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a b s t r a c t

Individuals in social networks often imperfectly monitor others’
network relationships and have incomplete information about
the value of forming new relationships. This paper introduces
the Generalized Conjectural Equilibrium (GCE) concept for such
settings and completely characterizes the set of GCE networks
when players observe only local parts of the network. Incomplete
information and imperfect monitoring generate different types of
inefficiency. These inefficiencies increase in number and scope
as network observation becomes more localized. These results
suggest that actual social networks will be structured inefficiently
in general.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Social networks underlie many social activities, from the trade of goods and services in non-
centralized markets, to the spread of information about job openings. Yet, all of these social
networks have a common feature that has been largely ignored in theoretical work: individuals
initiate and maintain social ties with very incorrect beliefs about the structure of the network.1
Sociologists acknowledge that ‘‘actors optimize based on local informationonly’’ [StokmanandDoreian
(1997), 246, their emphasis] even though researchers do not incorporate the idea systematically.

∗ Tel.: +1 949 824 7417.
E-mail address:mcbride@uci.edu.

1 This feature has been empirically studied in various sociological research. For example, see Laumann (1969), Kumbasar
et al. (1994), Bondonio (1998), and Casciaro (1998).
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Economists have generally ignored the fact and assumed that individuals have full and global
information.2

This paper examines the role local information plays in network formation by focusing on two
distinct types of informational limitations. First, an individual usually imperfectly monitors who is
connected to whom in the network. Second, she has incomplete information about the value of certain
connections. Will such limited information lead to the persistence of networks that differ from those
that would arise under full information? If so, why, and are the differences economically meaningful?
Does imperfect monitoring affect network formation differently than incomplete information? This
paper examines these questions using a systematic game theoretic approach. I use as a starting point
a model of network formation first introduced by Bala and Goyal (2000) and extended by Galeotti
et al. (2006) andMcBride (2006a). Each individual has a ‘‘fact’’ that can be communicated through the
network, and each player derives utility from another’s fact only if she learns it through the network.

I introduce two formal tools in my analysis: the Generalized Conjectural Equilibrium (GCE)
concept and x/y-link observation. The GCE concept relaxes the restriction that each individual has
correct beliefs in equilibrium and instead allows an individual’s equilibrium beliefs to be incorrect,
as observed in the real world, as long as they are consistent with the her limited information.
According to x/y-link observation, an individual monitors all social ties that are within x ties
away and observes the types of all individuals that are within y ties from her in the network.
The main result is a complete characterization of GCE networks under x/y-link observation. As
position-specific information becomes more limited (as x and y decrease), the number of inefficient
equilibria increases. Intuitively, observing less of one’s network prevents one from identifying, and
thus eliminating, network inefficiencies. A second finding is that the two informational limitations
– imperfect monitoring and incomplete information – have fundamentally different equilibrium
implications. The ability to monitor actions generally allows individuals to remove over-connections
but does not compel individuals to overcome under-connections because unseen opportunities will
be missed. Knowledge of types allows individuals to identify under-connections, but does not allow
individuals to identify over-connections. Efficiency may require both types of information to be
present.

Overall, this paper provides an equilibrium-based theoretical study of the empirical finding that
individuals maintain incorrect perceptions of their networks. It is the first game theoretic study of
both imperfect monitoring and incomplete information in social networks. McBride (2006a), which
considers imperfect monitoring, is the first paper to relax the full information assumption and use a
non-Nash Equilibrium concept to study networks. This paper differs in also considering incomplete
information and by introducing the issue of how different types of informational limitations lead to
different types of network inefficiencies. McBride (2006b) adapts the GCE concept introduced herein
to a mutual consent network formation setting. This body of work shows how persistently incorrect
beliefs generate a variety of network outcomes.3

2. Model, equilibrium, and network observation

2.1. Players, strategies, and payoffs

Each player i ∈ N = {1, . . . , n} knows a ‘‘fact’’ that is valued by all other players. The fact might be
investment information, valued news, insights into a new productive technology, etc. Let vi denote i’s
type, which captures the value of i’s fact to others. Let v = (v1, . . . , vn) be the profile of values and V
be the set of possible profiles.

Player i learns j’s fact only through a direct bilateral tie with j or indirectly through a path of other
players’ direct ties. The tie exists if one or both players initiate a communication link, where initiating

2 See Dutta and Jackson (2003) for a collection of many of the important contributions to this field.
3 Although McBride (2006b) was published before this paper, this paper was actually written first. McBride (2006b) cites

and builds upon this paper.
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Fig. 1.

a link costs c < ∞ to the initiator. The cost captures the time, effort, or money invested to form
and maintain the link. Each i must choose with whom to initiate links, which constitutes a vector
si = (si1, . . . , sii−1, sii+1, . . . , sin), where sij = 1 signifies that i initiates a link to j, and sij = 0 signifies
that i does not initiate a link to j. Denote Si the set of i’s possible link decisions, and let S = S1×· · ·×Sn,
where s = (s1, . . . , sn) ∈ S is one possible profile of link choices that constitute a network structure
or graph. A node in the graph represents an individual player, and the bilateral ties between nodes
represent communication links.

There is a path between i and j if they are directly linked, max
{
sij, sji

}
= 1, or if they are indirectly

linked such that there exist players j1, . . . , jm distinct from each other and from i and j such that
max

{
sij1 , sj1 i

}
= max

{
sj1j2 , sj2j1

}
= · · · = max

{
sjmj, sjjm

}
= 1. Define a network component to be a

subset of players such that there exists a path between any two players in the subset, and there is no
path between a player in the subset and a player not in the subset. Given structure s, denote Ni ⊆ N
to be i’s component. Let Ii =

{
j ∈ N|sij=1

}
be the set of i’s link initiations and |Ii| be its cardinality.

Each player has utility function ui (si, s−i|v) =
∑

j∈Ni
vj − |Ii| c. The value of j’s fact to i does not

depend on howmany links away j is in i’s component so long as she is in i’s component (see Section 5
for a brief consideration of flow decay).

Fig. 1(a) illustrates one possible s. Following convention for this model, a dot indicates which
node of the tie is the link initiator. For player 1, N1 = {1, 4, 5, 6}, I1 = {5, 6}, and |Ii| = 2. Note
that players in the same component can have different utilities when they make different numbers
of link initiations. An important feature of a network is its connectivity. A network like Fig. 1(b) in
which all players are in one component is called connected. Fig. 1(a) is disconnected because Ni ⊂ N
for all i. A special case of a disconnected network is the empty network in which each player is
isolated, i.e., Ni = {i} for all i. Another important feature is whether or not a network has redundant
link initiations called cycles. Fig. 1(c) is identical to Fig. 1(a) but with two redundant link initiations
removed: s15 = s45 = 0. A network without cycles is called minimal. Fig. 1(d) depicts a minimally
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connected network, which is of interest because any efficient (maximized sum of utilities) network
that is non-empty must be minimally connected.4

This model captures many features of actual social networks.5 Valuable information is often
communicated through networks that arise from the uncoordinated decisions of individuals to form
or sever ties. These networks span large distances, so it is likely that an individual will not observe all
others’ ties (imperfect monitoring) nor the specific value of another person’s information (incomplete
information). Thus, this model is rich enough to capture these observational details, but also simple
enough to conduct formal analysis.

2.2. Generalized conjectural equilibrium

The Nash Equilibrium (NE) concept and its refinements restrict players to commonly know v and
s in equilibrium. Other variations on the NE concept also make a similar restriction. For example, the
Bayesian NE concept for games of incomplete information assumes that players commonly know the
prior probability distribution over types. Instead of forcing this convergence in beliefs, I generalize
the Conjectural Equilibrium (CE) concept, which was designed for games with imperfect monitoring to
also consider incomplete information. I first define a game of incomplete information and imperfect
monitoring.

Definition 1. A game of incomplete information and imperfect monitoring is a combination〈
N, Θ, A, Π, (ui)i∈N , (mi)i∈N

〉
,

where: N is a set of players; Θ is a set of states; Ai is the set of actions for i ∈ N and A = ×i∈N Ai; Πi
is i’s set of probability distributions over A × Θ and Π = ×i∈N Πi∈N ; ui : A × Θ → R is i’s utility
function; andmi : A × Θ → Mi is i’s signal or message function with message spaceMi.

The inclusion of signal functions distinguishes this game from a standard game of incomplete
information. The signal function is used in games of imperfect monitoring to formalize an individual’s
monitoring of others’ actions. Here, the signal function also captures the subset of others’ types
monitored.

Definition 2. Fix θ ∈ Θ . AGeneralized Conjectural Equilibrium (GCE) of the game
〈
N, Θ, A, Π, (ui)i∈N ,

(mi)i∈N
〉
is a profile of actions and beliefs

(
a∗

i , π
∗

i

)
i∈N ∈ A × Π such that for each i:

(i)
∑(

a′
−i,θ

′

)
∈{A−i×Θ}

π∗

i

(
a∗

i , a
′

−i, θ
′
)
ui

(
a∗

i |a
′

−i, θ
′
)

≥
∑(

a′
−i,θ

′

)
∈{A−i×Θ}

π∗

i

(
a′′

i , a
′

−i, θ
′
)
ui

(
a′′

i |a
′

−i,

θ ′
)
∀a′′

i ∈ Ai,

(ii) For any
(
a′, θ ′

)
∈ A × Θ s.t. π∗

i

(
a′, θ ′

)
> 0, it must be thatmi

(
a′, θ ′

)
= mi (a∗, θ).

(iii) For any
(
a′, θ ′

)
∈ A × Θ s.t. ui

(
a′

|θ ′
)

6= ui (a∗
|θ), it must be that π∗

i

(
a′, θ ′

)
= 0.

Condition (i) states that in equilibrium each i’s action a∗

i must be a best response given her
conjectured beliefs π∗

i . Condition (ii) places a restriction on each i’s beliefs: for any state of the world(
a′, θ ′

)
that i assigns non-zero probability, it must be true that the message i receives in that state

equals the message i receives in the true state of the world (a∗, θ). In other words, a player’s beliefs
must not contradict her message. Condition (iii) restricts beliefs so that i cannot assign non-zero
probability to any state of the world that her knowledge of her own utility tells her cannot be the
true state of the world. This condition follows from the assumption mentioned above that signals
reveal at least as much information as the payoff.

A CE is a GCE of a game with complete information (e.g., Θ = {θ} or θ publicly observed). As
a static concept, GCE, like NE, does not describe how equilibrium beliefs form. It only holds that
a particular profile of beliefs and actions constitutes an equilibrium if the GCE conditions are met.
We can, however, motivate the GCE concept similar to how the CE and Self-Confirming Equilibrium

4 For a formal proposition and proof of this claim, see the technical appendix on the author’s web site
http://www.econ.uci.edu/~mcbride/.

5 See Wasserman and Faust (1994) for a general discussion of social network properties.

http://www.econ.uci.edu/~mcbride/
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concepts have been motivated (Gilli, 1999; Fudenburg and Levine, 1993). If a static game is repeated
over time and players receive only limited information about other players’ types and strategies as
the game progresses, then incorrect beliefs can persist over time, and players might not ever receive
information to contradict those incorrect beliefs.6 The primary disadvantage of the GCE concept is that
it places so few restrictions on equilibrium beliefs that the set of equilibria can often be very large.
However, the GCE conditions can be viewed as theminimum necessary conditions for an equilibrium.
This also guards against making restrictions difficult to justify in the network setting with limited
observation. The underlying question concerns what should i assume about the actions and types of
individuals she does not observe. Restricting players to have common knowledge of Fv , for example,
as assumed in a Bayesian Equilibrium, is difficult to justify when each player observes a different part
of the network.

2.3. Network observation

To apply theGCE concept to thenetwork formation game,wemust specify players’ signal functions.
I here propose the notion of x/y-link observation, which mimics the incomplete information and
imperfect monitoring present in actual social networks.7 Given network s, let d (i, j|s) be the distance
of the shortest path between i and j, where d (i, i|s) = 0 and d (i, j|s) = ∞ if j 6∈ Ni. Let N

x/y
i (s) be the

set of links that are observed by i given s under x/y-link observation: Nx/y
i =

{
sj|d (i, j) ≤ x − 1

}
∪{

skj|d (i, k) = x and d (i, j) = x − 1
}
.

Definition 3. Given (s, v), signal function mx/y
i (s, v) exhibits x/y-link observation if the signal

contains (i) Nx/y
i (s) and (ii)

{
vj|d (i, j) ≤ y

}
.

Assume for now (relaxed later) that x ≥ 1 and 0 ≤ y ≤ x. These are natural restrictions: an
individual knows with whom she has direct links and should only be able to observe another’s type
if she observes that player in the network (y ≤ x), and observing another’s links does not imply
observing her type (y can be strictly less than x). In Fig. 2(a), the dashed line encloses the links observed
by player 1 when x = 1, and the dashed circles show the players whose types are observed when
y = 0. 1 observes her link initiation to 6, 5’s link initiation to her, her own type, and nothing else. As x
or y or both increase, i observesweaklymore of her network. Fig. 2(b) depicts 1’s signal with x = 2 and
y = 2,where 1 nowobserves twomore links and threemore players’ types. Individual inever observes
any player not in her component if x and y are finite. Finally, note that x/y-link observation mimics
to some extent what individuals observe in actual social networks. Individuals gain their information
about the network through their own network interactions, and they are more likely to observe the
parts of the network closer to themselves.8

3. Characterization of network equilibria

To completely characterize the set of network equilibria requires additional notation. For j ∈ Ii,
let Pij = {k ∈ N| there is a path from i to k through j}, and let Px/y

ij = {k ∈ N| there is a path from i to k
through j and d (i, k|s) ≤ x}. In words, Pij is the set of all players on the path from i to j, while Px/y

i is
the set of all players on the path that are observed in the signalmx/y

i (s, v). Note that k is in Pij but not
in Px/y

ij if the path from i through j to k exists but is not observed.

6 See Battigalli et al. (1992) and Gilli (1999) for extended discussions of the Conjectural Equilibrium (CE) concept in games
with imperfect monitoring. While I generalize the CE concept, it has also been further refined. Fudenburg and Levine’s (1993)
Self-confirming Equilibrium is a CE in which i’s signal contains the strategies that all others play at all information sets on
the equilibrium path. Rubinstein and Wolinsky’s (1994) Rationalizable Conjectural Equilibrium further assumes common
knowledge of rationality.

7 This x/y-link observation concept generalizes the x-link observation concept introduced by McBride (2006a).
8 See Friedkin (1983), Kumbasar et al. (1994), Bondonio (1998), and Casciaro (1998).
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Fig. 2.

Let vij+ (s, v) be the actual marginal value of i’s link to j:

vij+ (s, v) =


0, if j and i are in a cycle∑
k∈Pij

vk, otherwise.

Let v
x/y
ij+ (s, v) be the observed marginal value of i ’s link with j:

v
x/y
ij+ (s, v) =


0, if j and i are in a cycle of size 2x or smaller∑
d(i,k)≤y,k∈Px/yij

vk, otherwise.

Say that component Ni has a ‘‘low-valued, link-receiving subcomponent’’ (LLS) if there exists a
j ∈ Ni with sij = 1 such that setting sij = 0 partitions Ni into two separate components N ′

i and N ′

j and
0 < vij+ (s, v) < c . Intuitively, any i would remove a link to j if i knows j is in a LLS because the link

to j provides benefits less than cost c. Let LLSx/yi ≡

{
j ∈ Ii|v

x/y
ij+ (s, v) < c

}
be the players to whom i

initiates links that could be a LLS given her observation. Notice that j ∈ LLSx/yi does not imply that j is
indeed part of a LLS; it just implies that j might be part of a LLS.

Let ṽ
x/y
i (s, v) ≡ ui (s) −

∑
j∈N s.t. d(i,j|s)≤y vj be i’s utility that is received but unaccounted for given

her observation. Finally, define ṽ
x/y
ij+

(
s′, v′

)
= vij+

(
s′, v′

)
− v

x/y
ij+ (s, v). Note that v

x/y
ij+ (s, v) is known
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by i, but because i might assign non-zero probability to some state
(
s′, v′

)
, ṽx/y

ij+

(
s′, v′

)
captures what

i would see as that part of the marginal value of the link with j that is unobserved in state
(
s′, v′

)
. If

the link is redundant in state
(
s′, v′

)
, then ṽ

x/y
ij+

(
s′, v′

)
= −v

x/y
ij+ (s, v).

To visualize these definitions, see Fig. 2(c), where the ‘‘b’’ next to 1 means v1 = b, and so on,
assuming e < c < b. In that network, N2/1

1 (s) would be depicted as Fig. 2(d), because 1 does
not observe the link between 3 and 4. We have P12 (s, v) = {2, 3, 4}, P2/1

12 (s, v) = {2, 4}, and
d (1, 3|s) = 3. The marginal value of 1’s link to 2 is v12+ (s, v) = 3e, and the observed marginal
value is v

2/1
12 (s, v) = e. The set of 1’s possible LLSs is LLS2/11 = {2} because v

2/1
12 (s, v) = e < c <

v
2/1
16 (s, v) = b. 1’s total unaccounted for utility is ṽ

2/1
1 (s, v) = (3b + 3e − 2c) − (3b − e − 2c) = 2e.

We can now state and prove the main proposition of the paper, where Ex/y (v) is the set
of equilibrium networks that can be sustained as equilibria given type profile v under x/y-link
observation.

Proposition 1. Fix v. Ex/y (v) consists of all s∗ such that
(a) s∗ has no cycles of size less than or equal to 2x;
(b) ṽ

x/y
i (s∗, v) ≥

∑
j∈LLSx/yi

(
c − v

x/y
ij+ (s∗, v)

)
for any i with

∣∣∣LLSx/yi

∣∣∣ ≥ 1;

(c) for each i with
∣∣∣LLSx/yi

∣∣∣ ≥ 1, (i) if x = y then Nx/y
i ⊂ N, and (ii) if x > y, then for each j ∈ LLSx/yi ,

there is a k ∈ N on a path through j s.t. d (i, k|s∗) = y + 1.

Proof. Necessity. (a) Suppose s∗ has a cycle of size z ≤ 2x. Consider i and j in the cycle with sij = 1. It
must be true thatmx/y

i (s∗, v) reveals that cycle to i, and π∗

i must assign probability 0 to any swithout
that cycle. Given such π∗

i , it must be true that i believes she is strictly better off by setting sij = 0. But
this contracts GCE condition (i).

(b) According to GCE condition (i), to not remove any link to any j ∈ LLSx/yi , it is necessary that
there is enough ṽ

x/y
i (·) to make the link with any j ∈ LLSx/yi not be an LLS:∑

(s′,v′)∈(S×V )

π∗
(
s′, v′

) (̃
v

x/y
ij+

(
s′, v′

)
+ v

x/y
ij+ (s, v)

)
≥ c.

Because v
x/y
ij+ (s, v) must be the same in any

(
s′, v′

)
assigned non-zero probability, this becomes∑

(s′,v′)∈(S×V )

π∗
(
s′, v′

)
ṽ
x/y
ij+

(
s′, v′

)
≥ c − v

x/y
ij+ (s, v) .

This inequality must hold for all j ∈ LLSx/yi , so we can sum across those j’s to get∑
j∈LLSx/yi

∑
(s′,v′)∈(S,V )

π∗

i

(
s′, v′

)
ṽ
x/y
ij+

(
s′, v′

)
≥

∑
j∈LLSx/yi

(
c − v

x/y
ij+ (s, v)

)
,

and because the left hand side cannot exceed the total amount of unaccounted for utility ṽ
x/y
i (s∗, v),

it follows that

ṽ
x/y
i

(
s∗, v

)
≥

∑
j∈LLSx/yi

(
c − v

x/y
ij+ (s, v)

)
.

(c-i) Suppose the contrary, i.e., for i with
∣∣∣LLSx/yi

∣∣∣ ≥ 1 and x = y, assume that Nx/y
i = N . Consider

j ∈ LLSx/yi , and let k be the player furthest from i in Px/y
ij . Any

(
s′, v′

)
assigned non-zero probability by

π∗

i either has no player k′ with d
(
i, k′

)
= y + 1 or has a player k′ with d

(
i, k′

)
= y + 1. In the first

case, i is strictly better off removing the link with j because the link is an LLS in
(
s′, v′

)
. In the second

case, because k′
∈ Ni, the link with j must be a cycle, so removing the link makes i strictly better off.
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Because π∗

i is a weighted average, it follows that i believes she will be strictly better off removing the
link. But this contradicts GCE condition (i).

(c-ii) Suppose the contrary, i.e., for i with
∣∣∣LLSx/yi

∣∣∣ ≥ 1 and x > y, there is a j ∈ LLSx/yi without a

k ∈ N s.t. d (i, k|s∗) = y+1. Because x > y,mx/y
i (s∗, v)must reveal to i that there is no such k. By GCE

condition (ii), π∗

i must assign probability 0 to any state with such a k. But with these π∗

i , i believes
with probability 1 that the link to j is a LLS and that she is strictly better off removing her link to j. This
contradicts GCE condition (i).

Sufficiency for i with
∣∣∣LLSx/yi

∣∣∣ ≥ 1 and x = y. Suppose x = y, and consider s∗ and v that satisfy (a),

(b), and (c-i) with
∣∣∣LLSx/yi

∣∣∣ ≥ 1 for some i. Consider i with LLSx/yi = {j1, . . . , jz}, z ≥ 1, and consider

k 6∈ Nx/y
i (s∗). Construct z different states s1, . . . , sz in the following manner: each has subnetwork

Nx/y
i (s∗); state s1 has k initiate a link to player l1 who is x links away from i through j1, state s2 has k

initiate to l2 who is x links away from i through j2, and so on; and any j 6∈

{
Nx/y

i ∪ {k}
}
is isolated.

Let v′ have v′

j = vj as observed for all j ∈ Nx/y
i , v′

k = ṽ
x/y
i (s∗, v), and set v′

j = v < c for all

j 6∈

{
Nx/y

i (s∗) ∪ {k}
}
. Notice that (b) is satisfied. Finally, set

π∗

i

(
st , v′

)
=

c − v
x/y
ijt∑

j∈LLSx/yi

(
c − v

x/y
ijt

)
for t = 1, . . . , z. As constructed,

∑
(s′,v′)∈(S×V ) π∗

i

(
s′, v′

)
= 1, and GCE conditions (ii) and (iii) are

met for i.
To show that condition (i) is met, notice that, givenπ∗

i , the expected cost of removing the link with
jt , t = 1, . . . , z, must exceed the expected benefit of removing the link:

c − v
x/y
ijt∑

j∈LLSx/yi

(
c − v

x/y
ijt

) ṽi + v
x/y
ijt ≥ c.

With (b) satisfied, it must be true that

c − v
x/y
ijt∑

j∈LLSx/yi

(
c − v

x/y
ijt

) ṽi + v
x/y
ijt ≥

c − v
x/y
ijt

ṽi
ṽi + v

x/y
ijt = c − v

x/y
ijt + v

x/y
ijt = c,

so keeping the link is a best response. Adding links is not a best response because, according to π∗

i , all
j 6∈ Nx/y

i ∪ {k} are isolated with vj < c as constructed. Thus, GCE condition (i) holds for i.

Sufficiency for i with
∣∣∣LLSx/yi

∣∣∣ ≥ 1 and x > y. Suppose x > y, and consider s∗ and v that satisfy

(a), (b), and (c-ii) with
∣∣∣LLSx/yi

∣∣∣ ≥ 1 for some i. Consider i with LLSx/yi = {j1, . . . , jz}, z ≥ 1. Let

state s′ have Nx/y
i (s∗) as does s∗, but make any j 6∈ Nx/y

i (s) isolated. By (a), s′ is minimal. Set v′

j = vj

for values observed given y; set v′

k1
= c − vij1+ (s∗, v) for k1 from (c-ii), set v′

k2
= c − vij2+ (s∗, v)

for k2, and so on for k3, . . . , kz−1; set v′

kz = ṽ
x/y
i −

∑z−1
t=1 v′

kt ; and set v′

j = 0 for all others. Notice
that (b) is satisfied and that i’s expected payoff under

(
s′, v′

)
equals that under the true state (s∗, v).

Finally, set π∗

i

(
s′, v′

)
= 1. As constructed, π∗

i meets GCE conditions (ii) and (iii) for i. Moreover, given
π∗

i , removing any link yields a weak decrease in expected payoff, while adding a link yields a strict
decrease in expected payoff. Thus, GCE condition (i) is also met for i.
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Sufficiency with
∣∣∣LLSx/yi

∣∣∣ = 0 for i. Suppose s∗ and v that satisfy (a) and (b), and consider i with∣∣∣LLSx/yi

∣∣∣ = 0. Set π∗

i

(
s′, v

)
= 1 where s′ equals s∗ except that for any cycle of size 2x + 1 or larger in

s∗, a link that is x+ 1 away along the cycle is removed so that s′ is minimal. As constructed, π∗

i meets
GCE conditions (ii) and (iii) for i, and given π∗

i , s
∗

i is a best response, thus meeting GCE condition (i)
for i. �

The key issue here is whether or not an individual can identify payoff-improving link initiations or
removals. With ‘‘pessimistic’’ beliefs about the value of individuals in unseen parts of the network, an
individual will notwant to formnew links, and those beliefs will not be contradicted by the signal. The
key to the proof is establishing when an individual will not want to remove any links, i.e., when the
signal that does not reveal any LLSs. Part (a) says that an equilibrium network cannot have cycles that
are too small, but it can have cycles outside of players’ observational ranges if, as shown in the proof,
beliefs do not assign weight to states with cycles. Parts (b) and (c) concern an individual’s ability to
discern the existence of a LLS. Clearly, an LLS of size y−1 or smaller would be within i’s observational
range and thus could not exist in equilibrium. But GCE conditions (ii) and (iii) may also lead to beliefs
that ‘‘identify’’ other LLSs even if they are not explicitly observed. It turns out that two conditions
must be met to not be ‘‘identifiable’’: the player must have sufficient ‘‘unaccounted for utility’’ that
could possibly (from the player’s point of view) be attached to the LLS thus making the LLS not really
a LLS, and there must be players whose values are not observed but who could be generating that
unaccounted for utility. These conditions correspond to parts (b) and (c) of the Proposition.

Consider Fig. 2(c) for intuition. With 2 ∈ LLS2/11 , are there beliefs π1 such that keeping her link
with 2 is a best response? For her current action to be a best response, there must exist at least
one state s′ given non-zero probability by π∗

i in which the link with 2 is neither an LLS or part of
a cycle (otherwise 1’s best response must involve removing the link), and this s′ must have some
player k or group of players k1, . . . , kz , connected to 2 who makes 1’s link to 2 yield a marginal
benefit greater than c to player 1. But this is not possible if e is sufficiently small because there is
only ṽ

2/1
1 (s, v) = 2e of unaccounted for utility. To meet GCE conditions (ii) and (iii), player 1 must

have exactly ṽ
2/1
1 (s, v) = 2e of unaccounted for utility in any s′ assigned non-zero probability, and

even if all of that were gained solely through 1’s link with 2, that would still make the link with 2
worth only 3ewhich is less than c if e is sufficiently small. Even though 1 cannot observe exactly who
is connected to 2, she would still recognize that the link to 2 is to a LLS because there is not enough
received but unobserved utility that could make the link to 2 worthwhile. Thus, for any π∗

1 that meets
GCE conditions (ii) and (iii), s∗1 would not be a best response.

Whereas any (full information) NE network that is connected must also be minimal,9 such is not
the case in a limited information GCE network. Proposition 1 establishes that the incorrect beliefs
arising from limited information can lead to network outcomes in which there are too many links
(cycles), too few links (disconnected or empty), or both (cycles in non-connected components). This
difference arises due to the relaxing of theNE restriction that players’ beliefs are correct in equilibrium.
If players’ have incorrect beliefs, then what they believe to be best responses might not in reality be
best responses. Applying the GCE concept thus allows us to see how the incorrect beliefs resulting
from limited information lead to outcomes different than those under full information. The lowest
observation setting, 1/0-link observation, has the largest set of equilibrium networks,10 and puts
Proposition 1 in perspective.

Corollary 1. Fix v. E1/0 (v) consists of all s∗ without direct redundant links such that ui (s∗|v) ≥ vi
for all i.

9 For a formal proposition and proof of this claim, see the technical appendix on the author’s web site
http://www.economics.uci.edu/~mcbride/.
10 It can be shown that Ex/y ⊇ Ex′/y′ when x ≤ x′ or y ≤ y′ or both. See the technical appendix on the author’s web site

http://www.economics.uci.edu/~mcbride/.

http://www.economics.uci.edu/~mcbride/
http://www.economics.uci.edu/~mcbride/
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Proof. Under 1/0-link observation, condition (a) of Proposition 1 implies that s∗ can have any cycle
with 3 or more players, so the only cycles not allowed are cycles of 2 players, which would be direct
redundant links. Because y = 0 implies i observes only her own type, it follows that LLSx/yi = Ii,
ṽi (s∗, v) = ui (s∗|v) − (vi − c |Ii|), and vij+ (s∗, v) = 0 for all j ∈ LLSx/yi for each i. Condition (b) in
Proposition 1 thus becomes ui (s∗|v) − (vi − c |Ii|) ≥ c |Ii| ⇒ ui (s∗|v) ≥ vi. According to condition
(c) of Proposition 1, any s∗ must have a player y + 1 = 1 links away from i along the path through
j ∈ Ii. This is true in any network because j herself is one link away from i. �

The ui (s∗|v) ≥ vi condition in Corollary 1 is naturally interpreted as a participation constraint. In
other words, any network without direct redundant links that makes each i no worse off than being
isolated can be an equilibrium under 1/0-link observation. This includes the empty network, non-
minimal and disconnected networks, or minimally connected networks. When vi > c for all i, every
s ∈ S without direct redundant links is in E1/0 (v) because the participation constraint is met in any
such s. That is, if all players are high-valued then literally any network (without directly redundant links)
can be sustained as an equilibrium. This ‘‘anything goes’’ type result occurs because each i’s observation
is so limited that we can construct beliefs that make her believe her component is minimal and that
any other player not in her component is isolated and low-valued.

4. Incomplete information vs. imperfect monitoring

To consider the different impacts of incomplete information and imperfect monitoring, compare
the∞/0-link observation (perfectmonitoring) settingwhere every i perfectlymonitors s but does not
observe any others’ types with the 1/∞-link observation (complete information) setting where every
i knows v but only observes her own direct links. This second setting violates the x ≥ y assumption
but helps us understand the different effects of the two types of limited information.

Perfect monitoring implies that any cycle would be identified, so any non-minimal structure could
not be an equilibrium under perfect monitoring. The empty network (which is minimal) is clearly an
equilibrium because each i can have π∗

i assign probability 1 to the empty network with vj = v < c
for all j 6= i. Moreover, a minimally connected network with the participation constraint met will
also be an equilibrium because π∗

i can assign probability 1 to a state where her link initiations yield
a return higher than the link cost. Non-empty, disconnected networks that are minimal and meet
the participation constraint are also equilibria. Even though i observes some component Nj, π∗

i may
assign a low value to that component, thus preventing i from wanting to initiate a link to players in
the other components. Because she has no direct observation of the value of Nj, this belief meets GCE
conditions (ii) and (iii). Of course, i might believe that j would only be in some component Nj 6= Ni if
her own participation constraint were met, thereby implying to i that the value of Nj exceeds c. Thus,
if players attribute rationality to the other players, the disconnected, non-empty networks will not be
equilibria, as i will link to j ∈ Nj 6= Ni. Mutual, not common, knowledge of rationality is sufficient for
this last result.

Proposition 2. Fix v. E∞/0 (v) consists of all minimal s∗ (including the empty network) such that
ui (s∗|v) ≥ vi for all i. With mutual knowledge of rationality, E∞/0 (v) consists of the empty network
and all minimally connected s∗ such that ui (s∗|v) ≥ vi for all i.

Under 1/∞-link observation, the empty network is an equilibrium if vi < c for all i but not
when vi > c for at least one i. Any isolated player’s beliefs must assign the high value to any high-
valued player, so she could not be isolated in equilibrium. Making stronger claims about equilibrium
networks will depend in a complicated way on a player’s ability to discern, using her observation and
knowledge of her utility, which players are in her component. Because of this, it is not possible to give
precise necessary and sufficient conditions for connected equilibria for generic v. I instead examine
two special cases.

The first scenario is one in which each i can identify from her utility alone which others are in her
component. Say that type profile v is ‘‘distinct’’ if

∑
j∈N ′ vj 6=

∑
j∈N ′′ vj for all subsets N ′,N ′′

⊆ N . In
essence, each player’s fact is sufficiently different from another so that the sum of any combination
of players will differ from the sum of any other combination of players. One example of distinct types
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with n = 5 is v = {1, 10, 100, 1000, 10 000}. Notice that if numbers are picked at random from
a continuous distribution, then any v profile is generically distinct. The second scenario, studied by
McBride (2006a) considers the symmetric types case with vi = v̂ > c for all i.

Proposition 3. (a) Fix v, and suppose vi > c for at least one i. If v is distinct, then any s∗ ∈ E1/∞ (v)
must be connected with ui (s∗|v) ≥ vi for any i.

(b) [From McBride (2006a)] Fix v with vi = v > c. (i) If n < 8 then any s∗ ∈ E1/∞ is connected, but
if n ≥ 8 and c sufficiently close to v then E1/∞ also contains disconnected networks. (ii) With common
knowledge of rationality, every s∗ ∈ E1/∞ is connected for any n > 1.

If v is distinct and knownby each i, then anyπ∗

i thatmeetsGCE conditions (ii) and (iii)must identify
the players in i’s component. If Ni does not include any jwith vj > c (or if i is isolated) then i’s current
action cannot be a best response because according to π∗

i , initiating a link to that j would make i
strictly better off. Of course, cycles outside of the observational range can still exist in equilibria. Thus,
distinct types with at least one high-valued player is sufficient to have a connected network, but it
cannot guarantee minimality. See McBride (2006a) for details and intuition of part (b).

Neither perfect monitoring nor complete information are sufficient alone for connectedness or
minimality, however each does have a different impact on network efficiency. Perfect monitoring
has an immediate implication about network architecture in that it implies minimality, but
connectedness requires mutual knowledge of rationality because only then does it allows players to
infer something about the value of other components. The impact of monitoring on connectedness
is still limited, though, because the empty network is always an equilibrium even if all players are
high-valued. Complete information of types v, unlike perfect monitoring, does not imply anything
about minimality, but it does imply that any equilibrium is non-empty if at least one player is high-
valued. Whether or not it guarantees a connected equilibrium will depend, first, on whether players
can identify their component members and, second, on whether players ascribe rational behavior to
other players. Thus, loosely speaking, complete information and perfect monitoring each provide one
aspect of efficiency, but in general neither alone is sufficient for efficiency even when every Nash
Equilibrium is efficient.

5. Other considerations

5.1. Strict equilibria

The strictness refinement changes ‘‘≥’’ to ‘‘>’’ in condition (i) of the GCE definition. Researchers
(Bala and Goyal, 2000, Galeotti et al., 2006) like this restriction because it greatly refines the set
of network equilibria The restriction also has the nice dynamic property that strict equilibria are
absorbing states in repeated game settings. According to a ‘‘link-switching’’ argument, strictness rules
out as an equilibrium a situation in which a player’s observation reveals that her utility is the same if
she switches a link from j to k. Bala and Goyal (2000) show that the center-sponsored star (wherein
one i initiates all links and no other player initiates links), is the only component architecture immune
to this link-switching under full information. McBride (2006a) extends the result to the x/∞-link
observation case with x ≥ 2. Intuitively, to know of the link-switching opportunity a player only
needs observe a neighbor’s link. I here extend this result the incomplete information case.

Proposition 4. Suppose x ≥ 2. Then for any y under x/y-link observation, any strict GCE componentmust
be a center-sponsored star.

Proof. Suppose equilibrium s∗ has componentNi that is not a center-sponsored star. Thus, theremust
exist an i, j ∈ Ni who both initiate links. If |Ni| = 2 then it must be true that s∗ij = s∗ji = 1, which is a
direct redundant link that cannot exist in an equilibrium with x ≥ 1.

Now suppose |Ni| > 2. Again, there must be i, j ∈ Ni who both initiate links. If d (i, j) = 1 and,
without loss of generality, s∗ij = 1, then i observes Ij. If s∗ji = 1, then i’s link is again observed to be
redundant and cannot be an equilibrium. If s∗ji = 0 then there must be some k such that s∗jk = 1. Since
i observes this link, i observes that she receives no decrease in utility by setting sij = 0 and sik = 1,
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so s∗ is not a strict equilibrium. If d (i, j) > 1, then there must be a player k in the path between i and
j, and, without loss of generality, let s∗ik = 1. Now i observes that she can switch her link from k to any
player directly connected to k on the path to j and receive the same utility, which implies s∗ is not a
strict equilibrium. �

A few comments deserve mention. First, center-sponsored stars are minimal, so in any strict
equilibrium, each non-empty component is arranged efficiently even if the network as a whole is not
efficient. Second, non-empty strict equilibria might not exist even when non-empty weak equilibria
do. For example, if vi = c−ε, ε > 0 small for all i ∈ N , then a periphery-sponsored star (a star network
in which the peripheral players all link to the central player, whom does not initiate any links) is a
weak equilibrium (and efficient), but the only strict equilibrium is the empty network. Third, strict
equilibria might not exist. If v is distinct, has multiple high- and low-valued players, and is commonly
known (1/∞-link observation), then any equilibrium must be connected. However, with x ≥ 2, any
strict equilibriummust also be a center-sponsored star, but such cannot be an equilibrium because an
equilibrium cannot have a low-valued stem. Finally, strictness does not imply connectedness. In fact,
with x and y finite, the empty network is always a strict equilibrium.

5.2. Common prior

Another way to refine the set of equilibria is to impose restrictions on players’ beliefs, and a
standardway todo this is to assume that individuals’ types are drawn independently froma commonly
known distribution Fv . Players’ prior beliefs about others’s types would equal this distribution, and
players would, in equilibrium, Bayesian update given their signals. This approach gives individuals
information they would not have without the assumption, and it will thus refine the set of equilibria.
Consider i who observes that j is not in Ni. Without additional information to the contrary, i must
assign an expected value of linking to j to equal the mean of Fv . If this expected value is greater than c ,
then i has a profitable deviation (in expectation) to link to j. Thus, some disconnected networks that
are GCE without assuming the common prior will no longer be equilibria.11

5.3. Decay

Flow decay captures the idea that the benefits of a link depreciate in the geodesic distance of that
link. For example, information in a communication network is lost or altered as it passes through
more people, so i’s benefits from j are higher if j is closer to i in the network. Not surprisingly, under
full information flow decay often reduces the maximum distance between any i and j in the same
component of an equilibrium because players want to be closer to one another to reduce decay.
Sufficiently large decay (δ close to 0) will mean that i would rather form a direct link to j than
benefit from any indirect link to j so that flow decay can lead to redundant links being efficient in
equilibrium. This principle applies with incomplete information and imperfect monitoring, however,
the implications of these ideas weaken as x and y decrease. In fact, flow decay has a somewhat minor
effect when x = 1 and y = 0. It can be shown that with flow decay, the set of equilibrium networks
under 1/0-link observation consists of all those that satisfy each player’s participation constraint, akin
to Corollary 1.12 The difference is that the decay reduces the overall value of most components, thus
making fewer networks meet the participation constraint.

5.4. Mutual consent networks

Ties in many social networks requires the mutual consent and effort of both sides of the tie.
McBride (2006b) examines the mutual consent setting under x/y-link observation and does so using

11 Proposition 4 holds in this common prior setting because the link switching has to do with observation of neighbors’ links
and not prior beliefs others’ types.
12 For a formal proposition and proof of this claim, see the technical appendix on the author’s web site

http://www.economics.uci.edu/~mcbride/.
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a new stability concept designed for the study of mutual consent network formation. He shows that
the general impact of limited observation on network outcomes (i.e., expansion of the set of stable
networks) applies in the mutual consent setting for the same reason it does here. However, he also
shows that, unlike themodel studied in this paper,many of the new equilibria that arise due to limited
observation can actually be more efficient that the most efficient ones under full observation. The
reason is that if individuals can maintain incorrect beliefs in equilibrium, then some of those beliefs
may lead them to choose actions that are socially beneficial though individually detrimental.Whether
there are unilateral link formation settings in which this result arises is a topic for future research.

6. Conclusion

This paper shows how and why imperfect monitoring and incomplete information lead to the
existence of inefficient equilibria. Because empirical work suggests observation to be approximately
x = 2 and y = 2 in many actual informal networks (Friedkin, 1983), my findings predict that many
actual networks operate inefficiently. My findings also reveal that limiting players’ information about
others’ ties has different implications than limiting information about players’ types. Discovering
how individuals act to lessen the network inefficiencies predicted by the above analysis constitutes a
potentially fruitful avenue of research.
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