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This paper investigates several approaches to equilibrium selection and the relationships
between them. The class of games we studyngperson generalized coordination games
with multiple Pareto rankable strict Nash equilibria. The main result is that all selection
criteria select the same outcome (namely the risk dominant equilibrium) in two-person
games, and that most equivalences break for games with more than two players. All criteria
select the Pareto efficient equilibrium in voting games, of which pure coordination games
are special casedournal of Economic Literatur€lassification Numbers: C70, C72, D82.
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1. INTRODUCTION

Multiple equilibria are common in economic models. As an example, conside
the stag hunt game. There arédentical players who must choose simultane-
ously between two action$] andL. The safe strategly yields a fixed payoff
x € (0,1). The strategyH yields the higher payoff of 1 if at least players
choose the same actidh, but it yields nothing otherwise. For example, the me-
dian rule take to be the smallest integer larger thai2, while the minimum
rule takesc = n. These games have two strict Nash equilibria in pure strate
gies, namelyH (all players choosél) andL (all choosel). Which equilibrium
should be selected has provoked much debate.

One might argue that the Pareto-dominant equilibridris the focal point,
but recent experimental results by van Huyetkal. (1990, 1991) show that
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subjects frequently fail to coordinate on the Pareto-dominant equilibrium. One
can also question whether is always the intuitively most appealing solution.
For instance, actioh is less risky especially whexnandx are large. Harsanyi
and Selten’s (1988; HS henceforth) notiorrisk dominancecaptures this idea

in two-person games. They claim that in these garhess risk dominant if
and only ifx > % Another approach is Carlsson and van Damme’s (1993a;
CvD henceforth) global perturbations approach. This derives a selection rul
by perturbing the original game with uncertainty about the players’ information
structure and embedding it in a game of incomplete information. In two-by-two
games, CvD show that the selection based on global perturbations coincides wi
HS's risk dominance.

Another strand of literature addressed the selection problem by explicitly in-
corporating dynamic and evolutionary processes. Matsui and Matsuyama (199
MM henceforth) study perfect foresight deterministic dynamics in which players
discount the future and the opportunity to revise their strategies arrives random|
MM show that, if players are sufficiently patient, or if each player can revise his
strategy almost at will, a version of dynamic stability leads to the risk dominant
equilibrium. The best response dynamics, which are obtained in the limit a
players become myopic, do not readily distinguish between the two strict Nasl|
equilibria since both equilibria are asymptotically stable. Young (1993) and
Kandori, Mailath, and Rob (1993; KMR henceforth) have resolved this indeter-
minacy problem by introducing small random mutations at the individual player
level, thus making the dynamic process stochastic. Foster and Young (1990; F
henceforth) and Fudenberg and Harris (1992) directly analyze stochastic repl
cator dynamics in which the process by which relative payoffs are translated int
strategy adjustments is subject to continual perturbations. Noise causes play
shift perpetually from the neighborhood of one equilibrium to another. Long run
equilibria are defined to be the states which appear with nonvanishing probabilit
in the limit as the amount of noise vanishes. Each of these evolutionary mode!
yields its cleanest prediction, namely the risk-dominant equilibrium, in2
coordination games.

This paper explores games with more than two players. Specifically, we focu
onn-person binary action coordination games with two strict Pareto-ranked Nas

1 There are several dynamic models in which the Pareto-dominant equilibrium is selected. Auman
and Sorin (1989) consider reputation effects in the repeated play of two-player games of commo
interests (i.e., games where there is a payoff vector that strongly Pareto dominates all other feasik
payoffs). They show that when the possible types are all pure strategies with bounded recall the
reputation effects pick out the Pareto-dominant outcome. Matsui (1991) considers a large populatic
randomly matched to play a game of common interest with cheap talk. He shows that a unique cyclicall
stable set exists and contains only Pareto-dominant outcome. These works are excluded from ¢
analysis, since we are concerned with the situation in which a large popudatamymouslhplay
coordination gamewithout communication
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equilibria. Generalization to multiperson games is also motivated by recent e
perimental results of van Huyekt al. (1990, 1991), which suggest that group size
is important in determining the long run coordination outcome. The purpose
this paper is to study several approaches to equilibrium selection, to character
fully the selection rules, and to expose the relationship among them. In partic
lar, we study the following five models: three models of dynamic/evolutionar
processes (MM, KMR, and FY) and two most salient selection models (HS ar
CvD).

The main result is that all selection criteria select the same outcome in tw
person games and that predictions differ from each other in the games with m
than two players. We provide geometric interpretations to clarify why the criteri
are equivalent for two-person games but not for more general games. The ic
behind our results can be understood as follows: in KMR or Young, the long ru
equilibrium depends only on the relative sizes of the strict equilibria’s basin
of attraction and not on the speed of adjustment in each basin. On the ott
hand, evaluation of some weighted integrals of the payoff difference functio
is central to characterizing the dynamic outcomes in MM, FY, and Fudenbe
and Harris. All selection criteria coincide when the payoff difference function
or relative fitness, is linear in the state variable, which is the case only wit
a two-person game. In particular, the selected outcome in a two-person ga
coincides with the risk-dominant equilibrium. There is no guarantee of equive
lence otherwise. As a counterexample, we later characterize the selection crite
of different approaches, in the stag hunt game described in the opening pa
graph.

The rest of the paper is organized as follows. Section 2 formally defines tt
game of interest. Section 3 characterizes equilibrium selection criteria applyir
the MM, KMR, and FY dynamics. Section 4 investigates the most salient stat
selection criteria, namely HS'’s risk dominance and CvD’s global perturbatior
Section 5 compares these criteria, provides geometric interpretations, and p
poses concrete answers to stag hunt games. Section 6 shows that all dyna
selection criteria studied in this paper support Pareto-dominance in voting gam
of which pure coordination games are special cases. The final section conclu
with some comments.

2. THE GAME

We consider a symmetric coordination ga@®e, IT1), wheren is the number
of players andT is the payoff matrix. Each player has binary choices available
denoted by high (H) and low (L). Consider a situation in which- 1) opponents
choose H with the remaining — k) opponents choosing L. Let andr_, .,
where 1< k < n, denote the payoff for a player taking H and L, respectively,
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where subscripts denote thatal numbers of players choosing the strategy in
superscripts. The class of games being studied is described by the space of pay
matrices as

— n | _H H L L v
Q= {leR"|mly >m, andn,, > m, VK;

H L _L H. _H L
T > Ty, Wy > Ty T > ) &8

wherefit?" is the h-dimensional Euclidean space. The first set of inequalities
in Eqg. (1) imply that a player taking a particular action is no worse off when the
number of opponents taking the same action increases. The next two inequaliti
require that all players playing a common action constitutes a strict Nash equ
librium. The last inequality means that the equilibrium when all players play H,
denoted byH, is better than the one when all players play L, denoted bjhe
following preliminary result is straightforward.

LEmMmA 1. If TT € Q then the only pure strategy equilibria of(G IT) are
the two strict Nash equilibriaviz. H andL.

All the proofs are set out in the Appendix.

3. DYNAMIC SELECTIONS

We deal with three types of dynamic processes, namely MM, KMR, and FY
in turn, to calculate equilibrium selection rules in the ga@&{a, I1). To that end,
we illustrate the general features and definitions common to all three dynami
processes. Time runs from= 0 to co. The games(n, 1) is played repeatedly
in a society withN identical players. The population si2& may be finite or
infinite, and N is divisible byn if finite. At every point in time, each player
is matched to form a group with the oth@r — 1) players, who are randomly
drawn from the population playing the game anonymously. There is inertia ir
the sense that not every player is able to change his strategy at will. Give
the chance to switch actions, players choose a best response with respect
some suitably defined objective function. Because of anonymity, they engag
in this optimization without taking into account strategic considerations such a:
reputation, punishment, and forward induction.

Let y; denote the fraction of the players that are committed to action H at
time t, where the state spaceYs C [0, 1]. Given the statey, let IT"(y) and
It (y) denote the value of playing action H and L, respectively. We derive the
payoff difference functigrb (y), using the following definitions of coefficient
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functions: if N is finite 2

mii-y-k 1
l—ln 1(1_ _) ’
My — EHm=ka -
iy Ny | DO Moy =9y
nmia-5
Moy -3 C_n
mi1-4°
If N is infinite,

(Y [00) =y H1—y)" = lim n(y | N).
Then the payoff difference function is expressed as
on(y) = T(y) — ()
= Z( o1 )y N @

k=1

wheregy = n! — 7k, is increasing irk. We suppress the subscrigtor co
in ® whenever there is no confusion.

3.1.Matsui and Matsuyama

We begin with the MM dynamics. Time is continuous. The population is &
continuum, i.e.N = oo, so the state spaceY¥s= [0, 1]. If we makeN finite,
we still obtain a similar result. The key assumption is that not every playe
can switch actions at will. More specifically, we assume that the opportunit
to switch actions arrives randomly, following a Poisson process with paramet
A, the mean arrival rate. It is further assumed that this process is independ:
across the players and that there is no aggregate uncertainty. Due to the co
adjustment assumption, the social behavior patgechanges continuously over
time with its rate of change belonging te-Ly;, A(1 — y;)]. Furthermore, any

2 Let z denote the number of players choosing action H. To avoid unnecessary complications, \
may assume the case wherec z < N — n. The formula forx (y | N) is derived simply by changing
variabley = z/N, from

n z N—z—-1
*@ =Y %«pk.
k=1 n-1
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feasible path necessarily satisfig®@ ™ < y; < 1 — (1 — yg)e ™, where the
initial conditionyy is given exogenously.

When the opportunity to switch arrives, players choose the action which result
in the higher expected discounted payoffs, recognizing the future pattasf
well as their own inability to switch actions continuously. Given the opportunity,
players commit to play if V; > O, L if V; < 0 and are indifferent i, = 0,
where

Vi=(+r) f D (yris)e”“°ds 3
0
withr > 0 being the discount rate. We defime= r /) to be the effective discount

rate or the degree of friction. Therefolg }ic[0.~) iS an equilibrium path from
Yo if its right-hand derivative exists and satisfies

AL —w) if Vi >0,
Vi =1 [, AQ—w)] if V=0,
_)\,yt if Vi < 0,

for anyt. This states that all players currently playing action H (respectively L)
switch, if given the chance, to L (resp. H), wheén< (resp.>) O.

MM specify the stability concept as follows. A stayeis calledaccessible
from y’, if an equilibrium path fromy’ that reaches or convergesyaxists. It
is calledglobally accessibléf it is accessible from any’ € [0, 1]. A statey
is calledabsorbing if a neighborhoodJ of y exists such that any equilibrium
path fromU converges tg. It is fragile if not absorbind:

To state the properties of the state- 0 andy = 1, let us define the partition
(R0(n, p), 21(n, p), Qo1(N, p)) of the setQ. For this purpose, let denote an
n-dimensional vector whodgh element isy, k = 1, 2, ..., n, and the vector
B is similarly defined. Also, let-” denote the inner product of two vectors. For
exampleqa - TI¢ = Y1, oyt . We derive Lemma 2, using the definitions of
sets,

Qo(n, p) ={T € Q | a(n, p) - 1" < B(n, p) - 1"}, (4)
Qi(n, p) ={MT € Q| B(n, p)- " = a(n, p) - '}, (5)
Qo1(, p) = Q\(Qo(n, p) | Q1(n, p)), (6)

3 Although this is the same conceptasymptotically stablaccording to standard terminology in
dynamical systems, we simply uabsorbingdue to the presence of multiple paths. It should be noted
that this has nothing to do with Markov processes.

4 MM remarked that the definition does not rule out the possibility that a state may be both fragile
and globally accessible, or that a state may be uniquely absorbing but not globally accessible. Howev:
these situations do not occur in this model.
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where

1 0 j
ak(ns 10) = —I:p 1_[(1 _:_p) 9’ ﬂk(n’ IO) Eankarl(n, IO) (7)
j=k

J

Lemma4 inthe Appendix provides the properties of the coefficient vectorp)
andg(n, p). We suppressn, p) in defining the partitioned set whenever there
is no confusion.

LEmMMA 2. The state y is globally accessible itf € Q2 for either y = 0
ory = 1; both y= 1and y = 0 are absorbing iffll € Q¢;. Moreover if an
absorbing statgy, is globally accessiblghen it is a unique absorbing state in
[0, 1] and any other state must be fragile

Lemma 2 states that, for a given if the payoff matrix lies in the region
Qo(n, p), theny = 0 is absorbing. It also implies that there are either one or twc
absorbing states and that a state is uniquely absorbing if and only if it is global
accessible. In summary, for any initial behavior patterns, there is an equilibriu
path that converges to the state of everyone choosing L, and, if a sufficien
large fraction of population choose L initially, any equilibrium path converges t
that state. Similarly, for a givep, if the payoff matrix is in the regiof,(n, p),
theny = 1 is absorbing. If the payoff matrix lies in the regi®;(n, p), on
the other hand, both states are absorbing. Proposition 1(a) states that, as fric
vanishes, one state becomes fragile and the other becomes globally access
The region$2g and2; shrink as friction grows and, in the limit as friction goes to
infinity, disappear. Proposition 1(b) states that, in the presence of large frictio
both states become absorbing.

PrROPOSITIONL. (a) If TT € © satisfies)_,_; wirf! > Y p_; wirl, where
the weights are defined by

there existg > 0such that y= 1is uniquely absorbing and globally accessible
foranyp € (0, ¢). If the inequality is reversedhe same statement holds with
y = 0.In the nongeneric case of equaliboth y= 0and y= 1 are absorbing
foranyp > 0.

(b) For any Il € €, there exists; > 0 such that both y=0and y= 1 are
absorbing and no state is globally accessible for any .

Recall that the smaller (larger) size @fmplies more (less) patience and/or a
shorter (longer) duration of an action commitmefithe smaller the degree of

5 MM pointed out the following feature of the dynamics. That> 0 implies that players are more
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friction, p, gets, the more the long run equilibrium tends to rely on the payoff
matrix specification and the less on the initial position of strategic uncertainty
and vice vers4.0n the other extreme case @fpproaching infinity, called the
best response dynamics, both states may obtain in the long run and exactly whi
one would come out depends solely upon what the initial state was. In fact, th
dynamic paths would be close to those studied in Gilboa and Matsui (1991).

3.2.Kandori, Mailath, and Rob

Next we study the KMR dynamic with > 2 players matching. Time is
discrete, but Kandori (1991) verifies that the results derived by KMR are robus
when extended to a continuous time formulation. Population NiZs finite,
and the state spaceYs= {0, 1/N, ..., 1— 1/N, 1}. Within periodt, there are a
large number of random matches among the players so that each player’s avere
payoff in that period is equal to the expected payoff.

Consider the MM dynamics in which players become myopic. Together with
the inertia assumption, this implies that, given the chance to move, each play
adopts a best response against the current strategy configuration of the soci
as a whole. In other words, players commit to action I ify;) > 0, and to
action L if ®(y;) < 0. A deterministic Darwinian dynamig.; = f (y) is then
defined by

sign(f(y) —y) =sign(®(y)) forO<y <1

Since the gam&(n, IT) has two strict Nash equilibria, the Darwinian dynamic
possesses multiple steady states and that the asymptotic behavior of the syst
depends on the initial conditioyy. Indeterminacy is resolved if we perturb the
system with a constant flow of mutations. For a fixedle may define a stochastic
dynamic by composing the deterministic dynanfiavith a random mutation
under which each player’s strategy at titne 1 is altered to the other action
with probabilitys. The stochastic model is described by a Markov process. Since
¢ is strictly positive, the transition matrix is irreducible and, hence, the Markov

concerned about the future. That> oo might have two opposite effects: players are less concerned
about the future whilst the current strategy distribution becomes less important. Nevertheless, a strict
positiver guarantees that the second effect always dominates the first one. Therefore, the smaller
gets, the more players worry about the future.

6 We have assumed that the speed of adjustment, represented by Poisson arrival paraimeter
identical over the whole population. This does not seem a severe restriction since we have studi
symmetric games. Nevertheless, we can in principle incorporate asymmetric speed of adjustme
into the game of interesg(n, IT) by assuming that each populatiomas a Poisson arrival rate,

i =1,2,...,n. Afairamount of numerical simulations indicate that the equilibrium criterion depends
on these numbers. However, a strong result can be obtained in any—symmetric or x@-gdines,
which states: “If and only if action H is risk dominant with respect to L (in the sense of larger Nash
product), therH is uniquely absorbing and globally accessible for sufficiently smalbri = 1, 2,

with p1/pp = 8 fixed.” A proof is available upon request.
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process has the unique steady state distribution which indicates the proport
of time that the system spends on each sta¥e iy strategy configuratiog € Y

is defined as éong run equilibrium(LRE) if, ase — 0, the limit distribution
assigns positive probability opn. KMR show that the LRE corresponds to the
risk dominant equilibrium in two-by-two games.

The following proposition states the selection criterionrigperson general-
ized coordination gam&(n, IT). Since the gam&(n, IT) has two strict equi-
libria, and the relative sizes of basins of attractions determine the LRE, it matte
whether or not the payoff difference functi@n(y) cuts the horizontal axis at
a point less than a half. The following proposition generalizes existing resul
on two-person games (KMR’s Theorems 3 and 4 and Young's Theorem 3)
multiperson games.

PROPOSITION2. For a given game @, II) satisfying ZE:]_ wyrf >
Y k_1 wkTs Where the weights are defined by

n—1 1 n-1
wk:(k—l)(i) fork=1,...,n,

there exists arN such that the unique LRE is 3 1 for any N > N. If the
inequality is reversedthe LRE becomes ¥ 0. In the nongeneric case of
equality the LRE can be either = 1 and y = 0, with the limit distribution
placing probability half on each

3.3.Foster and Young

The last dynamic we study is Foster and Young (1990), which is acknowledge
to be the first to consider a stochastic differential equation model of evolutiona
dynamics. Time is continuous, and the population §ize: co. Given the state
i, the current rate of increase for HIE' (y), while the average rate of increase
of the whole population igIT"(y) + (1 — y)I1-(y), wherell" andI1" are the
value of playing action H and L, respectively. The relative rate of increase in tr
fraction of H is given by the deterministic replicator equation

dy/dt
\G

= Iy — [T (y) + (L — yoT1 (W]
= 1-y)PW), (8)

where the payoff difference functiob is defined in Eq. (2). Equation (8) can
be written as

dyt = yi(1 — y) ®(yo)dt. 9

This system has two asymptotically stable states, namely 0 andy = 1,
and exactly which one is obtained depends completely on the initialygtafe
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resolve this indeterminacy problem by perturbing the deterministic system witt
continual and nonnegligible shocks. We then obtain the following stochastic
differential equation

dyt = i (1 — y)@(y)dt + od W, (10

whereW, is a Gaussian noise with zero mean and unit variance. To keep th
statey always positive, the state space musibe [A, 1 — A] for some small
A>07

Our goal is to study the asymptotic behavior of Eq. (10yasonverges to
zero. The statg € Y is called astochastically stable equilibriuSE in short)
if, aso — 0, the limiting density assigns positive probability to every small
neighborhood ofy. Theorem 2 of FY shows that computation of the SSE can
be done by finding the minimum of a suitably defined potential function. The
potential functiorlJ (y) can be explicitly computed from the formula Eq. (5) of
FY as

Uy = —/yx(l— X)® (X) dx. (12
0

Combining all the arguments implies that the problem is to fing [0, 1]
minimizing U (y). The following proposition provides the selection criterion
according to the SSE notion.

ProPOSITION3. If TT € Q satisfies) p_, wkmr! > Y p_; wemy, where the
weights are defined by
6k(n —k+1)
=—————— fork=1,...,n, 12
T Dhint2 : 12
then y= 1is the unique SSHf the inequality is reversed/ = 0 is the unique
SSE In the nongeneric case of equalitile SSE can be eitheryy Oory = 1,
with the limit distribution placing probability half on each

4. STATIC SELECTIONS

4.1.Global Perturbation

The global perturbation approach of Carlsson and van Damme (1993a) |
based on a perturbation of the players’ payoff information ir 2 games.
The game to be played is determined by a random draw from some subcla
of all 2 x 2 games. Each player observes the selected game with some noi
and then chooses one of his two available actions. If the initial subclass o

7 Fudenberg and Harris (1992) avoid this boundary problem by adding the stochastic noise to Eq. (
instead of Eq. (9).
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games is large enough and contains games with different equilibrium structure
iterative elimination of dominated strategies in the incomplete information gam
yields a surprising result. When thex22 game actually selected by Nature is
a coordination game, iterated dominance forces the players to coordinate on
risk dominant equilibrium, if the amount of noise in the players’ observations i
sufficiently small. Carlsson and van Damme (1993b) consider a clasgerson
binary choice games that are described in the Introduction of this paper. Th
analyze the global game in which the valuexa$ observed with some noise and
show that the derived selection rule differs from the HS'’s risk dominance. W
apply CvD’s idea tan-person generalized coordination ga@é, IT) defined
in Eq. (1). Notice that tha-person stag-hunt game studied by CvD is a specia
class of our game.

Nature draw®, which determines the payoff matrix. Each playeeceives
a private signab; that provides an unbiased estimatefofvith some noise.
After observing their own signals, players then choose either H or L. Payoffs a
determined by the true game and the players’ choice®Ibeta one-dimensional
random variable and IgtE; }_, be ann tuple of i.i.d. random variables, each
having zero mean. ThE; is independent o®, with a continuous density and a
support within -1, 1]. Fore > 0, write

OF =0 + ¢E;. (13)

Thate = 0 implies that the true payoff realizatieris common knowledge. We
are interested in what happens whes arbitrarily small, namely under almost
common knowledge.

Let P(0) denote a B-dimensional payoff vector of a perturbed game, i.e.,
P®) = (pi'©®),..., pH©®); pL®), ..., p-©®)). We confine our attention to
the perturbations that satisfy the following two conditions.

AssumptiorL. (a) For eaclk, the functionpf! (resp.p5_,) is continuous,
monotonically increasing (resp. decreasingpinand unbounded above and
below; (b) the original unperturbed gan@&(n, IT) obtains withé = 0, i.e.,
PO =

Let us defined = min{d | p"(©) > p-©)} andd = maxo | p-@©) >
pH(6)}, wherep3(6) = min{pa(0) | 1 < k < n} and p*(9) = max p(®) |
1 <k <njforae {H, L}. Assumption 1(a) above guarantees t thahdd exist,
and that-oo < 6 < 0 < § < +oc. Clearly, if6 is greater thad and the value
of 6 is common knowledge among all players, strategy H is strictly dominan
in a game with payoff matrixP (0). Similarly, if 6 < 6, strategy L is strictly
dominant. The next assumption guarantees that the possibility of each strate
being strictly dominant is real.

Assumptior2. The® is uniformly distributed over an interval which con-
tains p, 6].
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The realized valu® is almost common knowledge éfis positive but tiny.
Lack of common knowledge, together with A2, suggests applying an iterative
elimination of strictly dominated strategies. The next lemma shows that the
Bayesian Nash equilibrium has the cutoff property and that the game considere
here is indeed dominance solvable.

LEmmA 3. If Al and A2 hold, then the equilibrium is characterized by cut-
off 6gp such that player i optimally chooses (resp L) iff 6 > (resp <)
Ocp. Furthermore 65 is the unique root of the equatiofi/n) ), pkH ) =
(1) 32y Pe ().

Recall from Al(b) that the perturbed game corresponds to the original unpei
turbed gamés(n, IT) whend = 0. We are interested in what happensg at 0
when the true payoff is almost common knowledge. Recall from Eg. (13) that
16i| < eif & =0.Soif6gp < (resp.>) 0, thend; > 6gp for alli whend =0
ande is sufficiently small; hence all players should optimally play H (resp. L) by
Lemma 3. So we say that the equilibridthin the unperturbed game iisbust
with respect to global perturbatioif 6sp < 0, and that is robust ifogp > 0.
Now the main result of this section follows.

PrOPOSITION4. If TT € Q satisfies) ,_, wxr! > Y p_; wers, where the
weights are defined by

thenH is robust with respect to global perturbatidiithe inequality is reversed
thenL is robust

4.2.Risk Dominance

We now turn to Harsanyi and Selten’s (1988) notion of risk dominance. The
definition of risk dominance is based on a hypothetical process of expectatio
formation starting from an initial situation, where it is common knowledge that
either the equilibriund or L must be the solution without knowing which one is
the solution. Roughly speaking, the coordinated equilibridmsk-dominates
the other coordinated equilibriuin if the net gain from coordination with H
is relatively larger than that with L. Net gain again is defined as the payoff
from successful coordination minus the loss incurred when all the opponent
collectivelychoose the other action. This implies that risk dominance measure
“risk” from taking a particular action in a too extreme manner. Thus, the relevan
threshold value is-¢1/(¢n— 1), Wherep, = m' —x} .. Recall that the payoff
difference function® defined in Eq. (2), is monotone increasing and satisfies
®(0) < 0 < ®(1). Hence, the equilibriuri risk-dominated. if and only if

c1>< o >>0. (14
$n— 1
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We can easily check that Eq. (14) becomes linear in payoff matix={ 2,

but it is nonlinear ifn exceeds two. CvD (1993b) calculate the risk dominant
equilibrium in n-person stag-hunt game, which is a special class of the gan
studied in this paper.

5. DISCUSSION

We summarize the dynamic selection criteria characterized in previous se
tions. Recall thall is payoff matrix,® is the payoff difference function defined
in Eq. (2) andp, = 7' — 7% ;. In the gameG(n, IT), each model in paren-
thesis selects the equilibriuf if and only if IT € Q satisfies the following
condition:

n

1
[MM] Z ﬁ[n{' -] >0
k=1

n n— 1 1 n-1
[KMR] Z( K1 ) (5) [ —mc] > 0;
k=1
Loekin—k+1)
[FY] kz:;n(n—{—l)(n—i-Z)[ﬂk ] > 0.

We offer brief comments on how selection mechanisms differ. In KMR and FY
the constant flow of nonnegligible noises play a crucial role in selecting amor
strict equilibria. This allows the dynamical process to always restart. Hence, ti
resulting stochastic process is ergodic, which in turn implies that each state
eventually visited with probability one. What matters is how often the differen
states are visited over a long time period. Both papers show that the dynan
process assigns virtually all the probability to the risk-dominant equilibrium ir
two-by-two games. Exactly which equilibrium is selected depends crucially o
details of noise distribution. In FY, it is the drift term depending on the payof
difference in Brownian motion that leads to the present result. In KMR, it is the
state-independent rate of mutation that makes only sizes of basins of attract
relevant MM investigate equilibrium selection in two-by-two games, using
an explicit adjustment process. They impose perfect foresight, and there is
mutation. The perfect-foresight restriction turns out to be sufficient to elicit :
unigue equilibrium, which is risk-dominant in two-by-two games.

8 It has been recognized that the selection equilibrium is sensitive to details of noise process. Ber
and Lipman (1994) verify the following result: in KMR and Young, if one allows mutation rates to
vary with the state of the system, then it is always possible to introduce mutation process in such av
that, given any strict Nash equilibrium, the unique invariant distribution with mutations converges t
that equilibrium as mutation vanishes. Vaughan (1994) shows that the FY-type stochastic different
equation approach may lead to different selections if the drift term is assumed to be state depende
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Now we elaborate on what makes three dynamic selections equivalent fc
two-by-two games but not for more general games. Recall that theystaté
denotes the population fraction choosing action H. Also recall that the payof
difference function®(y), is strictly increasing iry € [0, 1], and that® (0) =
' —nt <0< xfl =7}t = ®(1). Thisimmediately implies that a unique cutoff
exists such tha®(y) = 0. Both MM and FY dynamics use weighted integrals
of payoff difference along a potential path. To be more specific, in MM, Eg. (15)
in the Appendix implies that there is a path from= 0 (everyone chooses
action L) toy = 1 (everyone chooses H) as people become increasingly patier
if and only if the area below and abodg(y) is positive. In FY, the integrand is
y(1 — y)®(y), which is a symmetric sign-preserving transformationbdgfy).
Hence, the system Eq. (10) stays almost surely in the neighborhopd-ot
if and only if the area below and aboyé¢l — y)®(y) is positive. On the other
hand, in KMR, the threshold for different basins of attraction matters. More
specifically, a unique long run equilibriumys= 1 (everyone chooses H) if and
only if ®(y) cuts the horizontal axis at a point less than a hal® (f) is linear
in y, then the condition that the integral valuedty) is positive is equivalent
to the condition thatb(y) cuts the horizontal axis at a point less than a half.
If ® is not linear, there is no guarantee of equivalence. But if the underlying
game is two-person game, is linear, but not if the game involves more than
two players.

Now we summarize the static selection criteria:

(VD] iy STl k] > O

[HS] > ( k_ 1 ) P = " ! = ] > 0,
where
_ Ty =
C(aH — b))+ ()’

n

It is easy to check algebraically that,rif= 2, all five selection criteria are
reduced to

7'[;—7'[][' >7Z£'—7T]|_-I.

This inequality is the well-known condition that the equilibridthis risk-
dominant in two-by-two games. It is also immediate to show that, # 3,

all equivalences break, except that between the MM selection and the CvD s
lection. As a counterexample, let us take the stag-hunt game described in tf
Introduction, wheren = 3 andx = 3 (i.e., a three-person game under minimum
rule). Applying the above formula to this game at hand, we can show that eac
approach selects the equilibriumif and only if the payoff from action L,
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is larger than [MM] and [CvD], 2 [KMR], 2 [FY], and (+/5 — 1)/2 [HS],
respectively. Arguments thus far yield the following main result.

ProPOSITIONS. Consider the game @, IT). If n = 2, then all five ap-
proaches select the risk-dominant equilibridfm > 3, the equivalences break

One may remark that the MM dynamic and the CvD global game approac
generate the same selection criteria. We suspect that this equivalence also bre
if the uniformity assumption A2 is relaxed. Notice from Eq. (17) in the Appendix
that the weight I in the CvD formula emerges owing to the following reason:
the probability that a certain number of opponents receive signals larger than r
signal is independent of the exact location of my signal. But this property holc
only when the distribution of true parameters is uniform.

This paper may also have substantial implications with regard to recent expe
mental results by van Huyalt al. (1990, 1991). The experiments are as follows.
Each treatment lasts for 10 stages. At the end of each treatment, subjects
paid the sum of their payoffs in the games they play. In each of the games, ec
player chooses among seven effort levels. In each stage, each player’s payo
determined by his own effort and a simple summary statistic. This statistic
either the minimum or median of group effort choices. The parameter values &
given for the normal forms to be of coordination games with seven strict Paret
ranked symmetric Nash equilibria. A large group consists of 14 to 16 player
One interesting result was that, in large group minimum treatments, subjec
initially chose widely dispersed efforts and then rapidly approached the Pare
worst equilibrium. We claim that our results can capture this aspect. To this en
consider the stag hunt game in which= 15 and« = 15. Applying the selec-
tion formula to this game, then numerical calculations show that each approa
selects the Pareto-dominant equilibridinif and only if x is less than 0.0667
[MM and CvD], 0.0001 [KMR], 0.0221 [FY], and 0.134 [HS], respectively. This
implies that, unlesg is extremely small, subjects’ choices converge to the Paret
inferior Nash equilibrium.

6. MORE GENERAL GAMES

The class of games we look at is admittedly restrictive, since only binar
choices are allowed. Extension to a class of games with more than two actic
would be not only complicated, but the equilibrium selection would be ofter
impossible due to the typical intransitivity among strict Nash equilibria. We stud
an interesting class of generalized pure coordination or simply “voting games
in which intransitivity does not arise. We define a voting ga@@, m; I1%),
wheren is the number of playersn is the number of choices, and the voting
rule « will be defined below. The payoff to the player actoe-1,2, ..., mis
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described as

| § L0

wherefi(s) denotes the total number of players choosing actj@ndx may be
2, ..., n.Moreover, all coordinated equilibria are ordered, that is, & < ay,
Vs < §. The gameG(n, m; [1¥) possessem pure strategy Pareto rankable
Nash equilibria, where everyone chooses adienl, 2, ..., m. It requires that
both the voting rule (represented byand the security (normalized to zero) be
identical over all choice$.

Now we have the following.

PropPosITIONG.  Allthree dynamic criterianamely MM KMR, and FY select
the Pareto efficient Nash equilibrium in any(iG m; I1).

The proof in the Appendix is lengthy, but the idea is intuitive. The previous
sections suggest that Pareto efficiency is guaranteed when the number of actic
istwo; i.e.,m = 2. With three or more actions, we apply the selection criterion in
a pairwise way. The only case that we have to worry about is lack of transitivity,
but this cannot occur in the class of games considered. The proposition implie
that players eventually learn to play the efficient outcome in voting games. Thi
observation is consistent with van Huyek al’s (1990) experimental results
with pure coordination games, showing that actual subjects move swiftly to the
Pareto best equilibrium effort level, regardless of group size.

7. CONCLUSION

We have generalized results on equilibrium selection in the direction of grouy
size. However, the assumption of binary strategies is obviously restrictive. Effor
is needed to generalize in encompassing multiactions. Pairwise comparisol
may be a natural criterion, but we have to restrict the class of games, in order 1
preserve transitivity. As is shown in Section 6, a generalized pure coordination ¢
voting game preserves such transitivity. On the other hand, it is easy to constru
a game in which transitivity does not hold. Young (1993) analyzes a two-persol
three-action game where pairwise risk dominance fails but, nevertheless, a uniq
long run equilibrium exists. This fact suggests modification or refinement of risk-
dominance. Ellison (1994) characterizes KMR-style long run equilibria in two-
person multiaction games. More importantly, he shows that Morris, Rob, anc
Shin’s (1995) refinement of risk-dominance, cal&dominance, is a sufficient
condition for an equilibrium to be the unique long run equilibrium.

9 We can easily construct counterexamples demonstrating the fact that both identical rule and equ
security are necessary and sufficient to guarantee the Pareto efficiency.
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A more important research agenda will be to clarify the general relationshi
between the nature of the underlying dynamics and selected static equilibriu
Recent papers, such as Binmore, Samuelson, and Vaughan (19950 rgedsB
and Sarin (1993), attempt to address such an issue. Birshateemphasize the
importance of the order in which certain limits are taken and of the time spa
over which one desires to study the behavior of the selection modegjeBs'and
Sarin show that, in the continuous time limit, a version of a stochastic aspiratiol
based learning model coincides with the deterministic, continuous time replicat
dynamics. We will have to await further research in these directions for answel

APPENDIX

Proof of Lemmadl. Suppose, to the contrary, that the pure strategy profil
of exactly k players choosing H anth — k) players choosing L is a Nash
equilibrium. Then bothr}_, > =/t ; andx{’ > =}, hold for suchk. Adding
the two inequalities yields

_(”rlmlkﬂ - ”rl;fk) = ”FH - ”Iy
which contradicts the definition of the s@t =

Characterization of the vectar and 8. Equations (4) to (6) define the sets
Qo, 21, andQqy, where the element of the coefficient vectarandg is

_1tp ( ] ) _
a(n, p) = — ]11 ) Bc(N, p) = an_k11(N, ).

The following lemma characterizes the properties of the coefficient vectors.

LEMMA 4. For any n given(a) Y p_;ak = > w_y Sk = 1, Vp; (0) a1 >
ax and Byr < B, YK, p € (0,00); (€) lim,oax = lim,_0Bc = 1/n, Vk;
(d) limysoax = (0, ...,0,1); andlim,_, = (1,0,...,0).

Proof. (a) Via mathematical induction. Checking the case ef 2 is trivial.
Supposed that it holds for— 1, i.e.,Y ) _y [T/ (i/(j + p)) = (N—D/(1+ p),

then forn
n
()
k=1 k=1 j=k i+p
n—-1n

- 1:[) [nip n+p211_[(14rp>}

l+p n |:1 n—l]
n n+p 1+p

H

=1
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The fact tha) ;_, B« = 1 is trivial since the elements of the vecpare just a
rearrangement of those of To check (b), (c), and (d) is straightforward s

Proof of Lemm&. First of all, notice tha® (0) = /' — 7} <0< ®(1) =

aMt — 7t and that® is strictly increasing, since

n-2
Yy =mn-1)" ( n? ) Y@ =" P2 — dria] > 0
k=0

by the definition of thep function and the non-decreasing property of the
sequences.

The outcomeH can be upset when players have an incentive to deviate for ¢
feasible path fromy = 1. Because of the monotonicity df, the incentive to
deviate is the strongest if all players are anticipated to switch from Hto L in the
future, i.e.,y; = e *. Hence, the condition foy = 1 being fragile is

Vo= +T) / d (e *S)e"*tsds <,
0

which would be by the change-of-variable technique

1
(1+p>/0 o (y)y* dy <. (15

Using Eqg. (2), the definition and properties of the beta and gamma funions
and some algebraic manipulation, Eq. (15) becomes

1
) Px / y<rri1 — y)"rdy
0

) Fk+ p)T(N—k+1)
T+t D)

o
V
~~
H
+
2
N
-
N
X D
(.

Il I
~
- =
g 7
'7§~ ~
"I
N
X D

or, equivalently,

n n n

H L L
E oy < E T o = E Bemc, (16
k=1 k=1 k=1

which corresponds to the condition defining thgset.

10 Refer to any text on mathematical statistics.
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We claim:y = 0 is globally accessible if and only If € 2,. To prove the
“if” part, it suffices to show that, if Eq. (16) holds, i.d], € o, a feasible path
fromy =1toy =0,y = e ™, satisfies the equilibrium condition, i.&}, < 0
vt along the path. This can be checked as follows:

Vi = (A+r)/ O (yris)€ “T%ds
0

IA

(A+r)/ d(e e MHSds< 0 Vi.
0

To prove the “only if” part, it suffices to demonstrate that[ife 2\, the
equilibrium path is unique and convergesyte- 1 for yy sufficiently close to 1.
Reminding that any feasible path fropp satisfiesy; > yoe !, we get

Vo= (A+T) f @ (yoe *)e” " ds
0

Since the right-hand side is strictly positiveygt= 1 and continuous iy, it is
still positive fory, sufficiently close to 1.

We also claim thayy = 1 is absorbing if and only ifT € Q\o. To prove
the “only if” part is exactly the same as to prove the “if” part of the statemen
thaty = 0 is globally accessible iffT € Q. Similarly, to prove the “if” part
is exactly the same as to prove the “only if” part of the statementythatO is
globally accessible iffT € Qo.

Similarly, the condition fory = 0 being fragile combined with the change of
variable technique will be

Vo

(A 4T) / d(1—e e *%ds
0

1
= (1+p)/0 e(y)(1—-y)’dy=>0.

Again by the definition ofb function, the properties of gamma and beta functions
and some algebraic manipulation, we have

N /n-1 r&rn—-k+p)
0
= ;( k—1>‘i[’k T+1+0)

= > Bt
p

or, equivalently,

n n n
H L L
Z Brmy < Z BTty i1 = Zcxknk ,
k=1 k=1 k=1
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which is the condition defining;. A symmetric argument as before shows that
y = 1 is globally accessible if and only Iffl € ©2; and thaty = 0 is absorbing
if and only if IT € Q\Q;.

Combining all the facts shown yields the desired resuli.

Proof of Propositionl. Part (a) is clear from Lemma 2(b) and (c). As~
oo, Lemma 2(d), together with Eq. (1) implies that béth and€2; converge to
the empty set, whil€2y; converges to the whole s@t =

To prove Proposition 2, the following two lemmas are helpful.

LEMMA 5. For N sufficiently large® (y) = 0 has the unique root if0, 1].

Proof. Differentiate @ defined in Eq. (2) with respect tg, expand the
resulting equation, and rearrange terms; then we have

(n—1) Y35 ( N 2 ) Y41 — Y)"* (12 — dis1) + CIN
"I —i/N)

P'(y) =

Here the constart is obtained from the exact expansion by replacingnd

1/N with O’s (resp. 1's) if the coefficienpy is positive (resp. negative). Note
that the first term of the numerator and the denominator are strictly positive
regardless ofN. For anye > 0, the second terl@/N > —e for N sufficiently
large. Hence® (y) is increasing iny for N large enough. It is trivial to show
that®(0) < 0 < ®(1). Combining these facts yields the desired resuli.

LemMmA 6. For N sufficiently large and any Darwinian deterministic dy-
namig the limit distribution for Gn, IT) puts probability one oA if y* < % or
probability one orD when the inequality is reversed

Proof. The same as that of KMR’s Theorem 3; thus it is omittea

Proof of Propositior2. In principle, we can calculate the unique rgotas
a function ofn, IT, andN, and then see what happens to the equatiohl) = %
as N becomes large. But this procedure is rather complicated. The trick is tc
plugy = 1/2 directly into the equatio® (y) = 0, and then see what happens in
the limit asN — oo. Since itis easy to check

1 1 n-1
lim —|N)=|(=
ima(3n)=(3) -

we are done. =
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Proof of Propositior8.  The problem is migo,11 U (y), where the potential
functionU is defined in Eq. (11). We claim that this is equivalent to the following
problem: to choosg = 0 if U(1) > 0, and choosg = 1 if U(1) < 0. Notice
that—U (y) is the value of integral of the functio(1—x)®(x) over [0, y]. Since
® is strictly increasing and (0) < 0 < ®(1), itis clear that-U (1) > —U(y)
foranyy € [0, 1). Hence, if—U (0) > 0, the maximum-U (1) obtains aty = 1.

On the other hand, iU (0) < 0, the maximum-U (0) = 0 obtains aty = 0.
But,

n n—1 1
U@ = Z( K_1 >¢k/0 X“(1— )" dx

k=1

X":(n—l) F'k+DI'(n—k+2)
= k

o\ k-1 r(n+3
_2“: kin—k+1)

—nn+DH(n+2)

Letinsertgy = ! — 7}, into the above expression and multiply both sides
by six in order to make the weights sum to onea

Proof of Propositiord. Notice that the existence and uniqueness of 8gsh
are guaranteed by Assumption 1(a) and 1(c). As was suggested, we maintain
assumption that no player will choose strictly dominated strategies. Rlaykr
certainly choose H if; > 6: Since the expected value l5(® | 0 =6) =6,
playeri knows that H is strictly dominant at each such observation.

Consider an observatiahof playeri slightly belowd, such be thald —6;| <
2¢. Playeri knows that his opponent will play H & > 6; hencej’s payoff if
he chooses H & is approximately

n
Z Pr9; > 6, for exactlyk — 1 opponents| ©° ~ 0)pl'@) (17)
k=1

n
= Z Pr(E; > E; for exactlyk — 1 opponen)tpkH ) (18)
k=1
1¢ -
==Y plo). (19)
k=1

“n

Assumption 2 allows us to conclude that the probability in the Eq. (17) is inde
pendent of;, at least as long & lies¢ inside the support ad. This observation

allows us to conclude that this probability must be equal to the a priori probabi
ity that E; is the(k + 1)th smallest among the errors. Thus, Eq. (18) ensues, th
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probability in which is clearly the same for all players. This fact, combined with
the assumption that the i.i.d. & has a continuous density, yields Eq. (19).

A similar reasoning shows that the expected payoff to action L is at most
approximately1/n) >"p_, pt (@), whichis strictly lower tharil/n) > n_, pH (6)
calculated above by the monotonicity assumption 1(a). Henégpit< 6, there
existsd! such that H is strictly dominant for ay > 6% in the reduced game
where playerj is constrained to play H whef > 6. In a similar way one can
constructd? < 61 and continuing inductively, we can find sequené®ssuch
that H is iteratively dominant fof; > 6™.

On the other hand, starting from the maintained assumption that action |
will be chosen whel; < 8, we inductively find a sequend®” such that L is
iteratively dominant foi; < ™. By the definition ofdgp, it is obvious that
Q_ml,QGp andeTGGp asm-— oo0. =

Proof of Propositior6. (1) MM. All the proofs of Section 3.2 apply straight-
forwardly, so we omit them. After all, we are able to show thap i€ (0, g]
for somep > 0, then the Pareto efficient outcome is uniquely absorbing and
globally accessible.

(2) KMR. Let z° denote the number of players choosing strategyl, 2, . . .,
m. Given the chance to move and the state (Z1, . . ., z™), the expected average
payoff for the player who has been choosing actiag calculated as

f.(z — 1)as if he chooses again

f(z°)as if he chooses’ +# s, (20

where

(o) (M5

n k—1 n—k

f.(2) = . 21

@ kXZj N1 D)
n—1

andze Z={n—1,n,..., N —n}. The next lemma is just a technical result

but plays an important role in what follows.

LEMMA 7. For anyk, the function f(2) is strictly increasing in z= Z.

Proof. We ignore the denominator of Eq. (21), since it is positive indepen-
dently ofx or z. If ¥k = n, it is straightforward to show that

fn(z)—fn(z—l)z( ﬁ:;)( N_(f_l).
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If « =n—1, then
fro1(2) — froa(z— 1)

LG5 ) () () ()]

—(fa(@ — fa(z- 1)

()
_[(i:;>(N;Z)_u“a—ma—nﬁ
(D)

Likewise, we can show

ua—na—n=(§:§)(Ngf;1)

which is positive for ang € Z. Sincef,(z) > f.(z— 1) forall z € Z and for
any, we obtain the desired result.m

LEMMA 8. Any mixed strategy is unstable

Proof. Assume not; i.e., there exists’ € C(z) with s < ¢/, and boths and
s’ are best responseszoThen we get

f(Z - Day > f(Das > f(Z - Das > f(Z)as > F(Z - Das.

The strict inequalities follow from Lemma 7 and the weak inequalities follow
from the presumed optimality afands’ relative toz. The contradiction estab-
lishes the desired result.m

LEMMA 9. The collection of limit sets ige®}! ;, where € is the state of all
population choosing strategy s

Proof. The same logic as in Proposition 9(2) of Kandori and Rob (1995; KF
henceforth) applies, so the proof is omittedm

Proof of the KMR part The first task is to compute costs of transitiog,
between limit sets® ande® . Assume the society is initially clusteredeat, then
the minimum number of mutations, needed to switch it over into the basin of
attraction ofe® is determined byf (x)a; > f(N — 1 — xX)ay. This represents
an immediate jump to escape the best response regighnarid the triangular
inequality argument of KR’s Proposition 5 guarantees that no gradual escape
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less costly than this immediate jump. Note that we mutate individuals taking
into s, because any other mutation will only raise the transition cost more. Thus
the cost of transitiolCss is the minimum integex satisfying

f(x) > f(N—-1-x)(as/as). (22

It has a unique root, since Lemma 7 implies that the left-hand side of Eq. (22) i
strictly increasing and so its right-hand side is strictly decreasimxg in

Since a pure coordination garf&n, m; IT) specifiesO<c gy <a, < --- <
am, we can easily check that

Com<Css Vs<m VS #5s; Cpmi1<Comai1 VS <m-—1

Therefore, the first step of the optimum branching algorithm asin KR, pages 407
410, is to choose a minimum cost outgoing branch from each state, which resul
in the system of branchés — m),s=1,2,...,m—1, and(m — m — 1).

The longest branch among these is of len@#h,—1. Therefore we drop it and
are left with amtm-tree. This completes the algorithm.m

(3) FY. Due to Young's Theorem 2 and FY’s Theorem 2, it is essentially the
same as case (2) above; thus the proof is omittesl.
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