
FINDING ALL EQUILIBRIA

FEDERICO ECHENIQUE

Abstract. I present a simple and fast algorithm that finds all the
pure-strategy Nash equilibria in games with strategic complementarities.
This is the first non-trivial algorithm for finding all pure-strategy Nash
equilibria.

1. Introduction

I present an algorithm that finds all the pure-strategy equilibria in n-
player games with strategic complementarities (GSC). I wish to emphasize
five features of the algorithm:

(1) It works only on GSC. But then GSC are common in many ar-
eas of economics—Vives’s (1999) textbook attests to that. See also
Milgrom and Roberts (1990), Milgrom and Shannon (1992), Topkis
(1998), and Vives (1990) for many economic examples of GSC.

(2) It finds all pure-strategy equilibria, but no mixed-strategy equilibria.
The omission is justified because mixed-strategy equilibria are not
good predictions in GSC (Echenique and Edlin 2002). Pure-strategy
equilibria always exist in GSC (Topkis 1979, Vives 1990).

(3) It is fast. For example, it needs less than 5 seconds to find all equi-
libria in a two-player game where each player has 20.000 strategies.

(4) It is simple. I use the algorithm “by hand” on some bimatrix games
to show that the algorithm is very simple to apply.

(5) For generic two-player GSC, I show that the algorithm is computa-
tionally efficient.

There are many algorithms for finding one equilibrium, called a “sample”
equilibrium (see the surveys by McKelvey and McLennan (1996) and von
Stengel (2002)). But there is essentially only a trivial way of finding all
pure equilibria: enumerate all strategy profiles and examine them one-by-
one to see if they are equilibria. I shall call this way the “trivial algorithm.”
Not surprisingly, the trivial algorithm is very slow, and computationally

Date: January 16, 2003.
JEL Classification. C63, C72.
I thank Matt Jackson, Ivana Komunjer, Andy McLennan, John Rust, Ilya Segal, Chris

Shannon, and Bernhard von Stengel for comments and suggestions on an early draft.
1



2 F. ECHENIQUE

infeasible on large games. For example, the trivial algorithm needed 15 days
to perform a simulation that my algorithm did in 5 minutes (see Section 7).

Some algorithms find a sample equilibrium that survives an equilibrium
refinement—typically perfection (a recent example is von Stengel, van den
Elzen, and Talman (2002); see McKelvey and McLennan (1996) and von
Stengel (2002) for other examples). This is some times adequate, but it is in
general restrictive: there is normally no guarantee that only one equilibrium
survives the refinement, and the refinements do not always have bite. An
exception is Judd, Yeltekin, and Conklin (2000); their algorithm finds all
perfect-equilibrium payoffs in repeated games.

The algorithm I present is based on Topkis’s (1979) results that Robin-
son’s (1951) method of “iterating best-responses” finds an equilibrium in
GSC (see also Vives (1990)), so the algorithm uses different—and simpler—
ideas than the more recent literature on finding equilibria.

I have developed applications of the algorithm that either illustrate how it
works or show that the algorithm is efficient. I have not stressed economic
applications; the paper is a paper on methodology. Nevertheless, there
are many potential applications for the algorithm. I shall mention two
examples.

First, the US Department of Justice needs to predict the consequences
of mergers between firms; I claim that my algorithm can potentially be of
help. They currently postulate a model of a market, and compute a Nash
equilibrium before and after the merger of some firms in the market. But
their conclusions may be different if they could find all equilibria before and
after the merger—for example, the merger could have no effect on price if
you look at some equilibria, but a large price increase if you compare most
equilibria. The models used are often Bertrand models with differentiated
products (see for example Werden, Froeb, and Tschantz (2001) or Crooke,
Froeb, Tschantz, and Werden (1997)). 1 It turns out that Bertrand models
with differentiated products are, under some conditions, GSC (Vives 1999,
Milgrom and Shannon 1994). My algorithm could then be used to compare
all equilibria before and after the merger.

Second, finding all the equilibria of a game is particularly important for
the design of experiments. The designer needs to compare the observed
outcomes with the equilibrium predictions. Further, some of the most im-
portant experimental studies involve GSC (Cooper, DeJong, Forsythe, and
Ross 1990, van Huyck, Battalio, and Beil 1990). The designer has his/her
subjects playing a GSC, and needs to find all equilibria of the GSC. The
algorithm I present can then be applied in the design of experiments.

1The software they use is in http://mba.vanderbildt.edu/luke.froeb/software/



FINDING ALL EQUILIBRIA 3

The paper is organized as follows. Section 2 presents some preliminary
definitions and results. Section 3 shows informally how the algorithm works.
Section 4 defines the algorithm and presents the main results of the paper.
Section 5 develops two simple examples. Section 6 discusses an algorithm
for a special class of GSC. Section 7 presents computational results for
simulations of GSC.

2. Preliminary Definitions and Results

2.1. Basic Definitions and Notation. Let X ⊆ Rn, and x, y ∈ Rn.
Denote the vector (max {xi, yi}) by x ∨ y, and the vector (min {xi, yi}) by
x ∧ y. Say that X is a lattice if, whenever x, y ∈ X, x ∧ y, x ∨ y ∈ X.

If X is a lattice, a function f : X → R is quasi-supermodular if for any
x, y ∈ X, f(x) ≥ f(x ∧ y) implies f(x ∨ y) ≥ f(y) and f(x) > f(x ∧ y)
implies f(x ∨ y) > f(y). Quasi-supermodularity is an ordinal notion of
complementarities; it was introduced by Milgrom and Shannon (1994). Let
T ⊆ Rm. A function f : X × T → R satisfies the single-crossing condition
in (x, t) if whenever x < x′ and t < t′, f(x, t) ≤ f(x′, t) implies that
f(x, t′) ≤ f(x′, t′) and f(x, t) < f(x′, t) implies that f(x, t′) < f(x′, t′).

For two subsets A,B of X, say that A is smaller than B in the strong
set order if a ∈ A, b ∈ B implies a ∧ b ∈ A, a ∨ b ∈ B. Let φ : X � X
be a correspondence. Say that φ is increasing in the strong set order if,
whenever x ≤ y, φ(x) is smaller in the strong set order than φ(y). A
detailed discussion of these concepts is in Topkis (1998).

An n-player normal-form game (a game, for short) is a collection Γ =
{(Si, ui) : i = 1, . . . n}, where each player i is characterized by a set of pos-
sible strategies, Si, and a payoff function ui : S → R, where S = ×n

j=1Sj.
Say that players have strict preferences if, for all i and s−i ∈ S−i, the
function si 7→ ui(si, s−i) is one-to-one.

For each player i, let βi,Γ denote i’s best-response correspondence in Γ—
the correspondence defined by

βi,Γ(s) = argmaxs̃i∈Si
ui(s̃i, s−i).

And let βΓ(s) = ×n
i=1βi,Γ(s) denote the game’s best-response correspon-

dence. When Γ is understood I shall write βi for βi,Γ and β for βΓ.
A point s ∈ S is a Nash equilibrium if s ∈ β(s). Let E(Γ) be the set of

all Nash equilibria of Γ. When Γ is understood, I shall write E for E(Γ).

2.2. The Model. Say that a game Γ = {(Si, ui) : i = 1, . . . n} is a finite
game of strategic complementarities (GSC) if, for each i,

• Si ⊆ Rdi is a finite lattice,
• si 7→ ui(si, s−i) is quasi-supermodular for all s−i,
• and (si, s−i) 7→ ui(si, s−i) satisfies the single-crossing property.



4 F. ECHENIQUE

The positive integer di is the number of dimensions of player i’s strategies.
I shall assume, in addition, that

• Si = {1, 2, . . . Ki}
di .

The assumption that Si = {1, 2, . . . Ki}
di simplifies notation, but I should

stress that all my results hold for arbitrary finite GSC.

Remark 1. One can think of the model as a discretized version of a game
with continuous strategy spaces, where each Si is an interval in some Eu-
clidean space of dimension di. For an example, see Section 7.

2.3. Auxiliary results. First, GSC have monotone best-response corre-
spondences:

Lemma 2. (Milgrom and Shannon 1994) For all i, βi is increasing
in the strong set order, and inf βi(s), sup βi(s) ∈ βi(s).

See Milgrom and Shannon (1994) for a proof.
Second, I need some results and notation for games where we restrict

the strategies that players can choose: For each si ∈ Si, let Sr
i (si) =

{s̃i ∈ Si : si ≤ s̃i} be the strategy space obtained by letting i choose any
strategy in Si, as long as it is larger than si. For each strategy profile
s = (s1, . . . sn) ∈ S, let Sr(s) = ×n

i=1S
r
i (si). Denote by Γr(s) the game

where each player i is constrained to choosing a strategy larger than si.
Then,

Γr(s1, . . . sn) =
{

(Sr
i (si), ui|Sr

i
(si)) : i = 1, . . . n

}

.

The following lemmata are trivial.

Lemma 3. If Γ is a GSC, then so is Γr(s), for any strategy profile s ∈ S.

Lemma 4. If s is a Nash equilibrium of Γ, and z ≤ s, then s is a Nash
equilibrium of Γr(z).

Lemma 3 and Lemma 4 follow immediately from the definitions of GSC
and of Nash equilibrium.

Third, I shall exploit some previous results on finding equilibria in GSC.
The method of iterating β until an equilibrium is found is normally attrib-
uted to Robinson (1951). Topkis (1979) proved that the method works in
GSC. I call this method the “Robinson-Topkis algorithm.”

Algorithm 5. The following are three variants of the Robinson-Topkis al-
gorithm.

• T (s): Start with s0 = s. Given sk ∈ S, let sk+1 = inf βΓ(sk). Stop
when sk = sk+1.

• T (s): Start with s0 = s. Given sk ∈ S, let sk+1 = sup βΓ(sk). Stop
when sk = sk+1.



FINDING ALL EQUILIBRIA 5

• T r(s): Do algorithm T (s) in Γr(s).

Lemma 6. (Topkis 1979) T (inf S) stops at the smallest Nash equilibrium
of Γ, and T (sup S) stops at the largest Nash equilibrium of Γ.

See Topkis (1979) (or Topkis (1998)) for a proof of Lemma 6.

Remark 7. Note that T (inf S) is faster than “iterating inf βΓ(sk)” suggests.
When the algorithm has to find inf βΓ(sk), it knows that searching in the
interval [sk, sup S] is enough. The sequence {sk} is monotone increasing, so
each iteration of T (inf S) is faster the previous iteration. A similar thing
happens to T (s) and T r(s).

A “round-robin” version of RT—where players take turns in best-responding
instead of jointly best-responding in each iteration—is faster than the ver-
sion above (see Topkis (1979)). I use the version above because its notation
is easier. All results in the paper hold if “round-robin” RT is substituted
for RT.

3. How it works

“In the authors’ experience, an important idea in organizing
the analysis of a game by hand is to find one equilibrium,
then ask how other equilibria might differ from this one;
there is currently no substantiation of this wisdom in theory
or computational experience.” (McKelvey and McLennan
1996, p. 28)

I shall use an example to explain how the algorithm works. The ex-
planation shows that the algorithm is a—rudimentary—substantiation of
McKelvey and McLennan’s wisdom.

Consider a two-player GSC, Γ. Suppose that player 1 has strategy set
S1 = {1, 2, . . . 15}, and player 2 has S2 = {1, 2, . . . 11} (the numbers do
not matter, they just happen to give a nice picture in Figure 1). The
players’ joint strategy space, S1 × S2, is in Figure 1. I do not specify
the players’ payoffs because it is not necessary to understand how the
algorithm works, but suppose that we have calculated the players’ best-
response functions (to makes things simple, assume best-responses are ev-
erywhere unique), β1 and β2. The game’s best-response function is β, where
β(s1, s2) = (β1(s2), β2(s1)). Because Γ is a GSC, β1, β2 and β are monotone
increasing functions (Lemma 2).

First we need to understand how the Robinson-Topkis (RT from now
on) algorithm works. RT starts at the smallest strategy profile, (1, 1),
and iterates the game’s best-response function until two iterations are the
same. Since (1, 1) is smaller than β(1, 1), and β is monotone, we have



6 F. ECHENIQUE

s1s
1

s
2

s2

Equilibria States of the algorithm

s
1

+ 1

s
2

+ 1

Figure 1. The algorithm in a two-player game.

that β(1, 1) is smaller than β(β(1, 1)) = β2(1, 1). Similarly, β2(1, 1) is
smaller than β3(1, 1), and so on—iterating β we get a monotone increasing
sequence in S. Now, S is finite, so there must be an iteration k such
that βk(1, 1) = βk−1(1, 1). But then of course βk(1, 1) = β(βk−1(1, 1)), so
s = βk−1(1, 1) is a Nash equilibrium.

It turns out that s is the smallest Nash equilibrium in Γ: Let s∗ be any
other equilibrium, and note that (1, 1) ≤ s∗. Monotonicity of β implies that
β(1, 1) ≤ β(s∗) = s∗. Then, iterating β we get

s = βk−1(1, 1) ≤ βk−1(s∗) = s∗.

In a similar way, RT finds the game’s largest Nash equilibrium s by iter-
ating the game’s best-response function starting from the largest strategy
profile, (15, 11).

I now describe informally the algorithm that I propose. Then I explain
heuristically why it works. I develop these ideas in full generality in Sec-
tion 4.



FINDING ALL EQUILIBRIA 7

The algorithm consists of the following steps:

(1) Find the smallest (s) and largest (s) Nash equilibrium using RT—
note s and s in Figure 1.

(2) Consider Γr(s1, s2 + 1), the game where player 1 is restricted to
choosing a strategy larger than s1, and player 2 is restricted to
choosing a strategy larger than s2+1. The strategy profile (s1, s2+1)
is indicated in the figure with a circle © above (s1, s2), and the
strategy space in Γr(s1, s2 + 1) is the interval [(s1, s2 + 1), (15, 11)]
shown with non-dotted lines in the figure. Now use RT to find s1,
the smallest Nash equilibrium in Γr(s1, s2 + 1). Each iteration of β
is shown with an arrow in the figure, and s1 is the black disk reached
after three iterations.

Similarly, consider Γr(s1 + 1, s2), the game where player 1 is re-
stricted to choosing a strategy larger than s1 + 1, and player 2 is
restricted to choosing a strategy larger than s2. The strategy profile
(s1 + 1, s2) is indicated in the figure with a circle © to the right
of (s1, s2), and the strategy space in Γr(s1 + 1, s2) is the interval
[(s1 + 1, s2), (15, 11)] shown with non-dotted lines in the figure. Use
RT to find s2, the smallest Nash equilibrium in Γr(s1 + 1, s2).

(3) Check if s1 and s2 are Nash equilibria of Γ. First consider s1. Be-
cause s1 is an equilibrium of Γr(s1, s2 + 1), and β is monotone in-
creasing, we only need to check that s2 is not a profitable deviation
for player 2. Similarly, to check if s2 is an equilibrium we only need
to check that s1 is not a profitable deviation for player 1. I explain
below why these checks are sufficient. Let us assume that s1 passes
the check while s2 fails, this is indicated in the figure by drawing s2

as a gray circle.
(4) Do steps 2 and 3 for Γr(s1

1, s
1
2 + 1), Γr(s1

1 + 1, s1
2), Γr(s2

1, s
2
2 + 1), and

Γr(s2
1 + 1, s2

2).
(5) Continue repeating steps 2 and 3 for each Nash equilibrium sk found,

unless sk is equal to s. The picture shows what the algorithm does
for a selection of sks; note that the algorithm starts at larger and
larger ©-circles, and that it approaches s.

I phrased item 3—the “check”-phase—in terms of the first iteration of
the algorithm. In general, let sk be a candidate equilibrium obtained as the
smallest equilibrium in some Γr(ŝ). To check if sk is an equilibrium I need
to take a confirmed (in Γ) equilibrium s∗ with s∗ ≤ ŝ and check that player
i does not want to deviate to some strategy in the interval [s∗i , ŝi). In the
first iteration ŝ = (s1, s2 +1) and s∗ = s, so I only need to check that player
2 does not want to deviate to s2.



8 F. ECHENIQUE

Why is this check sufficient? First, s∗
−i ≤ sk

−i, and β is monotone in-
creasing, so s∗i = βi(s

∗

−i) ≤ βi(s
k
−i) and hence the best possible deviation—

βi(s
k
−i)—is larger than s∗i . Second, sk is an equilibrium in Γr(ŝ), so no

deviations larger than ŝi are profitable. Thus we only need to check for de-
viations in the interval [s∗i , ŝi). As the iterations progress, I have larger and
larger ŝ’s, but I normally also have larger and larger confirmed equilibria;
thus the intervals [s∗i , ŝi) often do not get very large.

I now explain why the algorithm finds all the Nash equilibria of Γ. Sup-
pose that s is an equilibrium, so s ≤ s ≤ s. If s = s or s = s, then
the algorithm finds s in step 1. Suppose that s < s < s, then either
(s1, s2 + 1) ≤ s or (s1 + 1, s2) ≤ s (or both). Suppose that (s1, s2 + 1) ≤ s,
so s is a strategy in Γr(s1, s2 + 1). Note that s is also an equilibrium of
Γr(s1, s2 +1): if a player i does not want to deviate from s when allowed to
choose any strategy in Si, she will not want to deviate when only allowed
to choose the subset of strategies in Γr(s1, s2 + 1). But s1 is the smallest
equilibrium in Γr(s1, s2 +1), so s1 ≤ s. If s1 = s the algorithm has found s.
If s1 < s then either (s1

1, s
1
2 + 1) ≤ s or (s1

1 + 1, s1
2) ≤ s (or both). Suppose

that (s1
1, s

1
2 + 1) ≤ s, then repeating the steps above we will arrive at a new

sk ≤ s. The sequence of strictly increasing sks only stops when sk reaches
s, so s < s implies that there must be a sk = s. Since s is an equilibrium,
sk = s passes the test in item 3; hence the algorithm finds s.

4. The Algorithm

I need a notational convention: edi

l is the l-th unit vector in Rdi , i.e.

edi

l = (0, . . . 1, 0 . . . 0) ∈ Rdi , where 1 is the l-th element of edi

l .

Algorithm 8. Find s = inf E using T (inf S), and s = sup E using T (sup S).

Let Ê = {s, s}. The set of possible states of the algorithm is the power set
2S, the algorithm starts at state {s}.

Let the state of the algorithm be M ∈ 2S. While M 6= {s}, repeat the
following sub-routine to obtain a new state M′.

Subroutine Let M′ = ∅. For each s ∈ M, i ∈ {1, . . . n} and l with
1 ≤ l ≤ di, if (si + edi

l , s−i) ≤ s, then do steps 1-4:

(1) Let s∗ be a maximal element in
{

s̃ ∈ Ê : s̃ ≤ (si + edi

l , s−i)
}

.

(2) Run T r(si + edi

l , s−i); let ŝ be the strategy profile at which it stops.
(3) Check that no player j wants do deviate from ŝj to a strategy in the

set
{

z ∈ Sj : s∗j ≤ z and (si + edi

l , s−i)j � z
}

.

If no player wants to deviate, add ŝ to Ê.



FINDING ALL EQUILIBRIA 9

(4) Add ŝ to M′ (Let M′ = M′ ∪ {ŝ}).

Theorem 9. The set Ê produced by Algorithm 8 coincides with the set E
of Nash equilibria of Γ.

Proof. First I shall prove that the algorithm stops after a finite number
of iterations, and that it stops when M = {s}, not before (step “well-

behaved”). Then I shall prove that Ê ⊆ E , and then that E ⊆ Ê .
Step “well-behaved.” Let M ⊆ 2S be the collection of states visited

by Algorithm 8. Let C be the set of maps z : M → S such that

(1) For all M ∈ M , z(M) ∈ M;
(2) If the algorithm transits from M to M′, and there is at least one

player i and dimension l such that (z(M)i + edi

l , z(M)−i) ≤ s, then

z(M′) is obtained from T r(z(M)i + edi

l , z(M)−i) from one such
player and dimension in step 2 of Algorithm 8.

Note that, for all M, M = {z(M) : z ∈ C}.
First I shall prove that the algorithm stops when it reaches state {s}, and

not before. I need to prove that s ≤ s for all s ∈ ∪{M : M ∈ M}; which
implies that z(M) ≤ s for all z ∈ C. Let the state M transit to state M′.
Let s′ ∈ M′, then s′ must have been obtained from some s ∈ M, and some
i and l with (si+edi

l , s−i) ≤ s, by T r(si+edi

l , s−i) in step 2 of the subroutine.

By Lemma 6, s′ is the smallest Nash equilibrium in Γr(si + edi

l , s−i). By

Lemma 4, s is a Nash equilibrium of Γr(si + edi

l , s−i), so

s ≤ (si + edi

l , s−i) ≤ s′ ≤ s.

This proves that s ≤ s for all s ∈ M, for all M that transit to some state,
and that s′ ≤ s for all s′ ∈ M′ for all states M′ that are obtained by transit
from some other state. Unless s = s, these two possibilities cover all states
in M , and if s = s there is nothing to prove.

Now fix a state M. For all s ∈ M, s ≤ s, so if M 6= {s} then there is
s ∈ M such that s < s. So there are i and l such that (si + edi

l , s−i) ≤ s.
Thus the algorithm must transit from M to a new state while M 6= {s}.

Second, let z ∈ C. Let M be any state in M , and be M′ be the state
that it transits to. I shall prove that, if z(M′) 6= s, then z(M) < z(M′).
If z(M′) 6= s then, by item 2 of the definition of C, there is some i and l
such that z(M′) is obtained by T r(z(M)i + edi

l , z(M)−i) in Step 2 of the
subroutine. So,

z(M) < (z(M)i + edi

l , z(M)−i) ≤ z(M′).

Hence z(M) < z(M′).
Now, M ⊆ 2S, and S is finite, so M and therefore C are finite sets. Each

z ∈ C is strictly increasing until z(M) = s, so the binary relation “M



10 F. ECHENIQUE

transits to M′” on M is transitive. Thus, eventually z(M) = s for every
z ∈ C. But then there is an M ∈ M such that z(M) = s for all z ∈ C, as
C is finite. Hence

M = ∪
{

z(M) : z ∈ C
}

= {s} ,

and Algorithm 1 stops at state M, after a finite number of steps.
Step Ê ⊆ E . I shall prove that Ê ⊆ E by induction. First, in the

initial state, {s}, Ê ⊆ E by definition of Ê . Second, suppose that, when the

algorithm is in state M, Ê ⊆ E , and that when the algorithm transits from
state M to M′ ŝ is added to Ê . I shall prove that ŝ ∈ E . By induction,
this implies that Ê ⊆ E .

Suppose we obtained ŝ by running T r(si + edi

l , s−i), for some s ∈ M,
and some player i and dimension l. Fix a player j. I shall prove that
ŝj ∈ βj,Γ(ŝ−j) by first finding a strategy zj ∈ βj,Γ(ŝ−j), and then showing
that uj(zj, ŝ−j) ≤ uj(ŝj, ŝ−j).

Let s∗ be the maximal element in
{

s̃ ∈ Ê : s̃ ≤ (si + edi

l , s−i)
}

found in step 2 of the algorithm. Note that s ≤ (si + edi

l , s−i), so the set of

s̃ ∈ Ê such that s̃ ≤ (si + edi

l , s−i) is non-empty; thus s∗ is well-defined. We
have s∗j ∈ βj,Γ(s∗

−j), as s∗ is a Nash equilibrium. Let s̃j ∈ βj,Γ(ŝ−j). Note
that s∗

−j ≤ ŝ−j, so Milgrom and Shannon’s (1994) Theorem 4 implies that
zj = s̃j ∨ s∗j ∈ βj,Γ(ŝ−j).

By definition of zj, s∗j ≤ zj. First, if (si+edi

l , s−i)j ≤ zj, then uj(zj, ŝ−j) ≤
uj(ŝj, ŝ−j), as ŝj ∈ β

j,Γr(si+e
di

l
,s
−i)

(ŝ−j) because ŝ is a Nash equilibrium of

Γr(si + edi

l , s−i). Second, if (si + edi

l , s−i)j � zj then uj(zj, ŝ−j) ≤ uj(ŝj, ŝ−j)
by step 4 of the subroutine. Hence uj(zj, ŝ−j) ≤ uj(ŝj, ŝ−j), so zj ∈ βj,Γ(ŝ−j)
implies that ŝj ∈ βj,Γ(ŝ−j). Player j was arbitrary, so ŝ ∈ βΓ(ŝ) and ŝ ∈ E .

Step E ⊆ Ê . Let s ∈ E . Suppose, by way of contradiction, that s /∈ Ê .
Claim: Let Algorithm 8 transit from state M to state M′. If there is

z ∈ M with z < s then there is z ′ ∈ M′ with z′ < s.
Proof of the claim: Since z < s, there is i and l such that zil < sil.

Then s is a strategy profile in Γr(zi + edi

l , z−i). If ŝ is the strategy profile

found by T r(zi + edi

l , z−i), then Lemma 6 implies that ŝ ≤ s, as s is a Nash

equilibrium of Γr(zi + edi

l , z−i). If ŝ = s then s would pass the test of step

4 and be added to Ê , but we assumed s /∈ Ê so it must be that ŝ < s. Set
z′ = ŝ, then z′ ∈ M′ by step 5, and the proof of the claim is complete.

Now, s /∈ Ê implies that s 6= s. Initially M = {s} so there is z(= s)
in M with z < s. Using the Claim above inductively, it must be that all



FINDING ALL EQUILIBRIA 11

stages of Algorithm 8 contain a z with z < s. But the final state of the
algorithm is M = {s}; a contradiction, since s ≤ s. �

Remark 10. A modification of Algorithm 8 will make it run faster: Only
do step 3 of the subroutine if there is no s′ ∈ Ê such that ŝ ≤ s′, and
ŝ ∈ S(si + edi

l , s−i), for the s, i and l at which s′ was found. For, if there
is such an s′, then we know that ŝ /∈ E , as ŝ ∈ E would imply that ŝ is
an equilibrium of Γr(si + edi

l , s−i), which contradicts that s′ is the smallest

equilibrium of Γr(si + edi

l , s−i).

Theorem 9 says that Algorithm 8 works. In the rest of the paper I show
that it is efficient.

5. Examples

I present two examples. The examples serve two purposes: First, they
show how the algorithm works. Second, they show why it is likely to be fast.
In fact, the second example suggests what features of a game would make
the algorithm be inefficient, which motivates the sufficient conditions for
the algorithm to be efficient in Section 6 and the simulations in Section 7.

5.1. Example 1. Consider the two-player game on the left in Figure 2.
Both players have identical strategy sets, {1, 2, 3, 4}. The strategies are
ordered in the natural way: a strategy si is larger than strategy s′i if it is
a larger number, so 2 is larger than 1, 4 is larger than 2, and so on. With
this order it is straightforward—if tedious—to check that Example 1 is a
game with strategic complementarities.

1 2 3 4
4 0, 3 2, 3 3, 4 5, 5
3 1, 3 3, 3 3, 4 4, 4
2 2, 3 4, 3 4, 4 4, 4
1 4, 4 3, 2 3, 1 3, 0

Example 1

1 2 3 4
4 0, 0 0, 0 0, 0 0, 0
3 1, 3 1, 2 1, 1 0, 0
2 2, 3 2, 2 2, 1 0, 0
1 3, 3 3, 2 3, 1 0, 0

Example 2

Figure 2. Two examples.

Algorithm 8 starts by finding s = inf E and s = sup E by RT: let us first
iterate the game’s best response function starting at the smallest point in
the strategy space, (1, 1). Now, β(1, 1) = (1, 1) so (1, 1) = inf β(1, 1), and
the RT algorithm returns s = (1, 1) as the game’s smallest equilibrium.
Similarly, it returns s = (4, 4) as the game’s largest equilibrium. Then,
the initial state of the algorithm is M = {(1, 1)}, and the initial list of

equilibria is Ê = {(1, 1), (4, 4)}, see Table 1.



12 F. ECHENIQUE

The initial state is M = {(1, 1)}. First, (1, 1) + (1, 0) = (2, 1) ≤ s, so we
do steps 1-4 in the subroutine starting at (2, 1). inf βΓr(2,1)(2, 1) = (2, 3),
and inf βΓr(2,1)(2, 3) = (2, 3), so RT in game Γr(2, 1) returns (2, 3) as the
smallest equilibrium in Γr(2, 1). In step 3 we need to check that player 1
does not want to deviate to play strategy 1, but playing strategy 1 would
yield her a payoff of 3, while playing strategy 2 yields her a payoff of 4. Since
the deviation is not profitable, we add (2, 3) to Ê . Second, (1, 1) + (0, 1) =
(1, 2) ≤ s, so we do steps 1-4 starting at (1, 2): inf βΓr(1,2)(1, 2) = (2, 2),
inf βΓr(1,2)(2, 2) = (2, 3), and inf βΓr(1,2)(2, 3) = (2, 3). Graphically, the
action of inf βΓr(1,2) is

(1, 2) → (2, 2) → (2, 3) → (2, 3).

Thus RT returns (2, 3) as the smallest equilibrium in Γr(1, 2). To sum up,
the result of steps 1-4 is that the algorithm transits to state {(2, 3)}, and

the list of equilibria is Ê = {(1, 1), (2, 3), (4, 4)}.
Now the state of the algorithm is {(2, 3)}. First, (2, 3)+(1, 0) = (3, 3) ≤ s,

so we do steps 1-4 in the subroutine starting at (3, 3). Note that inf βΓr(3,3)(3, 3) =
(3, 3), so RT returns (3, 3) as the smallest equilibrium in Γr(3, 3). In step
3 we need to check that player 1 does not want to deviate from strategy 3
to strategy 2. In fact, strategy 2 gives a higher payoff (4) than strategy 3

(3), so (3, 3) is not an equilibrium, and we do not add (3, 3) to Ê . Second,
(2, 3) + (0, 1) = (2, 4) ≤ s, so we do steps 1-4 in the subroutine starting
at (2, 4). Note that inf βΓr(2,4)(2, 4) = (4, 4), so RT returns (4, 4) as the
smallest equilibrium in Γr(4, 4). We already know that (4, 4) is an equilib-
rium of Γ. The result of steps 1-4 is that the algorithm transits to state
{(3, 3), (4, 4)}, and the list of equilibria is Ê = {(1, 1), (2, 3), (4, 4)}.

The state of the algorithm is now {(3, 3), (4, 4)}. Both (4, 4) + (1, 0) and
(4, 4) + (0, 1) fail to be smaller than s, so we do not run the subroutine
starting from (4, 4). Now, steps 1-4 in the subroutine starting from (3, 3) +
(1, 0) = (4, 3) or (3, 3)+(0, 1) = (3, 4) give (4, 4) as the smallest equilibrium
of Γr(3, 4) and Γr(4, 3). So, the final state of the algorithm is {(4, 4)}, and
the final list of equilibria is {(1, 1), (2, 3), (4, 4)}.

M Ê
1 {(1, 1)} {(1, 1), (4, 4)}
2 {(2, 3)} {(1, 1), (2, 3), (4, 4)}
3 {(3, 3), (4, 4)} {(1, 1), (2, 3), (4, 4)}
4 {(4, 4)} {(1, 1), (2, 3), (4, 4)}

Table 1. Iterations in Example 1



FINDING ALL EQUILIBRIA 13

5.2. Example 2. Now consider the game on the right in Figure 2. RT
yields (1, 1) as the smallest equilibrium, and (4, 4) as the largest equilibrium
in Example 2. The initial state of the algorithm is thus {(1, 1)}. We start
the subroutine at (2, 1) = (1, 1) + (1, 0) and get back (2, 1) as the smallest
equilibrium of Γr(2, 1). But player 1 prefers strategy 1 over strategy 2, so
(2, 1) does not survive step 3. We start the subroutine at (1, 2) = (1, 1) +
(0, 1) and get back (1, 2) as the smallest equilibrium of Γr(1, 2). But player
1 prefers strategy 1 over strategy 2, so (1, 2) does not survive step 3.

If one completes all iterations (shown in Table 2) it is clear that the
algorithm stops at all strategy profiles, and discards all but the largest and
the smallest equilibria of the game.

M Ê
1 {(1, 1)} {(1, 1), (4, 4)}
2 {(2, 1), (1, 2)} {(1, 1), (4, 4)}
3 {(3, 1), (2, 2), (1, 3)} {(1, 1), (4, 4)}
4 {(4, 1), (3, 2), (2, 3), (1, 4)} {(1, 1), (4, 4)}
5 {(4, 2), (3, 3), (2, 4)} {(1, 1), (4, 4)}
6 {(4, 3), (3, 4)} {(1, 1), (4, 4)}
7 {(4, 4)} {(1, 1), (4, 4)}

Table 2. Iterations in Example 2

Example 2 presents a pathological situation; the algorithm is forced to
check all strategy profiles of the game. The root of the problem is that the
players are indifferent between many different strategies. I show in Section 6
that, if we rule out indifference altogether, the algorithm is guaranteed to be
efficient. Thus, generically in two-player games, the algorithm is efficient.

Example 2 suggests that, if players are indifferent at some points in the
strategy space, but not for a very large set of strategies, the algorithm is
likely to be fast. In Section 7 I simulate games that are guaranteed to have
some indifference, and show that the algorithm is indeed still very fast.

6. Two-player games with strict preferences

Let Γ be a two-player game where players have strict preferences and
d1 = d2 = 1. I present a simple version of Algorithm 8 that finds all
the equilibria of Γ. I can bound the complexity of this simple version of
Algorithm 8. The complexity in the worst-case calculation is low relative
to the (best- or worst-case) complexity of the trivial algorithm.



14 F. ECHENIQUE

Algorithm 11. Find s = inf E using T (inf S), and s = sup E using T (sup S).

Let Ê = {s, s}. The set of possible states of the algorithm is S, the algorithm
starts at state s.

Let the state of the algorithm be m ∈ S. While m 6= s, repeat the following
sub-routine to obtain a new state m′.

Subroutine If m + (1, 1) ≤ s, then do steps 1-4:

(1) Let s∗ be a maximal element in
{

s̃ ∈ Ê : s̃ ≤ m + (1, 1)
}

.

(2) Run T r(m + (1, 1)); let ŝ be the strategy profile at which it stops.
(3) Check that no player j wants do deviate from ŝj to a strategy in

the interval
[

s∗j , (m + (1, 1))j

]

. If no player wants to deviate, add ŝ

to Ê.
(4) Let m′ = ŝ.

Say that Algorithm 11 makes an iteration each time it does steps 1-4. Say
that Algorithm 11 makes a payoff-function evaluation each time it calculates
u1 or u2. Let r be the time required to make a payoff-function evaluation.
Note that r is independent of K1 and K2. Let K = min {K1, K2} and
K = max {K1, K2}.

Theorem 12. Algorithm 11 finds all Nash equilibria in O(rK
2
) time, and

does at most K iterations.

Proof. First I prove that Algorithm 11 is well-behaved and stops when it
says that it stops. Let M ⊆ S be the set of states visited by Algorithm 11.
Note that, for all m ∈ M , m + (1, 1) ≤ m′, for all m′ obtained at a later
iteration of the subroutine. Further, at each iteration of the subroutine
there is a unique m found. So, if m,m′ ∈ M then either m′ is found after
m and m + (1, 1) ≤ m′, or m is found after m′ and m′ + (1, 1) ≤ m.
Then, M is totally ordered, and for any m,m′ ∈ M , if m 6= m′ then either
m + (1, 1) ≤ m′ or m′ + (1, 1) ≤ m. I shall prove below that m 6= s implies
that m + (1, 1) ≤ s; so if m 6= s then the algorithm does not stop at m.
Since M is finite, the algorithm stops in a finite number of steps, and it
stops when the state is s.

I need to prove the following
Claim. If s ∈ E(Γr(s̃)), then either s = inf E(Γr(s̃)), or

inf E(Γr(s̃)) + (1, 1) ≤ s.

Proof of the claim. Suppose that s ∈ E(Γr(s̃)), and that s 6= ŝ =
inf E(Γr(s̃)). By Lemma 4, ŝ ≤ s. Suppose—without loss of generality—
that s1 6= ŝ1. Now, ŝ1 ∈ βΓr(s̃)(ŝ2) so s2 = ŝ2 would imply that βΓr(s̃)(ŝ2)



FINDING ALL EQUILIBRIA 15

has at least two different elements, s1 and ŝ1. Impossible since players in
Γ have strict preferences. It must be then that s2 6= ŝ2. But then ŝ ≤ s
implies ŝ1 < s1 and ŝ2 < s2, so ŝ + (1, 1) ≤ s. This proves the claim.

I now prove that M 3 m 6= s implies that m + (1, 1) ≤ s: let m′ ∈ M ∪
{inf S − (1, 1)} be the state from which m was obtained by T r(m′ + (1, 1)).
There must be such an m′ by definition of m: either m is found in step 2
of the algorithm, or m = s, and thus m was found by T (inf S) = T r(inf S).
Now, m = inf E(Γr(m′ + (1, 1))) and s ∈ E(Γr(m′ + (1, 1))), so the claim
and m 6= s implies that m + (1, 1) ≤ s.

Second, I prove that Ê = E . The proof that Ê ⊆ E is very similar to the
proof that Ê ⊆ E in Theorem 9, so I omit it. I shall prove that E ⊆ Ê . Let
s ∈ E and suppose, by way of contradiction, that s /∈ Ê . Let m be some
state of the algorithm such that m ≤ s, we must have m 6= s or s would be
added to Ê , since s ∈ E implies that s passes the test in step 3. The claim
implies that m′ + (1, 1) ≤ s, as m′ 6= s for the same reason that m 6= s.

Now induct on M : M 3 s ≤ s, and if, at some state m, m ≤ s, then
m′ + (1, 1) ≤ s for the state m′ that the state transits to. By induction, we
must have s + (1, 1) ≤ s. A contradiction, as s ∈ E implies that s ≤ s.

Now I shall prove that the algorithm needs less than K iterations. First,
each iteration of Algorithm 11 produces one and only one element of M ,
so there are no more iterations than there are elements in M . Second,
M ⊆ {1, . . . K1} × {1, . . . K2}, and for each m,m′ ∈ M , m 6= m′ then
either m + (1, 1) ≤ m′ or m′ + (1, 1) ≤ m. Thus M cannot have more
elements than either {1, . . . K1} or {1, . . . K2}. Thus, M has not more than
min {K1, K2} = K elements.

Now I shall prove that Algorithm 11 needs no more than 2K
2

payoff-
function evaluations. If K1 6= K2, let us change the game: add strictly
dominated strategies to the player with the smallest Ki until that player has
as many strategies as the other player. The set of equilibria do not change,
and besides searching unnecessarily over dominated strategies, neither does
the behavior of the algorithm

Let K = K1 = K2. The worst-case calculation calls for maximizing the
number of iterations of Algorithm 11, even if it means fewer iterations of
RT; this is because each iteration of Algorithm 11 requires one call to the
RT algorithm.

Let s = (1, 1) and s = (K,K). Suppose that, at each state m ∈ M , the
call to T r(m + (1, 1)) in step 2 of the algorithm returns m + (1, 1) as the
smallest equilibrium in Γr(m+(1, 1)). This gives M = {(i, i) : i = 1, . . . K}.
Note that the transition from (i, i) to (i, i) + (1, 1) requires one call to
T r((i, i)+(1, 1)) that returns (i, i)+(1, 1); so the call to T r((i, i)+(1, 1)) only
involves one calculation of best-responses in Γr((i, i)+(1, 1)), which requires



16 F. ECHENIQUE

2(K− i) payoff-function evaluations, as each player in Γr((i, i)+(1, 1)). has
K−i strategies. The transition from (i, i) to (i, i)+(1, 1) then requires a test
in step 3 of the algorithm, this test needs at worst 2i function evaluations—
in the case that all previous states turned out not to be equilibria of Γ.
Hence, each iteration of Algorithm 11 involves at worst 2i+2(K − i) = 2K
payoff-function evaluations. We assumed that M = {(i, i) : i = 1, . . . K}, so
there are at most K iterations. Since K = K, this proves that the algorithm

needs at most 2K
2

payoff-function evaluations.
The argument above and the accounting procedure in Aho, Hopcroft, and

Ullman (1974, p. 35–38) imply that Algorithm 11 is O(rK
2
). �

Remark 13. The bounds in Theorem 12 say how Algorithm 11 performs
compared to the trivial algorithm: Assume that K1 = K2 = K. The trivial
algorithm requires 2K3 function evaluations—it needs to check if (s1, s2) is
an equilibrium for K2 different values of (s1, s2), and each check requires
two best-response calculations, i.e. 2K function evaluations. So the trivial
algorithm finds all equilibria in O(rK3) time. This is the effort that the
trivial algorithm must make. The bound in Theorem 12 is from the worst-
case calculation.

For n-player games with n > 2, Bernhard von Stengel (personal commu-
nication) has suggested a recursive procedure that improves on the trivial
algorithm: for each sn ∈ Sn, fix sn as the strategy played by player n, and
find all equilibria of the resulting (n − 1)-player game. For each equilib-
rium found, check if player n wishes to deviate from sn. In the worst-case
calculation, this recursive procedure does not improve on the simple triv-
ial algorithm—but in many games of interest it may speed up the trivial
algorithm by saving on calculations of best-response by player n. For any
sn ∈ Sn, the resulting (n− 1)-player game is also a GSC, and von Stengel’s
suggestion can thus be applied to my algorithm as well. From Theorem 12
and recursion, one concludes that Algorithm 8 is still better than the trivial
algorithm.

7. Performance

I evaluate the performance of Algorithm 8, using a class of two-player
games where each player has the interval [0, 1] as her strategy space. The
algorithm is fast; I use Algorithm 8 with different discretizations—grids—of
[0, 1], and show that, even when the resulting grid is quite small (the number
of strategies of each player is quite large), the algorithm is very fast. I use
the computations to compare Algorithm 8 to the trivial algorithm.

7.1. Class of games. I use a class of games that tend to have a large
number of equilibria—Algorithm 8 is faster the smaller is the number of



FINDING ALL EQUILIBRIA 17

Algorithm K Avg. Eq. Time Games Total Time
trivial 1.000 28.8 43.6 min. 500 15.1 days

8 1.000 28.8 0.6 sec. 500 5 min.
8 3.000 39.7 0.4 sec. 2.000 13.3 min.
8 20.000 64.0 4.7 sec. 2.000 2.6 hours
8 40.000 64.3 15.5 sec. 2.000 8.6 hours

Table 3. Simulations (first two results are from a slower computer).

equilibria, and I want to evaluate Algorithm 8 using games where it does
not have an apriori advantage.

I use two-player games, where each player i has strategy set Si = [0, 1],
and payoff function

ui(si, s−i) = −(αi/10)(si − s−i)
2 + 200βi sin(100si)

+ (1/100) [(1 − αi)si(1 + s−i) − (1/2 − βi)s
2
i /100] .

The parameters αi and βi are in [0, 1]. I arrived at the above functional
form by trying to come up with games that have a fairly large number
of equilibria. The first summand is a “pure-coordination term,” its role
is to produce multiple equilibria. The role of the second summand is to
provoke multiple maxima, so that preferences are not strict (see Section 6);
the second summand also helps in getting multiple equilibria. The third
and fourth summand are variants of polynomial terms that I found—by
trial and error—often produce multiple equilibria. Note that, with these
payoffs, the game is a GSC.

I discretized the players’ strategy spaces, so that each player i chooses
a strategy in Si = {k/K : 0 ≤ k ≤ K}. I chose parameters αi and βi at
pseudo-random from [0, 1] using a uniform distribution.

7.2. Results. I now discuss the results of a series of simulations. The
results are in Table 3. I first compare the performance of Algorithm 8
and the trivial algorithm. Then I discuss what the simulations say about
Algorithm 8 in general.

Consider the first two lines of the table: I used the algorithms on 500
simulated games, using K = 1.000—so each player had 1.000 strategies
to choose from. In each individual game, the parameters αi and βi were
generated at pseudo-random from a uniform distribution on [0, 1]; I used
Algorithm 8 and the trivial algorithm on the resulting game. On average,
Algorithm 8 needed 0.6 seconds to find all equilibria of Γ. On average, the
trivial algorithm needed 43.6 minutes to do the same work. Just to stress
the difference, note that Algorithm 8 needed only 5 minutes to find the



18 F. ECHENIQUE

equilibria of the 500 games while the trivial algorithm needed more than 15
days to do the same work!

Table 3 contains the results of other simulations as well. (The first two
simulations in the table are from a slower computer than the others—I
used a computer that could be dedicated to the simulation for 15 days. 2)
Algorithm 8 is fast, even on very large problems. On average, Algorithm 8
needs only 4.7 seconds to find all equilibria in a game where each player has
20.000 strategies, and 15.5 seconds when each player has 40.000 strategies.
Again, the results are particularly striking if one looks at the “Total Time”
column: Algorithm 8 allows one to simulate 2.000 large games in a few
hours.

Using the calculation in Remark 13, and the results for K = 1.000, we can
find the time that it would take the trivial algorithm to find all equilibria of
one game with K = 20.000: 241 days. Further, when K = 40.000 it would
take the trivial algorithm 5 years and 3 months to find the equilibria of one
game!

Note that the speed of Algorithm 8 does make a difference in the analysis
of these games. The average number of equilibria stabilizes around 64,
after several increases in K. We can then infer that the original game with
continuous strategy spaces has on average about 64 equilibria. If we were
limited to the trivial algorithm, we would be unable to work with a fine
enough grid to infer the number of equilibria of the limiting game.

The graph in Figure 3 has more information. The graph plots the indi-
vidual simulations for the K = 40.000 case. First, Algorithm 8 never needs
more than 100 seconds to find the equilibria; and it needs less than one
minute for all but a few games. Second, note that more equilibria require
more time, and that the relation between the number of equilibria and time
is approximately linear—in fact, a linear regression has an R2 of 0.93.

7.3. Implementation. I wrote an implementation in C. The code (and
the output from the simulations reported above) can be downloaded from
http://www.hss.caltech.edu/~fede. The difficulty in implementing Al-
gorithm 8 is that the state, M, of the algorithm is potentially taken from
a large set of possible states. Reserving space for the possible values that
M can take may slow down the algorithm considerably. I found a rudimen-
tary solution in my implementation of the algorithm; hopefully a better
programmer can write a more efficient implementation.

2The computer used in the first two simulations is a Sun Ultra 5 with a 360 MHz
CPU and 512 MB Ram. I did the other simulations on a Linux Dell Precision PC with
a 1.8 GHz Xeon CPU and 512 MB Ram.



FINDING ALL EQUILIBRIA 19

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Number of equilibria

T
im

e 
(s

ec
on

ds
)

Simulation of 2000 games, grid size 40000 X 40000

Figure 3. Relation between time and number of equilibria

References

Aho, A. V., J. E. Hopcroft, and J. D. Ullman (1974): The Design and Analysis

of Computer Algorithms. Addison-Wesley, Reading, MA.
Cooper, R. W., D. V. DeJong, R. Forsythe, and T. W. Ross (1990): “Selection
Criteria in Coordination Games: Some Experimental Results,” American Economic

Review, 80(1), 218–233.
Crooke, P., L. M. Froeb, S. Tschantz, and G. J. Werden (1997): “Properties
of Computed Post-Merger Equilibria,” Mimeo, Vanderbildt University, Department of
Mathematics.

Echenique, F., and A. Edlin (2002): “Mixed Strategy Equilibria in Games of Strate-
gic Complements are unstable,” Working Paper E02-316, UC Berkeley.

Judd, K. L., S. Yeltekin, and J. Conklin (2000): “Computing Supergame Equi-
libria,” mimeo Hoover Institution.

McKelvey, R. D., and A. McLennan (1996): “Computation of Equilibria in Fi-
nite Games,” in Handbook of Computational Economics, ed. by H. M. Amman, D. A.
Kendrick, and J. Rust, vol. 1. North Holland, Amsterdam.

Milgrom, P., and J. Roberts (1990): “Rationalizability, Learning and Equilibrium
in Games with Strategic Complementarities,” Econometrica, 58(6), 1255–1277.

Milgrom, P., and C. Shannon (1992): “Monotone Comparative Statics,” Stanford
Institute for Theoretical Economics Working Paper.

(1994): “Monotone Comparative Statics,” Econometrica, 62(1), 157–180.
Robinson, J. (1951): “An Iterative Method of Solving a Game,” The Annals of Math-

ematics, 54(2), 296–301.
Topkis, D. M. (1979): “Equilibrium Points in Nonzero-Sum n-Person Submodular
Games,” SIAM Journal of Control and Optimization, 17(6), 773–787.



20 F. ECHENIQUE

(1998): Supermodularity and Complementarity. Princeton University Press,
Princeton, New Jersey.

van Huyck, J. B., R. C. Battalio, and R. O. Beil (1990): “Tacit Coordination
Games, Strategic Uncertainty, and Coordination Failure,” American Economic Review,
80(1), 234–248.

Vives, X. (1990): “Nash Equilibrium with Strategic Complementarities,” Journal of

Mathematical Economics, 19(3), 305–321.
(1999): Oligopoly Pricing. MIT Press, Cambridge, Massachusetts.

von Stengel, B. (2002): “Computing Equilibria for Two-Person Games,” in Handbook

of Game Theory, ed. by R. J. Aumann, and S. Hart, vol. 3. North Holland, Amsterdam.
von Stengel, B., A. van den Elzen, and D. Talman (2002): “Computing Normal-
Form Perfect Equilibria for Extensive Two-Person Games,” Econometrica, 70(2), 693–
715.

Werden, G. J., L. M. Froeb, and S. Tschantz (2001): “The Effects of Merger
Synergies on Consumers of Differentiated Products,” Mimeo, US Department of Justice,
Antitrust Division.

HSS 228-77, California Institute of Technology, Pasadena CA 91125.

E-mail address: fede@hss.caltech.edu
URL: http://www.hss.caltech.edu/~fede/


