(S) = MM (A). 

Setting v = ,i, we conclude that the image of the unit ball in ba(S) under T* has 
weakly compact closure. Hence T* is weakly compact. Q.E.D. 

6. RANDOM CONTRACTIONS 

The equicontinuous m-operators we have studied have all been quasi-compact 
operators on B(S). Although we found in Section 4 that such operators are an 
open, dense subset of all operators, there is an interesting class of equicontinuous 
operators which do not arise in this way. 

EXAMPLE 6.1: Let S = [0, 1] and let 0 < a < 1. Define a transition probability 
by the formula 

P(s,A) I if a s + (I1-a) 1/2 E A, 

O otherwise. 

Thus P describes the process that sends the point s to the point as + (1 - a). 
1/2 with probability one. 

It is easy to check directly that the m-operator T defined by P is equicon- 
tinuous. But T is certainly not quasi-compact. For if it were, the sequence 
{An(T*)t} would, for any probability lt, converge in total variation to 61/2. But 
if s #/ 1/2, 

IAn(T*)8s - 81/21= 1 for all n. 
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Of course, the operator T, although not quasi-compact, is nonetheless well 
behaved precisely because the transition probability P is defined by a contraction 
mapping on S. In this section we study a class of random dynamical systems 
with this property. For obvious reasons, we term them random contractions. 

The results in this section are due, in the generality we present them, to 
Norman [25]. The reader should consult his book as well as Iosifescu [15] for 
interesting applications to mathematical models of learning. 

DEFINITION 6.2: A random contraction is a random dynamical system with the 
following additional properties. (a) There is a constant M such that for all A E E 

I Q(s,A) -Q(t,A)I Md(s, t). 

(b) Define 

r =_ supf Q (s,de) d(9(s, e), 0(t, e)) 
S _ ?L sup X Q(s, de d(s, t) 

Then r < 1. 

Condition (b) is just the requirement that 0 be, on "average," a contraction 
mapping. For a somewhat more general version of (b), the reader should consult 
Norman [25, p. 31]. 

It follows from condition (a) and Proposition 5.6 that the m-operator defined 
by a random contraction is stable. But, as we shall soon see, much more is true of 
such operators. 

Let L(S) denote the set of all real valued Lipschitz functions on S. Thus a 
function f is in L(S) if and only if 

If(s) - f(t)I < sup d(s-dms(f) <t 

If f loo denotes the sup norm of f, then define the Lipschitz norm of f, IJIL by the 
equation 

If IL If lo + m(f). 

It is easy to see that IL makes L(S) into a Banach space. The following lemma 
shows that T is in fact a continuous linear operator on L(S). 

LEMMA 6.3 (Norman [25, p. 35]): If T is an m-operator defined by a random 
contraction, then there is a positive constant R such that 

I Tf L - rf fIL + R If I.oo 

WARNING 6.4: The m-operator T defined by a random contraction need not 
have norm equal to one when regarded as an operator on L(S). 
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Here is the first principal result about random contractions. 

THIEOREM 6.5 (Norman [25, p. 50]). Suppose the state space S is compact and 
that T is defined by a random contraction. Then T is a quasi-compact operator on 
L(S). 

Notice that Theorem 6.5 requires the state space to be compact. This assump- 
tion will be relaxed for a wide class of interesting cases in Theorem 6.1 1. 

LEMMA 6.6: Let T be an operator on C(S) that is quasi-compact when regarded 
as an operator on L(S). Then if f E C(S) is uniformly continuous, {A, (T)f) is 
uniformly convergent. 

PROOF: It is well known (see, for example, Dudley [8? Lemma 8]) that the 
closure of L(S) in C(S) with respect to the supnorm is precisely the Banach 
subspace of all uniformly continuous functions on S. 

Let f E C(S) be uniformly continuous. We shall show that the sequence 
A t( T)f} is Cauchy with respect to I l.o Fix e > 0. Choose an element g E L(S) 

such that g -f I x; < E/4. Abbreviate An ( T) by An and note that 

lAnf- An1fI = Anf- Ang + Ang - Amg + A,lg - A,llfK 

-AnIJf-glc, + JAmI.If-gl? + lAng-Am1glo 

_21f-gloo + lAng-AmgI0. 

Since T is quasi-compact on L(S), the sequence {Ang} is Cauchy with respect to 
I IL and therefore with respect to I loo Hence there is an integer no such that 
when n,m _ no Ang - Amgl < E/2. Then n,m _ nO implies 

Anf - Amfloo <2 /2 =. Q. E. D. 

COROLLARY 6.7: Let S be compact and T be defined by a random contraction. 
Then T is equicontinuous. 

PROOF: Since S is compact, T is tight. Furthermore, when S is compact, every 
element of C(S) is uniformly continuous. Hence T is uniformly mean stable by 
Lemma 6.6. Q.E.D. 

In view of Theorem 6.5, it is natural to ask what convergence results for 
probabilities are implied by the quasi-compactness of an operator T on L(S). To 
clarify the situation, we must first describe the relationships between the dual 
Banach space L(S)* and the set of probabilities on S. 

First of all, it is clear that any probability y is a continuous, linear functional 
on L(S), and hence an element of L(S)*. Recall that the norm on L(S)* is 
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defiined as follows. If x* E L(S)*, then 

1x*1 - sup lx*( f)!. 
fe- L(S) 

1/ ' 

Of course, the norm on L(S)* induces a metric p on L(S)* via the equation 

p(x*, *) -X*- 

If It X are probabilities, then 

p(p~) = X sup ff dl - f d 
fec I'(S) 

TIEOREM 6.8 (Dudley [8. Theorem 12]): Suppose that S is a separable m7etric 
space. Then the topology on the set of probabilities on S induced by the metric p is 
the weak topology (see Definition 2.5). 

COROLLARY 6.9: Suppose that S is compact and that T is defined byl a randon 
contraction. Then for any probability p., the sequence IA (T*)p} converges at an 
arithmetic rate in a metric defining the weak topology to an invariant probability. 

PROOF: Since T is quasi-compact on L(S), T* is quasi compact on L(S)*. 
Hence Theorem 3.4 applies and we conclude that the sequence of operators 
A,( T*), on L(S)* is convergent at an arithmetic rate to a projection. In 

particular, for any probability li, the sequence X A,( T*)jis converges at an 
arithmetic rate in the metric p to some element of L(S)*. But since S is compact, 
the set of probabilities on S is weakly compact. Thus the limit must itself be a 
probability. Q. E. D. 

Since Corollary 6.7 asserts that, for compact state spaces, the m-operators 
induced by random contractions are equicontinuous, it follows that the validity 
of the uniqueness criterion 2.11 suffices to imply the uniqueness of the invariant 
probability. But since, in these circumstances, T is actually quasi-compact on 
L(S) we can show that the validity of the generalized uniqueness criterion 3.5 
suffices to prove the convergence of the sequence { T } of operators on L(S). 

THEOREM 6.10: Suppose S is compact and T is defined by a random contraction. 
If the transition probability P defining T satisfies 3.5, then I is the only proper value 
of T of modulus one. 

PROOF: First of all, we will say that a complex number a is a proper value of 
T if and only if it is a proper value of T operating on the Banach space L(S) of 
all complex valued Lipschitz functions on S; the operator T is defined by the 
equation Tg = Tfl + iTf2 where g = f' + if2, f , f2 F L(S). 



406 CARL A. FUTIA 

Now if a is a proper value of T of modulus one, [25, Theorem 5.1, p. 57] shows 
that there is an integer k such that ak = 1. Thus the argument in Theorem 3.9 
shows that if, for each n, the only fixed points of T on L(S) are the constant 
functions, then a = 1. 

Since T is quasi-compact on L(S), so is Tk for every k. Hence Lemma 6.6 
implies that Tk is equicontinuous for each k. The argument in Theorem 3.10 then 
shows that the only fixed points of T in L(S) are the constant functions. 

Therefore, the only proper value of T of modulus one is 1. Q.E.D. 

We close this section by extending some of these results to the case of 
noncompact S. 

Suppose we are given a random dynamical system. Consider the following 
three conditions: (a) Let d be the metric on S. Then 

sup d(s,t) < x. 
s, t 

(b) There is a probability X on (E, E) such that Q(s, A) _ aX(A) for some positive 
constant a > 0. (c) Define, assuming that (b) holds, 

sup (f (s, e), (t, e)) X(de). 
S t ~~d(s, t) 

Then r< 1. 

THEOREM 6.11 (Norman [25, p. 67, Theorem 1.1]): Suppose T is defined by a 
random dynamical system satisfying (a), (b), and (c). Then the sequence of 
operators { Tn} on L(S) converges at a geometric rate to a projection whose range 
consists of only the constant functions. 

PROOF: Norman proves all assertions except convergence at a geometric rate. 
But since T is quasi-compact and the norms of Tk are uniformly bounded, the 
Corollary on p. 205 of [34] shows that the convergence occurs at a geometric rate. 

Q.E.D. 

COROLLARY 6.12: Suppose in addition to the hypothesis of Theorem 6.11, that 
the operator T is tight. Then, for any probability ,, the sequence of probabilities 
I T*n,0 } converges at a geometric rate in the metric p to the unique invariant 

probability for T. 

PROOF: Theorem 6.11 asserts that { T*"L } converges at a geometric rate to 
some element of L(S)*. Since T is tight, Proposition 2.8, together with the fact 
that p induces the weak topology on probabilities, implies that this limit is itself a 
probability. 

We now show that the limiting probability (which is obviously invariant) is 
unique. Suppose not. Then there are at least two distinct invariant probabilities 
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XI, X2. Theorem 6.1, p. 40 of [27] allows us to find a uniformly continuous 
function g such that fgdX1 # fgdX2. Since L(S) is sup norm dense in the 
Banach space of all uniformly continuous functions (Dudley [8, Lemma 8]), we 
may approximate g by a Lipschitz function f so that ffdX1 # ffdX2. But then 

(f,X1) = (f,An(T*)X1) 

7 (f,An(T*)X2) = (f,X2). 

Since (f,An(T*)Xj) = (An(T)f,X ), and since h limAn(T)f exists in L(S), we 
conclude (h, Xi) # (h, X2). But then h cannot be constant. Since h is an invariant 
function for T, this contradicts the conclusion of Theorem 6.11. Thus XI = 2, 
and the invariant probability for T is unique. Q.E.D. 

Bell Laboratories, Murray Hill, New Jersey 

Manuscript accepted December, 1978; revision received January, 1981. 

APPENDIX 

This Appendix contains references for the undefined mathematical terms used in this paper. For 
definitions of any terms omitted from this Appendix and for general mathematical background the 
reader should consult [1, 9, 14, 19, and 30]. 

Term Reference 

adjoint operator [9, p. 478] 
Banach space [9, p. 59] 
Banach space dual [9, p. 61] 
Borel a-field (or algebra) [14, p. 219] 
continuous linear operator [9, p. 60] 
linear functional [9, p. 38] 
measure [14, p. 31] 
measurable space [14, p. 73] 
measurable set [14, p. 73] 
norm [9, p. 59] 
regular measure [9, p. 137] 
a-field (or algebra) [14, p. 28] 
set function [14, p. 30] 
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