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1The concepts of payoff dominance and risk dominance are taken from Harsanyi and Selten
(1988). The risk-dominance equilibrium in a 2 × 2 symmetric game is the one with the larger
basin of attraction under best-response dynamics.
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1  INTRODUCTION
The abstraction assumptions specifying feasible strategies, preferences

over consequences, and substantively rational players, which define a
strategic form game, construct a powerful analytical framework within
which to analyze strategic behavior. These abstraction assumptions in turn
can be summarized by the best-response correspondence. One need only
know the best-response correspondence of a strategic form game to identify
its Nash equilibria. The vast majority of the equilibrium concepts in the
refinements literature similarly depend only on the best-response
correspondence, as do many of the concepts that choose between strict
Nash equilibria. All of the information required when applying such an
equilibrium concept to a game is then contained in the structure of the
game’s best responses.

This paper  reports an experimental investigation of three games that
have the same best-response correspondence, as well as similar payoff
magnitudes, but which produce different behavior. Games  2R, R, and 0.6R,
shown in Figures 1, 2, and 3, were used in the experiment. Cell entries
denote cents. Under the assumption that players maximize their earnings,
each game has two pure-strategy equilibria, including the payoff-dominant
equilibrium (X,X) and the risk-dominant equilibrium (Y,Y).1 Each game also
has a mixed equilibrium in which X is played with probability k*, where k*
equals 0.8.  Games with this structure are commonly referred to as (two
player) stag hunt games. 

The best response correspondence in games 2R, R and 0.6R is
completely determined by k*. Strategy X is a strict best response to any
mixture that attaches a probability greater than k* to X, while Y is a strict
best response to any mixture attaching a lower probability to X.  To the
extent possible, the games also involve payoffs of similar magnitudes. In
particular, the expected payoff from the mixed equilibrium is 36 for all
three games.

Classical theories, based on models of substantively rational agents,
typically treat games 2R, R and 0.6R identically.  Among theories that make
an equilibrium selection in the stag hunt game, Carlsson and van Damme
(1993) and Harsanyi (1995) choose the risk-dominant equilibrium.
Anderlini (1990) and Harsanyi and Selten (1988) choose the payoff-
dominant equilibrium.  In each case, the prediction does not depend upon



2 There are other theories that do not choose between the strict Nash equilibria of the stag
hunt game, but which do not distinguish between games with the same best-response
correspondence.   Hillas (1990) introduces an equilibrium concept that relies on the best-
response correspondence in a particularly obvious way.  

3 Weibull (1995) contains a good introduction to the replicator dynamic.

4 Van Huyck, Cook, and Battalio (forthcoming) use an analogy between the separatrix and
the continental divide to explain the barrier dividing adaptive behavior in their experiment:
“Mark Twain (1962, p.86) describes a remarkable spring at the summit of a Rocky Mountain
pass that ‘spent its water through two outlets and set it in opposite directions.’ One of the
streams starts a journey westward to the Gulf of California and the Pacific Ocean. The other
starts a journey eastward to the Gulf of Mexico and the Atlantic Ocean. Our search was for
a spring that straddles a barrier dividing a continent of human behavior.” In the experiment
reported in this paper, we were searching for separatrix crossings and so we choose an
extreme value of k* in the hope that all initial conditions will be in the risk dominant basin
of attraction.
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X Y

X 45,45 0,35

Y 35,0 40,40

Figure 1: 2R Game Form

X Y

X 45,45 0,40

Y 40,0 20,20

Figure 2: R Game Form

which of game 2R, R or 0.6R is played.2

The recent shift from models based on substantive rationality to models
of boundedly rational agents  has directed attention to learning-based
theories of equilibrium selection. Theories based on deterministic
dynamics, such as the replicator dynamic or myopic best response dynamic,
choose either the payoff-dominant or risk-dominant equilibrium, depending
upon which basin of attraction contains the initial condition, where the
separatrix divides the state space into basins of attraction.3 Such theories
predict history-dependent equilibrium selection. The three games have the
same separatrix,  k* , under either the replicator or myopic best response
dynamic.  If the initial state is on the same side of k*, the dynamic picks the
same equilibrium in all three games.4

X Y

X 45,45 0,42

Y 42,0 12,12

Figure 3: 0.6R Game Form
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Kandori, Mailath and Rob (1993)  and Young (1993) present stochastic
models in which the risk-dominant equilibrium is always selected. Robson
and Vega-Redondo (1996) examine a similar model in which the payoff-
dominant equilibrium is selected. Despite their different outcomes, each of
these theories selects the same equilibrium for all three games.

Our analysis of games 2R, R and 0.6R is motivated by the observation
that the pecuniary incentive to select a best response is always twice as
large in game 2R as it is in game R and six tenths as large in game 0.6R as
it is in game R. We refer to this incentive, given by the difference in the
payoffs of the best response and the inferior response, as the earnings
difference. The earnings difference may be irrelevant to substantively
rational agents, but we expect people to more readily learn to play a best
response when the payoff from doing so is larger.

Learning-based models draw attention to two effects of variations in
the earnings difference. First, many models based on deterministic
dynamics, such as the replicator dynamics, predict that convergence will be
faster when the earnings difference is larger.  This follows directly from the
fact that a larger earnings difference increases the rate at which strategies
are adjusted in the direction of a best response. For the case of the
continuous-time replicator dynamic, for example, the rate of convergence
is twice as large in game 2R relative to R and six tenths as large in game
0.6R relative to R.  

Secondly, the earnings difference may influence which equilibrium is
selected. Binmore and Samuelson’s (1997) model of aspiration and
imitation modifies the Kandori, Malouf, and Rob model to accommodate
a stochastic learning (as well as mutation) process.  In the medium run, this
opens the possibility that the noisy learning process will lead from the basin
of attraction of one equilibrium to the other. Over longer periods of time,
the model predicts that as the earnings difference decreases from 2R to R
to 0.6R the payoff dominant equilibrium will be more likely to appear.
Intuitively, the smaller payoff difference of the 0.6R game makes it more
likely that the stochastic learning process will lead away from a best
response, and accordingly escape its current basin of attraction, an event we
refer to as a separatrix crossing. The relatively low payoffs attached to the
risk-dominant equilibrium of game 0.6R interact with the players’
aspirations to make it especially likely that such an escape leads from the
risk-dominant to the payoff-dominant equilibrium. We accordingly expect
the payoff-dominant equilibrium to be more likely to appear in game 0.6R
than in game R and more likely in game R than in game 2R.

Our experimental results provide evidence that changing the earnings
difference between X and Y influences behavior. Behavior converges faster



4

in 2R than in R, which in turn converges faster than in 0.6R. Separatrix
crossings were observed more frequently in 0.6R than in R, which in turn
had more separatrix crossings than 2R. The payoff-dominant equilibrium
does emerge as a convention more often in the games with a smaller
earnings difference.

The following section describes the experiment. Section 3 uses various
models to make predictions about behavior in the experiment. Section 4
presents the experimental results. The penultimate section relates our
findings to the literature and the final section contains concluding
comments.

2  EXPERIMENTAL DESIGN
Human subjects played the 2R, R or 0.6R stag hunt game form for

seventy-five periods. Eight subjects participated in each cohort. We used
a single-population random matching protocol to pair subjects.

The subjects had common and complete information about both their
own and everybody else’s earnings table. Subjects confronted an
anonymous participant each period. Their actions were designated 1 and 2,
and each subject chose one such action in each period. After strategy
choices were made, the subjects were then randomly paired to determine
an outcome for each pair. The subjects were informed that they were being
randomly paired. Since outcomes were reported privately, subjects could
not use common information about the outcomes in previous periods to
coordinate on an equilibrium.

Monetary payments were used to induce preferences. Numbers in the
game form denote the number of cents earned by the subjects given they
chose a given action combination. Subjects were also instructed on how to
derive the other participant’s earnings from the earnings table.

No preplay communication of any kind was allowed. Messages were
sent electronically on a PC-network.

The subjects were recruited from undergraduate economic classes at
Texas A&M University in the spring of 1996 and fall of 1997. A total of 96
subjects participated in the experiment;  four cohorts of eight subjects each
playing game 2R, four cohorts of eight subjects each playing game R, and
four cohorts of eight subjects each playing game 0.6R. After reading the
instructions, but before the session began, the subjects filled out a
questionnaire to determine that they understood how to read earnings
tables. Repeated play of the payoff-dominant equilibrium for seventy-five
periods, which take about two hours, results in a subject earning $33.75.
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3  ANALYTICAL FRAMEWORK

3.1  THE EARNINGS DIFFERENCE
Games 2R, R, and 0.6R have the same best-response correspondence,

but differ in the penalty attached to not playing a best response or, more
optimistically, to the reward for playing a best response. We refer to this
incentive as the earnings difference, and it is the variation in earnings
differences that leads us to expect different behavior in the three games.

Let p denote the probability a player chooses X and q denote the
probability his opponent chooses X. Then the expected payoff for the player
is u(p,q;M) = {p,1-p}.M.{q,1-q}, where M denotes the relevant earnings
matrix. The earnings difference, given strategy q, is given by

For game R, r(q;R) = 25q-20, for game 2R, r(q;2R) = 50q-40 = 2r(q;R),
and for game 0.6R, r(q;0.6R) = 15q-12 = 0.6r(q;R). Hence, for any mixture
q, the earnings difference between the two actions is twice as large in game
2R as it is in game R and six tenths as large in game 0.6R as it is in game
R. Our intuition is that the forces attracting players to choose best responses
will be more effective in games in which the earnings difference is greater.

3.2 PROBABILISTIC CHOICE
Perhaps the first choice theory to capture such a possibility was Luce’s

(1959) probabilistic choice model. Let A denote a set of alternatives and let
a and b denote elements of A. Let P(a,b) denote the probability that a
person chooses a over b when making a choice from the set {a,b} and let
PS(a) denote the probability that a person chooses a when making a choice
from the set S f A. Luce (1959, p.23) showed that if and only if behavior
satisfies the independence from irrelevant alternatives, and P(a,b) û 0,1 for
all a,b in A, then there exists a positive real-valued function v defined on A
such that 

The function v is unique up to multiplication by a positive constant.
We must make some assumption concerning the relationship between

monetary payoffs and Luce’s v-scale.  If we let v(X) = exp(  u(X,q)), then



5 An alternative route to the same function is to use a random utility model, see Maddala
(1983) or Anderson et al. (1992).
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p(q, ) ' P(X,Y) '
exp( u(X,q))

exp( u(X,q)) % exp( u(Y,q))
,

p(q, ;M) '
exp( r(q;M))

1 % exp( r(q;M))
.

0q ' p(q, ;M) & q,

we obtain the widely studied and econometrically tractable logit model

where  is a parameter and p(q, ) is the probability of X given q, and .
Recalling the earnings difference, we can solve for the logit response
function5

When =0, players are indifferent over all strategies, while setting  equal
to  infinity gives best-response behavior.  Fixing , a logit equilibrium is a
fixed point of the two players’ logit response functions (see McKelvey and
Palfrey (1995)).

Following Fudenberg and Levine (1996), we can use the logit response
function to define a single-population continuous-time logit response
dynamic,

where q is reinterpreted as the frequency of action X in the population and
it is assumed that the population is sufficiently large as to allow the random
individual choices to be captured by a deterministic population equation.
The stationary states of the single-population logit response dynamic
correspond to symmetric logit equilibria.  

Figure 4 graphs the single-population continuous-time best-response
dynamic, which is the same for all three games, and the logit response
dynamic. Depending on  and r(q; M), the logit response dynamic may or
may not have asymptotically stable stationary states close to the risk-
dominant equilibrium (q=0) and the payoff-dominant equilibrium (q=1).
In Figure 4,  is set to 1, so that players are responsive to payoffs but do not
always choose best responses. As long as  is neither too large nor too
small, the qualitative result that a smaller earnings difference favors risk



6The uniqueness of the logit equilibrium for game 0.6R is implied by the fact that the logit
response function intersects the horizontal axis only once.

7For examples of choice models that are approximated by the replicator dynamics, see
Binmore, Gale and Samuelson (1995), Börgers and Sarin (1997), Cabrales (1993), and Schlag
(1994).

8See Friedman (1996), Van Huyck, Battalio, and Rankin (1997) and Van Huyck et al. (1995)
respectively. 
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dominance will be preserved. With =1, both 2R and R have three logit
equilibria that are close to the strategic equilibria. The risk-dominant
equilibrium’s basin of attraction under the logit response dynamic is larger
for game R than for game 2R, and both are larger than under the best-
response dynamic. If we think of some fixed distribution governing the
initial conditions from which the dynamic begins, then the effect of
probabilistic choice is to make the payoff-dominant equilibrium less likely
than in the case of best-response dynamics. Similarly, given a fixed
distribution, the payoff-dominant equilibrium is less likely to appear in
game R than in game 2R. Moreover, there is a unique logit equilibrium,
corresponding to the risk-dominant equilibrium, for game 0.6R.6 For any
initial condition, the probabilistic choice analysis with =1  thus predicts
the emergence of the risk-dominant equilibrium for game 0.6R. 

3.3  REINFORCEMENT LEARNING
The logit response dynamic is an example of the common approach of

using deterministic differential equations to describe learning-based
theories of equilibrium.  Another commonly studied system is the replicator
dynamic. Originally criticized as being of purely biological interest, it is
now clear that the replicator dynamics may sometimes serve as a theoretical
approximation of a learning model.7  The replicator dynamic has also been
found to provide a useful description of the relationship between initial
conditions and emergent conventions in simple coordination and bargaining
experiments.8 Here we trouble the reader with the replicator dynamic
because it is an easy framework within which to derive different speed-of-
convergence predictions for the three games.

The basins of attraction under the replicator dynamic coincide in the
three games, which in turn coincide with the basins of attraction of the
myopic best-response dynamic. The replicator prediction in both games is
then that a cohort with initial population frequencies of X less than k* will
converge to the risk-dominant equilibrium and a cohort with initial
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population frequencies of X greater than k* will converge to the payoff-
dominant equilibrium.

The replicator dynamic also makes predictions concerning the speed at
which the population converges to equilibrium that do not emerge from an
analysis of best-response dynamics and which are related to the earnings
difference. The single-population replicator dynamic is given by the
following equation:

where q is the population frequency of X and M is the earnings matrix.
Figure 5 graphs the replicator dynamic for games 0.6R, R, and 2R,
Comparing with Figure 4, we see that the best-response dynamic predicts
the largest changes in behavior occur near the separatrix, while the
replicator dynamic predicts that changes will be smallest near the separatrix
and relatively large in the middle of the basins of attraction. It is
straightforward to calculate that  

Hence, the replicator dynamic predicts that the rate at which the system
converges to an equilibrium is twice as large in game 2R as it is in game R
and is six tenths as large in game 0.6R as it is in game R.  

From Figure 4, we can see that the logit response dynamic also makes
predictions concerning speeds of convergence. However, the speed of
convergence depends on the state. Sometimes the absolute value of the rate
of change is largest in game R and sometimes the rate of change is largest
in game 0.6R under the logit response dynamic, so the logit response
dynamic makes a more complicated prediction than the replicator dynamic.

3.4  ASPIRATION AND IMITATION MODEL
Binmore and Samuelson (1997) introduce an aspiration and imitation

model in which players tend to revise their strategies whenever their
payoffs fall below an aspiration level, and when doing so choose new
strategies by imitating the behavior of other players.  The resulting learning
behavior is stochastic. Players tend to move in the direction of a best
response, but occasionally abandon a best response in favor of an inferior



9Börgers and Sarin (1997) and Schlag (1994) fall into the former category; Binmore, Gale and
Samuelson (1995) and Cabrales (1993) into the latter.
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response. As a result, the learning process can cause the proportion of the
population playing strategy X to cross the separatrix, that is, to change from
a state below k* to a state above k*  or vice versa. These separatrix
crossings are not predicted by best-response, continuous logit, or replicator
dynamics.  

If enough time passes, the aspiration and imitation model will lead the
population of players to spend most of their time near one of the strict Nash
equilibria of the stag hunt game. Proposition 8 in Binmore and Samuelson
(1997, p.256) allows us to compare how the equilibrium that is selected in
this way is likely to differ in the three games. In particular, altering the
payoffs to action Y so as to reduce the earnings difference, while preserving
the best-response correspondence as well as the expected payoff from the
mixed equilibrium, makes a convention based on payoff dominance more
likely to emerge.  Hence, unlike the case of the logit response dynamic, the
payoff dominant equilibrium is more likely in game 0.6R than in game R
and is more likely in game R than in 2R.

Intuitively, the smaller payoff difference makes it more likely that
players will mistakenly choose an inferior response when selecting a
strategy, hence making it more likely that the system will cross the
separatrix.  In addition, the relatively low payoffs attached to the risk-
dominant equilibrium in games with a smaller earnings difference, which
results from holding earnings in the payoff dominant and mixed
equilibrium constant across games, ensure that payoffs in these games are
more likely to fall short of the aspiration level. Hence strategy adjustments
will be more common near the risk-dominant equilibrium. Switches across
the separatrix are thus more likely to lead from the risk-dominant to the
payoff-dominant equilibrium than the reverse, which makes a convention
based on payoff-dominance more likely to emerge.

3.5  RELATIONSHIP TO THE EXPERIMENTS
None of these theoretical learning models provides an exact description

of the experimental setting in which our subjects played the game.
Theoretical models which motivate the replicator dynamic as
approximations of choice behavior typically describe either the behavior of
single agents or the behavior of arbitrarily large populations of agents.9

The continuous logit model is similarly derived from a model of individual
choice, but then removes the randomness from the model that served as its
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original motivation by assuming that the population is arbitrarily large.
The aspiration and imitation model of Binmore and Samuelson (1997)

assumes that only one agent revises strategies in any period, with arbitrarily
short time periods. In contrast, the experiment synchronizes play. The
model produces equilibrium selection results for the limiting case of an
arbitrarily large population. The model assumes that agents choose new
strategies by imitating other randomly selected members of the population,
while the experimental subjects only had information on their own history
of play. The equilibrium selection prediction derived from the aspiration
and imitation model is based on the properties of the model’s stationary
distribution, describing the limit of a process in which the model alternates
between long periods of time near each of the ends of the state space, with
relatively shorter periods spent traversing from one end to the other. We are
not likely to observe such behavior in 75 plays of the stag hunt game.

There is room for an apologist to explain away any observation that is
inconsistent with his favored model, and the experiment should not be
viewed as a test of these models. However, useful models provide insight
into behavior that occurs in settings which do not exactly duplicate the
abstractions of the model. Our experiment can be viewed as exploring the
circumstances under which these models provide insight into observable
behavior. In the case of our stag hunt games, phenomena predicted by these
models, such as  history-contingent equilibrium selection, differences in the
speed of convergence, and separatrix crossing, are observed in the
experiment. 

4  EXPERIMENTAL RESULTS

Section 4.1 reports the experimental results for the twelve cohorts focusing
on aggregate behavior. Section 4.2 reports estimated probabilistic choice
models of individual subject behavior. Section 5 summarizes the results and
discusses their relationship to the literature.

4.1  SUMMARY OF AGGREGATE BEHAVIOR
All twelve cohorts start in the risk-dominant equilibrium’s (Y,Y) basin

of attraction under best-response or replicator dynamics. Specifically,  for

the 0.6R cohorts, the period one frequency of action X is {
4
8

,
6
8

,
6
8

,
6
8

}

respectively. For the R cohorts, the period one frequency of action X is
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Contingency Table
Treatment by Period 1 Subject Choice

X Y Total

0.6R 22 10 32

R 23 9 32

2R 17 15 32

Total 62 34 96

  respectively.  For the 2R cohorts, the period one frequency{
6
8

,
5
8

,
6
8

,
6
8

}

of action X is  respectively. Combining the three treatments{
5
8

,
4
8

,
5
8

,
3
8

}

gives an average initial condition of 0.6458, or slightly more than 5 out of
8 subjects playing action X, the payoff dominant action. The modal subject
thus plays the payoff dominant action in the first period, but not enough
subjects focus on payoff dominance to make playing the payoff dominant
action mutually consistent, since 0.6458 is less than k* = 0.8.

The following contingency table, crossing the game and subject choice
in period 1, was used to test the hypothesis that the game did not influence
initial behavior. The Chi-square statistic is 2.8, which given 2 degrees of
freedom has a p-value of 0.24.  Hence, subjects’ slight tendency to initially
play the payoff dominant action more frequently when the earnings
difference is smaller is not statistically significant at conventional levels.

Figures 6a,b,and c report the five-period mean frequency of the payoff-
dominant action X by treatment. The three horizontal reference lines denote
the frequencies with which X is played in the risk-dominant equilibrium
(0.0), the mixed equilibrium (0.8), and the payoff-dominant equilibrium
(1.0). All 2R cohorts converge to the risk-dominant equilibrium and three
of four R cohorts converge to the risk-dominant equilibrium, with the
remaining R cohort hovering near the payoff dominant equilibrium. None
of the 0.6R cohorts converge to the risk-dominant equilibrium. Instead, two
of four 0.6R cohorts converge to the payoff dominant equilibrium, with the



10There are 32 (out of a possible 888) separatrix crossings in the raw data. However, most of
these crossings are reversed immediately. For example, the 2R cohorts account for 8 separatrix
crossings in the raw data of which 4 are crossings from the risk dominant to the payoff
dominant basin of attraction. The other four crossings occurred immediately after a risk
dominant to payoff dominant crossing and are crossings from the payoff dominant basin back
to the risk dominant basin.
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remaining two cohorts hovering near the center of the state space.
It takes a long time to converge to a mutually consistent outcome.

Amongst cohorts that converged to the risk dominant equilibrium, it takes
longer for R cohorts to reach the risk dominant equilibrium than it does the
2R cohorts.  If we compute the average first period in which every subject
in the cohort plays the risk-dominant action (excluding the R cohort that
never converges to the risk-dominant equilibrium), we find that the
remaining three R cohorts take an average of 50 periods for all agents to
reach the risk-dominant equilibrium, while the four 2R cohorts take an
average of 29 periods. The evidence is thus consistent with the prediction
that reducing the earnings difference reduces the speed of convergence.

<insert frequency figures about here>

In the time averaged data, there are only four separatrix crossings (see
Figure 6 a,b,c). This is out of a potential of 168, so separatrix crossings are
rare.10 Two 0.6R cohorts account for two separatrix crossings and one R
cohort accounts for two. The two crossings in the 0.6R treatment and one
of the crossings in the R treatment are of the expected type, that is, the
crossing is from the risk-dominant equilibrium’s basin of attraction to the
payoff-dominant equilibrium’s basin of attraction. The 2R cohorts never
crossed the separatrix in the time averaged data.

For the 0.6R cohorts, the period 75 frequency of action X is

respectively. For the R cohorts, the period 75 frequency of{
3
8

,
8
8

,
8
8

,
2
8

}

action X is respectively. For the 2R cohorts, the period 75{
1
8

,
0
8

,
5
8

,
0
8

}

frequency of action X is respectively. Our results are thus{
1
8

,
0
8

,
0
8

,
0
8

}

consistent with the proposition that game 0.6R is less likely to converge to
the risk-dominant equilibrium than is game 2R.

These results reflect the qualitative features predicted by the replicator
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yit '
t&1
t

yit&1 %
1
t

sit&1, t $ 2,

pit ' f( i % i r(yit)),

dynamic and the aspiration and imitation model discussed in section 3.  As
predicted by the replicator dynamic, convergence is more rapid when the
earnings difference is larger.  The risk-dominant equilibrium emerges as the
customary way to play in all of the 2R cohorts and in three out of four R
cohorts. The risk-dominant equilibrium never emerged in the four 0.6R
cohorts. Conversely, the payoff-dominant equilibrium emerges as the
customary way to play in two 0.6R cohorts. This ability of populations to
escape the risk-dominant basin of attraction when the earnings difference
is low is consistent with the aspiration and imitation model. Separatrix
crossings occur but are rare, and are more likely when the earnings
difference is small.

4.2  PROBABILISTIC CHOICE MODELS OF INDIVIDUAL BEHAVIOR
In this section, we report estimates of probabilistic choice learning

models based on the individual subject data. These provide some insight
into how the varying earnings differences of games 2R, R, and 0.6R are
reflected in individual behavior.

Popular belief-based learning models consist of two components: an
assessment rule used to describe the opponents’ behavior and a response
function. For example, fictitious play consists of a best response function
and an assessment rule based on the historical frequency of opponents’
actions. Exponential fictitious play retains the assessment based on
historical frequencies but replaces the best-response function with the
logistic response function.

Fictitious Play Beliefs 
Let yit denote subject i’s assessment of the likelihood his opponent will

play action X in period t. For a history of observed actions given by  hit =
(si1, si2, ...,sit-1), fictitious play and exponential fictitious play specify yit as

where sit is 1 if subject i’s opponent chose action X in period t and zero
otherwise. Let yi1 equal k*.

We estimated the following generalized model of exponential fictitious
play (EFP):
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where f(C)=exp(C)/(1+exp(C)) is the logistic response function and r(C) is the
earnings difference. When i is zero, it is straightforward to show that this
is Fudenberg and Levine’s (1996, p.153) model of exponential fictitious
play. 

The estimated EFP model breaks the parameters i, and i into a
representative component  and , and an idiosyncratic (individual subject)

component , that is, . The modelˆ i,
ˆ

i ' i & ˆ i and ' i &
ˆ

i

was estimated using the logistic procedure in SAS version 6.12. Variables
were chosen for inclusion in the model using the forward selection option
of the logistic procedure, which adds variables iteratively according to the
score chi-square statistic until there are no variables that pass the five
percent statistical significance rule of thumb.

Table 1 reports four probabilistic choice learning models that use
fictitious play beliefs. The table reports the representative component of the
estimated model for all 96 subjects combined, where std denotes standard
error, trt1 is a treatment dummy variable for the 2R sessions, trt2 is a
treatment dummy variable for the 0.6R sessions, n denotes number of
observations, df denotes degrees of freedom, 2 denotes the chi-square
statistic for the global hypothesis that all s are zero, H/L is the
Hosmer/Lemeshow goodness-of-fit measure, and p-value denotes the
probability value of the H/L statistic. The table does not report the
idiosyncratic components of the fitted model, but by subtracting the number
of representative components included from df, one can obtain the number
of idiosyncratic components.

Model 1 in Table 1 is a generalized version of fictitious play
(pit=f( i+ i yit)).  It is reported for comparison with exponential fictitious
play. As we would expect, the estimated coefficient of the belief variable
yit is positive (equaling 9.22), indicating that subjects were more likely to
play strategy X the more they expected opponents to play X. Both treatment
dummy variables are significant, indicating that behavior differed between
the three treatments.

Model 2 is exponential fictitious play. The belief variable, yit, is now
transformed by the earnings difference function, r(yit). Note that this
transformation changes units from frequency to cents. Hence, the
magnitude of the parameter estimates are not directly comparable. The
treatment dummy variables are no longer included by the procedure. The
difference in behavior between the games can thus be summarized by the
earnings difference variable and its effect on probabilistic choice. 
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Table 1: Estimated Fictitious Play and Exponential Fictitious Play Learning Models: Periods 1 to 40.

Model
(std)

yit

(std)
r(yit)
(std)

trt1
(std)

trt2
(std)

n
(df)

-2logL
( 2)

H/L
p-value

1
All Cohorts

-4.772
(0.23)

9.22
(0.38)

n/a -3.12
(0.25)

-1.25
(0.17)

3840
(67)

3007.3
(2240)

10.13
0.26

2
All Cohorts

1.856
(0.09)

n/a 0.348
(0.02)

n/i n/i 3840
(59)

3021.4
(2225)

21.81
0.00

3
0.6R Cohorts

1.328
(0.11)

n/a 0.097
(0.03)

n/i n/i 1280
(18)

1279.1
(447)

40.70
0.00

4
R&2R Cohorts

2.248
(0.15)

n/a 0.408
(0.02)

n/i n/i 2560
(41)

1701.7
(1597)

8.58
0.38

n/a - not allowed; n/i - allowed but not included.

Figure 7 is a graph of the response dynamic based on model 2. This can
be compared with the continuous logit dynamic of Figure 4. The main
difference between Figures 4 and 7 is the estimated value  =1.856 (see
model 2 in table 1), which is statistically significant at less than the one
percent level. If  had been 0 and  had been 1, then the figures would have
been the same. The positive value of  causes the basin of attraction of the
payoff-dominant equilibrium to be larger than would be the case under the
continuous logit dynamic. Moreover, this effect is larger for treatments
with smaller earnings differences because they have shallower basins of
attraction.

The combination of the payoff dominant equilibrium’s exogenous
attraction and the relative shallowness of game R’s basin of attraction
results in game R having a payoff dominant equilibrium with a larger
payoff basin of attraction than game 2R. For game 0.6R, the combination
of the payoff dominant equilibrium’s exogenous attraction and the
shallowness of the basin completely eliminates the risk dominant
equilibrium’s basin of attraction. The only logistic equilibrium is close to
the payoff dominant equilibrium. The estimated model also predicts a
region around 0.25 in which the dynamic is close to being stationary.  The
estimated exogenous attraction of the payoff dominant action thus
completely reverses the prediction of the continuous logit dynamic with 
= 0.

The EFP model fits our data surprisingly well.  Our finding of an
exogenous attraction to the payoff dominant action contrasts with Van
Huyck, Battalio, and Rankin (1997), who found  to be 0 in a coordination



11This distinction between protocols that make it easy to exploit adaptive behavior and those
that don’t is demonstrated nicely in Bloomfield (1994). The repeated minimum rule game,
which Camerer and Ho (1996) use to reject both reinforcement and belief based  learning,
seems intuitively to be between repeated and evolutionary models since only the minimum
matters. Sefton (1996), studying an evolutionary coordination game similar to ours, gets
similar results.

12Figure 7 reveals this feature: note how the rate of change is predicted to be negative at yit

close to 1 for 0.6R.
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game without Pareto ranked strict equilibria. Our finding also contrasts
with Mookerjee and Sopher (1994), which can be attributed to the
differences between a random and a repeated-pairs matching protocol. An
inertial dynamic, like fictitious play, is much more difficult to exploit in a
random-matching protocol than in a repeated-pairs protocol.11

While the earnings difference captures an important feature of the data,
the second model has a slightly higher likelihood score than the first.
Moreover, the Hosmer/Lemeshow goodness-of-fit test, H/L, rejects the
second model. Both of these features are due to including the 0.6R cohorts
in the data used to estimate the model. Models 3 and 4 report estimates of
the EFP model for the 0.6R cohorts and for the R and 2R cohorts
respectively. The bad fit for the 0.6R cohorts arises because the EFP model,
with all twelve cohorts included, predicts a stable, interior equilibrium
when both the estimated  and the earnings difference is small. The model
thus predicts that, as the belief that X is the customary way to play goes to
1, subjects will reduce the likelihood they will choose the payoff-dominant
action.12 However, the cohorts in which subjects are observing yit  close to
1 converge quickly and surely to perfect conformity with payoff
dominance, that is, all eight subjects play the payoff dominant action.
Hence, the model fits behavior in these cohorts badly. When we estimate
the model excluding the 0.6R cohorts we obtain a model with essentially
the same qualitative features as the estimated model for all twelve cohorts,
and one that passes the Hosmer/Lemeshow goodness-of-fit test. 

Reinforcement Learning
The previous section provided evidence that behavior responds to the

expected earnings difference, which is based on beliefs about opponents’
play gleaned from previous experience. A number of investigators have
noted that the expected earnings difference can be approximated by the
average earnings difference experienced in previous play. This approach
may be a cognitively simpler procedure because one does not have to
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transform the frequency of opponent’s actions into expected payoffs (see,
for example, Erev and Roth (1995)). We refer to such a procedure as
reinforcement learning because actions depend only on the differences in
the earnings actually experienced by the players.

Let ait equal 1 if subject i chose action X in period t and 0 otherwise.
Recall that sit equals 1 if subject i’s opponent chose action X in period t and
zero otherwise. Let u(ait, sit) denote subject i’s earnings in period t given ait

and sit. Let subject i’s average earnings through period t when choosing X,
uit(X), and subject i’s average earnings through period t when choosing Y,
uit(Y), be given by

Notice that we initialize the reinforcement algorithm with the expected
earnings from the mixed strategy equilibrium 0.36, which corresponds to
the expected earnings given a prior belief that X will be played with
probability 0.8. Then subject i’s experienced earnings difference between
action X and Y through period t is given by

Table 2 reports two versions of the reinforcement learning model
pit=f( i+ 1i r it+ 2i r(yit)). Model 5 estimates a pure reinforcement learning
version that excludes the expected earnings difference. The experienced
earnings difference variable, r it, is statistically and economically significant.
The treatment dummy is also statistically and economically significant.
The value of the likelihood score is larger than the belief-based models and
the Hosmer/Lemeshow goodness-of-fit statistic rejects the model.



13Chueng and Friedman (1996) and Stahl and Wilson (1995) also find evidence for
idiosyncratic behavior.
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Table 2: Estimated Reinforcement Learning Models: Periods 1 to 40.

Model
(std)

r it

(std)
r(yit)
(std)

trt1
(std)

trt2
(std)

n
(df)

-2logL
( 2)

H/L
p-value

5
All Cohorts

1.031
(0.07)

0.173
(0.01)

na -1.322
(0.12)

n/i 3840
(61)

3565.7
(1681)

20.17
(0.01)

6
All Cohorts

2.963
(0.19)

0.048
(0.01)

0.422
(0.02)

-1.742
(0.26)

-1.810
(0.19)

3840
(71)

2865.7
(2381)

30.02
(0.00)

na - not allowed; n/i - not included.

Model 6 includes both the experienced earnings difference variable, r it,
and the expected earnings difference variable, r(yit). Surprisingly, the
forward procedure includes both variables. Including the expected earnings
difference reduces the parameter for the experienced earnings difference by
more than half, while the magnitude of the parameter for the expected
earnings difference variable is larger than is the case without the
experienced earnings difference (see Table 1). A change in the expected
earnings difference has about four and one half times as large an impact
when compared to a change in the experienced earnings difference. Both
treatment dummy variables are included. The model gives the smallest
likelihood score of those reported above, but the Hosmer/Lemeshow
goodness-of-fit test rejects the model.

This result is similar to Camerer and Ho’s (1996) finding that an
“Experience-weighted Attraction” (EWA) model, including both
experienced earnings and expected earnings, fits their data better than
either a pure reinforcement learning or belief-based learning algorithm.  An
important difference between the EWA model and our empirical models is
that we allow idiosyncratic subject behavior.13 All of our models have
statistically and economically significant individual-subject intercept and
slope dummy variables. 

Models with Lagged Choices
In a rather different context, a repeated matching pennies game, Mookerjee
and Sopher (1994) report evidence of significant own and other lagged
choices in  models of reinforcement and belief-based learning. Specifically,
they found evidence of negatively autocorrelated choices, which is
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inconsistent with repeated play of the unique mixed strategy equilibrium of
the stage game. Finding evidence of autocorrelated behavior in
evolutionary stag hunt games should not be surprising, since this pattern
results from an emergent convention. Here we extend the models from the
previous sections to allow own and other lagged choices.

Table 3 reports exponential fictitious play and combination models
with lagged choice variables included. The lagged own, scl1, and other,
pcl1, choice variables are always significant. Both playing X and observing
X last period increases the likelihood a subject will play X in the current
period.

Model 7 is the EFP model (Model 2) with lagged choices. The
estimated model no longer includes a significant positive intercept and the
magnitude of the parameter for the earnings difference variable is halved
(compare with Table 1).

Model 8 in Table 3 combines the expected and experienced earnings
variable (Model 6)  with lagged choices. The intercept is not included. The
magnitude of the treatment dummy and expected and experienced earnings
parameters are reduced but have the same qualitative characteristics as in
Table 2.

In attempting to solve the goodness-of-fit problem reflected in the
Hosmer/Lemeshow values of models 7 and 8, we estimated a number of

Table 3: Probabilistic choice learning models with lagged own and other choice: Periods 2 to 40.

Model
(std)

r(yit)
(std)

r it

(std)
trt1
(std)

trt2
(std)

scl1
(std)

pcl1
(std)

n
(df)

-2logL
( 2)

H/L
p-value

7
All Cohorts

n/i 0.211
(0.09)

n/a n/i n/i 1.441
(0.08)

1.017
(0.08)

3744
(44)

2660.7
(2529)

23.40
(0.00)

8
All Cohorts

n/i 0.237
(0.01)

0.048
(0.01)

n/i -0.649
(0.12)

1.446
(0.09)

1.203
(0.10)

3744
(57)

2566.6
(2623)

20.84
(0.01)

9
0.6R Cohorts

-1.217
(0.150

n/i n/i n/a n/a 2.215
(0.16)

1.133
(0.16)

1248
(13)

1073.4
(609)

12.9
(0.07)

10
R&2R Cohorts

2.763
(0.39)

0.402
(0.04)

0.095
(0.02)

-2.90
(0.37)

n/a 0.689
(0.15)

1.062
(0.16)

2496
(54)

1421.6
(1770)

2.41
(0.97)

n/a - not allowed; n/i - not included.
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models that altered the belief variable either by optimizing the priors,
allowing for treatment specific priors, or by introducing Cheung and
Friedman’s (1996) memory discounting, which both eliminates the prior
and introduces memory discounting. None of these attempts solved the
goodness-of-fit problem.

Model 9 restricts the data to 0.6R cohorts. Neither the expected or
experienced earnings difference is included by the procedure. There are 11
idiosyncratic components. Two subjects have an idiosyncratic slope
parameter. Two subjects have an idiosyncratic experienced earnings
parameter. Five subjects have an idiosyncratic expected earnings parameter.
One subject has both an idiosyncratic experienced and expected earnings
parameter. So while the procedure no longer reports a significant influence
of the earnings difference variables for the representative subject there are
individual subjects who are influenced by the earnings difference variables.
Overall, however, the earnings difference models do not fit the 0.6R cohorts
data very well once one accounts for the correlation in own and other
choices.

Model 10 restricts the data to the R and 2R cohorts. Own and other
lagged choices are again positively correlated with the response variable.
Both the expected and experienced earnings differences are significant, but
the magnitude of the expected earnings difference parameter is more than
four times as large as the magnitude of the experienced earnings difference
parameter. The positive intercept indicates an unexplained preference for
the payoff dominant action, X. Model 10 passes the Hosmer/Lemeshow
goodness-of-fit test.

5 RELATED LITERATURE AND DISCUSSION
Table 4 summarizes our results and compares them to previous

findings.  Each row represents a cohort. The cohorts are ordered first by
value of the separatrix, k*, so that the basin of attraction of the risk-
dominant equilibrium shrinks as one moves down the table, and second by
the size of the scaled earnings difference, R(q), that is, the earnings
difference divided by the game’s highest possible payoff. The initial and
terminal outcomes are reported as the ratio of subjects using the payoff-
dominant action to the total number of subjects active in the cohort. The
last two columns report the number of periods and the source. The
experiments differ in many details such as matching protocol, induced
value technique, and the cohort’s experience as a group with pretrial games.
We don’t focus on these differences because we think the results in the



14Straub’s experiments involved groups of ten subjects who each played nine repetitions of
the game, one against each possible opponent.
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literature tell a fairly consistent story.
First, subjects do not bring risk dominance into the laboratory. The

payoff dominant action is usually the modal initial choice even when k*
takes on extreme values. Changing the scaled earnings difference has little
discernable influence on initial conditions.

 Second, the experimental subjects typically approach a mutual best
response outcome, that is, the cohort converges to a customary way to solve
their strategy coordination problem that is based on their experience with
the cohort. The emergent convention is usually the inefficient, risk-
dominant equilibrium when k* > 0.75 and the efficient, payoff-dominant
equilibrium when k* < 0.5.  For 0.5 < k* < 0.75, results are mixed.  

Third,  in most cases the terminal outcome is accurately predicted by
the location of the initial outcome in the respective equilibrium’s basin of
attraction. Separatrix crossings occur, but are rare. 

Finally, the earnings difference between the two actions influences the
frequency of observed separatrix crossings. Our experiment provides an
explicit treatment of the earnings difference, while circumstantial evidence
appears in two other cases.

Straub (1995) found that play converged to the risk-dominant
equilibrium in cohorts 10 and 19, but that play converged to the payoff-
dominant equilibrium in cohort 26.14 Of these three cohorts, cohort 26
played a stag game that has the smallest earnings difference.  The outcomes
of these three cohorts are then consistent with our finding, and the
prediction of Binmore and Samuelson's (1997) aspiration and imitation
model, that the payoff-dominant equilibrium will be most likely to appear
when the earnings difference is small.  However, the basin of attraction of
the payoff-dominant equilibrium is also the largest in the case of cohort 26.
Cohorts 10, 19, and 26 played games having values of k* equal to 0.8, 0.75,
and 0.67 respectively, so there is a reason for the payoff-dominant
equilibrium to appear in cohort 26, but not cohorts 10 and 19, that is not
related to the earnings difference.

Friedman (1996) does not report his results by cohorts or in some cases
even by game forms. We thank him for making his raw data available so
that we can make comparisons with our experiment. Table 4 reports data
for the first encounter a cohort had with a stag hunt game in the long
sequence of game forms and other treatment changes experienced by that
cohort. These data do not indicate that the  game form influences behavior.
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Specifically, cohorts 21 to 25 begin and end in the basin of attraction of the
risk dominant equilibrium. Cohort 20, which is the only naive cohort to
play the game with double the payoff difference, also begins and ends in
the risk dominant equilibrium’s basin of attraction. Evidence from
Friedman’s (1996) naive cohorts thus does not support the
Binmore/Samuelson prediction that the earnings difference will influence
equilibrium selection.

However, Friedman (1996) does report finding behavioral changes
consistent with our expectations for games forms run latter in the session
that hold the separatrix constant and change the earnings difference.
Sorting out the reasons for this difference is complicated because his
experimental design changes action labels, game forms, matching rules,
group size, and information within a session. He concludes that “one can
bias convergence towards the other ‘payoff dominant’ evolutionary
equilibrium.”

Constantly changing action labels and game forms forces subjects to
focus on deductive selection principles, like payoff dominance or risk
dominance. Rankin, Van Huyck, and Battalio (1997) report an experiment
in which payoff dominance emerges as a deductive selection principle in
sequences of similar but not identical stag hunt games. This is so even
when the stage game has an extreme value for k*, such as 0.97. So in some
cohorts players can become very confident in the mutual salience of payoff
dominance.

6  CONCLUSION
In this paper, we have reported a controlled experiment that focuses on

the earnings difference as the reason for separatrix crossings and the
emergence of a convention based on payoff dominance. Our results provide
evidence that more than the best-response correspondence matters when
predicting human behavior in laboratory experiments. We focused on the
expected earnings difference between the two actions in three stag hunt
games that have the same best-response correspondence, the same mixed
strategy equilibrium, and the same expected payoff at this mixed strategy
equilibrium, but have different pecuniary incentives to play a best response.
A number of analytical models, including probabilistic choice models,
deterministic replicator dynamics, and a stochastic model of aspiration and
imitation, predict that the earnings difference will influence behavior. We
find statistically and economically significant evidence that the expected
earnings difference function helps explain observed behavior.  

Our finding that convergence to an equilibrium occurs more quickly in
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games with a larger earnings difference is consistent with models of
adaptive learning.  The models of individual subject behavior estimated in
Section 4.2 find some evidence of adaptive learning. From the view point
of the probabilistic choice model developed in Section 3.1, in contrast,
there are some anomalies. Our estimated basins of attraction are different
from the predictions of the best-response or replicator dynamic, but not in
the way predicted by the analysis of logit equilibria. We think this is
because the abstraction assumption used to map money payoffs into the
probability of actions in standard probabilistic-choice specifications does
not capture the influence of the differing sizes of the payoff dominance
relation between the two treatments, that is, earnings in the risk dominant
equilibrium are twice as large in 2R than in R. 

The influence of this payoff dominance relation provides evidence for
an aspiration-based model of adaptive behavior. The observed correlation
between the earnings difference and the frequency of separatrix crossings
is consistent with a model like Binmore and Samuelson (1997).  Further
work is required to more carefully investigate the difference between this
and a host of competing explanations.
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APPENDIX A:
Instructions text file for graphical user interface.

Doesn’t include text markup symbols, page breaks, or graphics.

INSTRUCTIONS 
    This is an experiment in the economics of strategic decision making.  Various agencies
have provided funds for this research.  If you follow the instructions and make appropriate
decisions, you can earn an appreciable amount of money.  At the end of today’s session,
you will be paid in private and in cash.  
    It is important that you remain silent and do not look at other people’s work. If you
have any questions, or need assistance of any kind, please raise your hand and an
experimenter will come to you.  If you talk, laugh, exclaim out loud, etc., you will be
asked to leave and you will not be paid.  We expect and appreciate your cooperation.  
    You will be making choices on a Logitech mouse, which is located on the mouse pad in
the middle of your table.  You may move the pad to the right or left if this would be more
comfortable. Hold the mouse in a relaxed manner with your thumb and little finger on
either side of the mouse.  Rest your wrist naturally on the table surface. When you move
the mouse, let your hand pivot from the wrist.  Use a light touch. Your cursor (a white
arrow on your screen) should move when you slide the mouse on the mouse pad. If it does
not, raise your hand.  
    To participate, you must be able to move the cursor onto an object and click any one of
the mouse buttons.  We will call pointing at an object and then clicking your mouse
"clicking on" an object displayed on the screen.  Click on the page down icon located
below to display the next page.

   The experiment consists of seventy-five separate decision making periods.  In this
experiment you will participate in a group of eight people.  At the beginning of
period one, each of the participants in this room will be randomly assigned to a group of
size eight and will remain in the same group for the entire seventy-five decision making
periods of the experiment.  Hence, you will remain grouped with the same seven other
participants for the next seventy-five periods.
    At the beginning of each decision making period you will be randomly re-paired with
another participant in your group.  Hence, at the beginning of each decision making period,
you will have a one in seven chance of being matched with any one of the other seven
participants from your group.
    At the beginning of each period, you and all other participants will choose an action. 
An earnings table is provided which tells you the earnings you receive given the action you
and your currently paired participant chose.  The actions you may choose are row 1 or row
2.  Everyone has the same earnings table which will be continuously displayed on the
monitor in the front of the room during the experiment.  Click on the page down icon
located below to display the next page.

    Your earnings each period will be found in the box determined by your action and the 
action of the participant that you are paired with for the current decision making period. 
Your action determines the row and the other participant’s action determines the column
of the earnings table.  The value in the box determined by the intersection of the row
and column chosen is the amount of money that you earn in the current period. The
earnings, displayed in green, in each earnings cell is the amount of money,
in cents, that you earn.
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    The earnings each period for the participant that you are currently paired with can be
determined by reversing your positions. 
  Click on the page down icon now to view the earnings table while I describe how the
earnings for each decision making period are calculated.  You can review this page at
any time during the experiment by returning to the instructions. 

<EARNINGS  TABLE GOES HERE>

MAIN SCREEN
    We will now view the main screen.  You will use the main screen to make your choices
each period. While you view the main screen I will read the description of the screens
contained in the next two pages.  You can review the text that I am reading at any time
during the experiment by returning to the instructions.  Click on the word "MAIN" located
on the second line down from the top of the screen now. (The second line is the light blue
line on your screen). 
    The top line of the main screen displays the title of the screen and the current period
number. The second line has word "PROCEED" the abbreviation "INSTR" and the word
"RECORD" on it. During the session you will be able to return to these instructions by
clicking on "INSTR." You will also be able to view the history of play by clicking on
"RECORD", which we will explain in a moment. The remainder of the screen is devoted to
the earnings table.   
    Please look at the monitor at the front of the room while I demonstrate how you make
and enter a choice.  Do not use your main screen until you are instructed to do so.

    Making a choice consists of clicking any mouse button while the cursor is in
the row of your choice. When you have clicked on the earnings table, your cursor is
replaced by a green highlight around the row that contained the cursor when you clicked
the mouse. You can change the highlighted row by sliding your mouse up or down. Click
the mouse a second time and your cursor returns, but a row remains highlighted. To enter
your choice for the current period you need to confirm your choice.  You confirm your
choice by first clicking on the word "PROCEED" and then clicking on "YES" to confirm
and enter your choice for the current period.  This confirmation step lets you catch any
mistakes you make. 
    Please make a choice now, click on proceed and then click on "NO".  Notice that the
row is no longer highlighted and you may now make a different choice.
    Before making another choice click on "PROCEED" without making a choice and
notice that you receive the following message:

YOU MUST MAKE A CHOICE BEFORE PROCEEDING

At the time this message is present, a red box is also pulsing around the outside of your
earnings table.
    Please make a choice now, click on "PROCEED" and then confirm your choice by
clicking on "YES".  

WAITING SCREEN
    During a session a waiting screen will appear after you have made a choice.  While you
are waiting, you can view the instructions and the record of play by clicking on "INSTR"
or "RECORD."  When all participants have made a choice for the current period you will
be automatically switched to the outcome screen.  The choice displayed is the choice that
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you made during the demonstration of the main screen.  You will automatically return to
the instructions. Click on "WAITING" now.

OUTCOME SCREEN
    During a session, after everyone has made their choices, the outcome screen will 
appear.  The outcome screen summarizes what happened each period for ten seconds.  
Your choice will be highlighted in green.  The column determined by the other 
participant’s choice will be highlighted in . The screen is not active. 
The choice displayed for your choice reflects the choice you made during the demonstration
of the main screen.  You will automatically return to the instructions. Click on
"OUTCOME" now.

RECORD SCREEN
    The record screen records the period outcomes and updates your earnings balance.  A
copy of the record screen is given at the top of this screen.  The first three entries on the 
record screen are: "Period", "Your Choice" and "Other Participant’s Choice ".  The 
record screen will indicate your choice in green each period.  The fourth entry is your
earnings for a period which are recorded under the entry "Your Earnings".  Finally, your 
current balance, which includes all of your earnings up to and including the current period,
will be recorded under the entry "Balance".  In the first period your balance is zero.
    During the session the record screen will be displayed for twenty seconds.  You may
proceed to the next period by clicking on "RETURN" before the twenty seconds have
expired.  Remember you can always return to the record screen from either the main screen
or the waiting screen.
    Click on the word "RECORD" located on the second line down from the top of your
screen now.  As the experiment proceeds the records for the earlier periods will scroll off
the top of the record screen.  You may review the earlier records by clicking on the page
up, page down, line up and line down icons located at the bottom of the record screen. 
Click on "RETURN" now to return to the instructions before twenty seconds have expired.

QUESTIONNAIRE
    We will now pass out a questionnaire to make sure that all participants understand how
to read the earnings table.  Please fill it out now.  Raise your hand when you are finished
and we will collect it.  If there are any mistakes on any questionnaire, I will go over the
relevant part of the instructions again.  Do not put your name on the questionnaire.
    Click on the page down icon located below to display the next page.

SUMMARY

***   At the beginning of period one, each of the participants in this room will
be randomly assigned to a group of size eight and will remain in the same group for 
the entire seventy-five decision making periods of the experiment.
***  Each period you will be randomly re-paired with one of the seven other 
participants in your group.  Hence, at the beginning of each decision making period, you
will have a one in seven chance of being matched with any one of the seven other
participants your group.
***  You make a choice by clicking on a row, which highlights the row in green; 
clicking the mouse a second time, which restores your cursor, and then clicking on proceed
and yes to confirm your choice of the highlighted row. 
***  Remember that you can view the instructions or the record screen by clicking on the 
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appropriate word on the light blue bar.
***  Remember that you may proceed to the next period by clicking on "RETURN" before
the twenty seconds have expired.  You can always return to the record screen from either
the main screen or the waiting screen.
***  Your balance at the end of the session will be paid to you in private and in cash.

    Click on the page down icon located below to display the next page.

     We have completed the instructions.  Again, it is important that you remain silent
and do not look at other people’s work.

     If you have a question, please raise your hand, and an experimenter will come to
assist you.  If there are no questions, period one of the experiment will begin.
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Table 4: Recent Evidence on Human Behavior in Evolutionary Stag Hunt Games.

N Game = {A, C}
              {B, D}

R(k) k* Initial
Outcome

Terminal
Outcome

Periods Source

1 {45,0},{35,40} (10k - 8)/9 0.80 5/8 1/8 75 this paper

2 {45,0},{35,40} (10k - 8)/9 0.80 4/8 0/8 75 this paper

3 {45,0},{35,40} (10k - 8)/9 0.80 5/8 0/8 75 this paper

4 {45,0},{35,40} (10k - 8)/9 0.80 3/8 0/8 75 this paper

5 {100,0},{80,80}T (5k - 4)/5 0.80 6/10 0/10 22 Cooper, et al. (1992)

6 {100,0},{80,80}T (5k - 4)/5 0.80 6/10 0/10 22 Cooper, et al. (1992)

7 {100,0},{80,80}T (5k - 4)/5 0.80 5/10 1/10 22 Cooper, et al. (1992)

8 {100,0},{80,80}T (5k - 4)/5 0.80 7/20 4/20 10 Clark, et al. (1996)

9 {100,0},{80,80}T (5k - 4)/5 0.80 5/20 2/20 10 Clark, et al. (1996)

10 {100,0},{80,80}T (5k - 4)/5 0.80 4/10 0/10 9 Straub (1995)

11 {45,0},{40,20} (5k - 4)/9 0.80 6/8 1/8 75 this paper

12 {45,0},{40,20} (5k - 4)/9 0.80 5/8 0/8 75 this paper

13 {45,0},{40,20} (5k - 4)/9 0.80 6/8 5/8 75 this paper

14 {45,0},{40,20} (5k - 4)/9 0.80 6/8 0/8 75 this paper

15 {45,0},{42,12} (5k - 4)/15 0.80 4/8 3/8 75 this paper

16 {45,0},{42,12} (5k - 4)/15 0.80 6/8 8/8* 75 this paper

17 {45,0},{42,12} (5k - 4)/15 0.80 6/8 8/8* 75 this paper

18 {45,0},{42,12} (5k - 4)/15 0.80 6/8 2/8 75 this paper

19 {100,20},{80,80}T (4k - 3)/5 0.75 2/10 0/10 9 Straub (1995)

20 {5,-1},{3,3} (6k - 4)/5 0.67 5/12 3/12 10 Friedman (1996)

21 {5,-1},{4,1} (3k - 2)/5 0.67 7/12 3/12 10 Friedman (1996)

22 {5,-1},{4,1} (3k - 2)/5 0.67 7/12 3/12 16 Friedman (1996)

23 {5,-1},{4,1} (3k - 2)/5 0.67 6/10 3/10 16 Friedman (1996)

24 {5,-1},{4,1} (3k - 2)/5 0.67 2/12 3/12 10 Friedman (1996)

25 {5,-1},{4,1} (3k - 2)/5 0.67 3/12 2/12 10 Friedman (1996)

26 {80,10},{70,30}T (3k - 2)/8 0.67 9/10 9/10 9 Straub (1995)

27 {100,20},{60,60}T (4k - 2)/5 0.50 7/10 10/10 9 Straub (1995)

28 {5,0},{4,1} (2k - 1)/5 0.50 6/12 9/12 10 Friedman (1996)

29 {55,25},{35,35}T (6k - 2)/11 0.33 9/10 10/10 9 Staub (1995)

R(k) - scaled earnings difference given k, the probability of X: R(k) = ({k A + (1-k) C} - { k B + (1-k) D})/A
k* - separatrix, zero earnings difference, mixed strategy equilibrium.
T - payoff dominant equilibrium in the lower right cell of subjects earnings table.
* - Separatrix crossings between initial and terminal outcome.
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Figure 4: One population continuous time best response and logit
response dynamics (=1).
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Figure 5: Continuous Time Replicator Dynamic for game RD (dashed
line) and PD (solid line).
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 B. R Cohorts

C. 2R Cohorts
Figure 6: five period means of X frequency.

A. 0.6R Cohorts
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Figure 7: Logit response dynamic based on estimated EFP model.


