Risk DOMINANCE, PAYOFF DOMINANCE
AND PROBABILISTIC CHOICE LEARNING

Raymond Battalio, Larry Samuelson, and John Van Huyck

November 1997
Draftc4_1 5

Comments to john.vanhuyck@tamu.edu
Related research available at
http://econlab10.tamu.edu/JVH_gtee/

Abstract This paper reports an experiment comparing three stag hunt
games that have the same best-response correspondence. The games have
the same expected payoff from the mixed equilibrium, but diffehén t
pecuniary incentive a player has to play a best response tawittiares.

In each game, risk dominance conflicts with payoff dominance amtisele

an inefficient pure strategy equilibrium. We find statistigaind
economically significant evidence that the expected earningseafitfer

helps explain observed behavior.

Key Words Payoff dominance, risk dominance, probabilistic choice,
exponential fictitious play, bounded rationality, random utility, logistic
response equilibria, human behavior.

JEL Classificationc72, c78, c92, d83.

Acknowledgement®Ve thank Bill Rankin and Nick Rupp for research
assistance, Simon Anderson and Richard McKelvey forbladjgfcussions,

Dan Friedman, Robert Forsythe, Paul Straub, Martin Sefton, and their
collaborators for making their data available to us. Eric Batta
implemented the experimental design on the TAMU economics laoprat
network. The National Science Foundation and the Texas Advanced
Research Program provided financial support.

© 1997 by the authors. All rights reserved.



1 INTRODUCTION

The abstraction assumptions specifying feasible strategiestgmeés
over consequences, and substantively rational players, which @efine
strategic form game, construct a powerful analytical frarmkwathin
which to analyze strategic behavior. These abstraction assumiptions
can be summarized by the best-response correspondence. One need only
know the best-response correspondence of a strategic form gaimetifyi
its Nash equilibria. The vast majority of the equilibrium conséptthe
refinements literature similarly depend only on the begiaese
correspondence, as do many of the concepts that choose between strict
Nash equilibria. All of the information required when applying such an
equilibrium concept to a game is then contained in the structutteeof
game’s best responses.

This paper reports an experimental investigation of three gdraes
have the same best-response correspondence, as well as gapdér
magnitudes, but which produce different behavior. Ga2iedR and0.6R
shown in Figures 1, 2, and 3, were used in the experiment. Cedsentri
denote cents. Under the assumption that players maximize their earnings,
each game has two pure-strategy equilibria, including the payoffrdmini
equilibrium(X,X)and the risk-dominant equilibriu¢,Y)* Each game also
has a mixed equilibrium in whickis played with probabiliti*, wherek*
equals 0.8. Games with this structure are commonly referred(tovas
player)stag hunt games

The best response correspondence in ga2fesR and 0.6R is
completely determined bi*. StrategyX is a strict best response to any
mixture that attaches a probability greater thato X, while Y is a strict
best response to any mixture attaching a lower probabili¥; tdo the
extent possible, the games also involve payoffs of similar madgst In
particular, the expected payoff from the mixed equilibrium is 3fbr
three games.

Classical theories, based on models of substantively rationatsage
typically treat game2R, Rand0.6Ridentically. Among theories that make
an equilibrium selection in the stag hunt game, Carlsson and van Damme
(1993) and Harsanyi (1995) choose the risk-dominant equilibrium.
Anderlini (1990) and Harsanyi and Selten (1988) choose the payoff-
dominant equilibrium. In each case, the prediction does not depend upon

The concepts of payoff dominance and risk dominaned¢aken from Harsanyi and Selten
(1988). The risk-dominance equilibrium in a 2 x/gheetric game is the one with the larger
basin of attraction under best-response dynamics.
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which of game2R, Ror 0.6Ris played.

X Y X Y X Y
4545 | 035 X | 4545 | 040 X | 4545 | 0,42
350 | 40,40 Y| 400 | 2020 Y| 420 | 12,12
Figure 1: 2RGame Form Figure 2: R Game Form Figure 3: 0.6RGame Form

The recent shift from models based on substantive rationality tdsnode
of boundedly rational agents has directed attention to leabsisgd
theories of equilibrium selection. Theories based on deterministic
dynamics, such as the replicator dynamic or myopic best responseidyna
choose either the payoff-dominant or risk-dominant equilibrium, depgndi
upon which basin of attraction contains the initial condition, where the
separatrixdivides the state space into basins of attracti®uch theories
predict history-dependent equilibrium selection. The three gamesteave
same separatrixk* , under either the replicator or myopic best response
dynamic. If the initial state is on the same side*pthe dynamic picks the
same equilibrium in all three games.

2 There are other theories that do not choose betiteestrict Nash equilibria of the stag

hunt game, but which do not distinguish between egamith the same best-response
correspondence. Hillas (1990) introduces an diitim concept that relies on the best-
response correspondence in a particularly obvicas w

3 Weibull (1995) contains a good introduction to thplicator dynamic.

4van Huyck, Cook, and Battalio (forthcoming) use an analogy leetwee separatrix and
the continental divide to explain the barrier dividing adaptive hehavtheir experiment:
“Mark Twain (1962, p.86) describes a remarkable spring at the swhanRocky Mountain
pass that ‘spent its water through two outlets and setojpposite directions.” One of the
streams starts a journey westward to the Gulf of Caliégoand the Pacific Ocean. The other
starts a journey eastward to the Gulf of Mexico and thenfid@cean. Our search was for
a spring that straddles a barrier dividing a continent of humarvioelidn the experiment
reported in this paper, we were searching for separatrigsitrgs and so we choose an
extreme value of* in the hope that all initial conditions will be in the risk doarit basin
of attraction.



Kandori, Mailath and Rob (1993) and Young (1993) present stochastic
models in which the risk-dominant equilibrium is always selectetisBn
and Vega-Redondo (1996) examine a similar model in which the payoff-
dominant equilibrium is selected. Despite their different outcoeaes) of
these theories selects the same equilibrium for all three games.

Our analysis of gameé&R, Rand0.6Ris motivated by the observation
that the pecuniary incentive to select a best response issatwine as
large in gam&Ras it is in gam& and six tenths as large in gahéRas
it is in gameR. We refer to this incentive, given by the difference in the
payoffs of the best response and the inferior response, a&athiegs
difference The earnings difference may be irrelevant to substantively
rational agents, but we expect people to more readily learn t@aplagt
response when the payoff from doing so is larger.

Learning-based models draw attention to two effects of variaiions
the earnings difference. First, many models based on deterministic
dynamics, such as the replicator dynamics, predict that convergdhloe
faster when the earnings difference is larger. This follovexty from the
fact that a larger earnings difference increases the ratkicth strategies
are adjusted in the direction of a best response. For the case of the
continuous-time replicator dynamic, for example, the rate of convezgenc
is twice as large in gan#Rrelative toR and six tenths as large in game
0.6Rrelative toR.

Secondly, the earnings difference may influence which equilibrium is
selected. Binmore and Samuelsons (1997) model of aspiration and
imitation modifies the Kandori, Malouf, and Rob model to accommodate
a stochastic learning (as well as mutation) process. méagum run, this
opens the possibility that the noisy learning process willfieaithe basin
of attraction of one equilibrium to the other. Over longer periods of time,
the model predicts that as the earnings difference decrease2RimR
to 0.6Rthe payoff dominant equilibrium will be more likely to appear.
Intuitively, the smaller payoff difference of tRe&6Rgame makes it more
likely that the stochastic learning process will lead adrayn a best
response, and accordingly escape its current basin of attractevgranve
refer to as aeparatrix crossingThe relatively low payoffs attached to the
risk-dominant equilibrium of gamé.6R interact with the players’
aspirations to make it especially likely that such an escape leadshigom t
risk-dominant to the payoff-dominant equilibrium. We accordingly expect
the payoff-dominant equilibrium to be more likely to appear in gauGie
than in gamdR and more likely in gamR than in gam&R

Our experimental results provide evidence that changing the earnings
difference betweeX andY influences behavior. Behavior converges faster
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in 2R than inR, which in turn converges faster thandr6R Separatrix
crossings were observed more frequentl@.BRthan inR, which in turn
had more separatrix crossings tiZR The payoff-dominant equilibrium
does emerge as a convention more often in the games withll@rsma
earnings difference.

The following section describes the experiment. Section 3 usesisari
models to make predictions about behavior in the experiment. Section 4
presents the experimental results. The penultimate secticesedar
findings to the literature and the final section contains concluding
comments.

2 EXPERIMENTAL DESIGN

Human subjects played ti&R, Ror 0.6R stag hunt game form for
seventy-five periods. Eight subjects participated in each cohortisaf:
a single-population random matching protocol to pair subjects.

The subjects had common and complete information about both their
own and everybody elses earnings table. Subjects confronted an
anonymous participant each period. Their actions were designated 1 and 2,
and each subject chose one such action in each period. Afterstrateg
choices were made, the subjects were then randomly paired to ideterm
an outcome for each pair. The subjects were informed that theywiege
randomly paired. Since outcomes were reported privately, subjadis ¢
not use common information about the outcomes in previous periods to
coordinate on an equilibrium.

Monetary payments were used to induce preferences. Numbers in the
game form denote the number of cents earned by the subjeetsthay
chose a given action combination. Subjects were also instructed oo how t
derive the other participants earnings from the earnings table.

No preplay communication of any kind was allowed. Messages were
sent electronically on a PC-network.

The subjects were recruited from undergraduate economic cldsses a
Texas A&M University in the spring of 1996 and fall of 1997. A totd®f
subjects participated in the experiment; four cohorts of eight dalgach
playing game2R four cohorts of eight subjects each playing g&nand
four cohorts of eight subjects each playing gén@R After reading the
instructions, but before the session began, the subjects filled out a
guestionnaire to determine that they understood how to read earnings
tables. Repeated play of the payoff-dominant equilibrium for seveaty-
periods, which take about two hours, results in a subject earning $33.75.



3 ANALYTICAL FRAMEWORK

3.1 THE EARNINGS DIFFERENCE
Game=2R, R and0.6Rhave the same best-response correspondence,
but differ in the penalty attached to not playing a best responssoe,
optimistically, to the reward for playing a best response. W& tofthis
incentive as theearnings differengeand it is the variation in earnings
differences that leads us to expect different behavior in the three games.
Let p denote the probability a player choosésand g denote the
probability his opponent choosésThen the expected payoff for the player
is u(p,q;M) = {p,19}.M.{q,1q}, where M denotes the relevant earnings
matrix. The earnings difference, given strategis given by

r(a:M) = u(X,gM) - u(Y,q;M) = {1,-1}.M{q,1-q}.

For gameR,r(q;R) = 253-20, for gameR r(q;2R) = 503-40 = Z2(q;R),
and for gam®.6R, r(q;0.6R¥ 153-12 = 0.6(q;R). Hence, for any mixture
g, the earnings difference between the two actions is twicegesih game
2Ras it is in gam® and six tenths as large in gatéRas it is in game
R. Our intuition is that the forces attracting players to choostarésponses
will be more effective in games in which the earnings diffiee is greater.

3.2PROBABILISTIC CHOICE

Perhaps the first choice theory to capture such a possibiliti ueass
(1959) probabilistic choice model. L&denote a set of alternatives and let
a andb denote elements &. Let P(a,b) denote the probability that a
person choosesoverb when making a choice from the setl} and let
P4(a) denote the probability that a person cho@seben making a choice
from the seSc A. Luce (1959, p.23) showed that if and only if behavior
satisfies the independence fromirrelevant alternativeR@nh) = 0,1 for
all a,bin A, then there exists a positive real-valued functidefined orA
such that

v(a)

Y v(b)

beS

Ps(a) =

The functionv is unique up to multiplication by a positive constant.
We must make some assumption concerning the relationship between
monetary payoffs and Luceisscale. If we let(X) = exp(h u(X,q)), then



we obtain the widely studied and econometrically tractable logit model

) ) exp@. u(X,q))
p(ar) = P(X.Y) expQu(X,g)) + expQu(Y,q))’

wherel is a parameter ang{q,A) is the probability oX givenq, andx.
Recalling the earnings difference, we can solve for the legiponse
functior?

o) - EXDRT(EM)
PR = T exptr( M)

WhenA=0, players are indifferent over all strategies, while sgftiequal
to infinity gives best-response behavior. Fixinglogit equilibriumis a
fixed point of the two players’logit response functions (see Ma§ednd
Palfrey (1995)).

Following Fudenberg and Levine (1996), we can use the logit response
function to define a single-population continuous-time logit response
dynamic,

g = p(@@rM) - q,

whereq is reinterpreted as the frequency of acfioin the population and

it is assumed that the population is sufficiently large altda@he random
individual choices to be captured by a deterministic population equation.
The stationary states of the single-population logit response dynamic
correspond to symmetric logit equilibria.

Figure 4 graphs the single-population continuous-time best-response
dynamic, which is the same for all three games, and the regponse
dynamic. Depending ohandr(q; M), the logit response dynamic may or
may not have asymptotically stable stationary states ctodket risk-
dominant equilibrium@=0) and the payoff-dominant equilibriurg<1).

In Figure 4 is setto 1, so that players are responsive to payoffs but do not
always choose best responses. As long sneither too large nor too
small, the qualitative result that a smaller earnings diffee favors risk

® An alternative route to the same function is to usendam utility model, see Maddala
(1983) or Andersoet al.(1992).



dominance will be preserved. Witlx1, both2R andR have three logit
equilibria that are close to the strategic equilibria. The-diskinant
equilibrium’s basin of attraction under the logit response dynartacgsr

for gameR than for game&R, and both are larger than under the best-
response dynamic. If we think of some fixed distribution governing the
initial conditions from which the dynamic begins, then the effect of
probabilistic choice is to make the payoff-dominant equilibriumlikely
than in the case of best-response dynamics. Similarly, givéxed f
distribution, the payoff-dominant equilibrium is less likely to appear
gameR than in game&R. Moreover, there is a unique logit equilibrium,
corresponding to the risk-dominant equilibrium, for ga&R°® For any
initial condition, the probabilistic choice analysis withl thus predicts
the emergence of the risk-dominant equilibrium for géne&R

3.3 REINFORCEMENT LEARNING

The logit response dynamic is an example of the common approach of
using deterministic differential equations to describe learningebase
theories of equilibrium. Another commonly studied system is thiegpt
dynamic. Originally criticized as being of purely biologicakir@st, it is
now clear that the replicator dynamics may sometimes seavthaoretical
approximation of a learning modelThe replicator dynamic has also been
found to provide a useful description of the relationship between initial
conditions and emergent conventions in simple coordination andiagga
experiment$. Here we trouble the reader with the replicator dynamic
because it is an easy framework within which to derive @iffespeed-of-
convergence predictions for the three games.

The basins of attraction under the replicator dynamic coincide in the
three games, which in turn coincide with the basins of attractidheof
myopic best-response dynamic. The replicator prediction in both games
then that a cohort with initial population frequencieXdéss thark* will
converge to the risk-dominant equilibrium and a cohort with initial

®The uniqueness of the logit equilibrium for gath6Ris implied by the fact that the logit
response function intersects the horizontal axis only once.

"For examples of choice models that are approximated by theatplidynamics, see
Binmore, Gale and Samuelson (1995), Borgers and Sarin (1997), G4b@98), and Schlag
(1994).

8See Friedman (1996), Van Huyck, Battalio, and Rankin (1997) and Van EugckL995)
respectively.



population frequencies of greater thark* will converge to the payoff-
dominant equilibrium.

The replicator dynamic also makes predictions concerning the speed a
which the population converges to equilibrium that do not emergeanom
analysis of best-response dynamics and which are related tortivegsa
difference. The single-population replicator dynamic is giventhsy
following equation:

g = q({1,0+.M{q,1-a} - {g,1-q}.M.{q,1-q}),

whereq is the population frequency of andM is the earnings matrix.
Figure 5 graphs the replicator dynamic for gande8R, R,and 2R
Comparing with Figure 4, we see that the best-response dynamic predicts
the largest changes in behavior occur near the separatrix, Vieile t
replicator dynamic predicts that changes will be smallestthe&eparatrix

and relatively large in the middle of the basins of attractibns
straightforward to calculate that

LI}
qZR qR

9 & - 0.69)
qO.GR qR

Hence, the replicator dynamic predicts that the rate at whielsyistem
converges to an equilibrium is twice as large in gaRas it is in gam®&
and is six tenths as large in gathéRas it is in gam®&.

From Figure 4, we can see that the logit response dynamic akes ma
predictions concerning speeds of convergence. However, the speed of
convergence depends on the state. Sometimes the absolute valuatef the
of change is largest in garfeand sometimes the rate of change is largest
in game0.6R under the logit response dynamic, so the logit response
dynamic makes a more complicated prediction than the replicatandyg.

3.4 ASPIRATION AND IMITATION M ODEL

Binmore and Samuelson (1997) introduce an aspiration and imitation
model in which players tend to revise their strategies wheninesr
payoffs fall below an aspiration level, and when doing so choose new
strategies by imitating the behavior of other players. Tédtiag learning
behavior is stochastic. Players tend to move in the directian lm#st
response, but occasionally abandon a best response in favor of an inferior
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response. As a result, the learning process can cause the propottien of
population playing strategyto cross the separatrix, that is, to change from
a state belowk* to a state above*kor vice versa. These separatrix
crossings are not predicted by best-response, continuous logit,icarerpl
dynamics.

If enough time passes, the aspiration and imitation modeleai the
population of players to spend most of their time near one of tbieNgish
equilibria of the stag hunt game. Propaosition 8 in Binmore and Samnuels
(1997, p.256) allows us to compare how the equilibrium that is sélecte
this way is likely to differ in the three games. In particudtering the
payoffs to actioryY so as to reduce the earnings difference, while preserving
the best-response correspondence as well as the expected payoff from the
mixed equilibrium, makes a convention based on payoff dominance more
likely to emerge. Hence, unlike the case of the logit respibyrsmic, the
payoff dominant equilibrium is more likely in garfiesRthan in gamdR
and is more likely in gamR than in2R

Intuitively, the smaller payoff difference makes it moreshkthat
players will mistakenly choose an inferior response wherctete a
strategy, hence making it more likely that the system writlss the
separatrix. In addition, the relatively low payoffs attacheth&orisk-
dominant equilibrium in games with a smaller earnings difference, which
results from holding earnings in the payoff dominant and mixed
equilibrium constant across games, ensure that payoffs ingheses are
more likely to fall short of the aspiration level. Hence sggtadjustments
will be more common near the risk-dominant equilibrium. Switchessacr
the separatrix are thus more likely to lead from the risk-dantito the
payoff-dominant equilibrium than the reverse, which makes a convention
based on payoff-dominance more likely to emerge.

3.5 RELATIONSHIP TO THE EXPERIMENTS

None of these theoretical learning models provides an exact descript
of the experimental setting in which our subjects played the .game
Theoretical models which motivate the replicator dynamic as
approximations of choice behavior typically describe either the lp@tatv
single agents or the behavior of arbitrarily large populatafragents.
The continuous logit model is similarly derived from a modé&hdividual
choice, but then removes the randomness from the model that sgiited a

ngrgers and Sarin (1997) and Schlag (1994) fall into the formegagt, Binmore, Gale and
Samuelson (1995) and Cabrales (1993) into the latter.
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original motivation by assuming that the population is arbitrarily large.
The aspiration and imitation model of Binmore and Samuelson (1997)
assumes that only one agent revises strategies in any pétiodtbitrarily
short time periods. In contrast, the experiment synchronizes play. The
model produces equilibrium selection results for the limiting cdsan
arbitrarily large population. The model assumes that agents choose new
strategies by imitating other randomly selected membehegfopulation,
while the experimental subjects only had information on their own history
of play. The equilibrium selection prediction derived from the atipima
and imitation model is based on the properties of the models station
distribution, describing the limit of a process in which the modeirsdtes
between long periods of time near each of the ends of the stage wihc
relatively shorter periods spent traversing from one end toliee. e are
not likely to observe such behavior in 75 plays of the stag hunt game.
There is room for an apologist to explain away any observatioisthat
inconsistent with his favored model, and the experiment should not be
viewed as a test of these models. However, useful models provide insight
into behavior that occurs in settings which do not exactly duplitegte t
abstractions of the model. Our experiment can be viewed as exploging
circumstances under which these models provide insight into observable
behavior. In the case of our stag hunt games, phenomena predicted by these
models, such as history-contingent equilibrium selection, differémties
speed of convergence, and separatrix crossing, are observed in the
experiment.

4 EXPERIMENTAL RESULTS

Section 4.1 reports the experimental results for the twelve cdbousing

on aggregate behavior. Section 4.2 reports estimated probabilistie choi
models of individual subject behavior. Section 5 summarizes thesasdilt
discusses their relationship to the literature.

4.1 SUMMARY OF AGGREGATE BEHAVIOR
All twelve cohorts start in the risk-dominant equilibrium¥§) basin
of attraction under best-response or replicator dynamics. Spdyifitait

the0.6Rcohorts, the period one frequency of actiois {ﬂ 66 9}

8 8 8 8

respectively. For th® cohorts, the period one frequency of actiis
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, g, g} respectively. Forth2Rcohorts, the period one frequency

of actionXis { } respectively. Combining the three treatments
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gives an average initial condition of 0.6458, or slightly more thaut of
8 subjects playing actiox, the payoff dominant action. The modal subject
thus plays the payoff dominant action in the first period, but not enough
subjects focus on payoff dominance to make playing the payoff dominant
action mutually consistent, since 0.6458 is less kian0.8.

The following contingency table, crossing the game and subject choice
in period 1, was used to test the hypothesis that the game didlmence
initial behavior. The Chi-square statistic is 2.8, which given 2ategof
freedom has p-valueof 0.24. Hence, subjects’ slight tendency to initially
play the payoff dominant action more frequently when the earnings
difference is smaller is not statistically significant at conventitaadls.

Contingency Table
Treatment by Period 1 Subject Choice
X Y Total
0.6R 22 10 32
R 23 9 32
2R 17 15 32
Total 62 34 96

Figures @&,bandcreport the five-period mean frequency of the payoff-
dominant actioiX by treatment. The three horizontal reference lines denote
the frequencies with whicK is played in the risk-dominant equilibrium
(0.0), the mixed equilibrium (0.8), and the payoff-dominant equilibrium
(1.0). All 2R cohorts converge to the risk-dominant equilibrium and three
of four R cohorts converge to the risk-dominant equilibrium, with the
remainingR cohort hovering near the payoff dominant equilibrium. None
of the0.6Rcohorts converge to the risk-dominant equilibrium. Instead, two
of four 0.6Rcohorts converge to the payoff dominant equilibrium, with the
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remaining two cohorts hovering near the center of the state space.

It takes a long time to converge to a mutually consistent outcome.
Amongst cohorts that converged to the risk dominant equilibrium,gstak
longer forR cohorts to reach the risk dominant equilibrium than it does the
2Rcohorts. If we compute the average first period in which exgnject
in the cohort plays the risk-dominant action (excludingRtemhort that
never converges to the risk-dominant equilibrium), we find that the
remaining thredR cohorts take an average of 50 periods for all agents to
reach the risk-dominant equilibrium, while the fd2R cohorts take an
average of 29 periods. The evidence is thus consistent with thetnedic
that reducing the earnings difference reduces the speed of convergence.

<insert frequency figures about here>

In the time averaged data, there are only four separatrix ogss@&@ee
Figure 6a,b,c) This is out of a potential of 168, so separatrix crossings are
rare’® Two 0.6Rcohorts account for two separatrix crossings andrRone
cohort accounts for two. The two crossings in@Qt&Rtreatment and one
of the crossings in thR treatment are of the expected type, that is, the
crossing is from the risk-dominant equilibrium’s basin of attractiotié
payoff-dominant equilibrium’s basin of attraction. TR cohorts never
crossed the separatrix in the time averaged data.

For the 0.6R cohorts, the period 75 frequency of actighis

{g, g, %, %} respectively. For thR cohorts, the period 75 frequency of
actionXis {%, g, g, g} respectively. For th2R cohorts, the period 75

frequency of actioiX is {%, %, g, %} respectively. Our results are thus
consistent with the proposition that gathéRis less likely to converge to
the risk-dominant equilibrium than is ga2B

These results reflect the qualitative features predictéadoneplicator

OThere are 32 (out of a possible 888) separatrix crossirtgse iaw data. However, most of
these crossings are reversed immediately. For exarpRtohorts account for 8 separatrix
crossings in the raw data of which 4 are crossings fronriskedominant to the payoff
dominant basin of attraction. The other four crossings oagumenediately after a risk
dominant to payoff dominant crossing and are crossings freipayoff dominant basin back
to the risk dominant basin.

12



dynamic and the aspiration and imitation model discussed in s&ctids
predicted by the replicator dynamic, convergence is more rapid tliken
earnings difference is larger. The risk-dominant equilibriunrgesas the
customary way to play in all of tr#R cohorts and in three out of foRr
cohorts. The risk-dominant equilibrium never emerged in the GcaR
cohorts. Conversely, the payoff-dominant equilibrium emerges as the
customary way to play in tw@.6Rcohorts. This ability of populations to
escape the risk-dominant basin of attraction when the earnings difference
is low is consistent with the aspiration and imitation modebhagasrix
crossings occur but are rare, and are more likely when the esrning
difference is small.

4.2 PROBABILISTIC CHOICE MODEL S OF INDIVIDUAL BEHAVIOR

In this section, we report estimates of probabilistic choieenlag
models based on the individual subject data. These provide some insight
into how the varying earnings differences of gai2BsR, and0.6Rare
reflected in individual behavior.

Popular belief-based learning models consist of two components: an
assessment rule used to describe the opponents’ behavior and a response
function. For example, fictitious play consists of a best response function
and an assessment rule based on the historical frequency of opponents’
actions. Exponential fictitious play retains the assessment based on
historical frequencies but replaces the best-response functiorntheith
logistic response function.

Fictitious Play Beliefs
Lety, denote subjedts assessment of the likelihood his opponent will
play actionX in periodt. For a history of observed actions given ly=
(S5, Sp ---Stp), fictitious play and exponential fictitious play specgifyas
t-1 1

Yi = =yit1+T

t S v t>2,

wheres; is 1 if subject’s opponent chose actiofin periodt and zero
otherwise. Let;, equalk*.

We estimated the following generalized model of exponentiaidigtit
play (EFP):

Pe = flo + Bir(y)
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wheref(¢)=exp(s)/(1+exp(e)) is the logistic response function axe) is the
earnings difference. Whenis zero, it is straightforward to show that this
is Fudenberg and Levine’s (1996, p.153) model of exponential fictitious
play.

The estimated EFP model breaks the parameterand p; into a
representative componenandp, and an idiosyncratic (individual subject)

component &, . ,thatiso =« - & and B =B - B .Themodel
| | | | | |

was estimated using the logistic procedur8Abversion 6.12. Variables
were chosen for inclusion in the model using the forward selectiomoptio
of the logistic procedure, which adds variables iterativelpating to the
score chi-square statistic until there are no variables tlss thee five
percent statistical significance rule of thumb.

Table 1 reports four probabilistic choice learning models that use
fictitious play beliefs. The table reports the representatiugonent of the
estimated model for all 96 subjects combined, whttdenotes standard
error, trtl is a treatment dummy variable for tB® sessionsirt2 is a
treatment dummy variable for tH&6R sessionsn denotes number of
observationsdf denotes degrees of freedoyi,denotes the chi-square
statistic for the global hypothesis that #¢ are zero,H/L is the
Hosmer/Lemeshow goodness-of-fit measure, padalue denotes the
probability value of theH/L statistic. The table does not report the
idiosyncratic components of the fitted model, but by subtracting the number
of representative components included frfpone can obtain the number
of idiosyncratic components.

Model 1 in Table 1 is a generalized version of fictitious play
(p=f(05+PB; Yy). Itis reported for comparison with exponential fictitious
play. As we would expect, the estimated coefficient of the belief variable
Yy, IS positive (equaling 9.22), indicating that subjects were more likely to
play strategy the more they expected opponents to plagoth treatment
dummy variables are significant, indicating that behavior ditfdretween
the three treatments.

Model 2 is exponential fictitious play. The belief varialylg,is now
transformed by the earnings difference functiofy;). Note that this
transformation changes units from frequency to cents. Hence, the
magnitude of the parameter estimates are not directly compartind
treatment dummy variables are no longer included by the procedure. The
difference in behavior between the games can thus be summarized by the
earnings difference variable and its effect on probabilistic choice.
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Table 1. Estimated Fictitious Play and Exponential Fictitious Play Learning Modet&d? 1 to 40.

Model o Vi r(yi) trtl trt2 n -2logL H/L
(std (std (std (std (std (df) ()  p-value

1 4772 9.22 n/a -3.12 -1.25 3840 3007.3 10.13

All Cohorts (0.23) (0.38) (0.25) (0.17) (67) (2240) 0.26
2 1.856 n/a 0.348 n/i n/i 3840 30214 21.81

All Cohorts (0.09) (0.02) (59) (2225) 0.00
3 1.328 n/a 0.097 n/i n/i 1280 1279.1 40.70

0.6R Cohorts  (0.11) (0.03) (18) (447) 0.00
4 2.248 n/a 0.408 n/i n/i 2560 1701.7 8.58
R&2R Cohorts _ (0.15) (0.02) (41) (1597) 0.38

n/a - not allowed; n/i - allowed but not included.

Figure 7 is a graph of the response dynamic based on model 2aifihis ¢
be compared with the continuous logit dynamic of Figure 4. The main
difference between Figures 4 and 7 is the estimated wafie856 (see
model 2 in table 1), which is statistically significantegd than the one
percent level. It had been 0 arftlhad been 1, then the figures would have
been the same. The positive value guses the basin of attraction of the
payoff-dominant equilibrium to be larger than would be the case under the
continuous logit dynamic. Moreover, this effect is larger forttnests
with smaller earnings differences because they have shallmagers of
attraction.

The combination of the payoff dominant equilibrium’s exogenous
attraction and the relative shallowness of gdR'ebasin of attraction
results in gamdR having a payoff dominant equilibrium with a larger
payoff basin of attraction than gar@B. For game).6R the combination
of the payoff dominant equilibrium’s exogenous attraction and the
shallowness of the basin completely eliminates the risk dominant
equilibrium’s basin of attraction. The only logistic equilibrium is clase t
the payoff dominant equilibrium. The estimated model also predicts a
region around 0.25 in which the dynamic is close to being statioiiuey.
estimated exogenous attraction of the payoff dominant action thus
completely reverses the prediction of the continuous logit dymeuitin o
=0.

The EFP model fits our data surprisingly well. Our finding of a
exogenous attraction to the payoff dominant action contrasts with Van
Huyck, Battalio, and Rankin (1997), who fountb be 0 in a coordination
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game without Pareto ranked strict equilibria. Our finding alsutrasts
with Mookerjee and Sopher (1994), which can be attributed to the
differences between a random and a repeated-pairs matching préiocol.
inertial dynamic, like fictitious play, is much more diffittb exploit in a
random-matching protocol than in a repeated-pairs protocol.

While the earnings difference captures an important feature dathe
the second model has a slightly higher likelihood score than téte fir
Moreover, the Hosmer/Lemeshow goodness-of-fit test, H/L, tejie
second model. Both of these features are due to includiftgGReohorts
in the data used to estimate the model. Models 3 and 4 reporttestimha
the EFP model for th®.6R cohorts and for théR and 2R cohorts
respectively. The bad fit for tlle6Rcohorts arises because the EFP model,
with all twelve cohorts included, predicts a stable, interior dayitim
when both the estimat@dand the earnings difference is small. The model
thus predicts that, as the belief tiXat the customary way to play goes to
1, subjects wilfeducethe likelihood they will choose the payoff-dominant
action? However, the cohorts in which subjects are obsernyingose to
1 converge quickly and surely to perfect conformity with payoff
dominance, that is, all eight subjects play the payoff dominant action.
Hence, the model fits behavior in these cohorts badly. When we &stima
the model excluding th@.6Rcohorts we obtain a model with essentially
the same qualitative features as the estimated moda#l farelve cohorts,
and one that passes the Hosmer/Lemeshow goodness-of-fit test.

Reinforcement Learning

The previous section provided evidence that behavior responds to the
expected earnings difference, which is based on beliefs about opponents’
play gleaned from previous experience. A number of investigators have
noted that the expected earnings difference can be approximated by the
average earnings difference experienced in previous play. This approac
may be a cognitively simpler procedure because one does not have to

This distinction between protocols that make it easy to ebqudigiptive behavior and those
that don’t is demonstrated nicely in Bloomfield (1994). The aggz minimum rule game,
which Camerer and Ho (1996) use to reject both reinforcement #efl eesed learning,
seems intuitively to be between repeated and evolutionary ssiele only the minimum
matters. Sefton (1996), studying an evolutionary coordinatioregsimilar to ours, gets
similar results.

12Figure 7 reveals this feature: note how the rate of changeedicted to be negativeyat
close to 1 fo0.6R
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transform the frequency of opponent’s actions into expected payoffs (see,
for example, Erev and Roth (1995)). We refer to such a procedure as
reinforcement learning because actions depend only on the differences in
the earnings actually experienced by the players.

Let a, equal 1 if subjedtchose actioiX in periodt and O otherwise.
Recall thas, equals 1 if subjects opponent chose actiotin periodt and
zero otherwise. Lai(a,, 5;) denote subjedts earnings in periotigivena,
ands;. Let subject’s average earnings through pertoghen choosing,
u,(X), and subjedts average earnings through periodhen choosing,
u,(Y), be given by

(036 * Zl %r u(air’slr))

u(X) = t ’
1+ Zait
t=1
(0.36 + Y (1-a) u(a,s.)
u(Y) = = .

1+ Z]_ (176“)

Notice that we initialize the reinforcement algorithm witie texpected
earnings from the mixed strategy equilibrium 0.36, which correspmnds
the expected earnings given a prior belief tKawill be played with
probability 0.8. Then subjecs experienced earnings difference between
actionX andY through period is given by

Mo = Uea(X) — Uy ().

Table 2 reports two versions of the reinforcement learning model
p=f(o+ By ritB,i r(y)). Model 5 estimates a pure reinforcement learning
version that excludes the expected earnings difference. The expdrience
earnings difference variablg, is statistically and economically significant.
The treatment dummy is also statistically and economicailyifstant.

The value of the likelihood score is larger than the belief-baeelkls and
the Hosmer/Lemeshow goodness-of-fit statistic rejects the model.
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Table 2: Estimated Reinforcement Learning Models: Periods 1 to 40.

Model o Fi r(yi) trtl trt2 n -2logL H/L
(std (std (std) (std) (std) (df) () p-value
5 1.031 0.173 na -1.322 n/i 3840 3565.7 20.17
All Cohorts  (0.07) (0.01) (0.12) (61) (1681) (0.01)
6 2.963 0.048 0422 -1.742 -1.810 3840 2865.7 30.02

All Cohorts ~ (0.19) (0.01) (0.02) (0.26) (0.19) (71) (2381) (0.00)

na - not allowed; n/i - not included.

Model 6 includes both the experienced earnings difference vanigble,
and the expected earnings difference varial{lg,). Surprisingly, the
forward procedure includes both variables. Including the expectedigarni
difference reduces the parameter for the experienced earniregeddé by
more than half, while the magnitude of the parameter for the expecte
earnings difference variable is larger than is the caséoulit the
experienced earnings difference (see Table 1). A change in tketedp
earnings difference has about four and one half times as largepanti
when compared to a change in the experienced earnings difference. Both
treatment dummy variables are included. The model gives théesinal
likelihood score of those reported above, but the Hosmer/Lemeshow
goodness-of-fit test rejects the model.

This result is similar to Camerer and Ho's (1996) finding that an
“Experience-weighted Attraction” (EWA) model, including both
experienced earnings and expected earnings, fits their data Ihetter t
either a pure reinforcement learning or belief-based learnjogitdm. An
important difference between the EWA model and our empirical maels
that we allow idiosyncratic subject behavidiAll of our models have
statistically and economically significant individual-subject intpt@nd
slope dummy variables.

Models with Lagged Choices

In a rather different context, a repeated matching pennies gaoo&ekjee

and Sopher (1994) report evidence of significant own and other lagged
choices in models of reinforcement and belief-based learning fileptgi

they found evidence of negatively autocorrelated choices, which is

13Chueng and Friedman (1996) and Stahl and Wilson (1995) also find evidenc
idiosyncratic behavior.

18



inconsistent with repeated play of the unique mixed strategy eduititmf

the stage game. Finding evidence of autocorrelated behavior in
evolutionary stag hunt games should not be surprising, since thisnpatter
results from an emergent convention. Here we extend the modelgieom
previous sections to allow own and other lagged choices.

Table 3 reports exponential fictitious play and combination models
with lagged choice variables included. The lagged e, and other,
pcll, choice variables are always significant. Both play{rgnd observing
X last period increases the likelihood a subject will plap the current
period.

Table 3: Probabilistic choice learning models with lagged own and other choice: Periods 2 to 40.

Model o} r(yi) li trtl trt2 scll pcll n -2logL H/L

(std (std (std) (std) (std) (std) (std) (df) () p-value

7 nfi 0.211 n/a n/i n/i 1.441 1.017 3744 2660.7 23.40

All Cohorts (0.09) (0.08) (0.08) (44) (2529) (0.00)
8 n/i 0.237  0.048 n/i -0.649 1.446 1.203 3744 2566.6 20.84

All Cohorts (0.01) (0.01) (0.12) (0.09) (0.10) (57) (2623) (0.01)

9 -1.217 nfi n/i n/a n/a 2215 1.133 1248 10734 12.9

0.6R Cohorts (0.150 (0.16) (0.16) (13) (609) (0.07)

10 2.763 0.402 0.095 -2.90 n/a 0.689 1.062 2496 1421.6 2.41
R&2R Cohorts (0.39) (0.04) (0.02) (0.37) (0.15) (0.16) (54) (1770) (0.97)

n/a - not allowed; n/i - not included.

Model 7 is the EFP model (Model 2) with lagged choices. The
estimated model no longer includes a significant positive inteecgpthe
magnitude of the parameter for the earnings difference vaimhbkdved
(compare with Table 1).

Model 8 in Table 3 combines the expected and experienced earnings
variable (Model 6) with lagged choices. The intercept is ntudtecl. The
magnitude of the treatment dummy and expected and experienced earnings
parameters are reduced but have the same qualitative characteristics as
Table 2.

In attempting to solve the goodness-of-fit problem reflected in the
Hosmer/Lemeshow values of models 7 and 8, we estimated a number of
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models that altered the belief variable either by optimizingpiters,
allowing for treatment specific priors, or by introducing Cheung and
Friedman’s (1996) memory discounting, which both eliminates the prior
and introduces memory discounting. None of these attempts solved the
goodness-of-fit problem.

Model 9 restricts the data @6R cohorts. Neither the expected or
experienced earnings difference is included by the procedure. Thérk are
idiosyncratic components. Two subjects have an idiosyncratic slope
parameter. Two subjects have an idiosyncratic experienced earnings
parameter. Five subjects have an idiosyncratic expeet®ihgs parameter.

One subject has both an idiosyncratic experienced and expected earnings
parameter. So while the procedure no longer reports a significargrice

of the earnings difference variables for the representativeditbiere are
individual subjects who are influenced by the earnings differesrtables.
Overall, however, the earnings difference models do not fit.6iRcohorts

data very well once one accounts for the correlation in own and other
choices.

Model 10 restricts the data to tReand2R cohorts. Own and other
lagged choices are again positively correlated with the respanisédle.

Both the expected and experienced earnings differences are signbica

the magnitude of the expected earnings difference parameterasinan

four times as large as the magnitude of the experienced eadlifiegsnce
parameter. The positive intercept indicates an unexplained preference for
the payoff dominant actior. Model 10 passes the Hosmer/Lemeshow
goodness-of-fit test.

5RELATED LITERATURE AND DISCUSSION

Table 4 summarizes our results and compares them to previous
findings. Each row represents a cohort. The cohorts are ordertelyfirs
value of the separatrids*, so that the basin of attraction of the risk-
dominant equilibrium shrinks as one moves down the table, and second by
the size of the scaled earnings differenBég), that is, the earnings
difference divided by the game’s highest possible payoff. Thalimitid
terminal outcomes are reported as the ratio of subjects usinmayloé-
dominant action to the total number of subjects active in the coHwt. T
last two columns report the number of periods and the source. The
experiments differ in many details such as matching protocol, induced
value technique, and the cohort’s experience as a group with fatrias.
We don’t focus on these differences because we think the rasutis i
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literature tell a fairly consistent story.

First, subjects do not bring risk dominance into the laboratory. The
payoff dominant action is usually the modal initial choice even vidien
takes on extreme values. Changing the scaled earnings différentitile
discernable influence on initial conditions.

Second, the experimental subjects typically approach a mutual best
response outcome, that is, the cohort converges to a customarysebaeto
their strategy coordination problem that is based on their experience with
the cohort. The emergent convention is usually the inefficiesk- ri
dominant equilibrium whek* > 0.75 and the efficient, payoff-dominant
equilibrium wherk* < 0.5. For 0.5 «* < 0.75, results are mixed.

Third, in most cases the terminal outcome is accurately peeldigt
the location of the initial outcome in the respective equilibraibasin of
attraction. Separatrix crossings occur, but are rare.

Finally, the earnings difference between the two actions influghees
frequency of observed separatrix crossings. Our experiment provides a
explicit treatment of the earnings difference, while circumgbevidence
appears in two other cases.

Straub (1995) found that play converged to the risk-dominant
equilibrium in cohorts 10 and 19, but that play converged to the payoff-
dominant equilibrium in cohort 28.0f these three cohorts, cohort 26
played a stag game that has the smallest earnings ditéer&€he outcomes
of these three cohorts are then consistent with our finding, and the
prediction of Binmore and Samuels®(i1997) aspiration and imitation
model, that the payoff-dominant equilibrium will be most likely to appear
when the earnings differenceis small. However, the basin of attraction of
the payoff-dominant equilibriumisalso thelargest in the case of cohort 26.
Cohorts 10, 19, and 26 played games having values of k* equal t00.8, 0.75,
and 0.67 respectively, so there is a reason for the payoff-dominant
equilibrium to appear in cohort 26, but not cohorts 10 and 19, that is not
related to the earnings difference.

Friedman (1996) does not report hisresults by cohorts or in some cases
even by game forms. We thank him for making his raw data available so
that we can make comparisons with our experiment. Table 4 reports data
for the first encounter a cohort had with a stag hunt game in the long
sequence of game forms and other treatment changes experienced by that
cohort. These datado not indicate that the game form influences behavior.

Ystraub’s experiments involved groups of ten subjedto each played nine repetitions of
the game, one against each possible opponent.
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Specifically, cohorts 21 to 25 begin and end in the basin of attractiba of
risk dominant equilibrium. Cohort 20, which is the only naive cohort to
play the game with double the payoff difference, also begins andrends i
the risk dominant equilibrium’s basin of attraction. Evidence from
Friedman's (1996) naive cohorts thus does not support the
Binmore/Samuel son prediction that the earnings difference will influence
equilibrium selection.

However, Friedman (1996) does report finding behavioral changes
consistent with our expectations for games forms run latter in the session
that hold the separatrix constant and change the earnings difference.
Sorting out the reasons for this difference is complicated because his
experimental design changes action labels, game forms, matching rules,
group size, and information within a session. He concludes that “one can
bias convergence towards the other ‘payoff dominant’ evolutionary
equilibrium.”

Constantly changing action labels and game forms forces subjects to
focus on deductive selection principles, like payoff dominance or risk
dominance. Rankin, Van Huyck, and Battalio (1997) report an experiment
in which payoff dominance emerges as a deductive selection principlein
sequences of similar but not identical stag hunt games. This is so even
when the stage game has an extreme value for k*, such as0.97. So in some
cohortsplayers can become very confident in the mutual salience of payoff
dominance.

6 CONCLUSION

Inthis paper, we have reported a controlled experiment that focuses on
the earnings difference as the reason for separatrix crossings and the
emergence of aconvention based on payoff dominance. Our results provide
evidence that more than the best-response correspondence matters when
predicting human behavior in laboratory experiments. We focused on the
expected earnings difference between the two actions in three stag hunt
games that have the same best-response correspondence, the same mixed
strategy equilibrium, and the same expected payoff at this mixed strategy
equilibrium, but havedifferent pecuniary incentivesto play abest response.
A number of analytical models, including probabilistic choice models,
deterministic replicator dynamics, and astochastic model of aspiration and
imitation, predict that the earnings difference will influence behavior. We
find statistically and economically significant evidence that the expected
earnings difference function helps explain observed behavior.

Our finding that convergenceto an equilibrium occurs more quickly in
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games with a larger earnings difference is consistent mikdels of
adaptive learning. The models of individual subject behavior estihiia
Section 4.2 find some evidence of adaptive learning. From the view point
of the probabilistic choice model developed in Section 3.1, in contrast,
there are some anomalies. Our estimated basins of attraction arendiffer
from the predictions of the best-response or replicator dynamic, burt not
the way predicted by the analysis of logit equilibria. We think ihi
because the abstraction assumption used to map money payoffs into the
probability of actions in standard probabilistic-choice specifications does
not capture the influence of the differing sizes of the payoff dantge
relation between the two treatments, that is, earnings in the riskdomi
equilibrium are twice as large ERthan inR.

The influence of this payoff dominance relation provides evidénce
an aspiration-based model of adaptive behavior. The observed correlati
between the earnings difference and the frequency of separassirays
is consistent with a model like Binmore and Samuelson (1997). Further
work is required to more carefully investigate the difference betlde
and a host of competing explanations.
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APPENDIXA:

Instructions text file for graphical user interface.
Doesn't include text markup symbols, page breakgraphics.

INSTRUCTIONS

This is an experiment in the economics of eg&t decision making. Various agencies
have provided funds for this research. If youdallthe instructions and make appropriate
decisions, you can earn an appreciable amount o€goAt the end of today’s session,
you will be paid in private and in cash.

It is important that you remain silent and dit look at other people’s work. If you
have any questions, or need assistance of any iedse raise your hand and an
experimenter will come to you. If you talk, laughxclaim out loud, etc., you will be
asked to leave and you will not be paid. We expadtappreciate your cooperation.

You will be making choices on a Logitech mouwsich is located on the mouse pad in
the middle of your table. You may move the path®right or left if this would be more
comfortable. Hold the mouse in a relaxed mannen yaiur thumb and little finger on
either side of the mouse. Rest your wrist natymafi the table surface. When you move
the mouse, let your hand pivot from the wrist. @ddaht touch. Your cursor (a white
arrow on your screen) should move when you sliéentbuse on the mouse pad. If it does
not, raise your hand.

To participate, you must be able to move theauonto an object and click any one of
the mouse buttons. We will call pointing at aneabjand then clicking your mouse
“clicking on" an object displayed on the screetickCon the page down icon located
below to display the next page.

The experiment consists of seventy-five sepatatésion making periods. In this
experiment you will participate in a group of eigigople. At the beginning of
period one, each of the participants in this rooithive randomly assigned to a group of
size eight and will remain in the same group fer éintire seventy-five decision making
periods of the experiment. Hence, you will remgtiouped with the same seven other
participants for the next seventy-five periods.

At the beginning of each decision making pegod will be randomly re-paired with
another participant in your group. Hence, at tbgibhning of each decision making period,
you will have a one in seven chance of being matetith any one of the other seven
participants from your group.

At the beginning of each period, you and dllestparticipants will choose an action.
An earnings table is provided which tells you thenings you receive given the action you
and your currently paired participant chose. Tttégoas you may choose are row 1 or row
2. Everyone has the same earnings table whichb@itontinuously displayed on the
monitor in the front of the room during the expegim.  Click on the page down icon
located below to display the next page.

Your earnings each period will be found in Hox determined by your action and the
action of the participant that you are paired viiththe current decision making period.
Your action determines the row and the other pigditt's action determines the column
of the earnings table. The value in the box deitezthby the intersection of the row
and column chosen is the amount of money that wowo i@ the current period. The
earnings, displayed in green, in each earningss#ile amount of money,
in cents, that you earn.
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The earnings each period for the participaat ylou are currently paired with can be
determined by reversing your positions.
Click on the page down icon now to view the eagsitable while | describe how the
earnings for each decision making period are catedl You can review this page at
any time during the experiment by returning toitigructions.

<EARNINGS TABLE GOES HERE>

MAIN SCREEN

We will now view the main screen. You will ute main screen to make your choices
each period. While you view the main screen | véilid the description of the screens
contained in the next two pages. You can reviemtéxt that | am reading at any time
during the experiment by returning to the instroct. Click on the word "MAIN" located
on the second line down from the top of the scremm. (The second line is the light blue
line on your screen).

The top line of the main screen displays ttie &if the screen and the current period
number. The second line has word "PROCEED" theealidtion "INSTR" and the word
"RECORD" on it. During the session you will be atdereturn to these instructions by
clicking on "INSTR." You will also be able to vietle history of play by clicking on
"RECORD", which we will explain in a moment. Thenainder of the screen is devoted to
the earnings table.

Please look at the monitor at the front ofritvem while | demonstrate how you make
and enter a choice. Do not use your main screéhyan are instructed to do so.

Making a choice consists of clicking any mohsé&on while the cursor is in
the row of your choice. When you have clicked omdlarnings table, your cursor is
replaced by a green highlight around the row tlatained the cursor when you clicked
the mouse. You can change the highlighted row ioyng) your mouse up or down. Click
the mouse a second time and your cursor retursg law remains highlighted. To enter
your choice for the current period you need to oanf/our choice. You confirm your
choice by first clicking on the word "PROCEED" atién clicking on "YES" to confirm
and enter your choice for the current period. Tusfirmation step lets you catch any
mistakes you make.

Please make a choice now, click on proceedtsclick on "NO". Notice that the
row is no longer highlighted and you may now mak#fferent choice.

Before making another choice click on "PROCER#thout making a choice and
notice that you receive the following message:

YOU MUST MAKE A CHOICE BEFORE PROCEEDING

At the time this message is present, a red boblstsulsing around the outside of your
earnings table.

Please make a choice now, click on "PROCEE@"then confirm your choice by
clicking on "YES".

WAITING SCREEN

During a session a waiting screen will appd@r you have made a choice. While you
are waiting, you can view the instructions andréword of play by clicking on "INSTR"
or "RECORD." When all participants have made aahéor the current period you will
be automatically switched to the outcome scredme dhoice displayed is the choice that
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you made during the demonstration of the main scrééou will automatically return to
the instructions. Click on "WAITING" now.

OUTCOME SCREEN

During a session, after everyone has made theices, the outcome screen will
appear. The outcome screen summarizes what hagppenh period for ten seconds.
Your choice will be highlighted in green. The coiln determined by the other
participants choice will be highlighted in . Thersen is not active.
The choice displayed for your choice reflects theice you made during the demonstration
of the main screen. You will automatically retaonthe instructions. Click on
"OUTCOME" now.

RECORD SCREEN

The record screen records the period outcomésipdates your earnings balance. A
copy of the record screen is given at the top isfshreen. The first three entries on the
record screen are: "Period", "Your Choice" and '@tRarticipant’s Choice ". The
record screen will indicate your choice in greeateperiod. The fourth entry is your
earnings for a period which are recorded undeetitey "Your Earnings". Finally, your
current balance, which includes all of your earsing to and including the current period,
will be recorded under the entry "Balance". In fingt period your balance is zero.

During the session the record screen will lspldiyed for twenty seconds. You may
proceed to the next period by clicking on "RETURd¢fore the twenty seconds have
expired. Remember you can always return to therdescreen from either the main screen
or the waiting screen.

Click on the word "RECORD" located on the sattne down from the top of your
screen now. As the experiment proceeds the redordie earlier periods will scroll off
the top of the record screen. You may review titiex records by clicking on the page
up, page down, line up and line down icons locatatie bottom of the record screen.
Click on "RETURN" now to return to the instructiobsfore twenty seconds have expired.

QUESTIONNAIRE

We will now pass out a questionnaire to make $uat all participants understand how
to read the earnings table. Please fill it out ndRaise your hand when you are finished
and we will collect it. If there are any mistal@sany questionnaire, | will go over the
relevant part of the instructions again. Do natymur name on the questionnaire.

Click on the page down icon located below &ptiy the next page.

SUMMARY

** At the beginning of period one, each of tharficipants in this room will

be randomly assigned to a group of size eight aidemain in the same group for

the entire seventy-five decision making periodthefexperiment.

** Each period you will be randomly re-paired wibne of the seven other
participants in your group. Hence, at the begigriheach decision making period, you
will have a one in seven chance of being matchéid any one of the seven other
participants your group.

** You make a choice by clicking on a row, whitiighlights the row in green;

clicking the mouse a second time, which restores garsor, and then clicking on proceed
and yes to confirm your choice of the highlightedir

** Remember that you can view the instructiongive record screen by clicking on the
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appropriate word on the light blue bar.

** Remember that you may proceed to the nextqeby clicking on "RETURN" before
the twenty seconds have expired. You can alwaysiréo the record screen from either
the main screen or the waiting screen.

** Your balance at the end of the session willgzéd to you in private and in cash.

Click on the page down icon located below &ptiy the next page.

We have completed the instructions. Agairs important that you remain silent
and do not look at other people’s work.

If you have a question, please raise your hand an experimenter will come to
assist you. If there are no questions, periodajribe experiment will begin.
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Table 4. Recent Evidence on Human Behavior in Evolutionary Stag Hunt Games.

N Game ={A, C} R(k) k* Initial Terminal  Periods Source
{B, D} Outcome Outcome
1 {45,0},{35,40} (10k-8)/9 0.80 5/8 1/8 75 this paper
2 {45,0},{35,40} (10k-8)/9 0.80 4/8 0/8 75 this paper
3 {45,0},{35,40} (10k - 8)/9  0.80 5/8 0/8 75 this paper
4 {45,0},{35,40} (10k-8)/9 0.80 3/8 0/8 75 this paper
5 {100,0},{80,80}"  (5k-4)/5 0.80 6/10 0/10 22 Coopet al. (1992)
6 {100,0},{80,80}"  (5k-4)/5 0.80 6/10 0/10 22 Coopet al. (1992)
7  {100,0},{80,80}"  (5k-4)/5 0.80 5/10 1/10 22 Coopet al. (1992)
8 {100,0},{80,80}"  (5k-4)/5 0.80 7120 4/20 10 Clarkt al. (1996)
9 {100,0},{80,80}"  (5k-4)/5 0.80 5/20 2/20 10 Clarkt al. (1996)
10  {100,0},{80,80)"  (5k-4)/5 0.80 4/10 0/10 9 Straub (1995)
11  {45,0},{40,20} (5k-4)/9  0.80 6/8 1/8 75 this paper
12 {45,0},{40,20} (5k-4)/9  0.80 5/8 0/8 75 this paper
13 {45,0},{40,20} (5k-4)/9  0.80 6/8 5/8 75 this paper
14 {45,0},{40,20} (5k-4)/9  0.80 6/8 0/8 75 this paper
15  {45,0},{42,12} (5k - 4)/15  0.80 4/8 3/8 75 this paper
16 {45,0},{42,12} (5k - 4)/15 0.80 6/8 8/8* 75 this paper
17 {45,0},{42,12} (5k-4)/15 0.80 6/8 8/8* 75 this paper
18 {45,0},{42,12} (5k-4)/15 0.80 6/8 2/8 75 this paper
19 {100,20}{80,80F  (4k-3)/5 0.75 2/10 0/10 9 Straub (1995)
20 {5,-1},{3,3} (6k-4)/5 0.67 5/12 3/12 10 Friedman (1996)
21 {5,-1},{4,1} (3k-2)/5 0.67 7/12 3/12 10 Friedman (1996)
22 {5,-1},{4,1} (3k-2)/5 0.67 7112 3/12 16 Friedman (1996)
23 {5,-1},{4,1} (3k-2)/5 0.67 6/10 3/10 16 Friedman (1996)
24 {5,-1},{4,1} (3k-2)/5 0.67 2/12 3/12 10 Friedman (1996)
25 {5,-1},{4,1} (3k-2)/5 0.67 3/12 2/12 10 Friedman (1996)
26 {80,10},{70,30'  (3k-2)/8 0.67 9/10 9/10 9 Straub (1995)
27 {100,20},{60,60  (4k-2)/5 0.50 7/10 10/10 9 Straub (1995)
28 {5,0},{4,1} (2k-1)/5 0.50 6/12 9/12 10 Friedman (1996)
29  {55,25},{35,35}" (6k-2)/11  0.33 9/10 10/10 9 Staub (1995)

R(K)- scaled earnings difference givierthe probability oiX: R(k)= ({k A + (1k) C} - {k B + (1K) D})/A
k* - separatrix, zero earnings difference, mixed strategy equilibrium.
T - payoff dominant equilibrium in the lower right cell of subjects earnings table.

* - Separatrix crossings between initial and terminal outcome.

32



qdot
0.2 L
. . . M q
0.2 0.4 0.6 08 ¢ 1
I P
Il 7/
02 [ ! /
//
/
-0.4 L / 'l
il
06rR [
\\\ // l’
0.6 -~ R ]
r 1
R,/
08 | G
Figure 4: One population continuous time best response and logit

response dynamic&=£1).

qdot

-

-5 [
Figure 5. Continuous Time Replicator Dynamic for gaRB (dashed

line) andPD (solid line).
33



100

F 904

.

q

. 80

.

Yy
701

o

f

P 60

Yy

’

f

f 504

D

o

™ 404

n

T 30

A

P

204

o

n

. 101
0

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Period

A.0.6R Cohorts

100

90

80

704

601

50

40

30

X 30-+6> +303-300 ++0<0TW -0 <odBcCOB-m

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Period

B. R Cohorts

90

80

704

60

50

40

30

20

X 50—+6> +303-300 ~+0<O0T 40 <036CO6T

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Period

C. 2R Cohorts
Figure 6: five period means of frequency.

34



Figure 7: Logit response dynamic based on estimated EFP model.
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