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We extend the evolutionary process studied in Kandori ez al., Econometrica 61
(1993), 29-56, to nxn games. The evolutionary process is driven by two forces:
players switching to the best response against the present strategy configuration,
and players experimenting with new strategies. We show that a unique behavior
pattern, called the long-run equilibrium, arises even if the underlying game has
multiple (static) equilibria. The paper gives a general algorithm for computing the
LRE, and then applies it to two classes of economic games. For games of pure
coordination, the LRE is the Pareto-efficient equilibrium. For games with strategic
complementarities, the geometry of the best-response correspondence helps identify
the LRE. Journal of Economic Literature Classification Numbers: C63, C72, D43.
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1. INTRODUCTION

In this paper we consider an evolutive process of learning in which
players are randomly and repeatedly matched to play a two-person stage
game. The purpose of this i1s to generate a positive theory which shows how
a Nash equilibrium may be reached in the realistic situation where players
possess neither full rationality nor a congruent set of expectations.
A second purpose is to show that players will most frequently play a
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particular equilibrium, even though the stage game possesses multiple strict
Nash equilibria.

The evolutionary approach deals with these issues by analyzing the
behavior of boundedly rational players who are not capable of deducing
their opponents’ actions at a point in time, but who play the game
repeatedly and are thereby able to ebserve (or “learn”) those actions. After
observing others” actions players adjust their behavior, ie., they abandon
losing strategies in favor of winning strategies. In addition to this, players
experiment with (or mutate toward) new strategies independently of
their payoff experience. This changes the strategy profile, which triggers
further adjustments. A trial and error process is thereby generated which,
in the long run, singles out a stable configuration. If such configuration
corresponds to a Nash equilibrium of the stage game we can interpret this
equilibrium as the eventual outcome of a learning and adjustment process.
This paper shows how such process works for economic games with multiple
equilibria, and how the equilibrium it selects can be identified from the
structure of the underlying game.

The study of adjustment processes perturbed by “mutations” has
attracted much attention lately and has been labeled Evolutionary Game
Theory.' The characterization of locally stable equilibrium in such a system
—also known as evolutionary stable strategy (ESS)—was initiated by the
seminal work of Maynard Smith and Price [ 25], followed by the dynamic
models of Taylor and Jonker [ 39]. More recently, Foster and Young [ 10]
introduced an evolutive process which is repeatedly perturbed by random
mutations and have shown that it possesses much stronger selection
properties. Namely, the repeatedly perturbed process can select among
strict Nash equilibria, which the ESS cannot. The basic idea behind the
selection is that any locally stable configuration (equilibrium or limit cycle)
is bound to be upset by a series of mutations. Some configurations,
however, are more difficult to upset and are, therefore, likely to appear
more frequently over long time horizons. Furthermore, the identity of these
configurations is independent of where the adjustment process is started.”
Therefore, this approach pins down a particular configuration, which we
term the long-run equilibrium (LRE hereafter). Subsequent work by
Kandorietal. [16] (KMR hereafter) reformulated this to an economic

! van Damme [41] and Mailath 20, 217 provide surveys of this field. Recent modifications
and economic applications include Matsui [237 (for pre-play communications) and Binmore
and Samuelson [ 1] (for cooperation in repeated games).

2 This is in sharp contrast to the traditional literature on adjustment processes without
random shocks (the Cournot taténnement literature: Cournot [ 5], Seade [35], and Moulin
[337; or the fictitious-play literature: Miyasawa [29]. Shapley [37], Krishna [19]. and
Monderer and Shapley [30]), where the prediction depends. in general, on the initial
condition.
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model of behavior where the population of players is finite and where
perturbations come from experimentation at the individual-player level. Other
papers based on the finite formulation include Ellison [9], Kandori [15],
Noldeke and Samuelson [33], Samuelson [34], and Young [43]. Fuden-
berg and Harris [ 12] provide a useful discussion of the continuous model.

Relative to previous papers, this paper will cover the following topics.
First of all, it considers a broader class of myopic adjustment processes
where the identity of players who adjust and the speed of adjustment may
depend on the configuration of strategies they face. The idea here is that
the players whose payoff would be most increased by switching to a best
response have the strongest incentive to adjust.® Also, configurations which
are far away from a Nash equilibrium may give players stronger incentives
to adjust than configurations that are close by. Our framework accom-
modates these possibilities, while showing that the long-run behavior is
independent of further specifications of the adjustment process.* Therefore,
the predictions we generate are robust to various specifications of the
adjustment process.

The second contribution here is that we provide further details on how
the algorithm to compute the LRE works. The basic idea of the algorithm
was first given in Freidlin and Wentzell [11] for the continuous case. The
discrete version was then introduced by KMR [ 16] and was generalized by
Young [43]. Basically, it works as follows. First, it identifies a collection of
fimit sets. Those are the sets toward which the process tends under the best-
response adjustment alone, ie., without mutations. Second, it computes
costs of transition between the various limit sets. Third, it computes a mini-
mum cost spanning-tree among the limit sets. The root(s) of this tree is
(are) the LRE. The present paper provides systematic analysis of the
algorithm for various economic models.

In particular, we identify two classes of games in which a Nash equi-
librium emerges in the long run (instead of a limit cycle). The first class is
games with pure coordination: two players receive positive payofl if they
choose the same strategy; otherwise, they get zero. One scenario which fits
this description is when players choose among incompatible computers.
For this game we show that the Pareto-efficient equilibrium, i.e., the best
computer is the unique LRE.

The second application is to games with strategic complementarities. In
those games each player’s marginal payoff is increasing in the rival’s
strategy. A prime example is the differentiated-product oligopoly game with

¥ A slight modification of the model can also accommodate the possibility that some players
are more perceptive than others and, therefore, can adjust faster.

* This can be contrasted with Young's [43] independent contribution. His model utilizes a
specialized adjustment rule (see Footnote |1 below). On the other hand, Young considers
more general classes of games than ours.
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prices as strategic variables. We analyze such games under one further
continuity assumption and show how the geometry of their best-response
correspondence helps determine the LRE. For example, when the game
possesses an equilibrium with a wuniformly deepest basin of attraction (see
below for precise definitions) this equilibrium is the unique LRE. Such
results may be of interest in the macroeconomic context as well since many
models of “coordination failure” (see Cooper and John [4]) have the struc-
ture of strategic complementarity and are known to have multiple static
equilibria, although previous literatures did not address the question which
equilibrium is most likely to arise. The results we obtain here are poten-
tially useful in this context because they help characterize the equilibrium
which is singled out by the dynamics.

Both applications—games with pure coordination and games with
strategic complementarities—show how the stochastic evolutionary
framework applies to economic problems. In particular, they show the con-
nection between the game’s payoff functions and their LRE, which is the
first step towards the comparative statics analysis of such games.”

The remainder of the paper is organized as follows. The next section
introduces the underlying game, the societal game, and the adjustment pro-
cess. Section III introduces the equilibrium concept and defines long-run
states and limit sets. In Section IV we analyze the model and show how to
compute the long-run states. Section V applies the general theory to games
with pure coordination and to those with strategic complementarities. We
first prove global convergence results for them and then show how their
LRE are determined.

II. FORMULATION

We consider a symmetric two-person game® with n strategies. The
strategy set is {1, 2, ..., n} with generic elements i,j. When a player and her
opponent choose strategies /i and j respectively, the player’s payoff is u,.
A mixed strategy is represented by a point in the (n— I)-dimensional
simplex, 4, and the payoff of strategy/ against mixed strategy a€d is
denoted by

"
uli, &)= 3 xu,.
=1

5 A recent contribution along these line is Milgrom and Roberts [28] who analyze the
comparative statics analysis of the equilibrium correspondence.

% Extension to asymmetric N-player case is straightforward. We can employ N-populations,
one for each role in the stage game, and assume that all players are randomly matched to
form N-tuples. Although this formulation makes the state space a product set, all the defini-
tions and results in Sections II and III apply. The Matching Pennies example (see working
paper version) illustrates such a formulation.
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The set of pure-strategy best responses against strategy a € 4 1s denoted by
BR(x).

Given a two-person game, the following repeated societal game is con-
sidered. Society consists of M individuals (or “members”). At the beginning
of each period each individual chooses a pure strategy and sticks to it for
the duration of the period. The configuration of strategy choices in the
society is summarized by the state vector z, whose ith element, -,
represents the number of players with strategy i. The state space is a finite
set {a collection of grid points in the simplex):

zs{(:,, e ) 1 Z,€40,1, ., M}, Y :,=M}. (2.1
i=1

For each z € Z, we define the set of existing strategies by C(z)={i | z,>0}.

Once individuals have chosen strategies they are randomly matched and
each pair of matched players plays the above (two-person) game,
implementing their preselected strategies. At the end of the period, an
individual who chose strategy i collects an average payoff of

1 1 ”
n,(:)Em Z Sy (2~ l)u,-jJ =M—_—l{ Z :ju,-jau,]}

J#i i=1

(assuming that M is even’). (z;—1) in the above formula reflects the
impossibility of being matched with oneself. To capture this, it is con-
venient to consider the strategy distribution faced by player with strategy i;
denote it by a(z, /). Formally, for ie C(z), we define

(s, ij=z;/(M~—1) for j#ianda,(z,i)={(z,— DAM—1). (2.2}
The set of pure-strategy best responses against this distribution is
BR(a(z, i}), and denoted p,(z). Simply put, S;(z) represents the best
responses for player with strategy i when the state is -.

Now we introduce a dynamic process where (1) the population of
players gradually adjusts toward a configuration of best responses and (2)
non-best responses are adopted with small probabilities. To illustrate this
process, consider the choice of personal computers in an Economics
department as a leading example. Assume there are M faculty members,
each of whom is using one of n types of computers. Assume also that the
opportunity to buy a new computer arrives stochastically. For example,

7If M is odd, there is one unmatched player, and we assume that players get zero payoffs
if they are not matched. In that case, the number M —1 in the above expression must be
replaced with M. For concreteness, we assume that the population size, M, is even but all the
results also hold if M is odd.
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one may switch to a new computer when the current one is broken,
research fund is granted, or the current project is finished. Formally we
assume that the opportunity to adjust arrives independently—across players
and time—and with strictly positive probability, ». This probability may
depend on the current strategy distribution and the strategy one is using;
thus we write # =#(z, /). A player with strategy / under state - can adjust
with this probability. When he can adjust, we assume that he chooses a
myopic best response, an element® of f£;(z). One reason for allowing # to
depend on z and J is that players may have different “urgencies” to adjust.’
For instance, it would be natural to expect that 7,(z) > z,(z) implies that
iz, j)>n(z ).

This defines a law of motion toward myopic best responses, which is
similar to Gilboa and Matsui [ 13]. Following their terminology, we call it
best-response dynamic. There are, however, important differences between
our formulation and theirs. They consider a continuum of players and
assume that a deterministic fraction, say n%, of players always adjust. Thus
the state moves along a straight line toward the best response as in Fig. la.
In our finite population model, however, this is not always feasible, since
the state space is a collection of grid points in the simplex. Instead, we
assume that each player adjusts with probability n, and as a result, adjust-
ment toward any point in the shaded region in Fig. 1b is possible. In this
figure strategy 2 is the best response against - for all players, but the exact
direction of adjustment depends on who adjusts. For example, adjustment
toward :’ realizes when a large fraction of players with strategy 3 happens
to adjust to strategy 2, whereas point =" realizes when a large fraction of
players with strategy 1 adjust. Similarly, the speed of adjustment depends
on how many players are adjusting.

* When there are multiple best responses, we assume that the player randomly chooses one.
Let y,(z) be the probability distribution over f,(z), which represents the random choice of a
best response. We assume that (=) puts probability one on i if i€ §,(z), and has full support
otherwise. Those assumptions are introduced for concreteness and do not play major roles.
The first assumption is reasonable if there is always some switching cost and guarantees that
the state cannot drift away from a mixed strategy equilibrium until “mutations” {which we
will introduce shortly) come in. One of our assertions in the paper is the instability of mixed
strategy equilibria for some classes of games, and this assumption provides the hardest case
for proving such an assertion. The full support assumption plays a role only in the analysis
of supermodular games with linear payoffs.

° This can potentially be justified by stochastic adjustment cost. Let ¢ be random cost of
adjustment, which has distribution function F{c), and let 4v,{z) be the increment of the dis-
counted payoff when a player switches from her current strategy i to the myopic best response
under state z. Assuming heavy discounting, the optimal switching is toward the myopic best
response, and this happens if and only if ¢ < 4v,(z). Hence the adjustment rate is derived by
nlz, i)=Fldv,(z)).
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FiGURE 1

Figure 1 illustrates a feature of our formulation, heterogeneity of
adjustments. Any specification of 5(z, i) generates a particular probability
distribution over the shaded region which indicates the likely directions
and speeds of adjustment. Our formulation allows any such distribution, as
long as it has full support {ie., as long as #(z, i) > 0), and the main results
do not hinge on the exact values that #(z, {}’s assume.'" This is shown in
Theorem 1. In addition to this property (robustness), our formulation has
two further advantages. As we will see the full support assumption drasti-
cally simplifies the calculation of the long-run equilibria. Furthermore, the
adjustment rule can be interpreted as rational behavior in certain cir-
cumstances. In particular, if the adjustment is slow (# being small) and if
players discount the future heavily (which may be restrictive for some
applications), the present state is expected to persist for a while; thus
taking a myopic best response is in fact a dynamically rational choice.'’
In addition to the best-response dynamic, we postulate that new
strategies enter into the population with small probabilities. More specifi-
cally, we assume that an individual who is expected to play strategy &
“mutates” to strategy j with probability n1,e>0, where 3 m, =1, and m,,
£€{(0,1). These mutations are independent across players and over time
and occur (if they occur) after the best-response adjustment. One way to
justify this assumption in economic contexts is to assume turnover of the

1" This is a feature of the discrete (ie., finite population) formulation and is in sharp con-
strast with the continuous models of Foster and Young [ 10] or Fudenberg and Harris {12].
where the predictions depend on details of the adjustment process—even for games with two
strategies. If the game has more than two strategies there is yet more leeway in specifying the
direction of adjustment and, therefore, more scope tor sensitivity of predictions. Kandori [ 15]
examines a possible source of the difference between the continuous and discrete models.

' The last two points can be contrasted with the independent contribution of Young [43].
In his model, one pair is randomly drawn from the population at each moment. Each player
randomly draws a sample of size k out of her most recent m matches and takes a best reply
against the resulting empirical distribution. While Young derives results for this particular
adjustment rule, we show that similar results hold for a wide class of adjustments, and that
it is possible to interpret the adjustments as rational behavior in certain circumstances.
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population. In our story of faculty members choosing computers, each
member may resign from the department with probability ¢ and then his
position will be replaced with a newcomer (so that the population size
stays constant). The newcomer may not know which computer is a good
choice in the department; thus she takes each strategy with a positive prob-
ability, reflecting her prior beliefs.'? Alternatively, we can assume that the
newcomer owns already a computer and regard m = (m, ..., m,,) as the dis-
tribution of computers in the outside world. One of the striking features of
our analysis is that once mutations become frequent (ie., as ¢]0} the
specification of m is immaterial: as long as m=(m, .., m,) is fixed"* and
all m,’s are positive we get the same long-run behavior. To emphasize this
fact we state our maintained assumption:

Assumption A. m,, n{z,i)>0, for all i and all ze Z.

The composition of myopic best responses and mutations generates a
Markov chain over the finite state space, Z, whose transition matrix is
denoted P(¢)=(p...(¢)). The p..(¢) element of this matrix represents
Prob(z(t+ 1)==z"| z(t)==z). The best-response dynamic corresponds to
P(0) where the mutation rate is zero. A positive mutation rate transforms
this into a “perturbed” system, P(e). Since mutations are independent, it
can be seen that p...(¢) is a polynomial in ¢.

To analyze the behavior of our system, we first define the distance
between two states - and ' by d(z, 2')=(1/2) 3, |z; — zi}. This represents
the minimum number of strategy changes which are necessary to achieve
state z’ from state z. Given this definition of distance, we introduce the cost
of transition between two states, which plays a crucial role in what follows.

DermniTION 1. The cost of transition between = and =’ is defined by

c(z,2')y= Min d(z', ="), (2.3)

="ebh(z)

where bH(z) is the set of possible intended strategy configurations at ¢+ 1
when strategy configuration at time ¢ is given by =z, 1e, b(z)=
{z'eZ|p,..(0)>0}. This corresponds to the shaded region in Fig. 1b.

The number c¢(z, ') defined above measures the minimum number of
mutations to achieve state Z' from state - in one period. By the independence

2 In the case of a rational player who knows the payoff function, it would be better to
assume that the newcomer picks only rationalizable strategies with positive probabilities. We
will come back to this issue later when we analyze supermodular games (Section V.C.2.).

'3 When players hold forward-looking expectations, it may be sensible to consider a muta-
tion process where m; is allowed to depend on the state, =, and thus where mutations may
eventually cease; see Matsui and Rob [24].
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of mutations, p...(&) is a polynomial: aye* +a,e**'+ ... +a,&*’. Since
7

the transition from z to =’ requires at least ¢(z, z’) mutations, the order of
this polynomial, k£, must be ¢(z, ='). In other words, we have

P (€)= 0" 7). (2.4)

-

That is, the cost of transition c(z, z’) measures how fast the transition prob-
ability from : to =’ tends to zero as the mutation rate (&) goes to zero.

III. T EQuILIBRIUM CONCEPT

The presence of mutations implies that the society will perpetually
fluctuate among the different states, e Z. Accordingly, we consider a
stochastic equilibrium concept, measuring the long run (or time-average)
behavior of the system. Formally, let 47 denote the |Z| — 1 dimensional
simplex, where |Z| 1s the number of elements in the state space. Then, we
introduce the following concept.

DEFINITION 2. u(e)e 4¥' is a stationary distribution if
ule) Ple)=ple). (3.1)

When the mutation rate ¢ is positive, the system can jump from any
initial state to any final state, since we have strictly positive transition
probabilities, p...(¢)>0. This in particular implies that the system is
irreducible and aperiodic,'* and the standard theory of Markov chains
shows the following.'?

PrROPOSITION 1. If the mutation rate ¢ is strictly positive, then we have

Uniqueness. There exists a unique stationary distribution, u(&).

Global stability. For any initial distribution, q, the future distribution
converges to u(e): im,_, . qP(e) = pu(e).

Time average property. p(e) represents the average time spent on each

!

state. Let 1 (Z') be 1 if z=1=z" and 0 otherwise. Then the random variable

'* A Markov chain is irreducible if Prob{z(T)=z'|z(0)=z) >0 for all z and =’ for some
TeN (N is the set of natural numbers). It is aperiodic if the greatest common divisor of
{TeN|Prob{(z(T)==z'|2(0)=z)>0} is | for all = and z'.

'* These results can be found in Hoel er al. [14]. The uniqueness and the time average
property follows from the finiteness of the state space and the irreducibility only and do not
require aperiodicity (Hoel et al. [ 14, Corollaries 4-6. pp. 66-67]). The global stability requires
the aperiodicity as well as the finiteness and irreducibility [ 14, Corollaries 4, 5, and Theorem
7, pp. 66-73]).
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[L(z(IN+ - +1.(=()]/t tends to the number u_(e) almost surely as
{— oC.

To illustrate the meaning of these properties, suppose u.(¢) =09 for
some state =. The global stability means that if we were to “sample” the
state of the system after a long enough time, the state - should come up
with probability 0.9, irrespective of where we started. The time average
property means that over a long time horizon, the system spends 90% of
the time at state -. Hence the system is well behaved when the mutation
rate is positive, and its long-run behavior is nicely summarized by the
stationary distribution u(z).

This is in sharp contrast to the case of ¢ =0, where the linear system of
equations (3.1) may very well possess multiple solutions. This will occur
whenever the underlying game possesses multiple pure strategy Nash equi-
libria, because the distribution which puts probability one to the configura-
tion where all players choose the same pure strategy Nash equilibrium is
always a stationary distribution of P(0). Moreover, if the best-response
dynamic, P(0), possesses a limit cycle, there is another stationary distribu-
tion which puts all probability to the states on the cycle. Unlike the case
with positive mutation rate, which distribution is eventually chosen is
crucially dependent on the initial condition. The purpose of introducing
(a small rate of ) mutations is to resolve this indeterminancy and select a
particular stationary distribution. This idea is reflected in the following
definition ({see also KMR [16]) and proposition.

DeriNiTION 3. (i) The limit  distribution p*e A< is defined by
pu*=lim, _,ule). (ii) The set of long-run states is the support of
prlzeZ >0

Note that neither P(0) nor P(¢) converges over time to u*. Instead, for
a small (but fixed) ¢ the process P(&) converges over time to u(¢) which
approximately equals u*. Thus, u* is the approximate time average of
different states as the mutation rate is made arbitrarily small (¢ — 0).

PrROPOSITION 2. There exists a unique limit distribution, and it is a
stationary distribution of the best—-response dynamic P(0): u*P(0) = p*.

Proof. The existence of lim__, P(¢) and lim_ _ ,u(¢) comes from the
fact that (1) the elements of P(¢) are polynomials in ¢, and (ii) the elements
of u(e) lie in [0, 1] and are the ratios of polynomials in ¢ (by Cramer’s
rule). Thus we can take the limits of both sides of u(e) Pie)=pule). |}

The limit distribution captures the long-run behavior of the system (in
the sense of Proposition 1) when the mutation rate is low. It should be
noted, however, that the lower the mutation rate, the longer we must wait
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to see the long-run effects. In particular, the length of time needed to reach
the limit distribution is of the order 1/e%, where K is the number of muta-
tions needed to disrupt (see below) a non-limit-distribution and K is
proportional to the population size; see KMR [16]. Thus, our analysis is
most relevant for a small population. On the other hand, Ellisons [9]
analysis shows that this time can be considerably shorter when the players
interact locally and the long-run equilibirum has large enough basin of
attraction. When those conditions are met, the long-run effects show within
a reasonably short time, even for a large population.

Having provided the basic idea and the definitions, we will examine our
equilibrium selection procedure in more detail. For the dynamic without
mutations (1e., P(0)), we have seen that the equilibrium points and the
limit cycles provide different stationary distributions. Those objects are
limit sets which are formally defined as follows.

DEFINITION 4. A set A < Z 1s a limit set if, under P{0),

(1) Pr(z(t+1)ed|z(t)eA)=1, and
() forall z,z"e A, Priz(t+ k)==z"|z(t)=2) >0 for some &k > 0.

The collection of all limit sets is denoted 2.

A limit set 1s closed in a probabilistic sense (Definition 4(1)) and its
elements are mutually reachable (4(ii)).'® By the definition, it is easy to see
that the state under the best-response dynamic will eventually converge to one
of the limit sets with probability one. 1t is well known that there is a unique
stationary distribution, x4, for each limit set 4, and the set of all stationary
distributions of P(0) is the convex hull of those, Co{yu,. AeQ}.” As
indicated above, out of those multiple distributions we select a particular
distribution, by first introducing a positive mutation rate ¢ and then let it
tend to zero: u* =lim,  ,u{e). This selection procedure is continuous,
which is shown in Proposition 2 above.

Given the above argument, we have the following proposition which
gives the classification of the long-run states.

ProposiTion 3. The fimit distribution p* is uniquely decomposed as

u*= 2 Fal 45

Ae2*

' A limit set is a special case of what is known as a commmmication class, ie.. it is a non-
transient communication class.

" This is shown as follows. By Definition 4, P(0) induces a finite, irreducible Markov chain
on each limit set. Then the result cited in Footnote 15 shows that the unique stationary
distribution exists for the induced chain.
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where Q* is a subset of Q, u, is the unique stationary distribution on the
limit set A, and r,€(0, 1] represents the likelihood of the limit set A. An
element of Q* is called a long-run equilibrium.

In what follows we will show that for some classes of games, a particular
Nash equilibrium is the unique long-run equilibrium. In general, however,
long-run equilibrium can be a limit cycle,'® rather than a steady state of the
best-response dynamic, P(0).

IV. ALGORITHM

We start with the definition of the cost of transition between two limit
sets. For z,z'e Z, let G(z,z") be the set of directed paths from = to .

A directed path form z to z’ is a sequence of states (z',z% .., z7), where
!

' =z and "=z Given such path, g=(z',z% .., z"), we can count the

total number of mutations on it as

T-1

Ng)= Y ez ')

t=1

Recall that ¢(z, z'* ') is the cost of transition between two states, and it
represents the minimum number of mutations to achieve state =’ *' from =
in one period (Definition 1). Given this, we define the cost of transition
between two limit sets A, A' € Q, as

C(A, A'y= Min Min  N(g),

red ed geGi(z. ")

where for ze 4 and z' € A’, G'(z, ') represents the collection of paths from
z to ' which do not intersect with any other limit set A" # A4, A’. This
represents the required number of mutations to achieve A’ from A over
time.

Next, we consider a reduced Markov chain defined on the limits sets.
Note that if we restrict our attention to the subset of periods when the
state is in the limit sets, the resulting process is again a Markov chain.
Formally, let X be the set of states in the limit sets, and let () be the
tth data when the state = lies in X. Then x(¢)=z(t(¢)) can be regarded
as a Markov chain (sometimes called an imbedded process) defined on

' The working paper version shows an example of a limit cycle which is a long-run
equilibrium.
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the reduced state space, X. Then we can apply the Freidlin- Wentzell’s [ 11]
graph theoretic technique to this reduced Markov chain; for a self-
contained explanation of this approach, see KMR [16]. Let P’ be the
transition matrix of the reduced chain, and let ¢'(x, x') be the order of
smallness of the transition probability (p..=O0(e"*")). Then a
moment’s reflection shows that ¢'(x, x')=C(A4, 4’) for xe 4 and x'e 4"
From this observation it can be seen that the Freidlin-Wentzell (1984)
approach reduces to a program defined on the collection of limit
sets'%:

Min Min Y C(4', 4"). (4.1)

Aef2 he Hy (4. Ay eh

H , in the above expression refers to the set of A-trees whose vertices are the
collection of limit sets, Q. An A-tree is a collection of directed branches
(4°, A") (A" being the successor of A°), where (1) except for A, each limit
set has a unique successor, and (2) there are no closed loops. In other
words, it is a tree directed into root 4. Formally we have:

PrOPOSITION 4. The set of long-run equilibria is the solutions to
program (4.1).

This is a discrete version of Freidlin and Wentzell's analysis, which
was worked out for the continuous time and continuous state space case
[16, Chap. 6]. A direct proof of Proposition 4 was first given by Young
[43],%° using a ‘“cutting and pasting” technique (Lemma2 in his
Appendix). The above argument, based on the reduced chain, shows an
alternative proof.

Now it is easy to see why the set of long-run equilibria is independent
of modeling details. Program (4.1) involves the costs of transition,
C(A, A'), and those depend on the basic nature of the dynamic process
which, in turn, depends only on the payoff function. More specifically,
the cost of transition depends only on the support of the intended state
distribution (#(z) in Definition 1) and not on the distribution itself. Also,
what matters is the rate of convergence of the probability of mutations
for each strategy, while the exact distribution is immaterial. Thus, we
have:

' Formally, the Chu-Liu/Edmonds algorithm (see below), when applied to the minimum-
cost tree problem defined on the state space Z, retracts each limit set to a single state.
Therefore, the reduced problem (4.1) is equivalent to the minimum-cost tree problem defined
on X.

*" Young considers af! paths from z to z’ in the definition of C(4, 4'), while our approach
considers a subset, G'(z,z'). This difference becomes inconsequential when we take the
minimum in the final program. (4.1).
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THEOREM 1. The set of long-run equilibria® is independent of the dis-
tribution of mutations (m,, .., m,), and the speed and directions of adjust-
ment, iz, i), as long as m,, n(z, 1) >0 for all = and i.

What remains is to solve the reduced program (4.1). This can be broken
into two subprograms: (1) the determination of transition costs among the
limit sets, C(A4, 4”); and (2) an algorithm to solve program (4.1) given the
transition costs. Efficient algorithms for handling both problems are
available in the combinatorial optimization literature. A general algorithm
for solving the first is the Dijkstra [ 7] algorithm, while the second, which
is known as the optimum branching problem, is solvable by the
Chu-Liu [ 3]/Edmonds algorithm [8]. In a working paper version we
provide a complete description of the latter, and in the next section we
illustrate how it works for particular classes of games. As to the costs of
transition, we will determine them directly, using the special structure of
games analyzed here. To this end, let e, = (0, .., M, ..., 0) be the state where
all players take sirategy i and define the best-response region by
BR={zeZ]iepf,(z) for all je C(z)}. Given this, we have:

PROPOSITION 5 (THE TRIANGLE INEQUALITY). Suppose strategy i con-
stitutes pure strategy Nash equilibrium. Then, for all xe Z and y € BR;, we
have

cle;, x)<cle,, v)+ ¢l x)

Note that the triangle inequality says that an immediate jump from a Nash
state, ¢;, to another state x is less costly than any gradual transition
through the best-response region of the starting point (BR,). The proof of
Proposition 5 is available in a working paper version.

V. APPLICATIONS. SUPERMODULAR AND PURE COORDINATION GAMES

In this section we show how the above algorithm applies to two classes
of games with multiple (static) equilibria. For these games the “relevant”
equilibria are in pure strategies, and the best-response dynamic always
converges to one of them; hence, limit cycles are ruled out. We start by
defining the games and listing a few of their properties.

*! The distribution over the long-run equilibria, on the other hand, may well depend on m
and #(z, 7). In the class of games we consider in this paper, however, the unique long-run
equilibrium is a singleton set {a Nash equilibrium); thus this problem does not arise. We
conjecture that generically Q consists of a unique limit set for large M, but we have been
unable to confirm this for supermodular games. Kandort and Rob [ 177 show this for the class
of “Bandwagon games.”
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V.A.l. Supermodular Games

Supermodularity is defined by the requirement that for any pair 1 <i<k <n
the payoff differences u,;, —u,; are strictly increasing in j. A maintained
assumption here is that the strategies are completely and linearly ordered.

Three leading examples of supermodular games are: (i) Certain differen-
tiated-product oligopoly games in which price is the strategic variable. In
particular, a discretized Hotelling model in which firms’ locations are fived
and are sufficiently apart. (ii) The two-firm Cournot model with linear
demand and linear costs. Here the strategic variable is quantity, but the
natural ordering over strategies is reversed as to satisfy supermodularity
(this trick will not work with more than two firms). (iii) A macroeconomic
coordination game where the strategic variable is search effort, in par-
ticular, the Diamond [6]-Mortensen [ 31 ] matching model. A variety of
other examples is given in Milgrom and Roberts [26].

The fact that a player’s payoff differences are increasing in the opponent’s
strategy often leads to multiple, Pareto-ranked equilibria in supermodular
games (acquiring special significance in the macroeconomic literature).
A necessary and sufficient condition for this to occur is that the game is not
dominance solvable. In other words, after iteratively eliminating all strictly
dominated strategies, the game still possesses more than one strategy. This
result is stated in the next proposition (for proof see the Appendix).

ProOPOSITION 6. (i) Suppose all strictly dominated strategies have been
iteratively removed from the game. Then both (1, 1) and (n, n) are Nash equi-
libria (NE, for short). (i) No asymmetric NE in pure strategies exist: (i,J)
is a NE only if i=j. (ii1) If | is a best response to i and k is a BR to j, where
Jj>1i, then k=1 (iv) For a generically selected supermodular game all pure
strategy NE are strict.

According to Proposition 6(ii), the set of pure strategy NE is a subset
of the “main diagonal,” {(i,i)}7_,. Let us denote this set by N=
{1<i<n|(ii) is a pure-strategy NE}. The next proposition extends
part (ii) of Proposition 6 to the case where we compare across mixed
strategies (as opposed to comparing across pure strategies). In this case a
similar monotonicity property obtains when mixed strategies are partially
ordered according to first-order stochastic-dominance.* This property will

play an important role in the rest of the paper.?*

2 The definition is as follows. Let a=(«, .. a,) and &' =(a}, .., x,) be two probability
distributions over {l,..,n}. We say that o stochastically dominates « if the cumulative
distributions of « and «’, denoted F(i)=3, _, ax and G{i) =3, ., «;. are such that F(i) > G{i)
for all 7 with strict inequality for at least one i. In this case, the expected value of any increasing
function under «’ is no smaller than the expected value of the same function under a.

3 Independent work by Krishna [19] contains a similar result.

642 652-7
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PROPOSITION 7. (MONOTONICITY OF BEST-RESPONSES OVER A). Assume
o o, where > refers to first-order stochastic-dominance. Then we have

Min BR(a") = Max BR(a).

Proof. Let j=Max BR(«). For any / <j, we have

1 "

ulj ) —u(i, oy =Y gl —uy]> Y o [uy—uyd

k=1 hk=1

=ulj, o) —u(i,n) =20,

where the first inequality follows from the presumed stochastic dominance
of &' over a (see Footnote 22) and from the strict supermodularity assump-
tion; the second inequality follows from the optimality of j relative to a.
Hence, any element in BR(a') must be no smaller than j, establishing the
claim.

V.A.2. Pure Coordination Games

Pure coordination games have positive payoffs along the main diagonal
and zero payoffs elsewhere, u;; =0 for i# j. For convenience, let us order
the strategies so that ;> u; >0 for j> i Clearly, each strategy constitutes
a pure strategy Nash equilibrium, and the strategies are Pareto-ranked,
where strategy 1 generates the least efficient equilibrium and strategy n the
most efficient. It is easy to verify that these games are not supermodular
unless n=2. For example, the marginal payoff u,;=u,; increases when j
changes from 1 to 2, but it decreases when j is further increased from
2to 3

Examples of pure coordination games arise in the network exter-
nality/product compatibility literature. Consider, for instance, the situation
where each individual is to choose one of n different computers (or
software packages). Two individuals can “collaborate” if and only if they
have the same computer, and the inherent quality of the computers is
different. In such a game, there are as many pure-strategy equilibria as the
number of strategies. In addition to those, for any subset of strategies there
exists a unique mixed-strategy equilibrium which puts positive weights on
all strategies in this subset. ’

V.B. Global Convergence

We now provide global convergence results for the best-response
dynamic, P(0), ie., we show that starting from an arbitrary initial condi-
tion, the system will converge to one of the game’s pure-strategy Nash
equilibria and stay there thereafter. Which equilibrium is attained as the
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limit point depends, of course, on the initial condition, but the fact that the
system converges does not. These results are of interest by their own right,
since they counter examples of cyclical behavior. See, for instance,
Shapley’s example [37]. This situation does not occur in the games we
consider here.

V.B.1. Supermodular Games

First we show that in symmetric strict supermodular games, the states
which mimic mixed strategy equilibria are unstable in a strong sense: they
are not even stationary points of the best-response dynamic.

PrOPOSITION 8. Suppose all players are taking best responses under :,
that is, ie B,(z) for all ie C(z). In symmetric strict supermodular games this
implies that only one strategy is played under :.

Proof. Suppose to the contrary that we have i<y, i, je C(z) and
ief;(z), je B;(z). Since i <j, the strategy distribution facing a player with
strategy / stochastically dominates that for a player with strategy
Ji alz, jy<alz, i). Then Proposition 7 implies that Min f,(z) > Max f,(z),
a contradiction. |

Now we are ready to show the global convergence result.

THEOREM 2. For symmetric strict supermodular games, the set of limit
sets is in one-to-one correspondence with the collection of all pure-strategy
Nash equilibria. That is, for any initial state z°e Z, the system under the
best-response dynamic converges to one of the pure strategy Nash states with
probability one.

A note on related results. Similar global convergence results for super-
modular games are found in Milgrom and Roberts [26] and Krishna [19].
The case of 2 x2 games was treated earlier by Miyasawa [29]. Milgrom
and Roberts consider supermodular games with a unigue Nash equilibrium,
while we do not place such a restriction. When a supermodular game has
a unique Nash equilibrium, the game is dominance-solvable (see Proposi-
tion 6(1)); thus a wide class of adjustment processes will naturally converge
to the unique Nash equilibrium. Krishna, on the other hand, obtains a
global convergence result for supermodular games with multiple equilibria,
but considers a different adjustment process, namely, the fictitious play
dynamics. His basic assumption is that each player takes a best response
against the empirical distribution of strategies in the entire past history of
play. Since his model is more complicated, Krishna employs one further
assumption, that a player’s payoff function is concave with respect to her
own strategy. We do not need such an assumption in Theorem 2. In a
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similar vein, Monderer and Shapley [30] prove a global convergence result
for potential games with fictitious-play dynamics. Their results do not
apply here because there are examples (see Sela [36]) showing that super-
modular games are not a special case of potential games, or vice versa.**

Proof of Theorem 2. By the nature of the best-response dynamic, a
singleton set is a limit set if and only if all players are taking best responses.
Proposition 8§ shows that those states correspond to pure-strategy Nash
equiibria. Next we will show that starting from any other state, the process
converges to a pure-strategy Nash equilibrium with positive probability. By
the definition of limit sets, this is sufficient to show that there are no other
limit sets.

Take a non-Nash state -° and consider a particular trajectory which
emanates from it. To define the trajectory, let us introduce the following
notation. For state z, define the set of sub-optimal strategies by S(z)=
{ieC(z)|i¢p,(z)}. Now consider a trajectory {z*,k=0,1,..} such that
as long as S(z*) is non-empty, only one player adjusts at a time.
Furthermore, we require the same adjustment to occur whenever a state is
revisited. Such an adjustment realizes with a positive probability because of
the independence of stochastic adjustments across players.

Since the state space is finite, this trajectory forms a cycle (which might
be a singleton set). Let R be the set of strategies whose populations change
on this cycle, and let x=Max R (recall that we have complete ordering
over strategies). Suppose a player with strategy / is adjusting to strategy x
at point =7 on this cycle. Then we have

¢}

alz" y=a(z" L )<z ) forall j<x.

Recall that under the population configuration =, a player with strategy
k e C(z) faces strategy distribution «(z, k). The equality follows from the
fact that only one player is adjusting from i to x, and the stochastic
dominance follows from j<x. Given this stochastic dominance and
Proposition 7, at z7*! any player with strategy j < x has best responses
which are no smaller than x. On the other hand, a player with strategy x
is already taking a best response, because a best response to
a(z”, i)=a(z"", x) is x. By the definition of x, it must be that the player
who moves at 7+ 1 adjusts to x. Proceeding inductively, we conclude that
the cycle is actually a singleton {z*} with z* =M and S(z*)= &, which is
a pure-strategy Nash state with all players choosing x. |

24 Even for the games that belong to the join, one has to establish convergence for all betrer-
response paths, not just the best-response ones. Note also that their model pertains to games
played by the same players, not to the random matching scenario. Therefore, their model
formalizes a learning story rather than an evolution story.
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As an immediate corollary, we have the following.

THEOREM 2'. FEach long-run equilibrium of a supermodular game
corresponds to a pure-strategy Nash equilibrium.

V.B.2. Pure Coordination Games

Consider now the games where u;>u,;>0 for j>i and u;=0 for i# .
Then we have the following analogues of Proposition 8 and Theorem 2.

PROPOSITION 9. (1) Any mixed strategy configuration is unstable, i.e., if
|C(z)) > 1 then at least for one i€ Clz), i¢ ,(2). (2) The collection of limit
sets is {{e\}. ., {€,}}. Therefore, the best-response dvnamic for a pure coor-
dination game converges to a pure-sirategy Nash equilibrium with probability
one.

Proof. (1) Assume i, je C(z) with i <j, and assume i€ §,(z), je f,().
Then we have

WAz, J )y 2 0, (2, J) uy > % (2 1) g 2 (2, D) > 0u(2, ) uy

where the strict inequalities follow from the definition of «(:z, k), (2.2); and
the weak inequalities follow from the presumed optimality of i and j
relative to z. Thus this contradicton establishes that for at least one
strategy, ie C(z), i¢ f,(z).

(2) Note that each pure-strategy configuration, e,, satisfies (as a
singleton) the definition of a limit set. Therefore it remains to show that
starting from any other state there is a positive probability path leading
into one of these singleton states. Let z€ Z. By (1) there exists an i€ C{z)
so that i¢ 8,(z). Let ke .(z), and let a player taking strategy i switch over
by herself to strategy &, and let that occur before any other player adjusts
its strategy. This event realizes with positive probability. After that, &
becomes a BR for all individuals. This is shown as follows. First, given that
one player switched optimally from strategy i to strategy &, the players
with strategy & must be taking best responses. Next consider a player who
is not taking strategy k. Compared to the players with strategy k, this
player faces a strategy distribution which puts more probability to & and
less (or equal) probability on each other strategy. By the structure of pure
coordination games, this implies that strategy & is even more desirable for
this player than for those who are already taking strategy k. Therefore, we
conclude that & should be the best response for all players. Given this, we
let the continuation path be one where everyone switches to k. Since this
path realizes with positive probability, the proof is complete. |
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V.C. Costs of Transition between Limit Sets; Optimum Branching Algorithm

We now show how to compute long-run equilibria for the above classes
of games. We start with pure coordination games since the computations
are illustrated more straightforwardly for them.

V.C.A. Pure Coordination Games

The first thing is to compute costs of transition C,=C({e;}, {¢;})
between the limit sets {e;} and {e}. Assume the population is initially
clustered at e, i #n. Since n is Pareto efficient, the easiest way to escape
from the basin of attraction of ¢, is to enter the basin of attraction of ¢, by
m mutations, where m is the smallest number for which

MUy (M—m—1D)u,
M-1"  M-1

This represents an immediate jump to escape the best-response region of i,
and the triangle inequality (Proposition 5) guarantees that no gradual
transition is less costly than this jump. Thus, for i # n, we have

C",:,,,:[M} (5.1)

”r’l + urm

where [ x] stands for the smallest integer weakly exceeding x. Since this is
the minimum number of mutations to escape the basin of attraction of e,,
we must have C,, <C; for all j#i A similar argument applies to C,;:

we have C,, ,<C,, for all j#n and thus C,, ,=[(M—1u,,/
(unn+un*l‘nfl)]'

Next observe from (5.1) that for large M,
c,. <C

in iy

fori, j#n and C,..1<C

noa

forj<n—1 (52)

"

We need “large M” because of an integer problem. More precisely, it can be
seen that (52) hOIdS lf unu/(unn + U, . Ln-1 ) — U, Ion-1 /(un -lon -1 + ll,m) 2
1AM —1).

1 2 n-1
‘ . * o o ‘

®
n

FIGURE 2
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Therefore, the first step of the optimum branching algorithm which
establishes the most likely transitions from each state results in the system
of branches depicted in Fig. 2.

According to (5.2) the longest branch among those is of length C, , .
Therefore we drop it and are left with an n-tree. This terminates the algo-
rithm. The conclusion in this case is that the Pareto-superior equilibrium
is a unique long-run state. This result is summarized as follows:

THEOREM 3. In a pure coordination game, the unigue long-run equi-
{ibrium is the Pareto-efficient Nash equilibrium, if w,, /(u,, +u, 1 ,_1)—
un - l,nll/(lln* l.n—1 +unn) 2 l/(M_ l)

V.C.2. Supermodular Games

The next result shows how the costs of transition, C;, are computed for
the class of supermodular games. The proof of the result is constructive and
shows that the transition from i to j (for j > i) involves an initial step where
k individuals are mutated from strategy 7 to strategy n (the largest strategy),
which is then followed by (costless ) best-response adjustments. An analogous
construction applies to the transition from j to i To validate this result we
need one further restriction which we call the “continuity” assumption.

Assumption B. If BR(x) =i and BR(«') =/ and i<k <}, there exists a
~€(0, 1) such that BR(Ja + (1 —4)a') = {k}.

The idea behind this is that the best-response changes “gradually”, ie.,
as we change the strategy distribution continuously the best response
changes continuously as well (or, in other words, it does not skip inter-
mediate strategies). We note that Assumption B is satisfied for a broad
class of games, including the examples we present below and many super-
modular games with continuous strategy sets. On the other hand, it is not
satisfied by a// supermodular games.

THEOREM 4 (MUTATIONS TO EXTREME STRATEGIES). Assume we have a
supermodular game which satisfies Assumption B. Let i and j be two Nash
strategies where j>i. If the population size is sufficiently large, the cost of
transition between e, and e; is realized as follows.

(i) Cj is realized by initially mutating k individuals from i to n. The
number k represents the critical mass of mutants beyond which best-response
adjustment to higher numbered strategies between i and j becomes feasible
(Fig. 4 illustrates how k is computed).

(ii) C, is realized by mutating k' individuals from j to 1. The number
k' is determined analogously.

Proof. See the Appendix.
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Remark. Theorem 4 shows that the cost of transition depends crucially
on the smallest and largest strategies. In some games those are naturally
specified, but in other games there is no obvious way of specifying them.
For example, it is not obvious how to choose a minimal and a maximal
price in oligopoly games. One way to overcome this ambiguity is to assume
that mutants know the payofl function, that they form “rationalizable”
beliefs, and that they choose an optimal strategy against these beliefs. In
this case we should eliminate all non-rationalizable strategies from the
game before applying the algorithm. After doing that, Proposition 6 shows
that the minimal and maximal strategies in supermodular games are pure
strategy Nash equilibria. Therefore, strategies 1 and » in Theorem 4 are
identified as the smallest and largest Nash equilibria.

When we have adjacent equilibria 7 <j <k, where j is the only equi-
librium strategy between i and k, we denote i =j — and k =j +. Given this
notation, the following result is an immediate consequence of Theorem 4.

THEOREM 5. Under the same assumptions as in Theorem4, C =
Max; <, Ci . foralli,jeN.

Therefore, Theorem 5 simplifies the problem of computing costs of tran-
sition between the various equilibria: we need only compute costs between
adjacent Nash equilibria.

The determination of transition costs can be further simplified in the case
of supermodular games with /inear payoff functions:

u; = f(s;) +g(s;) s, (5:3)

where strategies are denoted here by s, and s,, and s, <s, for i < j. The basic
assumption here is that the payoffs are linear in the opponent’s strategy.
One way of generating such games is in the context of differentiated
product oligopoly. Assume two firms produce differentiated products, and
let the market demand for the product of firm i be

Q' =X(pH + Yip)), (5.4)

where Q' is the quantity sold by firm 7 when it charges price p', and its rival
charges p’/. X(p") is a strictly decreasing function, and Y(p’) is strictly
increasing,

Firms’ strategic variable is price, which varies discretely over the set?

SE{pl’pZ, "'vpn}'

**If the strategy set is not finite. the limit distribution may fail to exist. and our analysis
requires additional regularity conditions.
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Note that superscripts denote individual firms, whereas subscripts denote
individual strategies. Let ¢ denote the (constant) per-unit cost of produc-
tion. Then, when firms interact duopolistically, this leads to a payoff of

<

,;,-=(Pf—(')[X(Pi)+ Y(Pj)]»
and to an expected payoff of

n=(p,— ) X(p)+7], (5.5)
where

Sy

—_ l k
=M_1§Y(p ),

with &k ranging over all remaining M —1 firms in the industry. It is
straightforward to verify from (5.4) that the game is supermodular. Also,
Eq. (5.5) makes it clear that the expected payoff to a firm posting price p;
depends only on the average, y. This simplifies the analysis considerably.

This embeds the differentiated-product oligopoly model into the
framework of randomly matched firms. Alternatively, we can consider a
framework without random matching and where firms interact in one
global market. In other words, all M firms sell their (differentiated ) product
simultaneously in one market. The demand curve that firm 7 faces in this
market is given by

1 ,
1 X Y (5.6)

o'p', ...pM)=X(pH+

reflecting the idea that the quantity sold by a firm depends on the entire
configuration of other firms’ prices. This gives rise to the same payoff func-
tion (5.5). Hence, while the interpretation is different the formal analysis
applies to either formulation.

This example shows, therefore, that random matching is not an essential
part of our model. The most general formulation, which includes random
matching as a special case, is as follows. When M players are adopting a
strategy profile s = (s', .., s*), player »’s payoff is #™(s). The state space is
Z=_5"x, .., xS™, where §” is player n’s strategy set. The random matching
story, as well as the above market interaction story with symmetric
additive payoffs, simplifies the state space, because the identities of players
do not matter. The analysis in Sections I[I and III apply equally to the
general case described above, with a higher dimensional state space.

Next, since the function ¥(-) is strictly increasing, we can transform the
strategy set and consider

S'={v, ot where y,= Y(p,).



406 KANDORI AND ROB

Fach player is envisioned as choosing a y,€S’, which is equivalent to
choosing p,=Y ~'(y,).

The crucial property of this example is that a firm’s best response only
depends on the average of the opponents” strategies. Thus let BR(y) < S' be
the set of best responses when y is the average of the opponents’ strategies,
and let N =S5 be the set of Nash equilibria. We now show how to apply
Theorem 4 to this game. Let 3 and " be two equilibria, where »' <)".
Define a parametrized family of correspondences,

B(y,a,i)=BR{ay,+ (1 —a)y), ae0,17,
where J is either 1 or n. We then have, for large M,

C(y, y"YMxmin{a| B(y,a,n)2y, y <y<y"}

Cy" yy/Mxminla | B(y.a, 1)<y, y' sy <y}

The idea behind this is illustrated in Fig. 3. For the sake of this illustration,
we suppose a continuous strategy set [ y,, »,] and a smooth best-response
function (rather than a step function). The figure shows that the best-
response function moves to the left as we mutate aM individuals from »’
to y,. For a sufficiently large a—say, a*-—the function becomes just rangent
to the 45° line between 3’ and p". At this point a best-response path con-
necting ' and y" emerges { which is nothing but the path specified in the proof
of Theorem 4). Since this is the first time that such a path emerges, the cost
of transition between ' and " is ¢*M; the computation for C(y", ") is
analogous, except that individuals are mutated to strategy 1 which per-
turbes the best response function to the right, not to the lefi. Figure 4
shows a convenient way to find ¢* We can measure the depth of the

/ BR(a'y, +(1-a")y)

¥

[——— BR(y)

y Yn

Figure 3



EVOLUTION OF LONG-RUN EQUILIBRIA 407

BRay +(1-a)y) ——] e 1

|
)
1N
RS
\\
[==] \\
i
N
v
o
\_‘

BR(y)

FIGURE 4

best-response function over the interval [ 3', 3" ] by the slope ). Then, by
definition, C(y',y") 1s an increasing function of this slope, 0= 1/(1 —«).
From this characterization we can see that C(y’, y")> C( ", ') if and only
if 0>¢.

THEOREM 6. Suppose the assumptions in Theorem 4 are satisfied. If there
is an equilibrium i such that C,, , C, ., >C,, , C, ., forall j#i, then i
is the unique long-run equilibrium.*®

Proof. Suppose k #i is a long-run equilibrium. Let &* be the optimal
k-tree. Delete the outgoing branch at i from this tree and add the branch
from k to i. The resulting graph is an / — tree, denoted A**. By Theorem 5
and the inequality in Theorem 6, we have C(h**}< C(h*), a contradic-
tion. |

V.D. Examples

Let us provide a few examples, showing how to identify the long-run
equilibrium. First, consider the supermodular game with linear payoffs,
(5.3), whose best-response function is depicted in Fig. 5. For the ease of
exposition, we draw a smooth function rather than a step function. There
are two equilibria, s, and s,.*” Equilibrium s, has a larger basin of attrac-
tion than s, Le, s, — s > —g,. But this is not relevant for the long-run
stability. What matters is the depth of basin of attraction, as measured by
C,,and C,,. Since C,,> C,,, s, is the long-run equilibrium.

** For i=1 delete C,,_ from the left-hand side. For i=n delete C, ,, .
=7 Assume. for simplicity, that the “unstable™ equilibrium s* does not correspond to a pure
strategy and therefore it cannot be a long-run equilibrium (Proposition 7).
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FIGURE 9

The next example (see Fig. 6) illustrates Theorem 6. Equilibrium s, 1s
surrounded by the largest “bumps™: C, ., and C, ,_. Thus, Theorem 6
shows that s, is the long-run equilibrium.

In general, however, it may not be possible to find such an equilibrium.
Then we can utilize the optimal branching algorithm. The next example
illustrates how it works. Consider the following payofl matrix ()

9 0 O
0 9 12
-6 8 15

It can be easily checked that this is a supermodular game. The best
response regions are depicted in Fig. 7. From this we can see that
Assumption B 1s satisfied (although the game is not linear); thus we
can use Theorem4 to determine C;: for adjacent pairs (i j) we have
C,/M =y, By Theorem5 we can calculate C; for non-adjacent pairs:
Ci3/M ~Max{y,, 723} =71, and similarly C; /M = y,,. Thus, we have
C,y=0Cy,>C,3=C,,>Cy,>C,;. The optimum branching algorithm (see
also working paper version) applies to this data as follows.

Step 1. Establish the shortest branch leaving each node. State 1 has
two outgoing branches with the same cost; thus we can choose either one.
Let us choose (1, 2) to better illustrates the algorithm. This results in Fig. 8.

Step 2. Drop the longest branch from the set of branches established in
Step 1 Max( C12’ Cz}, C32) = C|2

Step 3. This generates a cycle ((2,3),(3,2)). Determine the longest
branch along the cycle: Max(Cs;, Cs,) = Cs,. Adjust the cost of outgoing

o v, in the figure is calculated as

Uiy — Uy Uz —Un
= s
Uy — Uy + Uy —Ups Uzy — Uaz + Uy — Uy,

Una — Uy Uay —Uzs
yn=T B I
Uoy ~ U+ Uy — Uy Upy— Uz F Uz — Uy
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1 2 3
o > o —3 0
FIGURE 10

branches from this cycle whose origin is different from the origin of the
longest branch. This results in

Cri=Cy 4 Cyy— Cos.

(The adjustment rule is to add the cost of the longest branch along the
cycle (C5,) and to subtract the cost of the outgoing branch from the same
origin (C,3); this leaves the cost of branches starting at 3 unchanged).

The states {2, 3} are now retracted to a single state. This gives us a two-
state set of nodes as in Fig. 9. This suggests the nature of the dynamic when
the mutation rate in non-negligible: the state usually fluctuates between 2
and 3 and only occasionally visits [. We now return to Step I.

Step 1. The branch C, is picked over C, =C, + Cy, — Cyy since
Cyy=C5 and Cyp > Csys.

Step 2. Drop max(C,,, C;,)=Cj,

This terminates the algorithm’s first phase. Now we have to open loops.
The loop {2,3} is a root component so we can open it according to
optimality. Thus, we drop max(C,,, C;;) = Cs,, which gives us the final
result as seen in Fig. 10.

Net conclusion. e, is the unique long-run state.

For games with more than three strategies these computations are, of
course, more involved. But the computational complexity of the optimum
branching algorithm is of order »n? (see Tarjan [38]). Therefore, as far as
numerical implementation is concernced the computation of LRE is quite
tractable.

APPENDIX

Proof of Proposition 6. With the exception of (ii) and (iv) these
properties are well known (see Milgrom and Roberts {26] or Vives [42]).
Thus here we prove (ii) and (iv) only.

(1) Assume that (4, j) is a NE for i j. Then

Uy 2 Uy
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and

u, = u,. (N.2)

Assume, without loss of generality, that j>i. Then u, — u, increases in k
by the supermodularity. In particular,

Uy — U <Uy— U

But this contradicts (N.1) and (N.2) above.

(iv) Assume (i,1) is a NE which is not strict. Then we can modify the
game by letting @i, =u;+¢ for j=1,...n and for sufficiently small &. The
modified game is still supermodular, it contains no dominated strategies,
and every NE in the u game is also an NE in the # game. Also, / is now
a unique best response against /. This modification can be performed for
every weak NE, resulting in a game which has the same set of NE’s but
where each NE is strict. |

Proof of Theorem 4. We will show (i); the proof for (ii) is identical.
The proof is in two steps. The first step shows a feasible path. The second
proves its optimality.

Step 1. Consider the state where all players adopt i Call this state
2(0)y=(0,..,M,..0), and let y(0) =i Fix a number x, 0 <x < M, and let
x individuals mutate from / to n. Call these individuals “mutants” and
the remaining individuals “non-mutants”. Call the resulting state =(1)=
(0, ..., M —x,0, .., x). Define an adjustment path (y(z), z(¢)) as

yloy=Max f,,_,(z(1))

X r=n
,t+l)y=<M-—x r=y(1)
0 otherwise.

(Along this path mutants stick to strategy n, while non-mutants are
adjusting to their best responses). By Proposition 7 the sequences y(t) and
z(t) are increasing in x and ¢. Choose the smallest x for which y(¢) = for
some 7 and call it &. We show that ¢, is achieved from e; with k mutations.
Let T be the first time along the path at which y(7) >, We distinguish
between three cases.

Case la. y(T)=j. Atstage T— 1, y(T) 1s the best response of all non-
mutants. If it is also the best response of all mutants we let all players
adjust to j and the process is terminated.
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Case 1b. y(T)=j but y(T) is not the best response of mutants. In that
case we let a particular fraction of the non-mutants adjust to j, creating an
“intermediate” state (7 + 1). This fraction is such that ; becomes the
largest best response of mutants. The distribution faced by the remaining
non-mutants (i.e., those with strategy (7 — 1)) is slightly larger than that
faced by mutants. However, j is a strict NE and j is the largest best
response of mutants. Therefore, if M is sufficiently large we have
J€pBur 1, {Z(T+1)). Therefore, we can let all individuals adjust to j, and
the process 1s terminated.

Case 2. p(T—1)<j<py(T). Here we let again a particular fraction of
the non-mutants adjust to y(7), creating an intermediate state (7 + 1) in
which j is the largest best response of mutants. This can be done because
of Assumption B. Furthermore, by the same argument as in Case 1b we can
ensure that j is the best response of all non-mutants. Then we let all players
adjust to j.

Step 2. On the other hand, if the total number of mutations is less than
k, then we will prove by contradiction that e, cannot be achieved from e,
by the best-response adjustment. Suppose in the transition path we have
k' <k mutations. Then since &' <M, at some stage in the transition, at
least one player should be adjusting to j. Consider the following modifica-
tion of the transition path. Instead of having k" mutations over time, let &’
players simultaneously mutate into strategy » at the beginning. As before,
those players are called mutants, and the other players are non-mutants. In
the modified adjustment, the mutants stick to strategy »n. In contrast, the
non-mutants simultaneously adjust to their largest best responses. This
generates a process (1), and kK’ < k implies that the non-mutants are even-
tually stuck with some strategy s <}J.

However, by Proposition 7, the strategy distribution at each step, ¢, on
the new path stochastically dominates that on the original path. This
implies that the best response of any non-mutant at any stage on the
original path is no larger than s', which implies that the non-mutants can
never adjust to j, a contradicton. |
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